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Abstract. Results for estimating the convergence rate of nonstationary distributed consensus
algorithms are provided, on the basis of qualitative (mainly topological) as well as basic quantitative
information (lower-bounds on the matrix entries). The results appear to be tight in a number of
instances and are illustrated through simple as well as more sophisticated examples. The main idea is
to follow propagation of information along certain spanning-trees which arise in the communication
graph.
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1. Introduction. Historically appearing in the areas of communication net-
works, control theory, and parallel computation, the analytical study of ways for
reaching consensus in a population of agents is a problem of broad interest in many
fields of science and technology. Questions of this nature arise in peer-to-peer and
sensor networks [8, 1], in the maneuvring of groups of vehicles [2, 23, 34], in the study
of transmission control protocol (TCP) protocols [5], in the theory of coupled oscilla-
tors [16, 25, 21, 31], in neural networks [20], but also in apparently distant fields such
as the study and modeling of opinion in social science [24] and of animal flocking [13].

Generally speaking, the goal of such studies is to design or analyze decentralized
algorithms through which “agents” (which in the previous examples can be cars or
unmanned aerial vehicles, nodes in communication network, sensors, particles, cells,
fish, etc.) can update their internal states in order to agree on a common value. In
general, the latter shall not be a priori fixed but will be determined as a result of
the interactions and of their history.1 These interactions can be modeled either as
unidirectional or bidirectional, corresponding to different extreme situations in which
one agent is able to influence another without being affected by the internal state of
the receiver (as in hierarchical communication flows) or, conversely, in which influence
between agents is always symmetrical.

Of particular interest is the question of estimating how quickly consensus is
reached on the basis of qualitative (mainly topological) as well as basic quantitative
information (strength of reciprocal influences) on the network.

Originally, the problem of quantifying the convergence rate towards consensus was
considered in the context of stationary networks. For Markov chains, for example,
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2 DAVID ANGELI AND PIERRE-ALEXANDRE BLIMAN

this amounts to quantifying the speed at which steady-state probability distribution
is achieved, and is therefore directly related to finding an a priori estimate to the
second largest eigenvalue of a stochastic matrix. Classical works on this subject are
due to Cheeger [11] and Diaconis and Stroock [14]; see also [15] for improved bounds.

Among the classical contributions which instead deal with time-varying interac-
tions, we refer to the work of Cohn [12], where asymptotic convergence is proved,
but where the issue of relating topology and guaranteed convergence rates is ne-
glected. Tsitsiklis and coworkers also provided important qualitative contributions to
this subject [32, 33, 6], as has Moreau [28]. See also [3] for further nonlinear results.
In particular, the role of connectivity of the communication graph in the convergence
of consensus has been recognized and finely analyzed.

As noticed in different manners by the preceding authors, arguments based on
graph theory are more powerful and seem to catch, in a more natural way, the essence
of the problem, rather than computations based on linear algebra techniques (although
the study of stochastic matrices offers nowadays, undoubtedly, quite strong results).
We are in perfect harmony with the opinion that a view in terms of graphs is central
to understanding the agreement issues. However, it appears that some dynamical
aspects which have been so far disregarded can be exploited to really gain a tighter
understanding of how rapidly consensus can be reached. Our attempt here is to
provide a subsequent step towards integration of the temporal aspects of information
transit. We are thus led to further elaborate on and exploit tools for description of
the connectivity emergence in the communication graphs.

Our purpose in this paper is to provide several criteria to estimate quantitatively
the contraction rate of a set of agents towards consensus, in a discrete time framework.
Using the language of dynamical systems, the problem here is of estimating the second
largest Lyapunov exponent of an infinite product of matrices (see also [7] for links to
joint spectral radius). To the best of our knowledge, previous results are centrally
based on the existence of a lower-bound of the nonzero entries associated to such
matrices, with most of them on the existence of self-loops; see [10] and the surveys in
[7, 30] (see, however, the contributions in [32, 33], where the assumption on self-loops
is relaxed). Recently, Nedich and Ozdaglar [29] proposed improved bounds under
similar assumptions. In contrast, we attempt here to follow more closely the spread
of the information over the agent population, along one or more spanning-trees.

Ensuring a lower bound to the matrix entries of the agents already attained by the
information flow along the spanning-tree, rather than all the nonzero contributions
as classically, permits us to obtain tighter estimates with weaker assumptions. The
setting used here applies indifferently to leader-follower or to leaderless networks.

More precisely, our main idea is to examine the birth and rise of spanning-trees
in the network. Distinguishing between different subpopulations of agents already
touched by spanning-trees and of agents not yet attained, and using lower-bounds
on the influence of the former ones on the latter ones, one is able to establish rather
precise convergence estimates. Due to the nature of the assumptions, the latter possess
some intrinsic robustness with respect to parametric uncertainties.

The paper is organized as follows. The problem is formulated in section 2, and
some pertinent concepts are therein introduced. Specifically, several appropriate con-
nectivity notions are defined, among them sequential connectivity, which turns out
to be central to our developments. The remaining sections are devoted to the state-
ment and demonstration of the main results. Section 3 deals with the problem of
contraction estimates when information follows a single spanning-tree (or at least
one such spanning-tree with a certain guaranteed strength existing in the underlying
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graph). This section contains remarks on self-loops and delays; see subsection 3.3.
The most original results are in section 4, where it is shown, by means of a fairly
general technique, how multiple spanning-trees can be used to derive tight estimates
of the contraction rate. Conclusions are reported in section 5.

For better readability, various examples are reported in the text to illustrate the
application of the results and to demonstrate the strength of the method. Also, some
involved results and proofs have been put into appendices. In particular the main
technical tool for carrying out estimates over a finite horizon of the contraction rate
of a linear stochastic system is given there.

Notation. In what follows, N stands for the set of natural integers (including
zero), and �x� designates the integer value of a real number x. For any set N , we
denote by |N | or card N its cardinality. Generally, Latin or Greek uppercase letters
indicate matrices, and lowercase letters are used to signal scalar numbers and vectors.
Graphs and sets are distinguished by calligraphic letters.

In what follows, the (possibly infinite-dimensional) vectors 1 and 1i denote, re-
spectively, a column of 1 and the vector with null components, except 1 in the ith
position.

We call an integer interval any set obtained as the intersection of a usual interval
with the set N. When the context is clear, in particular, when talking about time
values, the integer intervals are denoted as the classical ones, for example, [0, T ] .=
{t ∈ N : 0 ≤ t ≤ T }.

For p, q positive integers, we denote by Ip and 0p×q the identity and zero ma-
trices, respectively. The transposition of matrices is denoted T. By definition, (row)
stochastic (resp., substochastic) matrices are square matrices with nonnegative com-
ponents, whose row sums are equal (resp., at most equal) to 1. Their spectrum
is ordered by nonincreasing modulus magnitude, i.e., for M stochastic in R

n×n,
1 = λ1(M) ≥ |λ2(M)| ≥ · · · ≥ |λn(M)|.

Lastly, we introduce the matrix sets M
p,q. By definition,

(1) M
p,q .=

{
M ∈ R

p×q : M ≥ 0 and ∀i = 1, . . . , p, Mi,1 + · · ·+Mi,q ≥ 1
}
.

In (1) and throughout the paper, matrix ordering is meant componentwise, i.e., M ≥ 0
stands for Mi,j ≥ 0 for all i, j.

2. Sequential connectivity and other graph-related notions. We consider
the problem of convergence of the consensus algorithm described by the following
system:

(2) xk(t+ 1) =
∑
l∈N

γk,l(t)xl(t), k ∈ N ,

towards a common value; that is, the global asymptotic stability of the diagonal set
{x : for all k, l ∈ N , xk = xl}. As usual, (2) may be written in matrix form as

x(t + 1) = Γ(t)x(t), x(t) .=

(
x1(t)

...

)
, Γ(t) .= (γk,l(t))(k,l)∈N×N .

We consider scalar systems, although extension to multidimensional systems is possi-
ble. The set N is finite or countable, and the functions xk map N to R. We assume
throughout that

(3) ∀k, l ∈ N , ∀t ∈ N, γk,l(t) ≥ 0, and ∀k ∈ N ,
∑
l∈N

γk,l(t) = 1 .
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4 DAVID ANGELI AND PIERRE-ALEXANDRE BLIMAN

In other words, the matrices (γk,l(t))(k,l)∈N×N are stochastic.
Our goal in the remainder of the paper is to quantify the convergence speed of

the set {xk(t) : k ∈ N} when t→ +∞ towards a consensus value. We first introduce
vocabulary adequate to measure the latter.

Definition 1 (agent set diameter). The quantity

Δ(x(t)) .= sup
k∈N

xk(t)− inf
k∈N

xk(t)

is called the diameter of the agents set at time t.
In what follows, Δ(x(t)) plays the role of a Lyapunov function to study conver-

gence to an agreement. Although the latter depends upon the state, we frequently
abbreviate the notation in Δ(t) if no misinterpretation is possible.

Definition 2 (contraction rate). We call the contraction rate of system (2) the
number ρ ∈ [0,+∞] defined as

ρ
.= sup
x(0)

lim sup
t→+∞

(
Δ(t)
Δ(0)

) 1
t

.

The number ρ is indeed the second largest Lyapunov exponent of the dynamical
system (2).

Some notions and definitions necessary to describe pertinent aspects of the com-
munication between the agents are now introduced, based on some elementary tools
of algebraic graph theory.

Definition 3 (communication graph). We denote by communication graph (of
system (2)) at time t the directed graph defined by the ordered pairs (k, l) ∈ N × N
such that γk,l(t) > 0.

In the present context, we use the terms “node” and “agent” interchangeably.
Definition 4 (neighbors). Given a graph A and a nonempty subset L ⊆ N , the

set Neighbors(L,A) of neighbors of L is the set of those agents k ∈ N \ L for which
there exists at least one element l ∈ L such that (k, l) ∈ A. When L is a singleton
{l}, the notation Neighbors(l,A) is used instead of Neighbors({l},A).

A key property, namely weak connectivity, has been shown to crucially influence
the evolution of finite systems of agents linked by time-varying communication graphs
(see [26, 28]; also see [9], where the weakly connected sequences are called “repeatedly
jointly rooted”).

Definition 5 (connectivity and weak connectivity). A node k ∈ N is said to be
connected to a node l ∈ N on a directed graph A defined on N if there exists a path
joining k to l in A and respecting the orientation of the arcs. Given a sequence of
directed graphs A(t), t ∈ N, the node k ∈ N is said to be connected to the node l ∈ N
on an integer interval I ⊆ N if k is connected to l for the graph

⋃
t∈I A(t).

A graph A is called weakly connected [26] if there is a node k ∈ N connected to
all other nodes l ∈ N . A sequence of graphs A(t), t ∈ N, is called weakly connected
across an integer interval I ⊆ N if the graph

⋃
t∈I A(t) is weakly connected (that is,

if there is a node connected across I to all other nodes). A subgraph connecting an
agent to all the other ones is called a spanning-tree.

The fundamental result found by Moreau states that uniform global asymptotic
stability of the set of common equilibria is equivalent to the existence of an integer
T > 0 such that the sequence of graphs is weakly connected on any interval of length
T [26, 28]. Exponential estimates may be obtained too; see the survey part of [7, 30]
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and [10, 9]. As a matter of fact, there is no specific difficulty in checking the validity
of both these results, with the weaker assumption that the graph sequence is weakly
connected on every integer intervals [tp, tp+1], p ∈ N, where the tp define a strictly
increasing sequence such that lim supp→+∞ tp+1 − tp ≤ T .

In order to obtain more precise estimates of the decay rate towards consensus
value, it is reasonable to introduce some minimal time taken by the information to
cover the graph—the preceding connectivity notions were not concerned with the
ordering of the arcs constituting the tree. We thus introduce some notions useful for
quantifying the minimal time for information spread. This spread plays a central part
in the contraction rate estimate to be stated later.

Definition 6 (sequential connectivity of finite graph sequences). A finite se-
quence of T graphs with common nodes A1,A2,. . . ,AT (T ∈ N) is said to be sequen-
tially connected if there exist a node k ∈ N and iterations given by

N0 = {k},
Nt ⊆ Nt−1 ∪Neighbors(Nt−1,At) t = 1, . . . , T,

which satisfy NT = N .
When we want to emphasize the “root” node, we denote Nt by Nt(k), meaning

that the iteration departs from node k.
The sets introduced in Definition 6 are crucial to understanding the principle

of the method developed in the present paper. For each t = 1, . . . , T , the set Nt
contains agents already in Nt−1 and agents having a neighbor in Nt−1 at time t; i.e.,
they are all agents which have been attained at most at time t by the settling of the
spanning-tree rooted in k.

We now introduce a derived notion for infinite sequences of graphs.
Definition 7 (T -sequential connectivity). An infinite sequence of graphs A(t),

t ∈ N, is said to be T -sequentially connected if there exists a strictly increasing integer
sequence tp, p ∈ N, fulfilling

(4) lim sup
p→+∞

tp+1 − tp ≤ T

and such that each graph subsequence

A(tp), . . . ,A(tp+1 − 1)

is sequentially connected.
Note that the property is, by definition, monotone with respect to T , viz.,

T -sequential connectivity ⇒ (T + 1)-sequential connectivity.

Moreover, T -sequential connectivity is invariant with respect to finite time shifts,
namely, A(t) is T -sequentially connected iff for all q ∈ N, A(t + q) is again T -
sequentially connected. Similarly, T -sequential connectivity is invariant with respect
to deletions and/or substitutions of finitely many graphs in a sequence, thus confirm-
ing that the property is truly an asymptotic definition.

Notice the proximity of the definitions of sequential connectivity proposed here
to the notion of weak connectivity; the central difference is that the former takes into
account explicitly the time scheduling of the information transit. The following result
links the different connectivity properties defined above and provides mutual bounds
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6 DAVID ANGELI AND PIERRE-ALEXANDRE BLIMAN

between the different connectivity time constants. Its proof, due to its simplicity, is
omitted for sake of space and can be found in [4, Proposition 3].

Proposition 8. Any T -sequentially connected sequence of graphs is weakly con-
nected on the integer intervals [tp, tp+1], p ∈ N. Reciprocally, given an increasing
sequence tp fulfilling (4), any sequence of graphs defined on a set of n agents that is
weakly connected on the intervals [tp, tp+1], p ∈ N, is (n−1)2T -sequentially connected.

3. Propagation of a unique spanning-tree.

3.1. Estimating the contraction: A key lemma. A first result is now given,
describing the elementary mechanism which permits us to quantify a contraction along
a unique spanning-tree.

Lemma 9. Let the finite sequence of communication graphs A(0), . . . ,A(T − 1)
of system (2) be sequentially connected, and let N0, . . . ,NT be the sets corresponding
to the spanning-tree (see Definition 6). Assume that, for any t = 0, . . . , T − 1 and
any k ∈ N ,

(5) k ∈ Nt+1 ⇒
∑
l∈Nt

γk,l(t) ≥ α(t)

for a given map α : [0, T − 1]→ [0, 1]. Then

(6) Δ(T ) ≤
(

1−
T−1∏
t=0

α(t)

)
Δ(0) .

Besides sequential connectivity, it is thus assumed in Lemma 9 that, when an
agent is in Nt+1 (and thus is attained by the spanning-tree at time at most t+ 1), at
time t the total weight in the right-hand side of (2) of its neighbors from Nt (which
have been previously attained by the spanning-tree), including possibly itself, is at
least α(t) until completion of the tree. This is thus a hypothesis on the relative value
of the two “feeding weights” internal and external to the spanning-tree.

Proof of Lemma 9. Lemma 9 is a particular case of a more complex result, Lemma
18, which will be used and demonstrated further. For this reason, we limit the present
proof to the essential arguments. For any k ∈ Nt+1 we have

xk(t+ 1) =
∑

l=1,...,n

γk,l(t)xl(t) =
∑
l∈Nt

γk,l(t)xl(t) +
∑

l∈N\Nt

γk,l(t)xl(t) ,

where by assumption,
∑
l∈Nt

γk,l(t) ≥ α(t) and
∑

l=1,...,n γk,l(t) = 1. From this, it
may be shown that

sup
k∈Nt+1

xk(t+ 1) ≤ α(t) sup
k∈Nt

xk(t) + (1− α(t)) sup
k∈N

xk(t) ,

and an opposite inequality can be shown for the corresponding inf expressions. De-
noting

Δ1(t)
.= sup
k∈Nt

xk(t)− inf
k∈Nt

xk(t) ,

it turns out that Δ1(0) = 0 (N0 is a singleton, the root of the spanning-tree), while
Δ1(T ) = Δ(T ) (when the spanning-tree has run along the entire graph at time T ).
Thus

Δ(T ) = Δ1(T ) ≤ (1− α(0)α(1) . . . α(T − 1)) Δ(0),
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as claimed in the statement.
Remark 1. Under the hypotheses of Lemma 9, one may show easily that x(T ),

considered as a function of x(0), verifies

(7) ∀l ∈ N , ∂xl(T )
∂xk(0)

≥
T−1∏
t=0

α(t) ,

where k denotes the index of the root of the spanning-tree. Indeed, one has more
generally, for any t = 0, . . . , T − 1,

∀l ∈ Nt+1,
∂xl(t+ 1)
∂xk(0)

≥ α(0)α(1) . . . α(t) .

From (7), one deduces that, for any l ∈ N ,

xl(T ) =
T−1∏
t=0

α(t) xk(0) +
∑
l′∈N

ζl,l′ (0, T )xl′(0) .

Here the ζl,l′(0, T ) are some nonnegative real coefficients, whose explicit value is not
needed, i.e., the previous formula just indicates that xl(T ) is a convex combination of
the components xl′ (0), with a minimal weight on xk(0). In particular, for any l ∈ N ,
the weight of the remaining terms verifies

∑
l′∈N

ζl,l′ (0, T ) = 1−
T−1∏
t=0

α(t) .

It is then immediate to establish that

(
1−

T−1∏
t=0

α(t)

)
inf
l∈N

xl(0) ≤ inf
l∈N

xl(T )−
T−1∏
t=0

α(t) xk(0)

≤ sup
l∈N

xl(T )−
T−1∏
t=0

α(t) xk(0) ≤
(

1−
T−1∏
t=0

α(t)

)
sup
l∈N

xl(0) ,

which furnishes an alternative proof of inequality (6). One can thus interpret assump-
tion (5) as ensuring a minimal guaranteed influence of the value of xk(0) (at the root
of the spanning-tree) on every value xl(T ), l ∈ N .

3.2. Results on the contraction rate estimate. The main result of section
3 is now presented. A direct consequence of Lemma 9, it provides an estimate of the
contraction rate.

Theorem 10. Let the sequence of communication graphs of system (2) be T -
sequentially connected. Accordingly, denote by tp the corresponding increasing inte-
ger sequence of spanning-tree completion (see Definition 7); by Np,t−tp , t = tp, tp +
1, . . . , tp+1 the sets corresponding to the spanning-tree connecting sequentially the
graph subsequences A(tp), . . . ,A(tp+1 − 1), p ∈ N (see Definition 6); and by T the
corresponding set

(8) T .= {(p, t) : p ∈ N, t ∈ {tp, . . . , tp+1 − 1}} .
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8 DAVID ANGELI AND PIERRE-ALEXANDRE BLIMAN

Assume existence of a map α : T → [0, 1] such that, for any (p, t) ∈ T , for any k ∈ N ,

(9) k ∈ Np,t−tp+1 ⇒
∑

l∈Np,t−tp

γk,l(t) ≥ α(p, t) .

Then the contraction rate of system (2) as defined in Definition 2 verifies

(10) ρ ≤ lim sup
p→+∞

p∏
p′=1

⎛
⎝1−

tp′+1−1∏
t=tp′

α(p′, t)

⎞
⎠

1/tp+1

.

Notice that, with the definition adopted in (8), there is indeed, for each t ∈ N, a
unique p ∈ N such that (p, t) ∈ T .

An important feature is that self-loops (γk,k > 0) are not mandatory here, con-
trary to other previous contributions; see [6, 28, 7]. This assumption is loosened up in
[32, 33] for some, but not all, agents. Example 3 below presents an example where this
is further weakened. In particular, this feature permits us to model leader/follower
evolutions as well as leaderless networks within a unified framework. On this subject,
see also subsection 3.3 below.

Similarly, no positive uniform lower-bound on the nonzero coefficients of Γ(t) is
required; i.e., requirement (9) is sensibly weaker than the usual one in the literature;
see [10, 9, 30] and our Example 1.

Proof of Theorem 10. One first states a monotonicity result for the diameter of
the agent set along the solutions of (2).

Lemma 11. For any trajectory of (2), one has, for any t ∈ N,

Δ(t+ 1) ≤ Δ(t) .

Proof. The proof of Lemma 11 comes from the fact that, the matrices Γ(t) being
stochastic, the map t → supk∈N xk(t) (resp., t → infk∈N xk(t)) is nonincreasing
(resp., nondecreasing).

One deduces directly from (6) that

Δ(tp+1) ≤
p∏

p′=1

⎛
⎝1−

tp′+1−1∏
tp′

α(p′, t)

⎞
⎠Δ(t1) .

Thus,

lim sup
p→+∞

e
1

tp+1
ln

( Δ(tp+1)
Δ(0)

)
= lim sup

p→+∞
e

1
tp+1

ln
(

Δ(t1)
Δ(0)

)
e

1
tp+1

ln
( Δ(tp+1)

Δ(t1)

)

≤ lim sup
p→+∞

p∏
p′=1

⎛
⎝1−

tp′+1−1∏
t=tp′

α(p′, t)

⎞
⎠

1/tp+1

.

Clearly,

lim sup
p→+∞

e
1

tp+1
ln

( Δ(tp+1)
Δ(0)

)
≤ lim sup

t→+∞
e

1
t ln( Δ(t)

Δ(0) ) .
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Now, from the fact that Δ(t) is nonincreasing and tp+1/tp+2 → 1 as p → +∞, one
gets

lim sup
t→+∞

e
1
t ln( Δ(t)

Δ(0) ) ≤ lim sup
p→+∞

e
1

tp+2
ln

( Δ(tp+1)
Δ(0)

)
= lim sup

p→+∞
e

1
tp+1

ln
( Δ(tp+1)

Δ(0)

)

(notice that the logarithmic expressions are not positive, due to the nonincreasingness
of Δ along time). The conclusion is then immediate from the definition of ρ given in
Definition 2.

The next result is a specialization of Theorem 10 for constant α.
Corollary 12. Let the sequence of communication graphs of system (2) be T -

sequentially connected. Assume the existence of a constant map α in [0, 1] satisfying
(9). Then

(11) ρ ≤ (1 − αT )
1
T .

The previous results extend similar estimates found previously (see [6, 10, 9, 29]),
as α does not have to bound from below the components of the matrices Γ(t).

Proof of Corollary 12. Assume without loss of generality tp+1 − tp ≤ T for all
p ∈ N. Consequently lim supp→+∞ pT/tp+1 ≥ 1. Applying Theorem 10 with constant
α yields, for every p ∈ N,

ρ ≤ lim sup
p→+∞

p∏
p′=1

(
1− αtp′+1−tp′ )1/tp+1 ≤ lim sup

p→+∞

p∏
p′=1

((
1− αT

)1/T
)T/tp+1

= lim sup
p→+∞

((
1− αT

)1/T
)pT/tp+1

≤ (1− αT )1/T ,

where one has used the fact that T → (1−αT ) is increasing on R
+ for any α ∈ [0, 1].

Corollary 12 is thus proved.
Remark 2. A classical topic in linear algebra is the estimate of the second largest

eigenvalue (in modulus) of a stochastic matrix for large dimensions. In particular, as
n grows, Landau and Odlyzko [22] showed that the rate of convergence is of order
1 − 1/n3 (with n being the number of agents) for the equal neighbor time invariant
model on an undirected graph; see also results of the same nature in [30]. Our results
can be applied to large systems as well. In particular, each given topology induces
some kind of relation (typically an inequality) between tree-depth, weight of edges,
and number of agents. This inequality can, in principle, be used to derive convergence
rate estimates based on the number of agents.

We now provide several examples of systems with n = 3 agents in order to illus-
trate the two previous results.

Example 1. As a first example, consider the stationary system with n = 3 agents
given by

Γ = Γ(ε) .=

⎛
⎝1/3 1/3 1/3

1/3 1/3 1/3
1/3 2/3− ε ε

⎞
⎠

for fixed ε ∈ [0, 1/3]. For ε = 1/3, we obtain the equal neighbor averaging model
corresponding to a complete graph [30]. A spectral analysis argument shows that
the actual value of the contraction rate ρ is equal to 1/3 − ε. Taking into account
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the fact that the coefficients are greater than or equal to min{1/3, 2/3 − ε, ε} = ε,
methods in [10, 9, 30] yield an upper estimate of ρ equal to 1−ε2, or even 1−ε ≥ 2/3
(taking into account the fact that the system under study is neighbor shared [10, 9]
and adapting [10, Lemma 2 and Theorem 1] to systems whose nonzero coefficients
are at least ε). Now, Corollary 12 can be applied. Indeed, the system appears as
1-sequentially connected—as the first node participates with nonzero weight to the
evolution of all the agents—and one can take α = 1/3 as a lower-bound for these
weights. This gives an estimate of ρ equal to 2/3, which is better than the results
obtained by the other methods.

Example 2. Consider a system with n = 3 agents and dynamics defined by (2)
with

(12)

Γ(t) .=

⎛
⎝ α(t)M1(t)

	 	
	 	

	 	 	

⎞
⎠ if t ∈ 2N, Γ(t) .=

⎛
⎝ α(t)M2(t)

	
	
	

⎞
⎠ if t ∈ 2N + 1 .

Here, α : N → (0, 1], M1 : N → M
2,1, M2 : N → M

3,2 (these sets have been
defined in (1)), and the stars stand for any nonnegative scalar numbers rendering the
matrix Γ(t) stochastic (for this to hold, the row-sums of M1(t), M2(t) have to be at
most equal to α(t)−1).

What is meant here is that for even t, x1(t) participates with a weight at least α(t)
to the value of x1(t+ 1) and x2(t+ 1), and that for odd t, x1(t) and x2(t) participate
with a global weight at least α(t) to the value of x1(t + 1), x2(t + 1), and x3(t + 1).
This is precisely the assumption needed to apply Theorem 10, as detailed now.

Taking the first component x1 as the root of the spanning-tree, one sees clearly
that this system is 2-sequentially connected. Application of Theorem 10 then yields
the following estimate:

max
t′=2t,2t+1

{
max
i=1,...,3

xi(t′)− min
i=1,...,3

xi(t′)
}

≤ (1− α(0)α(1)) . . . (1− α(2t− 2)α(2t− 1))
(

max
i=1,...,3

xi(0)− min
i=1,...,3

xi(0)
)
,

valid for any t ∈ N. When α is constant, Corollary 12 applies and leads to

max
i=1,...,3

xi(t)− min
i=1,...,3

xi(t) ≤ (1 − α2)�
t
2 	

(
max
i=1,...,3

xi(0)− min
i=1,...,3

xi(0)
)
.

The following numerical experiment has been achieved. A set of one thousand
couples of stochastic matrices Γ(1) and Γ(2) are generated randomly (a uniform law
on [0, 1] is used for each coefficient, and the rows are afterward normalized), and
the best estimates for α(1), α(2) fulfilling the conditions above are then computed.
The actual contraction rate ρ (which is the square root of the maximal absolute
value of the second largest eigenvalues |λ2(Γ(2)Γ(1))|; see [30, Proposition 1]) is then
compared to the upper bound ρ̃ deduced from Theorem 10 (that is,

√
1− α(1)α(2)).

The corresponding histogram is represented in Figure 1.
Example 2 shows that, although not tight, the bound may provide reasonable

estimates. Notice, however, that the previous comparison test is achieved only with
2-periodic systems (characterized by the second eigenvalue λ2(Γ(2)Γ(1))), although
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0–5% 5–10% 10–15% 15–20% 20–25% 25–30% 30–35%
1 21 86 161 212 197 132

35–40% 40–45% 45–50% 50–55% 55–60% 60–65% 65–70%
88 52 30 13 4 2 1

Fig. 1. Numerical test of Theorem 10. Number of occurrences per value of the ratio ρ/ρ̃. See
Example 2 for details.

Theorem 10 requires no specific assumption on the general time dependence. An
attempt to take into account the occurrence of several spanning-trees is proposed
below (section 4).

Example 3. We consider here a simple 2-periodic 3-agent system whose evaluation
is not possible by the methods presented by previous works. For t ∈ N, we let

Γ(2t) .=

⎛
⎝1/2 1/2 0

1/2 1/2 0
0 0 1

⎞
⎠ , Γ(2t+ 1) .=

⎛
⎝ 0 1/2 1/2

1/2 0 1/2
1 0 0

⎞
⎠ .

The matrices Γ(2t + 1) being deprived of any self-loop, the criteria from [6, 28, 7]
cannot be applied. Considering that the system is 2-sequentially connected (with
N 1
p,0 = {1}, N 1

p,1 = {1, 2}), using, as in Example 2, Corollary 12 with α = 1/2 yields
an estimate of the contraction rate as (1− 1/4)1/2, that is,

√
3/2 � 0.87. Indeed, the

present example is an instance of Example 2, with α ≡ 1
2 in (12). On the other hand,

using as previously the second eigenvalue argument [30] of the product Γ(2t+1)Γ(2t),
the actual rate is found equal to

√
5/8 � 0.79. This value is smaller than

√
3/2, but

it is computed under the restrictive hypothesis of periodicity.
Example 4. As a last illustration of Theorem 10, an elementary time-varying

2-agent system is provided, for which no uniform-in-time lower-bound on the nonzero
coefficients of the state matrices exists. This is a situation excluded from the previ-
ously published criteria. Let

Γ(2t) .=

⎛
⎝1 0 0

1 0 0
0 1 0

⎞
⎠ , Γ(2t+ 1) .=

⎛
⎝0 1 0

1 0 0
1
t 1− 1

t 0

⎞
⎠ .

This is clearly another special instance of Example 2. Theorem 10 applies with
α = 1 and yields a null contraction rate. Indeed, finite-time convergence does occur,
as

Γ(2t)Γ(2t+ 1) =

⎛
⎝1 0 0

1 0 0
1 0 0

⎞
⎠ .

3.3. Remarks on self-loops and delays. As noticed previously, self-loops are
not assumed in the previous results. However, it is a well-known fact that their
absence may lead to nonconvergence, as shown, e.g., by the elementary example

x1(t+ 1) = x2(t), x2(t+ 1) = x1(t),

whose solutions are either constant or oscillating, although the system is undoubtedly
sequentially connected.
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In fact, the assumptions of the main result of section 3, Theorem 10, force the
existence of a self-loop on the root of the spanning-tree at each t = tp, p ∈ N. This
unique self-loop, together with the other hypotheses (which impose, rather, informa-
tion flux from upstream), turns out to be sufficient to enforce the convergence. After
this first step and up to the end of the cycle (that is, for tp < t < tp+1), the root, being
in each of the sets Np,t−tp+1, has to receive a minimal amount of information from
within Np,t−tp , but not specifically via a self-loop. This is, for example, the case in
Examples 3 and 4, where for odd t no self-loop occurs for the root of the spanning-tree
(agent 1), while the required amount of information is transmitted by agent 2.

A similar remark will hold for the forthcoming results on systems with several
spanning-trees given below (see section 4, especially Theorem 16). Notice that the
point previously raised is crucial, as it drastically conditions the search for spanning-
trees.

On the other hand, it is quite evident that the information transfer between the
agents may be subject to delays. This feature does not present specific difficulties
a priori, because it can be treated the same way via an augmentation of the state
vector. Some past state values are then included in the definition of the diameter and
of the contraction rate, which are considered (see Definitions 1 and 2), but this has
essentially no consequence on the meaning of this latter quantity.

Generally speaking, delays cannot suppress sequential connectivity, except if they
concern the unique mandatory self-loop, located at the root at the initial time instant
(see above). On the other hand, they may change the values of the weights α(t) and
thus modify the decay estimates. Also, it is rather likely that the decay rate estimates
are nondecreasing with respect to any delay.

A more precise study of the quantitative influence of the delays on the convergence
speed could be tackled by similar tools, but this feature is beyond the scope of the
present paper. For simplicity, we limit ourselves to a simple example, for which
analytical results are easily computed.

Example 5. Consider the four following systems:

x1(t+ 1) =
1
2
x1(t) +

1
2
x2(t), x2(t+ 1) =

1
2
x1(t) +

1
2
x2(t) ;(13a)

x1(t+ 1) =
1
2
x1(t) +

1
2
x2(t), x2(t+ 1) =

1
2
x1(t− 1) +

1
2
x2(t− 1) ;(13b)

x1(t+ 1) =
1
4
x1(t) +

1
4
x1(t− 1) +

1
2
x2(t), x2(t+ 1) =

1
2
x1(t− 1) +

1
2
x2(t) ;

(13c)

x1(t+ 1) =
1
2
x1(t− 1) +

1
2
x2(t), x2(t+ 1) =

1
2
x1(t) +

1
2
x2(t− 1) .(13d)

The delay-free system (13a) is 1-sequentially connected, and the analysis con-
ducted above yields the estimate ρ̃ = 1

2 ≥ ρ = 0.
The three remaining systems possess delayed terms x1(t−1) and x2(t−1). Intro-

ducing x3(t)
.= x1(t− 1), x4(t)

.= x2(t − 1), they can be written as x(t + 1) = Γx(t),
where x .= (x1, x2, x3, x4)T and

Γ .=

⎛
⎜⎜⎝

1
2

1
2 0 0

0 0 1
2

1
2

1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , Γ .=

⎛
⎜⎜⎝

1
4 0 1

4
1
2

1
2 0 0 1

2
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , Γ .=

⎛
⎜⎜⎝

0 1
2

1
2 0

1
2 0 0 1

2
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,
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respectively, for (13b), (13c), and (13d). System (13b) is 3-sequentially connected
with α(0) = α(1) = α(2) = 1

2 , so that ρ̃ =
3√7
2 � 0.96 ≥ ρ = 1

2 . System (13c) is
2-sequentially connected with α(0) = 1

4 and α(1) = 1
2 , and ρ̃ =

√
7

2
√

2
� 0.94 ≥ ρ = 1

2 .
Lastly, system (13d) is not sequentially connected, due to the absence of a self-loop
(zero diagonal). This is corroborated by the fact that ρ = 1, so convergence does not
occur.

As can be seen, the index of sequential connectivity is not systematically the sum
of this index for the delay-free case (1 here) and the sum of the values of the delays.

4. Communication graphs spanned by several spanning-trees.

4.1. Sequential connectivity with several spanning-trees. When several
spanning-trees emerge in the communication graph (either simultaneously or succes-
sively), the previous analysis may happen to be conservative. We now face the issue
of how to tackle this feature.

An extension of the notion of sequential connectivity introduced in section 2 is
first constructed, analogously to Definitions 6 and 7.

Definition 13 (sequential connectivity of finite graph sequences by multiple
spanning-trees). A finite sequence of T graphs with common nodes A1,A2, . . . ,AT is
said to be sequentially connected by m spanning-trees (m ∈ N) if there exist nodes
k1, k2, . . . , km ∈ N and iterations given by

N j
0 = {kj},
N j
t ⊆ N

j
t−1 ∪Neighbors(N j

t−1,At), t = 1, . . . , T,

which satisfy N j
T = N for all j ∈ I .= {1, 2, . . . ,m}.

Similarly we define the property for infinite graph sequences as follows.
Definition 14 (T -sequential connectivity by multiple spanning-trees). An in-

finite sequence of graphs A(t), t ∈ N, is said to be T -sequentially connected by m
spanning-trees if there exists a strictly increasing integer sequence tp, p ∈ N, fulfilling
(4) and such that for all p ∈ N, each graph subsequence

A(tp), . . . ,A(tp+1 − 1)

is sequentially connected by m spanning-trees.
The following result extends Lemma 9. As the latter, it is directly deduced from

Lemma 18, so a detailed proof is omitted.
Lemma 15. Let the finite sequence of communication graphs A(0), . . . ,A(T − 1)

of system (2) be sequentially connected by m spanning-trees, and let N j
0 , . . . ,N

j
T be

the sets corresponding to the jth spanning-tree (see Definition 13). For each k ∈ N ,
consider sets N k,j

t ⊆ N j
t such that j �= j′ ⇒ N k,j

t ∩ N k,j′
t = ∅. Assume the existence

of maps αi,j : [0, T − 1]→ [0, 1] such that, for any t = 0, . . . , T − 1, any i, j ∈ I, and
any k ∈ N ,

(14) k ∈ N i
t+1 ⇒

∑
l∈Nk,j

t

γk,l(t) ≥ αi,j(t)

for given maps αi,j : [0, T − 1] → [0, 1]. Then A(t) .= (αi,j(t))(i,j)∈I×I is a sub-
stochastic matrix in R

m×m and

(15) Δ(T ) ≤
(

1−max
j∈I

1T

jA(T − 1) . . . A(0)1
)

Δ(0) ,

where 1 and 1j are as defined in the notation section.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

14 DAVID ANGELI AND PIERRE-ALEXANDRE BLIMAN

The sets N j
t generalize the notion introduced in section 3; i.e., here, each set

N j
t is constituted by agents attained at most at time t by the jth spanning-tree.

Assumption (14) fixes a lower-bound αi,j to the total weight applied by each agent in
N i
t+1 to agents in N j

t .
When an agent is a member, for given t, of sets N j

t for more than one value of
j, it is necessary to decide, in the construction of contraction estimates relative to
the xk update equation, to which of them its influence is attributed; this choice could
actually vary according to the considered update equation. This is the reason why
subsets N k,j

t disjoint for different js are introduced.
Remark 3. When in the statement of Lemma 15 the sequential spanning-trees

corresponding to two distinct values of i, i′ are identical, then the scalar quantities
1T
iA(T − 1) . . . A(0)1 and 1T

i′A(T − 1) . . . A(0)1 are equal—at least if the αi,j(t) are
chosen to be identical for all j ∈ I.

On the other hand, different choices in the attribution of arcs to one or another
of the m developing spanning-trees (that is, on the definition of the sets N k,j

t ) may
lead to different choices for these coefficients, and consequently to different estimates.
In this respect, adding virtual sequential spanning-trees may allow us to improve the
convergence speed estimate; see Example 6 below.

Remark 4. As in Remark 1 for Lemma 9, one shows easily that, under the
hypotheses of Lemma 15, one has similarly, for any j ∈ I,

∀l ∈ N , ∂xl(T )
∂xk(0)

≥ 1T

jA(T − 1) . . . A(0)1k ,

where the index k represents any index of the roots of the m spanning-trees. Indeed,
for any t = 0, . . . , T − 1 and any j ∈ I,

∀l ∈ N j
t+1,

∂xl(t+ 1)
∂xk(0)

≥ 1T

jA(T − 1) . . . A(0)1k ,

which gives the previous estimate when t = T − 1, as N j
T = N for all j ∈ I.

4.2. Results on contraction rate estimate. We now come to the key result
of section 4, which is also the most powerful result of the paper.

Theorem 16. Let the sequence of communication graphs of system (2) be T -
sequentially connected by m spanning-trees. Accordingly, denote by tp the correspond-
ing increasing integer sequence of spanning-tree completion (see Definition 14); by
N j
p,t−tp , t = tp, . . . , tp+1, the sets corresponding to the m spanning-trees connecting

sequentially the graph subsequences A(tp), . . . ,A(tp+1 − 1), p ∈ N (see Definition
13); and by T the set defined in (8). Furthermore, for each k ∈ N , consider sets
N k,j
p,t−tp ⊆ N

j
p,t−tp such that j �= j′ ⇒ N k,j

p,t−tp ∩N
k,j′
p,t−tp = ∅, and assume the existence

of maps αi,j : T → [0, 1], (i, j) ∈ I × I, such that, for any (p, t) ∈ T , any i, j ∈ I,
and any k ∈ N ,

(16) k ∈ N i
p,t−tp+1 ⇒

∑
l∈Nk,j

p,t−tp

γk,l(t) ≥ αi,j(p, t) .

Then A(p, t) .= (αi,j(p, t))(i,j)∈I×I is a substochastic matrix in R
m×m, and the

contraction rate of system (2) as defined in Definition 2 verifies

(17) ρ ≤ lim sup
p→+∞

p∏
p′=1

(
1−max

j∈I
1T

jA(p′, tp′+1 − 1) . . . A(p′, tp′)1
)1/tp+1

.
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Proof of Theorem 16. Due to the fact that the sets Nk,j(t) are pairwise disjoint
for different values of j, one has, for any i ∈ I, any t ∈ N,∑

j∈I
αi,j(p, t− tp) ≤

∑
j∈I

∑
l∈Nk,j(t)

γk,l(t) ≤
∑
l∈N

γk,l(t) = 1

for any k ∈ N i
p,t−tp+1. This proves the first part of the statement.

As in the proof of Theorem 10 above, it suffices essentially to establish (15)
when t is a multiple of T . Applying Lemma 18 on the integer interval [tp, tp+1] with
Mi(t) = N i

p,t−tp ,Mk,j(t) = N k;j
p,t−tp , ci,j(t) = αi,j(p, t) yields

Δi(tp+1)

≤ 1T

i

(
A(p, tp+1 − 1) . . . A(p, tp)ΔN (tp)+

(
1−A(p, tp+1 − 1) . . . A(p, tp)1

)
Δ(tp)

)
.

Here, the definition of ΔN depends upon p and is as follows:

ΔN (t) .=

⎛
⎜⎝

Δ1(t)
...

Δm(t)

⎞
⎟⎠ , Δi(t)

.= sup
k∈N i

p,t−tp

xk(t)− inf
k∈N i

p,t−tp

xk(t), t = tp, . . . , tp+1 .

By assumption, the existence of the m spanning-trees means that

Δi(tp) = 0 and Δi(tp+1) = Δ(tp+1), i ∈ I .

One thus deduces that, for all i ∈ I,

Δ(tp+1) = Δi(tp+1) ≤ 1T

i

(
1−A(p, tp+1 − 1) . . . A(p, tp)1

)
Δ(tp) .

Thus,

Δ(tp+1) ≤ (1− 1T

iA(p, tp+1 − 1) . . . A(p, tp)1)Δ(tp) .

The proof is then achieved as it was for Theorem 10.
Example 6. We come back to the analysis of Example 1, now with the help

of Theorem 16. One may distinguish three spanning-trees occurring on each time
interval of unit length (in other words, the system is 1-sequentially connected by
three spanning-trees), with the root at each of the agents. With this point of view,
I = N = {1, 2, 3} and tp = p. With the notation of Theorem 16, one may put

N j
p,0 = {j}, N j

p,1 = N = {1, 2, 3}, for j = 1, 2, 3 .

This is the simplest case, where the sets N j
p,0 are pairwise disjoint, so one takes

N k,j
p,0

.= N j
p,0, j = 1, 2, 3 .

We now form the functions αi,j , as defined in the statement of Theorem 16, and
the corresponding matrix A. By definition, one should have, for any i, j ∈ {1, 2, 3}
(see (16)),

∀k ∈ {1, 2, 3}, ∀p ∈ N, γk,j ≥ αi,j(p, p) ,
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where Γ = (γi,j)(i,j)∈I×I is as given in Example 1 above. One thus takes

αi,j(p, p)
.= min
k=1,2,3

γk,j , i = 1, 2, 3 ,

that is, αi,1 = 1/3, αi,2 = min{1/3, 2/3− ε}, αi,3 = min{1/3, ε}, or again

A
.=

⎛
⎝1/3 min{1/3, 2/3− ε} min{1/3, ε}

1/3 min{1/3, 2/3− ε} min{1/3, ε}
1/3 min{1/3, 2/3− ε} min{1/3, ε}

⎞
⎠ .

Applying formula (15) then leads to an estimate of the actual contraction rate
equal to

1−
(
1/3 + min{1/3, 2/3− ε}+ min{1/3, ε}

)
= 1/3− ε .

In this example, the method ensuing from Theorem 16 thus generates the exact value
of the contraction rate ρ.

Considering now only the two first spanning-trees (with N j
p,0 = {j}, N j

p,1 = N =
{1, 2, 3} for all p ∈ N and all j ∈ {1, 2}; then αi,1 = 1/3, αi,2 = min{1/3, 2/3− ε} =
1/3, i = 1, 2) gives a worse estimate, namely 1/3. Similarly, considering the first and
third, or the second and third, spanning-trees yields 2/3 − ε. These estimates are
different and are tighter than 2/3, the value obtained in Example 1 when considering
a unique spanning-tree, but are not optimal.

We refine further the analysis of systems spanned by several spanning-trees and
examine, in subsections 4.3 and 4.4, respectively, the cases of spanning-trees propa-
gating consecutively and simultaneously.

4.3. Application to systems with successive spanning-trees. We now con-
sider the case where several emerging spanning-trees have a common root and possess
a certain order property. We mean by this that the dates at which each spanning-tree
reaches an agent are interlaced independently from the agent. In other words, the
“wavefronts” corresponding to each spanning-tree spread in a concentrical manner.
Up to renaming, one may label 1 the first spanning-tree, 2 the next one, and so on,
and the order property simply reads as follows (reasoning on each interval [tp, tp+1],
we omit the index p):

∀j, j′ ∈ I, ∀t = 0, . . . , T − 1, j ≤ j′ ⇒ N j′
t ⊆ N

j
t ,

and thus, by construction, the following inequalities hold for any t ∈ [tp, tp+1]:

Δm(t) ≤ · · · ≤ Δj(t) ≤ · · · ≤ Δ1(t) .

It is thus systematically more fruitful to attribute any contribution in the right-
hand side of (2) to the set Ni with largest index i to which it belongs—because the
corresponding estimate is tighter. In particular, it is beneficial to choose αi,j ≡ 0 for
i < j, thus leading to lower-triangular matrices A in Theorem 16.

We provide now an illustration of this configuration.
Example 7. For a fixed scalar γ ∈ [0, 1], consider the time-invariant system of n

agents described by

x1(t+ 1) = x1(t), xi(t+ 1) = γxi−1(t) + (1 − γ)xi(t), i = 2, . . . , n .
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A(0) =

⎛
⎜⎜⎜⎝
γ 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

⎞
⎟⎟⎟⎠ , A(1) =

⎛
⎜⎜⎜⎝

γ 0 . . . 0
1− γ γ . . . 0

...
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ , . . . ,

A(n− 2) =

⎛
⎜⎜⎜⎜⎜⎝

γ 0 . . . 0
1− γ γ . . . 0

0 1− γ . . . 0
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ , A(n− 1) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
1− γ γ . . . 0

0 1− γ . . . 0
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ ,

A(n) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
0 1− γ . . . 0
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ , . . . , A(n+ q − 3) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . .
0 1 . . .
...
0 . . . 1 0
0 . . . 1− γ γ

⎞
⎟⎟⎟⎟⎟⎠ .

Fig. 2. Matrices A obtained in Example 7 (case n < q).

The corresponding matrix Γ is lower-triangular and admits, apart from 1, a unique
eigenvalue, namely 1− γ, with degree n− 1. The actual value of the contraction rate
is thus ρ = 1− γ.

For any positive integer q, one may consider that the communication graph is
spanned by q distinct spanning-trees, departing from agent 1 at time 0, then 1, 2, and
so on, up to q−1, and attaining agent n at time n−1, n, up to n+q−2. The duration
of this process is thus T .= n+ q − 2, and the system may be seen as “T -sequentially
connected by q (distinct) spanning-trees.” Consistent with the previous notations, we
let tp = pT and consider the sets N i

p,t, i ∈ I
.= {1, . . . , q}, defined by

N 1
p,t =

⎧⎪⎨
⎪⎩
{1} for t ≤ 0,
{1, . . . , t+ 1} for t = 0, . . . , n− 1,
{1, . . . , n} = N for t = n− 1, . . . , n+ q − 2

and

N i+1
p,t+1 = N i

p,t for i = 2, . . . , q − 1 .

Following the progression of each spanning-tree, one shows that one may take for A
(in R

q×q) the formulas depicted in Figure 2 (see also Appendix B for details of the
proof of Lemma 17).

Let us explain these formulas. From t = 0 to t = n − 1, the first spanning-tree
spreads from agent 1 to agent n; for the elements of the latter, the right-hand side
of the state equation is composed of elements already touched by the information
flow (with coefficient γ) and some newly touched element, which consequently does
not contribute to the right-hand side. We may therefore choose N 1,1

p,t = N 1
p,t and

N 1,j
p,t = ∅ for j = 2 . . . q. This gives rise to the identities α1,1(t) = γ and α1,j(t) = 0

for j ∈ I \ {1} for t = 0, . . . , n − 2. At time t = n − 1, one has N 1
p,t = N and the

expansion of this set is completed, so all the terms in the right-hand side come from
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inside N 1
p,t. Thus, again by letting N 1,1

p,t = N and N 1,j
p,t = ∅ for t = n−1, . . . , n+ q−3

and j = 2 . . . q, one has α1,1(t) = 1 and α1,j(t) = 0.
The second spanning-tree departs from the root at t = 1, therefore letting N 2,2

p,0 =
N 2
p,0 and N 2,j

p,0 = ∅ yields α2,2(t) = 1 and α2,j(t) = 0 for j ∈ I \ {2} for t = 0. Then
at t = 1, N 2

p,t = {1} and N 2
p,t+1 = {1, 2} = N 2

p,t ∪
(
N 1
p,t \ N 2

p,t

)
. More precisely, the

corresponding right-hand side comprises two terms as before: a contribution, with
coefficient γ, due to agents already attained by the second spanning-tree, plus a term,
with coefficient 1 − γ, due to a term coming from an agent not yet touched by the
second tree but already touched by the first one. We let N 2,1

p,1 = {2}, N 2,2
p,1 = {1},

N 2,j
p,1 = ∅ for j = 3 . . . q; this explains that for t = 1 one has α2,1(t) = 1 − γ,

α2,2(t) = γ, and α2,j(t) = 0 for j ∈ I \ {1, 2}. Similarly, we define N 2,1
p,t = {t + 1},

N 2,2
p,t = {1 . . . t} and N 2,j

p,t = ∅ for t = 2 . . . n, where the second spanning-tree in turn
is completed. Again one obtains α2,1(t) = 1 − γ, α2,2(t) = γ, and α2,j(t) = 0 for
j ∈ I \ {1, 2}. Then for subsequent t’s, we let N 2,2

p,t = N and N 2,j = ∅ for j �= 2 so
that indeed, α2,2(t) = 1 and α2,j(t) = 0 for j �= 2.

Lastly, the other spanning-trees appear one by one and share with their prede-
cessor the same relation that the second one shared with the first one. This explains
the formulas given, until completion of the qth one, at time t = T . The analysis
conducted above leads overall to the matrices shown in Figure 2, which corresponds
to the case n < q (the first spanning-tree is completed at t = n, before the departure
of the qth spanning-tree, at t = q). The case n ≥ q is similar.

For the case of n = 3 agents, formula (15) in Theorem 16 then yields the following
estimates, denoted ρ̃q:

• For q = 1 (corresponding to the method of Theorem 10),

A(0) = A(1) = γ ,

so ρ̃1 =
√

1−A(1)A(0) =
√

1− γ2.
• For q = 2,

A(0) =
(
γ 0
0 1

)
, A(1) =

(
γ 0

1− γ γ

)
, A(2) =

(
1 0

1− γ γ

)
,

and

ρ̃2 =
(

1− max
i=1,2

1T

iA(2)A(1)A(0)1
)1/3

=
(
1−max{γ2; 3γ2 − 2γ3}

)1/3
=

(
1− 3γ2 + 2γ3

)1/3
.

• For q = 3,

A(0) =

⎛
⎝γ 0 0

0 1 0
0 0 1

⎞
⎠ , A(1) =

⎛
⎝ γ 0 0

1− γ γ 0
0 0 1

⎞
⎠ ,

A(2) =

⎛
⎝ 1 0 0

1− γ γ 0
0 1− γ γ

⎞
⎠ , A(3) =

⎛
⎝1 0 0

0 1 0
0 1− γ γ

⎞
⎠ ,
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Fig. 3. Approximations of the contraction rate as functions of γ for different uses of Theorem
16. See Example 7 for details.

whence

ρ̃3 =
(

1− max
i=1,2,3

1T

iA(3)A(2)A(1)A(0)1
)1/4

=
(
1−max{γ2; 3γ2 − 2γ3; 3γ4 − 8γ3 + 6γ2}

)1/4
=

(
1− 3γ4 + 8γ3 − 6γ2

)1/4
.

The values obtained approximate the exact value 1− γ with increasing precision,
as seen in Figure 3. These successive improvements are, of course, the consequence of
richer and richer analysis, including more and more settling spanning-trees.

The question of the limiting behavior when q goes to infinity is, of course, in-
triguing; i.e., is the exact value found asymptotically? It turns out that the answer is
positive, as stated now in the general case of a system with n agents.

Lemma 17. The value of ρ̃q is given by the following formula:

ρ̃n+q−2
q = 1− γn−1

q−1∑
i=0

(1− γ)i
(
n+ i− 2
n− 2

)
=

1
(n− 2)!

γn−1 d
n−2

dδn−2

[
δn+q−2

1− δ

]∣∣∣∣
δ=1−γ

.

Consequently, ρ̃q tends towards ρ = 1− γ when q → +∞, and more precisely,

ρ̃q = ρ+ (n− 2)(1− γ)
ln q
q

+ o

(
ln q
q

)
.

A proof of Lemma 17 is presented in Appendix B. The calculations have been
checked independently by the authors, using a symbolic computation tool.
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Although presently limited to special class of examples, Lemma 17 is rather
promising; i.e., it establishes that tight estimates may be accessed when employing a
large number of settling spanning-trees in the analysis. Extensions are in progress to
cover more general cases.

4.4. Application to systems with concomitant spanning-trees. The ex-
amples previously shown drastically exploit the fact that the different spanning-trees
occur one after another. We show here that, otherwise, the techniques of Theorem 16
may provide deceivingly weak results.

Example 8. To illustrate this, we consider a system with n = 6 agents, T -
sequentially connected for T = 5. For fixed γ ∈ (0, 1/2), the latter is defined by
taking stochastic matrices such that

Γ(pT ) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
γ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, Γ(pT + 1) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
0 γ 0 0 0 0
0 γ 0 0 0 0
0 γ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Γ(pT + 2) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
0 γ 0 0 0 0
0 0 γ 0 0 0
0 0 0 γ 0 0
0 0 γ 0 0 0
0 0 0 γ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, Γ(pT + 3) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
0 γ 0 0 0 0
0 0 γ 0 0 0
0 0 0 γ 0 0
0 0 0 0 γ γ
0 0 0 0 γ γ

⎞
⎟⎟⎟⎟⎟⎟⎠
,

Γ(pT + 4) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
0 γ 0 0 0 0
0 0 0 0 γ 0
0 0 0 0 0 γ
0 0 0 0 γ 0
0 0 0 0 0 γ

⎞
⎟⎟⎟⎟⎟⎟⎠

for all p ∈ N (thus tp = pT here). As in Example 3, the inequalities here are meant
componentwise.

The information transfers are schematized in Figure 4. The agents are denoted by
Arabic numbers, and the Roman numbers describe the different stages of the spanning
completion. Only the communications with guaranteed coefficient γ are represented.
For simplicity, the self-loops are omitted.

Analyzing the system with the use of a unique spanning-tree (Theorem 10) yields
ρ̃1 =

(
1− γ3

)1/5.
To use Theorem 16 for analysis, one considers two spanning-trees and takes on

any interval [tp, tp+1] as follows:

N 1
p,0 = N 2

p,0 = {1}, N 1
p,1 = N 2

p,1 = {1, 2},
N 1
p,2 = {1, 2, 3}, N 2

p,2 = {1, 2, 4}, N 1
p,3 = {1, 2, 3, 5}, N 2

p,3 = {1, 2, 4, 6},
N 1
p,4 = {1, 2, 3, 5, 6}, N 2

p,4 = {1, 2, 4, 5, 6}, N 1
p,5 = N 2

p,5 = N

and

A(0) = · · · = A(4) =
(
γ 0
0 γ

)
.
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Fig. 4. Schematized information transfer; see Example 8.

The deduced estimate is ρ̃2 =
(
1− γ5

)1/5. The important point is that it is system-
atically looser than the previous one. Indeed, the previous formula could have been
obtained by taking into account only one of the two spanning-trees, say, the “right
branch,” where the signal circulates in the order 1–2–4–6–5–3. In other words, there
would be no difference in evaluating the graph similarly schematized, as shown in
Figure 5.

6

12’3’4’5’6’ 2

IIIIVV III I
II

III

IVV

3

45

Fig. 5. Schematized information transfer; see Example 8.

How are we to take into account the crossing of the two spanning-trees, which
is a case explicitly discarded in section 4.3? A general idea is to introduce new
“populations.” However, this is not so easy, as Lemma 18 is hardly adapted to this
case (here it is useful to recall that the diameter of the union of two sets is at most
equal to the sum of the diameters of these two sets if their intersection is nonvoid).

Along these lines, one may propose an idea for improvement of ρ̃2. Let

N 3
p,t

.= N 1
p,t ∪ N 2

p,t .

This is, in fact, just the population considered in the one-spanning-tree method leading
to ρ̃1. We are then allowed to take

(18) A(0) = · · · = A(2) =

⎛
⎝γ 0 0

0 γ 0
0 0 γ

⎞
⎠ , A(3) = A(4) =

⎛
⎝γ 0 1− γ

0 γ 1− γ
0 0 γ

⎞
⎠ .
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As

A(4)A(3)A(2)A(1)A(0) = γ4

⎛
⎝γ 0 2(1− γ)

0 γ 2(1− γ)
0 0 γ

⎞
⎠ ,

the estimate obtained via Theorem 16 is

ρ̃3
.=
(
1− γ4(2− γ)

)1/5
,

which verifies ρ̃1 ≤ ρ̃3 ≤ ρ̃2 for γ ∈ [0, 1]; actually, ρ̃3 does not overpass the precision
of ρ̃1.

A careful examination of the previous example shows why no improvement could
be obtained; i.e., the diameters of the three sets are equal up to the third stage, and
the form of the difference inequalities involved forbid the two components fed by the
third one to become larger than the latter.

However, notice that this paradoxical behavior is also a result of the value of the
coefficients. The next example indicates that the method proposed in Example 8 can
indeed provide better estimates.

Example 9. We consider a slight modification of Example 8. For fixed η ∈ [0, 1],
we take Γ as previously, except

Γ(pT + 1) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
0 γ 0 0 0 0
0 ηγ 0 0 0 0
0 γ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, Γ(pT + 2) ≥

⎛
⎜⎜⎜⎜⎜⎜⎝

γ 0 0 0 0 0
0 γ 0 0 0 0
0 0 ηγ 0 0 0
0 0 0 γ 0 0
0 0 γ 0 0 0
0 0 0 γ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In other words, the transmission along the “left branch” in Figure 4 occurs with
a smaller coefficient than along the right one. This modifies the evolution of the
diameters of both N 1 and N 3, and one now has to modify the values of A by taking

A(1) = A(2) =

⎛
⎝ηγ 0 0

0 γ 0
0 0 ηγ

⎞
⎠ ,

instead of those given in (18). Using the notation of Example 8 yields the two con-
traction rate estimates

ρ̃′1
.=
(
1− η2γ3

)1/5
and ρ̃′3

.=
(
1− γ4(γ + 2η2(1− γ)

)1/5
.

In particular, when

η ≤ γ

(1 + 2γ(1− γ))1/2

(a quantity located in [0, 1/3] for γ ∈ [0, 1/2]), the ρ̃′3 is smaller than the estimate ρ̃′1,
obtained by considering a single spanning-tree.

5. Conclusion. Several tools for estimating the convergence rate to consensus
in multiagent systems were introduced and illustrated through simple examples. The
criteria are based on topological as well as basic quantitative information. In accor-
dance with previous results, consensus is reached provided that information can flow
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at least along some spanning-tree from one agent to all of the others. A key quantity,
in this respect, appears to be a lower-bound on the total weight of the agents located
upstream along the information flow for any chosen spanning-tree. More general cri-
teria are also provided in which tighter estimates are allowed, provided that more
spanning-trees are simultaneously taken into account.

These techniques are, in general, based on the idea of considering a decomposition
of the overall population into subsets which influence each other in some quantifiable
ways. Natural candidates for this partition appear to be the agents already attained by
the information flows along the spanning-trees. There seem to be technical difficulties
in trying to consider other kinds of partitions as, in general, neither the diameter of a
union of sets nor the diameter of an intersection of sets is related to the diameters of
the two sets. However, it may be possible to first consider the set of agents attained
by one or more spanning-trees and then the set of agents attained in the reverse order.
We leave this as an interesting open question for future research.

The method presented here provides results which are rather tight and inherently
robust due to the qualitative nature of the assumptions involved. It is especially
interesting to develop tools for quantitative estimates based on the consideration of
simultaneous trees as arising from a single tree which gets repeated through time, as
in Example 7. Again this will be a topic of future investigations.

Appendix A. Fundamental inequalities. We state in what follows a result
on difference inequalities which is central to the techniques developed in the text.
Consider the time-varying linear system (2). As before, the index set N is finite or
countable, the xk constitute a collection of scalar functions defined on N, I is a finite
or countable index set, and, for any t ∈ N, a collection of subsets Mi(t) of N , i ∈ I,
is given. Also, the state matrices (γk,l(t))(k,l)∈N×N of the system are row-stochastic.
Define the diameters

Δ(t) .= sup
k∈N

xk(t)− inf
k∈N

xk(t), Δi(t)
.= diamMi(t) = sup

k∈Mi(t)

xk(t)− inf
k∈Mi(t)

xk(t)

and the vector

ΔM(t) .= (diamMi(t))i∈I = (Δi(t))i∈I .

The following result provides information on the evolution of the diameter vector.
Lemma 18. Assume that for all k ∈ N , for all t ∈ N, some sets Mk,j(t), j ∈ I,

are given such that

Mk,j(t) ⊆Mj(t) and Mk,j(t) ∩Mk,j′(t) �= ∅ ⇒ j = j′ .

Let maps ci,j(t), i, j ∈ I, and C(t) be such that

(19) ci,j(t) ≤ inf
k∈Mi(t+1)

∑
l∈Mk,j(t)

γk,l(t), C(t) .= (ci,j(t))(i,j)∈I×I .

Then, for any t, T ∈ N, for any i ∈ I,

(20) 0 ≤ Δi(t+ T )

≤ 1T

i

(
C(t+ T − 1) . . . C(t)ΔM(t) + (1− C(t+ T − 1) . . . C(t)1) Δ(t)

)
.
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By convention, we put
∑

i∈∅ ci = 0 and infi∈∅ ci = +∞. Recall that the vector
1 in the statement is made up of a column of 1 and that the vector 1i has null
components, except 1 in the ith position (in finite dimension, it is the ith vector of
the canonic basis). In particular, 1T

iΔM(t) = Δi(t), 1 =
∑
i∈I 1i.

Remark 5. Notice that formula (20) may involve infinite summations in the
products of infinite-dimensional matrices. As the coefficients of the matrices C(t)
are nonnegative and bounded by 1, uniform convergence of the series of terms in-
deed occurs on any bounded time interval, and therefore the notation has a univocal
meaning.

Proof. Define

M(t) .= sup
k∈N

xk(t), Mi(t)
.= sup
k∈Mi(t)

xk(t), m(t) .= inf
k∈N

xk(t), mi(t)
.= inf
k∈Mi(t)

xk(t)

in such a way that the quantities previously defined in the statement verify

Δ ≡M −m, Δi ≡Mi −mi .

First of all, notice that, due to the nonnegativity of the coefficients γk,l(t), identity
(2) implies, for any t ∈ N and for any k ∈ N ,

xk(t+ 1) ≤
∑
l∈N

γk,l(t)M(t) = M(t) .

Taking the supremum and arguing similarly for the lower-bounds, we obtain

M(t+ 1) ≤M(t), m(t+ 1) ≥ m(t) .

In particular,

(21) Δ(t+ 1) ≤ Δ(t) .

Also, due to the fact thatMi(t) ⊆ N , it holds that

(22) Mi(t) = sup
k∈Mi(t)

xk(t) ≤ sup
k∈N

xk(t) = M(t), mi(t) ≥ m(t) ,

and

Δi(t) ≤ Δ(t) .

Applying a tighter estimate, one obtains from (2) that, for any k ∈ N ,

xk(t+ 1) =
∑
j∈I

∑
l∈Mk,j(t)

γk,l(t)xl(t) +
∑

l∈N\⋃ j∈I Mk,j(t)

γk,l(t)xl(t)

≤
∑
j∈I

⎛
⎝ ∑
l∈Mk,j(t)

γk,l(t)

⎞
⎠Mj(t) +

∑
l∈N\⋃ j∈I Mk,j(t)

γk,l(t)M(t)

=
∑
j∈I

∑
l∈Mk,j(t)

γk,l(t)Mj(t) +

⎛
⎝1−

∑
j∈I

∑
l∈Mk,j(t)

γk,l(t)

⎞
⎠M(t) ,
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due to (19) and the nonnegativity of the coefficients γk,l(t). If now k ∈ Mi(t+ 1) for
some i ∈ I, one obtains

xk(t+ 1) ≤
∑
j∈I

ci,j(t)Mj(t) +

⎛
⎝1−

∑
j∈I

ci,j(t)

⎞
⎠M(t)

+
∑
j∈I

⎛
⎝ci,j(t)− ∑

l∈Mk,j(t)

γk,l(t)

⎞
⎠ (M(t)−Mj(t))

≤
∑
j∈I

ci,j(t)Mj(t) +

⎛
⎝1−

∑
j∈I

ci,j(t)

⎞
⎠M(t) ,

due to the fact that M(t) ≥ Mj(t) for any t ∈ N and any j ∈ I (see (22)). Conse-
quently, for any i ∈ I,

Mi(t+ 1) ≤
∑
j∈I

ci,j(t)Mj(t) +

⎛
⎝1−

∑
j∈I

ci,j(t)

⎞
⎠M(t) .

One establishes similarly that

xk(t+ 1) ≥
∑
j∈I

ci,j(t)mj(t) +

⎛
⎝1−

∑
j∈I

ci,j(t)

⎞
⎠m(t) ,

with the same coefficients, so, for any i ∈ I,

mi(t+ 1) ≥
∑
j∈I

ci,j(t)mj(t) +

⎛
⎝1−

∑
j∈I

ci,j(t)

⎞
⎠m(t) .

Subtracting the previous inequalities, one may thus deduce that, for any i ∈ I,

Δi(t+ 1) ≤
∑
j∈I

ci,j(t)Δj(t) +

⎛
⎝1−

∑
j∈I

ci,j(t)

⎞
⎠Δ(t) .

The collection of these inequalities, together with (21), may be written under the
matrix (possibly infinite) form(

ΔM(t+ 1)
Δ(t+ 1)

)
≤

(
C(t) 1− C(t)1

0 1

)(
ΔM(t)
Δ(t)

)
.

The previous inequality has to be understood componentwise.
Now, one shows easily that

(
C(t+ 1) 1− C(t+ 1)1

0 1

)(
C(t) 1− C(t)1

0 1

)

=
(
C(t+ 1)C(t) 1− C(t+ 1)C(t)1

0 1

)
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in such a way that, for nonnegative T ,(
ΔM(t+ T )
Δ(t+ T )

)
≤

(
C(t+ T − 1) . . . C(t) 1− C(t+ T − 1) . . . C(t)1

0 1

)(
ΔM(t)
Δ(t)

)
.

This formula permits us to complete the proof of Lemma 18.

Appendix B. Proof of Lemma 17.
1. One verifies directly that, for any t = 0, . . . , n+ q − 3, A(t) is equal to

Iq − (1− γ)
(
δ0≤t≤n−1 e1e

T

1 + δ1≤t≤n e2(e2 − e1)T + · · ·

+ δq−1≤t≤n+q−2 eq(eq − eq−1)T

)
,

where ei is the ith vector of the canonical basis in R
q and δi≤t≤i+n−1 is 1 (resp., 0)

if the condition written in the index is fulfilled (resp., violated).
Let us first establish the following factorization formula:

(23) A(n+ q − 3) . . . A(0)

= γn−q diag{1; γ; . . . ; γq−1} B(n+ q − 3) . . . B(0) diag{γq−1; . . . ; γ; 1} ,

where the matrix B(t) is obtained from A(t) by replacing γ on the diagonal by 1, and
1− γ by

ξ
.=

1− γ
γ

,

that is, simply,

B(t) .= Iq + ξ

q−1∑
i=1

δi≤t≤i+n−2 ei+1e
T

i .

In formula (23) and below, diag is used to define diagonal matrices.
Formula (23) will be proved by induction on the positive integer q. Notice that,

strictly speaking, the matrices A,B ∈ R
q×q depend upon q (and n), but for simplicity

we omit here any explicit indication of this dependence. Indeed, for q = 1, A(t) = γ
for 0 ≤ t ≤ n + q − 3 = n − 2, and A(n − 2) . . . A(0) = γn−1, while, for q = 2,
n+ q − 3 = n− 1 and

A(0) =
(
γ 0
0 1

)
, A(t) =

(
γ 0

1− γ γ

)
, 1 ≤ t ≤ n− 2, A(n− 1) =

(
1 0

1− γ γ

)
,

so that

A(n− 1) . . . A(0) = γn−2

(
1 0
0 γ

)(
1 0
ξ 1

)n−1 (
γ 0
0 1

)

= γn−2

(
1 0
0 γ

)
B(n− 1) . . . B(0)

(
γ 0
0 1

)
.

(Notice that B(0) = I2 and B(t) = ( 1 0
ξ 1 ) for t = 1, . . . , n− 1.)
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Assume now that (23) is true at order q − 1 and consider order q. Due to the
particular structure of the matrices A and B, which are null except for the terms on
the diagonal and the subdiagonal, one has

diag{Iq−1; 0}
(
n+q−3∏
t=0

A(t)

)
diag{Iq−1; 0} =

n+q−3∏
t=0

diag{Iq−1; 0}A(t) diag{Iq; 0},

(24a)

diag{0; Iq−1}
(
n+q−3∏
t=0

A(t)

)
diag{0; Iq−1} =

n+q−3∏
t=0

diag{0; Iq−1}A(t) diag{0; Iq−1},

(24b)

and similarly for B(t). In the previous identities and in subsequent formulas, the
products are noncommutative: the convention is that t is decreasing from the left
factor to the right one.

Now, it is easy to identify the right-hand sides of the two identities (24) with a
product of n + (q − 1) − 3 = n + q − 4 matrices A (resp., B) corresponding to the
index q − 1 (the last term in the right-hand product in (24a), resp., the first term in
the right-hand product in (24b), is equal to diag{Iq−1; 0}, resp., diag{0; Iq−1}, and
can be suppressed). Using the induction hypothesis at order q − 1, one shows that

diag{Iq−1; 0}
(
n+q−3∏
t=0

A(t)

)
diag{Iq−1; 0}

= γn−(q−1) diag{1; . . . ; γq−2; 0} diag{Iq−1; 0}
(
n+q−3∏
t=0

B(t)

)

· diag{Iq−1; 0} diag{γq−2; . . . ; 1; 0}

= γn−(q−1)γ−1 diag{Iq−1; 0} diag{1; . . . ; γq−1}
(
n+q−3∏
t=0

B(t)

)

· diag{γq−1; . . . ; 1} diag{Iq−1; 0}

= γn−q diag{Iq−1; 0} diag{1; . . . ; γq−1}
(
n+q−3∏
t=0

B(t)

)

· diag{γq−1; . . . ; 1} diag{Iq−1; 0}.

One establishes similarly that

diag{0; Iq−1}
(
n+q−3∏
t=0

A(t)

)
diag{0; Iq−1}

= γn−q diag{0; Iq−1} diag{1; . . . ; γq−1}
(
n+q−3∏
t=0

B(t)

)

· diag{γq−1; . . . ; 1} diag{0; Iq−1} ,

and this is indeed sufficient, due to the structure of the matrices A and B mentioned
earlier, to prove that (23) is true at order q. This achieves the proof of (23) by
induction.
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2. One now estimates the matrix-product

Π = (Πi,j)(i,j)∈{1,...,q}2
.=
n+q−3∏
t=0

B(t) =
n+q−3∏
t=1

(
Iq + ξ

q−1∑
i=1

δi≤t≤i+n−2 ei+1e
T

i

)
.

Each term of this product is a lower-triangular matrix, so Π shares the same property.
The fact that the canonical basis is orthonormal implies that, for any i > j,

i, j ∈ {1, . . . , q}, it holds that

Πi,j
.= ξi−j card

{
(tj+1, . . . , ti) ∈ [j, j + n− 2]× · · · × [i− 1, i+ n− 3] ∩ N

i−j :

tj+1 < · · · < ti

}
,

and also that the diagonal terms are equal to 1. The previous formula just means
that, for a term in eie

T
j to emerge from the product, it should be the result of the

product

(eieT

i−1) · (ei−1e
T

i−2) . . . (ej+1e
T

j) ,

where each of the terms in parentheses comes from a certain matrix A(t)—the rest
of the factors come from identity matrices. Conversely, all products of different type
vanish.

In order to evaluate the quantities Πi,j previously defined, notice that the change
of variables

t′j+1 = tj+1, t
′
j+2 = tj+2 − 1, . . . , t′i = ti − (i− j − 1)

yields

card
{

(tj+1, . . . , ti) ∈ [j, j + n− 2]× · · · × [i− 1, i+ n− 3] ∩N
i−j :

tj+1 < · · · < ti

}
= card

{
(t′j+1, . . . , t

′
i) ∈ ([j, j + n− 2] ∩ N)i−j : t′j+1 ≤ · · · ≤ t′i

}
.

3. We now compute explicitly the value of the function F (m,n) defined on N×N

as

F (m,n) .= card
{

(t1, . . . , tm) ∈ ([1, n] ∩ N)m : t1 ≤ · · · ≤ tm
}
.

Clearly,

F (1, n) = n, F (2, n) =
n(n+ 1)

2
.

Considering separately the cases where t1 = 1, t1 = 2, . . . , t1 = n, one finds the
following induction relation:

F (m,n) =
n∑
i=1

F (m− 1, i) .
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On the other hand, let

G(m,n) .=
(
m+ n− 1

m

)
=

(m+ n− 1)!
m!(n− 1)!

;

one has

G(1, n) =
(
n
1

)
= n, G(2, n) =

(
n+ 1

2

)
=
n(n+ 1)

2
.

Independently, it is known that(
n
m

)
=

(
n− 1
m− 1

)
+

(
n− 1
m

)

in such a way that

G(m,n) =
(
m+ n− 1

m

)
=

(
m+ n− 2
m− 1

)
+
(
m+ n− 2

m

)
= G(m−1, n)+G(m,n−1) .

It ensues, from repeated use of this formula, that

G(m,n) = G(m−1, n)+G(m,n−1) = G(m−1, n)+G(m−1, n−2)+G(m,n−3)

= · · · =
n∑
i=2

G(m− 1, i) +G(m, 1) =
n∑
i=1

G(m− 1, i) ,

because G(m, 1) = G(m − 1, 1) = 1. Having the same initial condition and sharing
the same induction relation, F and G are thus equal, and F (m,n) = (m+n−1

m ).
4. The value of F found before is now used to estimate first Π and then ρ̃q. We

deduce from what precedes that, for i > j,

Πi,j = ξi−jF (i− j, n− 1) = ξi−j
(
i− j + n− 2

i− j

)
= ξi−j

(
i− j + n− 2

n− 2

)
.

Recall that Πi,i = 1 and Πi,j = 0 for i < j.
From the fact that the matrix Π above is lower-triangular, one finds by application

of Theorem 16 that

1− ρ̃n+q−2
q = max

i=1,...,q
1iA(n+ q − 3) . . . A(0)1 = 1qA(n+ q − 3) . . . A(0)1 .

From (23) and the previous computations, one thus deduces

1− ρ̃n+q−2
q = γn−1

q∑
i=1

γq−iΠq,i = γn−1

q∑
i=1

γq−iξq−i
(
q − i+ n− 2

n− 2

)

= γn−1

q∑
i=1

γq−i
(

1− γ
γ

)q−i (
q − i+ n− 2

n− 2

)
.

Thus,

ρ̃n+q−2
q = 1− γn−1

q∑
i=1

(1 − γ)q−i
(
q − i+ n− 2

n− 2

)
,
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or again,

ρ̃q =

(
1− γn−1

q−1∑
i=0

(1 − γ)i
(
n+ i− 2
n− 2

))1/(n+q−2)

.

This achieves the proof of the first equality in the statement of Lemma 17.
5. To show the identity of the two expressions in Lemma 17, notice that

q−1∑
i=0

(
n+ i− 2
n− 2

)
δi =

1
(n− 2)!

q−1∑
i=0

dn−2

dδn−2

[
δn+i−2

]
=

1
(n− 2)!

dn−2

dδn−2

[
q−1∑
i=0

δn+i−2

]

=
1

(n− 2)!
dn−2

dδn−2

[
1− δn+q−2

1− δ

]
.

On the other hand, one shows easily that

1
(n− 2)!

dn−2

dδn−2

[
1

1− δ

]
=

1
(1− δ)n−1

.

This permits us to deduce the identity of the two expressions in the statement.
6. Lastly, we show the limiting property expressed in Lemma 17. From the last

formula, one may see that, for every n ≥ 2,

ρ̃q = n+q−2
√
Pn(q, δ)δq ,

where Pn is a polynomial in q and δ = 1 − γ of degree n − 2 with respect to both
variables. Henceforth, taking the limit for q → +∞ yields the estimate

lim
q→+∞ ρ̃q = lim

q→+∞
n+q−2

√
Pn(q, δ)δq = δ = 1− γ ,

which corresponds to the true value of the converging rate. Indeed,

n+q−2
√
Pn(q, δ) = elnPn(q,δ)/(n+q−2) = e[(n−2) ln q+ln(1+O(1/q))]/(n+q−2) ,

as Pn is of degree n− 2 in q. The asymptotic expansion announced in the statement
is thus proved, and this achieves the proof of Lemma 17.
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CONVERGENCE SPEED IN DISTRIBUTED CONSENSUS AND
AVERAGING∗

ALEX OLSHEVSKY† AND JOHN N. TSITSIKLIS†

Abstract. We study the convergence speed of distributed iterative algorithms for the con-
sensus and averaging problems, with emphasis on the latter. We first consider the case of a fixed
communication topology. We show that a simple adaptation of a consensus algorithm leads to an
averaging algorithm. We prove lower bounds on the worst-case convergence time for various classes
of linear, time-invariant, distributed consensus methods, and provide an algorithm that essentially
matches those lower bounds. We then consider the case of a time-varying topology, and provide a
polynomial-time averaging algorithm.

Key words. consensus algorithms, distributed averaging, cooperative control
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1. Introduction. Given a set of autonomous agents—which may be sensors,
nodes of a communication network, cars, or unmanned aerial vehicles—the distributed
consensus problem asks for a distributed algorithm that the agents can use to agree on
an opinion (represented by a scalar or a vector), starting from different initial opinions
among the agents, and in the presence of possibly severely restricted communications.

Algorithms that solve the distributed consensus problem provide the means by
which networks of agents can be coordinated. Although each agent may have access
to different local information, the agents can agree on a decision (e.g., on a common
direction of motion, on the time to execute a move, etc.). Such synchronized behavior
has often been observed in biological systems [15].

The distributed consensus problem has historically appeared in many diverse
areas, such as parallel computation [30, 31, 3], control theory [18, 28], and commu-
nication networks [24, 22]. Recently, the problem has attracted significant attention
[18, 22, 2, 11, 24, 7, 14, 25, 26, 13, 8, 5, 1] motivated by new contexts and open prob-
lems in communications, sensor networks, and networked control theory. We briefly
describe some of the more recent applications.

Reputation management in ad hoc networks. It is often the case that
the nodes of a wireless multihop network are not controlled by a single authority
or do not have a common objective. Selfish behavior among nodes (e.g., refusing to
forward traffic meant for others) is possible, and some mechanism is needed to enforce
cooperation. One way to detect selfish behavior is reputation management; i.e., each
node forms an opinion by observing the behavior of its neighbors. One is then faced
with the problem of combining these different opinions into a single globally available
reputation measure for each node. The use of distributed consensus algorithms for
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doing this was explored in [22], where a variation of one of the methods we examine
here—the “agreement algorithm”—was used as a basis for an empirical investigation.

Sensor networks. A sensor network designed for detection or estimation needs
to combine various measurements into a decision or into a single estimate. Distributed
computation of this decision/estimate has the advantage of being fault-tolerant (net-
work operation is not dependent on a small set of nodes) and self-organizing (network
functionality does not require constant supervision) [31, 2, 11].

Control of autonomous agents. It is often necessary to coordinate collections
of autonomous agents (e.g., cars or unmanned aerial vehicles). For example, one may
wish for the agents to agree on a direction or speed. Even though the data related
to the decision may be distributed through the network, it is usually desirable that
the final decision depend on all the known data, even though most of the data are
unavailable at each node. A model motivated by such a context was empirically
investigated in [32].

In this paper, we focus on a special case of the distributed consensus problem, the
distributed averaging problem. Averaging algorithms guarantee that the final global
value will be the exact average of the initial individual values. Our general objective
is to characterize the worst-case convergence time of various averaging algorithms, as
a function of the number n of agents, and to understand their fundamental limitations
by providing lower bounds on the convergence time.

We now outline the remainder of this paper and preview the main contributions.
In section 2, we provide some background material by reviewing the agreement algo-
rithm of [30, 31] for the distributed consensus problem. In sections 3–8, we consider
the case of fixed graphs. In section 3, we discuss three different ways that the agree-
ment algorithm can provide a solution to the averaging problem. In particular, we
show how an averaging algorithm can be constructed based on two parallel executions
of the agreement algorithm. In section 4, we define the notions of convergence rate and
convergence time, and we provide a variational characterization of the convergence
rate.

In section 5, we use results from [23] to show that the worst-case convergence time
of an averaging algorithm introduced in section 3 is essentially Θ(n3).1 In section 6, we
show that for one of our methods, the convergence rate can be made arbitrarily fast.
On the other hand, under an additional restriction that reflects numerical stability
considerations, we show that the convergence time of a certain class of algorithms (and
by extension of a certain class of averaging algorithms) is Ω(n2), in the worst case.
We also provide a simple method (based on executing the agreement algorithm on a
spanning tree) whose convergence time essentially matches the Ω(n2) lower bound.
In section 7, we discuss briefly particular methods that employ doubly stochastic
matrices and their potential drawbacks.

Then, in section 8, we turn our attention to the case of dynamic topologies. For
the agreement algorithm, we show that its convergence time for the case of non-
symmetric topologies can be exponentially large in the worst case. On the other
hand, for the case of symmetric topologies, we provide a new averaging algorithm
(and therefore, an agreement algorithm as well), whose convergence time is O(n3).
To the best of our knowledge, none of the existing consensus or averaging algorithms

1Let f and g be two positive functions on the positive integers. We write f(n) = O(g(n))
(respectively, f(n) = Ω(g(n))) if there exists a positive constant c and some n0 such that f(n) ≤ cg(n)
(respectively, f(n) ≥ cg(n)) for all n ≥ n0. If f(n) = O(g(n)) and f(n) = Ω(g(n)) both hold, we
write f(n) = Θ(g(n)).
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in the literature has a similar guarantee of polynomial time convergence in the pres-
ence of dynamically changing topologies. In section 9, we report on some numerical
experiments illustrating the advantages of two of our algorithms. Section 10 contains
some brief concluding remarks.

2. The agreement algorithm. The “agreement algorithm” is an iterative pro-
cedure for the solution of the distributed consensus problem. It was introduced in [10]
for the time-invariant case, and in [30, 31] for the case of “asynchronous” and time-
varying environments. We briefly review this algorithm and summarize the available
convergence results.

Consider a set N = {1, 2, . . . , n} of nodes. Each node i starts with a scalar
value xi(0); the vector with the values of all nodes at time t is denoted by x(t) =
(x1(t), . . . , xn(t)). The agreement algorithm updates x(t) according to the equation
x(t+ 1) = A(t)x(t), or

xi(t+ 1) =
n∑
j=1

aij(t)xj(t),

where A(t) is a nonnegative matrix with entries aij(t). The row-sums of A(t) are
equal to 1, so that A(t) is a stochastic matrix. In particular, xi(t + 1) is a weighted
average of the values xj(t) held by the nodes at time t.

We next state some conditions under which the agreement algorithm is guaranteed
to converge.

Assumption 2.1. There exists a positive constant α such that
(a) aii(t) ≥ α for all i, t.
(b) aij(t) ∈ {0} ∪ [α, 1] for all i, j, t.
(c)
∑n

j=1 aij(t) = 1 for all i, t.
Intuitively, whenever aij(t) > 0, node j communicates its current value xj(t) to

node i. Each node i updates its own value by forming a weighted average of its own
value and the values it has just received from other nodes. We represent the sequence
of communications between nodes by a sequence G(t) = (N , E(t)) of directed graphs,
where (j, i) ∈ E(t) if and only if aij(t) > 0. Note that (i, i) ∈ E(t) for all t, and this
condition will remain in effect throughout the paper.

Our next assumption requires that, following an arbitrary time t, and for any i,
j, there is a sequence of communications through which node i will influence (directly
or indirectly) the value held by node j.

Assumption 2.2 (connectivity). For every t ≥ 0, the graph (N ,∪s≥tE(s) is
strongly connected.

Assumption 2.2 by itself is not sufficient to guarantee consensus (see Exercise 3.1,
on page 517 of [3]). This motivates the following stronger version.

Assumption 2.3 (bounded interconnectivity times). There is some B such that
for all k, the graph

(
N , E(kB)∪E(kB+1)∪· · ·∪E((k+1)B−1)

)
is strongly connected.

We note various special cases of possible interest.
Time-invariant model. In this model, introduced by DeGroot [10], the set of arcs

E(t) is the same for all t; furthermore, the matrix A(t) is the same for all t. In this case,
we are dealing with the iteration x := Ax, whereA is a stochastic matrix; in particular,
x(t) = Atx(0). Under Assumptions 2.1 and 2.2, A is the transition probability matrix
of an irreducible and aperiodic Markov chain. Thus, At converges to a matrix, all
of whose rows are equal to the (positive) vector π = (π1, . . . , πn) of steady-state
probabilities of the Markov chain. Accordingly, we have limt→∞ xi(t) =

∑n
i=1 πixi(0).
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Bidirectional model. In this case, we have (i, j) ∈ E(t) if and only if (j, i) ∈ E(t),
and we say that the graph G is symmetric. Intuitively, whenever i communicates with
j, there is a simultaneous communication from j to i.

Equal-neighbor model. Here,

aij(t) =
{

1/di(t) if j ∈ Ni(t),
0 if j /∈ Ni(t),

where Ni(t) = {j | (j, i) ∈ E(t)} is the set of nodes j (including i) whose value is
taken into account by i at time t, and di(t) is its cardinality. This model is a linear
version of a model considered by Vicsek et al. [32]. Note that here the constant α of
Assumption 2.1 can be take to be 1/n.

Theorem 2.4. Under Assumptions 2.1 and 2.3, the agreement algorithm guar-
antees asymptotic consensus; that is, there exists some c (depending on x(0) and on
the sequence of graphs G(·)) such that limt→∞ xi(t) = c for all i.

Theorem 2.4 is presented in [31] and proved in [30], in a more general setting that
allows for communication delays, under a slightly stronger version of Assumption 2.3;
see also Chapter 7 of [3], and [31, 4], for extensions to the cases of communication
delays and probabilistic dropping of packets. The above version of Assumption 2.3
was introduced in [18]. Under the additional assumption of a bidirectional model, the
bounded interconnectivity time assumption is unnecessary, as established in [20, 6]
for the bidirectional equal-neighbor model, and in [17, 25] for the general case.

3. Averaging with the agreement algorithm in fixed networks. In this
section, as well as in sections 4–8, we assume that the network topology is fixed, i.e.,
G(t) = G for all t, and known. We consider the time-invariant version, x := Ax,
of the agreement algorithm and discuss various ways that it can be used to solve
the averaging problem. We show that an iteration x := Ax that solves the consensus
problem can be used in a simple manner to provide a solution to the averaging problem
as well.

3.1. Using a doubly stochastic matrix. As remarked in section 2, with the
time-invariant agreement algorithm x := Ax, we have

lim
t→∞xi(t) =

n∑
i=1

πixi(0) ∀ i,(3.1)

where πi is the steady-state probability of node i in the Markov chain associated with
the stochastic matrix A. It follows that we obtain a solution to the averaging problem
if and only if πi = 1/n or every i. Since π is a left eigenvector of A, with eigenvalue
equal to 1, this requirement translates into the property 1TA = 1T , where 1 is the
vector with all components equal to 1. Equivalently, the matrix A needs to be doubly
stochastic. A particular choice of a doubly stochastic matrix has been proposed in
[27] (see also [8]); it is discussed further in sections 7 and 9.

3.2. The scaled agreement algorithm. Suppose that the graph G is fixed a
priori and that there is a system designer or other central authority who chooses a
stochastic matrix A offline, computes the associated steady-state probability vector
(assumed unique and positive), and disseminates the value of nπi to each node i.

Suppose next that the nodes execute the agreement algorithm x := Ax, using the
matrix A, but with the initial value xi(0) of each node i replaced by

xi(0) =
xi(0)
nπi

.(3.2)
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Then, the value xi(t) of each node i converges to

lim
t→∞xi(t) =

n∑
i=1

πixi(0) =
1
n

n∑
i=1

xi(0),

and we therefore have a valid averaging algorithm. This establishes that any (time-
invariant) agreement algorithm for the consensus problem translates into an algorithm
for the averaging problem as well. The following are two possible drawbacks of the
scheme we have just described:

(a) If some of the nπi are very small, then some of the initial xi(0) will be very
large, which can lead to numerical difficulties [16].

(b) The algorithm requires some central coordination in order to choose A and
compute π.

The algorithm provided in the next subsection provides a remedy for both of the
above drawbacks.

3.3. Using two parallel passes of the agreement algorithm. Given a fixed
graph G, let A be the matrix that corresponds to the time-invariant, equal-neighbor,
bidirectional model (see section 2 for definitions); in particular, if (i, j) ∈ E , then
(j, i) ∈ E , and aij = 1/di, where di is the cardinality of Ni. Under Assumptions
2.1 and 2.2, the stochastic matrix A is irreducible and aperiodic (because aii > 0 for
every i). Let E =

∑n
i=1 di. It is easily verified that the vector π with components

πi = di/E satisfies πT = πTA and is therefore equal to the vector of steady-state
probabilities of the associated Markov chain.

The following averaging algorithm employs two parallel runs of the agreement
algorithm, with different, but locally determined, initial values.

Algorithm 3.1.

(a) Each node i sets yi(0) = 1/di and zi(0) = xi(0)/di.
(b) The nodes run the agreement algorithms y(t+1) = Ay(t) and z(t+1) = Az(t).
(c) Each node sets xi(t) = zi(t)/yi(t).
We have

lim
t→∞ yi(t) =

n∑
i=1

πiyi(0) =
n∑
i=1

di
E
· 1
di

=
n

E

and

lim
t→∞ zi(t) =

n∑
i=1

πizi(0) =
n∑
i=1

di
E
· xi(0)
di

=
1
E

n∑
i=1

xi(0).

This implies that

lim
t→∞xi(t) =

1
n

n∑
i=1

xi(0);

i.e., we have a valid averaging algorithm. Note that the iteration y := Ay need not
be repeated if the network remains unchanged and the averaging algorithm is to be
executed again with different initial opinions. Finally, if n and E are known by all
nodes, the iteration y := Ay is unnecessary, and we could just set yi(t) = n/E.
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4. Definition of the convergence rate and the convergence time. The
convergence rate of any of the algorithms discussed in section 3 is determined by
the convergence rate of the matrix powers At. In this section, we give a definition
of the convergence rate (and convergence time) and provide a tool for bounding the
convergence rate. As should be apparent from the discussion in section 3, there is no
reason to restrict to doubly stochastic matrices, or even to nonnegative matrices. We
therefore start by specifying the class of matrices that we will be interested in.

Consider a matrix A with the following property: For every x(0), the sequence
generated by letting x(t+1) = Ax(t) converges to c1 for some scalar c. Such a matrix
corresponds to a legitimate agreement algorithm and can be employed in the scheme
of section 3.2 to obtain an averaging algorithm, as long as 1 is an eigenvalue of A
with multiplicity 1, and the corresponding left eigenvector, denoted by π, has nonzero
entries. Because of the above assumed convergence property, all other eigenvalues
must have magnitude less than 1. Note, however, that we allow A to have some
negative entries.

Suppose that A has the above properties. Let 1 = λ1, λ2, . . . , λn, be the eigenval-
ues of A, sorted in order of decreasing magnitude. We also let X be the set of vectors
of the form c1, i.e., with equal components. Given such a matrix A, we define its
convergence rate, ρ, by

ρ = sup
x(0)/∈X

lim
t→∞

(
‖x(t)− x∗‖2
‖x(0)− x∗‖2

)1/t

,(4.1)

where x∗ stands for limt→∞ x(t). As is well known, we have ρ = max{|λ2|, |λn|}.
We also define the convergence time, Tn(ε), by

Tn(ε) = min
{
τ :
‖x(t)− x∗‖∞
‖x(0)− x∗‖∞

≤ ε ∀ t ≥ τ, ∀ x(0) /∈ X
}
.

Although we use the infinity norm to define the convergence time, bounds for other
norms can be easily obtained from our subsequent results, by using the equivalence
of norms.

Under the above assumptions, a result from [33] states

ρ = max{|λ2|, |λn|}.

To study ρ, therefore, we must develop techniques to bound the eigenvalues of the
matrix A. To this end, we will be using the following result from [23]. We present
here a slightly more general version and include a proof for completeness.

Theorem 4.1. Consider an n× n matrix A, and let λ1, λ2, . . . , λn, be its eigen-
values, sorted in order of decreasing magnitude. Suppose that the following conditions
hold:

(a) We have λ1 = 1 and A1 = 1.
(b) There exists a positive vector π such that πTA = πT .
(c) For every i and j, we have πiaij = πjaji.

Let

S =

{
x

∣∣∣∣∣
n∑
i=1

πixi = 0,
n∑
i=1

πix
2
i = 1

}
.
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Then, all eigenvalues of A are real, and

λ2 = 1− 1
2

min
x∈S

n∑
i=1

n∑
j=1

πiaij(xi − xj)2.(4.2)

In particular, for any vector y that satisfies
∑n

i=1 πiyi = 0, we have

λ2 ≥ 1−
∑n

i=1

∑n
j=1 πiaij(yi − yj)2

2
∑n
i=1 πiy

2
i

.(4.3)

Proof. Let D be a diagonal matrix whose ith diagonal entry is πi. Condition (c)
yields DA = ATD. We define the inner product 〈·, ·〉π by 〈x, y〉π = xTDy. We then
have

〈x,Ay〉π = xTDAy = xTATDy = 〈Ax, y〉π .

Therefore, A is self-adjoint with respect to this inner product, which proves that A
has real eigenvalues.

Since the largest eigenvalue is 1, with an eigenvector of 1, we use the variational
characterization of the eigenvalues of a self-adjoint matrix (see Chapter 7, Theorem
4.3 of [29]) to obtain

λ2 = max
x∈S
〈x,Ax〉π

= max
x∈S

n∑
i=1

n∑
j=1

πiaijxixj

=
1
2

max
x∈S

∑
i=1

∑
j=1

πiaij(x2
i + x2

j − (xi − xj)2).

For x ∈ S, we have

n∑
i=1

n∑
j=1

πiaij(x2
i + x2

j ) = 2
n∑
i=1

n∑
j=1

πiaijx
2
i = 2

n∑
i=1

πix
2
i = 2〈x, x〉π =2,

which yields

λ2 = 1− 1
2

min
x∈S

n∑
i=1

n∑
j=1

πiaij(xi − xj)2.

Finally, (4.3) follows from (4.2) by considering the vector

xi = yi/

√√√√√
⎛
⎝ n∑
j=1

πjy2
j

⎞
⎠.

Note that the bound of (4.3) does not change if we replace the vector y with αy
for any α 
= 0.
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5. Convergence time for Algorithm 3.1. For the equal-neighbor, time-invari-
ant, bidirectional model, tight bounds on the convergence rate were derived in [23].

Theorem 5.1 (see [23]). Consider the equal-neighbor, time-invariant, bidirec-
tional model on a connected graph with n nodes. The convergence rate satisfies

ρ ≤ 1− γ1n
−3,

where γ1 is a constant independent of n. Moreover, there exists some γ2 > 0 such
that for every positive integer n, there exists an n-node connected symmetric graph
for which

ρ ≥ 1− γ2n
−3.

Theorem 5.1 is proved in [23] for the case of symmetric graphs without self-arcs.
It is not hard to check that essentially the same proof holds when self-arcs are present,
with the only difference being in the values of the constants γ1 and γ2. This is intuitive
because the effect of the self-arcs is essentially a “slowing down” of the Markov chain
by a factor of at most 2, and therefore the convergence rate should stay the same.

Using some additional results on random walks, Theorem 5.1 leads to a tight
bound (within a logarithmic factor) on the convergence time.

Corollary 5.2. The convergence time for the equal-neighbor, time-invariant,
symmetric model on a connected graph on n nodes satisfies2

Tn(ε) = O(n3 log(n/ε)).

Furthermore, for every positive integer n, there exists an n-node connected graph for
which

Tn(ε) = Ω(n3 log(1/ε)).

Proof. The matrix A is the transition probability matrix for a random walk on
the given graph, where, given the current state i, the next state is equally likely to be
any of its neighbors (including i itself). Let pij(t) be the (i, j)th entry of the matrix
At. It is known that (see Theorem 5.13of [21])

|pij(t)− πj | ≤
√
dj
di
ρt.(5.1)

Since 1 ≤ di and dj ≤ n, we have

|pij(t)− πj | ≤
√
nρt

for all i, j, and t. Using the result of Theorem 5.1, we obtain

|pij(t)− πj | ≤
√
n(1 − n−3)t.(5.2)

This implies that by taking t = cn3 log(n/ε), where c is a sufficiently large absolute
constant, we will have |pij(τ)− πj | ≤ ε/n for all i, j, and τ ≥ t.

2Throughout, log will stand for the base-2 logarithm.
3Theorem 5.1 of [21] is proved for symmetric graphs without self-arcs. However, the proof does

not use the absence of self-arcs, and when they are present the same proof yields the same result.
We refer the reader to the derivation of [21, section 3.1] for details.
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Let A∗ = limt→∞ At, and let x∗ = limt→∞ Atx(0). Note that A∗x(0) = x∗ =
Atx∗ = A∗x∗ for all t. Then, with t chosen as above,

‖x(t)− x∗‖∞ = ‖At(x(0) − x∗)‖∞
= ‖(At −A∗)(x(0) − x∗)‖∞
≤ ‖At −A∗‖1 · ‖x(0)− x∗‖∞
≤ ε‖x(0)− x∗‖∞.

This establishes the upper bound on Tn(ε).
For the lower bound, note that for every (i, j) ∈ E , we have πiaij = (di/E)(1/di) =

1/E, so that condition (c) in Theorem 5.1 is satisfied. It follows that A has real
eigenvalues. Let x(0) be a (real) eigenvector of A corresponding to the eigenvalue ρ.
Then, x(t) = Atx(0) = ρtx(0), which converges to zero, i.e., x∗ = 0. We then have

‖x(t)− x∗‖∞
‖x(0)− x∗‖∞

= ρt.

By the second part of Theorem 5.1, there exists a graph for which ρ ≥ 1 − γn−3,
leading to the inequality Tn(ε) ≥ cn3 log(1/ε), for some absolute constant c.

The Ω(n3) convergence time of this algorithm is not particularly attractive. In
the next section, we explore possible improvements in the convergence time by using
different choices for the matrix A.

6. Convergence time for the scaled agreement algorithm. In this section,
we consider the scaled agreement algorithm introduced in section 3.2. As in [33], we
assume the presence of a system designer who chooses the matrix A so as to obtain a
favorable convergence rate, subject to the condition aij = 0 whenever (i, j) /∈ E . The
latter condition is meant to represent the network topology through which the nodes
are allowed to communicate. Our goal is to characterize the best possible convergence
rate guarantee. We will see that the convergence rate can be brought arbitrarily
close to zero. However, if we impose a certain “numerical stability” requirement, the
convergence time becomes Ω(n2 log(1/ε)) for a worst-case choice of the underlying
graph. Furthermore, this worst-case lower bound applies even if we allow for matrices
A in a much larger class than that considered in [33]. Finally, we will show that a
convergence time of O(n2 log(n/ε)) can be guaranteed in a simple manner, using a
spanning tree.

6.1. Favorable but impractical convergence rates. In this section, we show
that given a connected symmetric directed graph G = (N , E), there is an elementary
way of choosing a stochastic matrix A for which ρ is arbitrarily close to zero.

We say that a directed graph is a bidirectional spanning tree if (a) it is symmetric,
(b) it contains all self-arcs (i, i), and (c) we delete the self-arcs, ignore the orientation
of the arcs, and remove duplicate arcs, in which case we are left with a spanning tree.

Without loss of generality, we assume that G is a bidirectional spanning tree;
since G is symmetric and connected, this amounts to deleting some of its arcs, or,
equivalently, setting aij = 0 for all deleted arcs (i, j).

Pick an arbitrary node, denoted by r, and designate it as the root. Consider an
arc (i, j) and suppose that j lies on the path from i to the root. Let aij = 1 and
aji = 0. Finally, let arr = 1, and let aii = 0 for i 
= r. This corresponds to a Markov
chain in which the state moves deterministically towards the root. We have A

t
= er1T

for all t ≥ n, where ei is the ith basis vector. It follows that ρ = 0 and Tn(ε) ≤ n.
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However, this matrix A is not useful because the corresponding vector of steady-state
probabilities has mostly zero entries, which prohibits the scaling discussed in section
3.2. Nevertheless, this is easily remedied by perturbing the matrix A as follows. For
every (i, j) ∈ E with i 
= j and aij = 0, let aij = δ, where δ is a small positive constant.
For every i, there exists a unique j for which aij = 1. For any such pair (i, j), we set
aij = 1 −

∑n
k=1 aik (which is nonnegative as long as δ is chosen small enough). We

have thus constructed a new matrix Aδ which corresponds to a Markov chain whose
transition diagram is a bidirectional spanning tree. Since the convergence rate ρ is an
eigenvalue of the iteration matrix, and eigenvalues are continuous functions of matrix
elements, we see that, for the matrix Aδ, the convergence rate ρ can be made as small
as desired by choosing δ sufficiently small. Finally, since Aδ is a positive matrix, the
corresponding vector of steady-state probabilities is positive.

To summarize, by choosing δ suitably small, we can choose a (stochastic) matrix
Aδ with an arbitrarily favorable convergence rate, and which allows the application of
the scaled agreement algorithm of section 3.2. It can be shown that the convergence
time is linear in the following sense: For every ε, there exists some δ such that,
for the matrix Aδ, the corresponding convergence time, denoted by Tn(ε; δ), satisfies
Tn(ε; δ) ≤ n. Indeed, this is an easy consequence of the facts limδ→0(Anδ − A

n
) = 0

and Tn(ε′; 0) ≤ n for every ε′ > 0.4

However, note that as n gets larger, nπi may approach 0 at the nonroot nodes.
The implementation of the scaling in (3.2) will involve division by a number which
approaches 0, possibly leading to numerical difficulties. Thus, the resulting averaging
algorithm may be undesirable. Setting averaging aside, the agreement algorithm based
on Aδ, with δ small, is also undesirable; i.e., despite its favorable convergence rate, the
final value on which consensus is reached is approximately equal to the initial value
xr(0) of the root node. Such a “dictatorial” solution runs contrary to the motivation
behind consensus algorithms.

6.2. A lower bound. In order to avoid the numerical issues raised above, we
will now impose a condition on the dominant (and positive) left eigenvector π of the
matrix A, and we require

nπi ≥
1
C
∀ i,(6.1)

where C is a given constant with C > 1. This condition ensures that nπi does not
approach 0 as n gets large, so that the initial conditions in the scaled agreement
algorithm of section 3.2 are well behaved. Furthermore, in the context of consensus
algorithms, condition (6.1) has an appealing interpretation: it requires that the initial
value xi(0) of every node i have a nonnegligible impact on the final value limt→∞ xk(t),
on which consensus is reached.5

We will now show that, under the additional condition (6.1), there are graphs
for which the convergence time is Ω(n2 log(1/ε)). One may wonder whether a better
convergence time is possible by allowing some of the entries of A to be negative. As

4Indeed, it is easy to see that by suitably choosing the root, we can make sure that convergence
time is at most �d(G)/2� where d(G) is the diameter of the graph G defined as the largest distance
between any two vertices.

5In the case where A is the transition matrix of a reversible Markov chain, there is an additional
interpretation. A reversible Markov chain may be viewed as a random walk on an undirected graph
with edge-weights. Defining the degree of an vertex as the sum total of the weights incident upon
it, the condition nπi ≥ C is equivalent to requiring that each degree is lower bounded by a constant
times the average degree.
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the following result shows, negative entries do not help. The graph that we employ is
a line graph, with arc set E = {(i, j) | |i− j| ≤ 1}.

Theorem 6.1. Consider an n×n matrix A such that aij = 0 whenever |i−j| > 1,
and such that the graph with edge set {(i, j) ∈ E | aij 
= 0} is connected. Let λ1, λ2, . . .
be its eigenvalues in order of decreasing modulus. Suppose that λ1 = 1 and A1 = 1.
Furthermore, suppose that there exists a vector π satisfying (6.1) such that πTA = πT .
Then, there exist absolute constants c1 and c2 such that

ρ ≥ 1− c1
C

n2

and

Tn(ε) ≥ c2
n2

C
log
(

1
ε

)
.

Proof. If the entries of A were all nonnegative, we would be dealing with a birth-
death Markov chain. Such a chain is reversible, i.e., satisfies the detailed balance
equations πiaij = πjaji (condition (c) in Theorem 4.1). In fact the derivation of the
detailed balance equations does not make use of nonnegativity; thus, detailed balance
holds in our case as well.

Without loss of generality, we can assume that
∑n

i=1 πi = 1. For i = 1, . . . , n,
let yi = i − β, where β is chosen so that

∑n
i=1 πiyi = 0. We will make use of the

inequality (4.3). Since aij = 0 whenever |i− j| > 1, we have

n∑
i=1

n∑
j=1

πiaij(yi − yj)2 ≤
n∑
i=1

n∑
j=1

πiaij = 1.(6.2)

Furthermore,

n∑
i=1

πiy
2
i ≥

1
nC

n∑
i=1

y2
i =

1
nC

n∑
i=1

(i− β)2 ≥ 1
nC

n∑
i=1

(
i− n+ 1

2

)2

≥ n2

12C
.(6.3)

The next-to-last inequality above is an instance of the general inequality E[(X−β)2] ≥
var(X) applied to a discrete uniform random variable X . The last inequality follows
from the well-known fact var(X) = (n2− 1)/12. Using the inequality (4.3) and (6.2)–
(6.3), we obtain the desired bound on ρ.

For the bound on Tn(ε), we let x(0) be a (real) eigenvector of A, associated with
the eigenvalue λ2, and proceed as in the end of the proof of Corollary 5.2.

Remark. Note that if the matrix A is as in the previous theorem, it is possible for
the iteration x(t+1) = Ax(t) to not converge at all. Indeed, nothing in the argument
precludes the possibility that the smallest eigenvalue is −1, for example. In such a
case, the lower bounds of the theorem—derived based on bounding the second largest
eigenvalue—still hold, as the convergence rate and time are infinite.

6.3. Convergence time for spanning trees. We finally show that an O(n2)
convergence time guarantee is easily obtained by restricting to a spanning tree.

Theorem 6.2. Consider the equal-neighbor, time-invariant, bidirectional model
on a bidirectional spanning tree. We have

ρ ≤ 1− 1
3n2
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and

Tn(ε) = O
(
n2 log(n/ε)

)
.

Proof. In this context, we have πi = di/E, whereE =
∑n

i=1 di = 2(n−1)+n < 3n.
(The factor 2 arises because we have arcs in both directions; the additional term n
corresponds to the self-arcs.) As in the proof of Theorem 6.1, the detailed balance
conditions πaij = πjaji hold, and we can apply Theorem 4.1. Note that (4.2) can be
rewritten in the form

λ2 = 1− 1
2

min∑n
i dixi=0,

∑n
i dix2

i =1

∑
(i,j)∈E

(xi − xj)2.(6.4)

We use the methods of [23] to show that for trees, λ2 can be upper bounded by
1 − 1/3n2. Indeed, suppose that x satisfies

∑n
i dixi = 0 and

∑n
i dix

2
i = 1, and let

xmax be such that |xmax| = maxi |xi|. Then,

1 =
∑
i

dix
2
i ≤ 3nx2

max,

and it follows that |xmax| ≥ 1/
√

3n. Without loss of generality, assume that xmax > 0
(otherwise, replace each xi by −xi). Since

∑
i dixi = 0, there exists some i for which

xi < 0; let us denote such a negative xi by xneg. Then,

1√
3n
≤ xmax − xneg = (xmax − xk1) + (xk1 − xk2) + · · ·+ (xkr−1 − xneg),(6.5)

where k1, k2, . . . , kr−1 are the nodes on the path from xmax to xneg. By the Cauchy–
Schwarz inequality,

1
3n
≤ n

2

∑
(i,j)∈E

(xi − xj)2.(6.6)

(The factor of 1/2 in the right-hand side arises because the sum includes both terms
(xki − xki+1)2 and (xki+1 − xki)2.) Thus,

∑
(i,j)∈E

(xi − xj)2 ≥
2

3n2
,

which proves the bound for the second largest eigenvalue.
For the smallest eigenvalue, recall that aii ≥ 1/n for every i. It follows that the

matrix A is of the form I/n+Q, where I is the identity matrix and Q is a nonnegative
matrix whose row sums are equal to 1 − 1/n. Thus, all of the eigenvalues of Q have
magnitude bounded above by 1− 1/n, which implies that the smallest eigenvalue of
Q is bounded below by −1 + 1/n. We conclude that λn, the smallest eigenvalue of
I/n+Q, satisfies

λn ≥ −1 +
2
n
≥ −1 +

2
n3
.

For the bound on the convergence time, we proceed as in the proof of Corollary
5.2. Let pij(t) be the (i, j)th entry of At. Then,

|pij(t)− πj | ≤
√
n

(
1− 1

3
n−2

)t
.
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For a suitable absolute constant c and for t ≥ cn2 log(n/ε), we obtain |pij(t)−π(j)| ≤
ε/n. The rest of the proof of Corollary 5.2 holds unchanged.

In light of the preceding theorem, we propose the following simple heuristic, with
worst-case convergence time O(n2 log(n/ε)), as an alternative to a more elaborate
design of the matrix A.

Algorithm 6.3. We are given a symmetric graph G. We delete enough arcs to
turn G into a bidirectional spanning tree, and then carry out the equal-neighbor, time-
invariant, bidirectional consensus algorithm, with initial value xi(0)/nπi at node i.

Let us remark that the O(n2 log(n/ε)) bound (Theorem 6.2) on the convergence
time of this heuristic is essentially tight (within a factor of logn). Indeed, if the
given graph is a line graph, then with our heuristic we have nπi = ndi/E ≥ 2/3, and
Theorem 6.1 provides an Ω(n2 log(1/ε)) lower bound.

7. Convergence time when using a doubly stochastic matrix. We provide
here a brief comparison of our methods with the following two methods that have been
proposed in the literature and that rely on doubly stochastic matrices. Recall that
doubly stochastic matrices give rise directly to an averaging algorithm, without the
need for scaling the initial values.

(a) Reference [33] considers the case where the graph G is given and studies the
problem of choosing a doubly stochastic matrix A for which the convergence
rate ρ is smallest. In order to obtain a tractable (semidefinite programming)
formulation, this reference imposes the further restriction that A be sym-
metric. For a doubly stochastic matrix, we have πi = 1/n for all i, so that
condition (6.1) holds with C = 1. According to Theorem 6.1, there exists a
sequence of graphs, for which we have Tn(ε) = Ω(n2 log(1/ε)). We conclude
that, despite the sophistication of this method, its worst-case guarantee is no
better (ignoring the logn factor) than the simple heuristic we have proposed
(Algorithm 6.3). On the other hand, for particular graphs, the design method
of [33] may yield better convergence times.

(b) The following method was proposed in [27]. The nodes first agree on some
value ε ∈ (0, 1/maxi di). (This is easily accomplished in a distributed man-
ner.) Then, the nodes iterate according to the equation

xi(t+ 1) = (1− εdi)xi(t) + ε

n∑
j∈N (i)\{i}

xj(t).(7.1)

Assuming a connected graph, the iteration converges to consensus (this is a
special case of Theorem 2.4). Furthermore, this iteration preserves the sum∑n

i=1 xi(t). Equivalently, the corresponding matrix A is doubly stochastic,
as required in order to have an averaging algorithm.
This algorithm has the disadvantage of uniformly small step sizes. If many
of the nodes have degrees of the order of n, there is no significant theoretical
difference between this approach and our Algorithm 3.1, as both have effective
step sizes of order of 1/n. On the other hand, if only a small number of nodes
has large degree, then the algorithm in [27] will force all the nodes to take
small steps. This drawback is avoided by our Algorithms 3.1 (section 3.3)
and 6.3 (section 6.3). A comparison of the method of [27] with Algorithm 3.1
is carried out, through simulation experiments, in section 8.

8. Averaging with dynamic topologies. In this section, we turn our atten-
tion to the more challenging case where communications are bidirectional but the
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network topology changes dynamically. Averaging algorithms for such a context have
been considered previously in [24, 26].

As should be clear from the previous sections, consensus and averaging algo-
rithms are intimately linked, with the agreement algorithm often providing a foun-
dation for the development of an averaging algorithm. For this reason, we start by
investigating the worst-case performance of the agreement algorithm in a dynamic
environment. Unfortunately, as shown in section 8.1, its convergence time is not
polynomially bounded, in general, even though it is an open question whether this is
also the case when we restrict to symmetric graphs. Motivated by this negative result,
we approach the averaging problem differently: we introduce an averaging algorithm
based on “load balancing” ideas (section 8.2) and prove a polynomial bound on its
convergence time (section 8.3).

8.1. Nonpolynomial convergence time for the agreement algorithm. We
begin by formally defining the notion of “convergence time” for the agreement algo-
rithm on dynamic graph sequences. Given a sequence of graphs G(t) on n nodes such
that Assumption 2.3 of section 2 is satisfied for some B > 0, and an initial condition
x(0), we define the convergence time TG(·)(x(0), ε) (for this particular graph sequence
and initial condition) as the first time t when each node is within an ε-neighborhood of
the final consensus, i.e., ‖x(t)− limt→∞ x(t)‖∞ ≤ ε. We then define the (worst-case)
convergence time, Tn(B, ε), as the maximum value of TG(·)(x(0), ε), over all graph
sequences G(·) on n nodes that satisfy Assumption 2.3 for that particular B, and over
all initial conditions that satisfy ‖x(0)‖∞ ≤ 1.

We focus our attention on the equal-neighbor version of the agreement algorithm.
The result that follows shows that its convergence time is not bounded by a polynomial
in n and B. In particular, if B is proportional to n, the convergence time increases
faster than an exponential in n. We note that the upper bound in Theorem 8.1 is not
a new result, but we include it for completeness, and for comparison with the lower
bound, together with a proof sketch. Similar upper bounds have also been provided
recently in [7], under slightly different assumptions on the graph sequence G(·).

Theorem 8.1. For the equal-neighbor agreement algorithm, there exist positive
constants c1 and c2 such that for every n, B, and 1 > ε > 0,

c1nB
(n− 1

2

)B−1

log
1
ε
≤ Tn(B, ε) ≤ c2BnnB log

1
ε
.(8.1)

Proof. The upper bound follows by inspecting the proof of convergence of the
agreement algorithm with the constant α of Assumption 2.1 set to 1/n (cf. [30, 4]).

We now prove the lower bound by exhibiting a sequence of graphs G(t) and an ini-
tial vector x(0), with ‖x(0)‖∞ ≤ 1 for which TG(·)(x(0), ε) ≥ c1nB(n/2)B−1 log(1/ε).
We assume that n is even and n ≥ 4. The initial condition x(0) is defined as xi(0) = 1
for i = 1, . . . , n/2, and xi(0) = −1 for i = n/2 + 1, . . . , n.

(i) The graph G(0), used for the first iteration, is shown in the left-hand side of
Figure 8.1.

(ii) For t = 1, . . . , B−2, we perform an equal-neighbor iteration, each time using
the graph G(t) shown in the right-hand side of Figure 8.1.

(iii) Finally, at time B − 1, the graph G(B − 1) consists of the complete graph
over the nodes {1, . . . , n/2} and the complete graph over the nodes {n/2 +
1, . . . , n}.

(iv) This sequence of B graphs is then repeated, i.e., G(t+ kB) = G(t) for every
positive integer k.
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2 3 n/2

1

n

n/2+1 n/2+2 n-1

2 3 n/2

1

n

n/2+1 n/2+2 n-1

Fig. 8.1. The diagram on the left is the graph G(0). The diagram on the right is the graph
G(t) at times t = 1, . . . , B−2. Self-arcs are not drawn but should be assumed present at every node.

It is easily seen that this sequence of graphs satisfies Assumption 2.3, and that con-
vergence to consensus is guaranteed.

At the end of the first iteration, we have xi(1) = xi(0), for i 
= 1, n, and

x1(1) =
(n/2)− 1
(n/2) + 1

= 1− 4
n+ 2

, xn(1) = −x1(1).(8.2)

Consider now the evolution of x1(t), for t = 1, . . . , B − 2, and let α(t) = 1 − x1(t).
We have

x1(t+ 1) =
1 · (1− α(t)) + (n/2− 1) · 1

n/2
= 1− (2/n)α(t),

so that α(t+1) = 2α(t)/n. From (8.2), α(1) = 4/(n+2), which implies that α(B−1) =
(2/n)B−2, or

x1(B − 1) = 1− 4
n+ 2

( 2
n

)B−2

.

By symmetry,

xn(B − 1) = −1 +
4

n+ 2

( 2
n

)B−2

.

Finally, at time B − 1, we iterate on the complete graph over nodes {1, . . . , n/2}
and the complete graph over nodes {n/2 + 1, . . . , n}. For i = 2, . . . , n/2, we have
xi(B − 1) = 1, and we obtain

xi(B − 1) =
1 ·
(n

2
− 1
)

+ 1− 4
n+ 2

( 2
n

)B−2

n/2
= 1− 4

n+ 2

( 2
n

)B−1

.

Similarly, for i = (n/2) + 1, . . . , n, we obtain

xi(B − 1) = −1 +
4

n+ 2

( 2
n

)B−2

.
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Thus,

|maxi xi(B)−mini xi(B)|
|maxi xi(0)−mini xi(0)| = 1− 4

n+ 2
·
( 2
n

)B−1

.

Moreover, because x(B) is simply a scaled version of x(0), it is clear that by repeating
this sequence of graphs, we will have

|maxi xi(kB)−mini xi(kB)|
|maxi xi(0)−mini xi(0)| =

(
1− 4

n+ 2
·
( 2
n

)B−1)k
.

This readily implies that

TG(·)(t)(x(0), ε) = Ω
(
nB
(n

2

)B−1

log
1
ε

)
.

If n is odd, then n′ = n − 1 is even. We apply the same initial condition and
graph sequence as above to nodes {1, . . . , n′}. As for the additional node xn, we let
xn(0) = 0 and make extra connections by connecting node n to nodes 1 and n′ at
time 0 with a bidirectional link. By repeating the analysis above, it can be verified
that

TG(·)(t)(x(0), ε) = Ω
(
nB
(n− 1

2

)B−1

log
1
ε

)
.

This concludes the proof.
Both the upper and lower bounds in Theorem 8.1 display an exponential growth

of the convergence time as a function of B. It is unclear, however, which of the two
terms, nB or nnB, better captures the behavior of Tn(B, ε).

8.2. Polynomial time averaging in dynamic topologies. The algorithm
we present here is a variation of an old load balancing algorithm (see [9] and Chapter
7.3 of [3]). Intuitively, a collection of processors with different initial loads tries to
equalize its respective loads. As some of the highly loaded processors send some of
their loads to their less loaded neighbors, the loads at different nodes tend to become
equal. Similarly, at each step of our algorithm, each node offers some of its value to
its neighbors and accepts or rejects such offers from its neighbors. Once an offer from
i to j to send δ has been accepted, the updates xi := xi − δ and xj := xj + δ are
executed.

We assume a time-varying sequence of graphs G(t). We make only the following
two assumptions on G(·): symmetry and bounded interconnectivity times (see section
2 for definitions). The symmetry assumption is natural if we consider, for example,
communication between two nodes to be feasible whenever the nodes are within a
certain distance of each other. The assumption of bounded interconnectivity times is
necessary for an upper bound on the convergence time to exist (otherwise, we could
insert infinitely many empty graphs G(t), in which case convergence is arbitrarily slow
for any algorithm).

We next describe formally the steps that each node carries out at each time t.
For definiteness, we refer to the node executing the steps below as node A. Moreover,
the instructions below sometimes refer to the “neighbors” of node A; this always
means nodes other than A that are neighbors at time t, when the step is being
executed (since G(t) can change with t, the set of neighbors of A can also change).
Let Ni(t) = {j 
= i : (i, j) ∈ E(t)}. Note that this is a little different from the
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definition of Ni(t) in earlier sections, in that i is no longer considered a neighbor of
itself.

Algorithm 8.2. If NA(t) is empty, node A does nothing at time t. Otherwise,
node A carries out the following steps:

1. Node A broadcasts its current value xA to all of its neighbors (every j with
j ∈ NA(t)).

2. Node A finds a neighboring node B with the smallest value: xB = min{xj :
j ∈ NA(t)}. If xA ≤ xB , then node A does nothing further at this step. If
xB < xA, then node A makes an offer of (xA − xB)/2 to node B.

3. If node A does not receive any offers, it does nothing further at this step.
Otherwise, it sends an acceptance to the sender of the largest offer and a
rejection to all the other senders. It updates the value of xA by adding the
value of the accepted offer.

4. If an acceptance arrives for the offer made by node A, node A updates xA by
subtracting the value of the offer.

For concreteness, we use xi(t) to denote the value possessed by node i at the
beginning of the above described steps. Accordingly, the value possessed by node i at
the end of the above steps will be xi(t + 1). The algorithm we have specified clearly
keeps the value of

∑n
i=1 xi(t) constant. Furthermore, it is a valid averaging algorithm,

as stated in Theorem 8.3 below. We do not provide a separate proof, because this
result follows from the convergence time bounds in the next subsection.

Theorem 8.3. Suppose that each G(t) is symmetric and that Assumption 2.3
(bounded interconnectivity times) holds. Then, limt→∞ xi(t) = 1

n

∑n
k=1 xk(0) for

all i.

8.3. Convergence time. We introduce the following “Lyapunov” function that
quantifies the distance of the state x(t) of the agents form the desired limit:

V (t) =

∥∥∥∥∥x(t)− 1
n

n∑
i=1

xi(0)1

∥∥∥∥∥
2

2

.

Intuitively, V (t) measures the variance of the values at the different nodes. Given
a sequence of graphs G(t) on n nodes, and an initial vector x(0), we define the
convergence time TG(·)(x(0), ε) as the first time t after which V (·) remains smaller
than εV (0):

TG(·)(x(0), ε) = min
{
t | V (τ) ≤ εV (0) ∀ τ ≥ t

}
.

We then define the (worst-case) convergence time, Tn(B, ε), as the maximum value
of TG(·)(x(0), ε) over all graph sequences G(·) on n nodes that satisfy Assumption 2.3
for that particular B, and over all initial conditions x(0).

Theorem 8.4. There exists a constant c > 0 such that for every n and 1 >ε > 0,
we have

Tn(B, ε) ≤ cBn3 log
1
ε
.(8.3)

Proof. The proof is structured as follows. Without loss of generality, we assume
that

∑n
i=1 xi(0) = 0; this is possible because adding a constant to each xi does not

change the sizes of the offers or the acceptance decisions. We will show that V (t) is
nonincreasing in t, and that

V ((k + 1)B) ≤
(
1− 1

2n3

)
V (kB)(8.4)
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for every nonnegative integer k. These two claims readily imply the desired result. To
see this, note that if V (t) decreases by a factor of 1− (1/2n3) every B steps, then it
decreases by a Θ(1) factor in Bn3 steps. It follows that the time until V (t) becomes
less than εV (0) is O(Bn3 log(1/ε)). Finally, since V (t) is nonincreasing, V (t) stays
below εV (0) thereafter.

We first show that V (t) is nonincreasing. We argue that while rejected offers
clearly do not change V (t), each accepted offer at time t results in a decrease of
V (t + 1). While this would be straightforward to establish if there were a single
accepted offer, a more complicated argument is needed to account for the possibility
of multiple offers being simultaneously accepted. We will show that we can view the
changes at time t as a result of a series of sequentially accepted offers, each of which
results in a smaller value of V .

Let us focus on a particular time t. We order the nodes from smallest to largest,
so that x1(t) ≤ x2(t) ≤ · · · ≤ xn(t), breaking ties arbitrarily. Let Ai(t) be the size of
the offer accepted by node i at time t (if any). If the node accepted no offers at time
t, set Ai(t) = 0. Furthermore, if Ai(t) > 0, let Ai(t) be the index of the node whose
offer node i accepted.

Let us now break time t into n periods. The ith period involves the updates caused
by node i accepting an offer from nodeAi(t). In particular, node i performs the update
xi(t) := xi(t)+Ai(t) and node Ai(t) performs the update xAi(t)(t) := xAi(t)(t)−Ai(t).

We note that every offer accepted at time t appears in some period in the above
sequence. We next argue that each offer decreases V . This will complete the proof
that V (t) is nonincreasing in t.

Let us suppose that in the ith period, node i accepts an offer from node Ai(t),
which for simplicity we will denote by j. Because nodes only send offers to lower
valued nodes, the inequality xj > xi must hold at the beginning of time t, before
time period 1. We claim that this inequality continues to hold when the ith time
period is reached. Indeed, xj is unchanged during periods 1, . . . , i − 1 (it can only
send one offer, which was to xi; and if it receives any offers, their effects will occur in
period j, which is after period i). Moreover, while the value of xi may have changed
in periods 1, . . . , i− 1, it cannot have increased (since i is not allowed to accept more
than one offer at any given time t). Therefore, the inequality xj > xi still holds at
the beginning of the ith period.

During the ith period, a certain positive amount is transferred from node j to
node i. Since the transfer takes place from a higher-valued node to a lower-valued
one, it is easily checked that the value of x2

i + x2
j (which is the contribution of these

two nodes to V ) is reduced. To summarize, we have shown that we can serialize the
offers accepted at time t, in such a way that each accepted offer causes a reduction in
V . It follows that V (t) is nonincreasing.

We will now argue that at some time t in the interval 0, 1, . . . , B − 1, there will
be some update (acceptance of an offer) that reduces V (t) by at least 1/(2n3)V (0).
Without loss of generality, we assume maxi |xi(0)| = 1, so that all the values lie in
the interval [−1,+1]. It follows that V (0) ≤ n.

Since
∑n

i=1 xi(0) = 0, it follows that mini xi(0) ≤ 0. Hence, the largest gap
between any two consecutive xi(0) must be at least 1/n. Thus, there exist some
numbers a and b, with b− a ≥ 1/n, and the set of nodes can be partitioned into two
disjoint subsets S− and S+ such that xi(0) ≤ a for all i ∈ S−, and xi(0) ≥ b for
all i ∈ S+. By Assumption 2.3, the graph with arcs

⋃
s=0,...,B−1 E(s) is connected.

Thus, there exists a first time τ ∈ {0, 1, . . . , B−1} at which there is a communication
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between some node i ∈ S− and some node j ∈ S+, resulting in an offer from j to i.
Up until that time, nodes in S− have not interacted with nodes in S+. It follows that
xk(τ) ≤ a for all k ∈ S−, and xk(τ) ≥ b for all k ∈ S+. In particular, xi(τ) ≤ a and
xj(τ) ≥ b. There are two possibilities: either i accepts the offer from j, or i accepts
some higher offer from some other node in S+. In either case, we conclude that there
is a first time τ ≤ B − 1, at which a node in S− accepts an offer from a node in S+.

Let us use plain xi and xj for the values at nodes i and j, respectively, at the
beginning of period i of time τ . At the end of that period, the value at both nodes is
equal to (xi + xj)/2. Thus, the Lyapunov function V decreases by

x2
i + x2

j − 2
(xi + xj

2

)2

=
1
2
(xi − xj)2 ≥

1
2
(b− a)2 ≥ 1

2n2
.

At every other time and period, V is nonincreasing, as shown earlier. Thus, using the
inequality V (0) ≤ n,

V (B) ≤ V (0)− 1
2n2
≤ V (0)

(
1− 1

2n3

)
.

By repeating this argument over the interval kB, . . . , (k+1)B, instead of the interval
0, . . . , B, we establish (8.4), which concludes the proof.

9. Simulations. We have proposed several new algorithms for the distributed
consensus and averaging problems. For one of them, namely the spanning tree heuris-
tic of section 6.3 (Algorithm 6.3), the theoretical performance has been characterized
completely—see Theorem 6.2 and the discussion at the end of section 6.3. In this
section, we provide simulation results for the remaining two algorithms.

9.1. Averaging in fixed networks with two passes of the agreement
algorithm. In section 3.3, we proposed a method for averaging in fixed graphs, based
on two parallel executions of the agreement algorithm (Algorithm 3.1). We speculated
in section 7 that the presence of a small number of high degree nodes would make the
performance of our algorithm attractive relative to the algorithm of [27], which uses
a step size proportional to the inverse of the largest degree. (Our implementation
used a step size of ε = 1/2dmax.) Figure 9.1 presents simulation results for the two
algorithms.

In each simulation, we first generate geometric random graph G(n, r) by placing
nodes randomly in [0, 1]2 and connecting two nodes if they are at most r apart. We
choose r = Θ(

√
logn/n), which is a standard choice for modeling wireless networks

(cf. [11]).
We then change the random graph G(n, r) by choosing nd nodes at random (nd =

10 in both parts of Figure 9.1) and adding edges randomly to make the degree of these
nodes linear in n; this is done by randomly inserting all possible edges incident to at
least one node in nd; each such edge in inserted independently with probability 1/3.
We run the algorithm, with random starting values, uniformly distributed in [0, 1],
until the largest deviation from the mean is at most ε = 10−3.

Each outcome recorded in Figure 9.1 (for different values of n) is the average of
three runs. We conclude that for such graphs, the convergence time of the algorithm
in [27] grows considerably faster than the one proposed in this paper.

9.2. Averaging in time-varying random graphs. We report here on simula-
tions involving the load-balancing algorithm (Algorithm 8.2) on time-varying random
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Fig. 9.1. On the left: Comparison of averaging algorithms on a geometric random graph. The
top line corresponds to the algorithm of [27], and the bottom line (close to the horizontal axis)
corresponds to using two parallel passes of the agreement algorithm (Algorithm 3.1). On the right:
A blow-up of the performance of the agreement algorithm.

graphs. In contrast to our previous simulations on static geometric graph, we test
two time-varying models which simulate movement.

In both models, we select our initial vector x(0) by choosing each component
independently as a uniform random variable over [0, 1]. In our first model, at each
time t, we independently generate an Erdös–Renyi random graph G(t) = G(c, n)
with c = 3/4. In the second model, at each time step we independently generate
a geometric random graph with G(n, r) with r =

√
logn/n. In both models, if the

largest deviation from the mean is at most ε = 10−3, we stop; otherwise, we perform
another iteration of the load-balancing algorithm.

The results are summarized in Figure 9.2, where again each point represents the
average of three runs. We conclude that in these random models, only a sublinear
number of iterations appears to be needed.
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Fig. 9.2. On the left: Averaging in time-varying Erdös–Renyi random graphs with the load
balancing algorithm. Here c = 3/4 at each time t. On the right: Averaging in time-varying geometric

random graphs with the load balancing algorithm. Here r =
√

logn/n.
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10. Concluding remarks. In this paper we have considered a variety of con-
sensus and averaging algorithms and studied their convergence rates. While our dis-
cussion was focused on averaging algorithms, several of our results pertain to the
closely related consensus problem.

For the case of a fixed topology, we showed that averaging algorithms are easy
to construct by using two parallel executions of the agreement algorithm for the
consensus problem. We also saw that a reasonable performance guarantee can be
obtained by using the equal-neighbor agreement algorithm on a spanning tree, as
opposed to a more sophisticated design.

For the case of a fixed topology, the choice of different algorithms is not a purely
mathematical issue; one must also take into account the extent to which one is able to
design the algorithm offline and provide suitable instructions to each node. After all, if
the nodes are able to set up a spanning tree, there are simple distributed algorithms,
involving two sweeps along the tree, in opposite directions, with which the sum of
their initial values can be computed and disseminated [3], thus eliminating the need
for an iterative algorithm. On the other hand, in less structured environments, with
the possibility of occasional changes in the system topology, iterative algorithms can
be more resilient. For example, the equal-neighbor agreement algorithm adjusts itself
naturally when the topology changes.

In the face of a changing topology (possibly at each time step), the agreement
algorithm continues to work properly, under minimal assumptions (see Theorem 2.4).
On the other hand, its worst-case convergence time may suffer severely (cf. section
8.1). Furthermore, it is not apparent how to modify the agreement algorithm and
obtain an averaging algorithm without sacrificing linearity and/or allowing some ad-
ditional memory at the nodes. In section 8, we introduced an averaging algorithm,
which is nonlinear but leads to a rather favorable (and, in particular, polynomial)
convergence time bound. In view of the favorable performance observed in our sim-
ulation results, it would also be interesting to characterize the average performance
of this algorithm, under a probabilistic mechanism for generating the graphs G(t),
similar to the one in our simulations.

Something to notice about Algorithm 8.2 is that it requires the topology to remain
fixed during the exchange of offers and acceptances/rejections that happens at each
step. On the other hand, without such an assumption, or without introducing a much
larger memory at each node (which would allow for flooding of individual values), an
averaging algorithm may well turn out to be impossible.
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Abstract. The present paper considers distributed consensus algorithms that involve N agents
evolving on a connected compact homogeneous manifold. The agents track no external reference and
communicate their relative state according to a communication graph. The consensus problem is
formulated in terms of the extrema of a cost function. This leads to efficient gradient algorithms to
synchronize (i.e., maximizing the consensus) or balance (i.e., minimizing the consensus) the agents;
a convenient adaptation of the gradient algorithms is used when the communication graph is di-
rected and time-varying. The cost function is linked to a specific centroid definition on manifolds,
introduced here as the induced arithmetic mean, that is easily computable in closed form and may
be of independent interest for a number of manifolds. The special orthogonal group SO(n) and the
Grassmann manifold Grass(p, n) are treated as original examples. A link is also drawn with the
many existing results on the circle.
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1. Introduction. The distributed computation of means/averages of data-
sets (in an algorithmic setting) and the synchronization of a set of agents (in a
control setting)—i.e., driving all the agents to a common point in state space—
are ubiquitous tasks in current engineering problems. Likewise, spreading a set of
agents in the available state space—linked to the definition of balancing in section 4—
is a classical problem of growing interest. Practical applications include autonomous
swarm/formation operation (see, e.g., [42, 28, 22, 23, 25]), distributed decision making
(see, e.g., [35, 47]), neural and communication networks (see, e.g., [46, 19]), clustering
and other reduction methods (see, e.g., [17]), optimal covering or coding (see, e.g.,
[3, 4, 11, 12]), and other fields where averaging/synchronizing or distributing a set
of points appears as a subproblem. In a modeling framework, the understanding of
synchronization, or more generally, swarm behavior, has also led to many important
studies (see, e.g., [26, 45, 48]).

Synchronization algorithms are well understood in Euclidean spaces (see, e.g.,
[33, 32, 47, 35]). They are based on the natural definition and distributed computation
of the centroid in R

m. However, many of the applications above involve manifolds
that are not homeomorphic to an Euclidean space. Even for formations moving in R

2

or R
3, the agents’ orientations evolve in a manifold SO(2) ∼= S1 or SO(3). Balancing

only makes sense on compact state spaces; though many theoretical results concern
convex or star-shaped subsets of R

m (see, e.g., [12]), most applications involve compact
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of Liège, Sart-Tilman Bldg. B28, B-4000 Liège, Belgium (alain.sarlette@ulg.ac.be, r.sepulchre@ulg.
ac.be). The first author is supported as an FNRS fellow (Belgian Fund for Scientific Research).

56



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSENSUS OPTIMIZATION ON MANIFOLDS 57

manifolds. It seems that the study of global synchronization or balancing in non-
Euclidean manifolds is not widely covered in the literature, except for the circle.

The present paper proposes algorithms for global synchronization and balancing—
grouped under the term consensus—on connected compact homogeneous manifolds.
A homogeneous manifold M is isomorphic to the quotient of two Lie groups. Intu-
itively, it is a manifold on which “all points are equivalent.” This makes the problem
symmetric with respect to the absolute position on the manifold and allows us to
focus on configurations of the swarm, i.e., relative positions of the agents.

The main idea is to embed M in R
m and measure distances between agents in

R
m in order to build a convenient cost function for an optimization-based approach.

The related centroid on M may be interesting on its own; it is therefore studied in
more detail in section 3 of the paper.

Throughout the paper, the abstract concepts are illustrated on the special or-
thogonal group SO(n), the Grassmann manifold Grass(p, n) of p-dimensional vector
spaces in R

n, and sometimes the circle S1, which is in fact isomorphic to both SO(2)
and Grass(1, 2). Other manifolds to which the present framework could be applied
include the n-dimensional spheres Sn and the connected compact Lie groups. The
circle S1 is the simplest example; it links the present work to existing results in
[42, 41, 39, 43]. SO(n) is important in control applications as the natural state space
for orientations of n-dimensional rigid bodies. Grass(p, n) appears in algorithmic
problems; [11] mentions the optimal placement of N laser beams for cancer treatment
and the projection of multidimensional data on N representative planes as practical
applications of optimal distributions on Grass(p, n).

The paper is organized as follows. Previous work is briefly reviewed in section
1.1. Section 2 introduces concepts and notations about graph theory, SO(n), and
Grass(p, n). Section 3 is devoted to the induced arithmetic mean. A definition of
consensus is presented in section 4. Section 5 introduces a cost function to express the
consensus problem in an optimization setting. Section 6 derives gradient algorithms
based on this cost function, with the only communicated information being the relative
positions of interconnected agents; convergence is proved for any connected, fixed, and
undirected communication graph. Algorithms whose convergence properties can be
guaranteed under possibly directed, time-varying, and disconnected communication
graphs are presented in section 7; they employ an auxiliary variable that evolves in
the embedding space R

m.

1.1. Previous work. Most of the work related to synchronization and balanc-
ing on manifolds concerns the circle S1. The most extensive literature on the sub-
ject derives from the Kuramoto model (see [44] for a review). Recently, however,
synchronization on the circle has been considered from a control perspective, with
the state variables representing headings of agents in the plane. Most results cover
local convergence [22, 33]. An interesting set of globally convergent algorithms in
SE(2) = S1 × R

2 is presented in [42], but they require all-to-all communication.
Some problems related to global discrete-time synchronization on S1 under differ-
ent communication constraints are discussed in [37], where connections of the control
problem with various existing models are made. Stronger results are presented in [39]
for global synchronization and balancing on S1 with varying, directed communication
links, at the cost of introducing estimator variables which communicating agents must
exchange. Finally, [43] presents results on SE(2) similar to those of [42] but under
relaxed communication assumptions and using, among others, the estimator strategy
of [39, 40].
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Several authors have already presented algorithms that asymptotically synchro-
nize satellite attitudes, involving the rotation group SO(3). They often rely on track-
ing a common external reference (see, e.g., [27]) or leader (see, e.g., [5, 25]). The
use of the convenient, but nonunique, quaternion representation for SO(3) produces
unwanted artifacts in the satellites’ motions. Attitude synchronization without com-
mon references and quaternion artifacts is studied in [34]; using the same distance
measure as the present work, an artificial coupling potential is built to establish lo-
cal stability. All these approaches explicitly incorporate the second-order rigid-body
dynamics. In accordance with the consensus approach, the present paper reduces the
agents to first-order kinematic models to focus on (almost) global convergence for
various agent interconnections, without any leader or external reference. Application
of this framework in a mechanical setting is discussed in a separate paper [38].

Synchronization or balancing on a manifoldM is closely related to the definition
and computation of a mean or centroid of points on M, a basic problem that has
attracted somewhat more attention, as can be seen from [20, 9, 15], among others.

A key element of the present paper is the computation of a centroid in the em-
bedding space R

m of M, which is then projected onto M. This is connected to the
“projected arithmetic mean” defined in [31] for SO(3). The idea of computing of
statistics in a larger and simpler embedding manifold (usually Euclidean space) and
projecting the result back onto the original manifold goes back to 1972 [13].

A short example in [1] addresses the computation of a “centroid of subspaces”
without much theoretical analysis; in fact, our algorithms on Grass(p, n) are similar
and can eventually be viewed as generalizing the developments in [1] in the framework
of consensus and synchronization. More recently, [17] used the centroid associated to
the projector representation ofGrass(p, n), exactly as is done below but without going
into theoretical details, to compute the cluster centers in a clustering algorithm. The
distance measure associated with this centroid on Grass(p, n) is called the chordal
distance in [11, 4], where it is used to derive optimal distributions (“packings”) of N
agents on some specific Grassmann manifolds.

Finally, the topic of optimization-based algorithm design on manifolds has con-
siderably developed over the last decades (see, e.g., [6, 14] and the books [18, 2]).

2. Preliminaries.

2.1. Elements of graph theory. Consensus among a group of agents depends
on the available communication links. When considering limited agent interconnec-
tions, it is customary to represent communication links by means of a graph. The
graph G is composed of N vertices (the N agents) and contains the edge (j, k) if
agent j sends information to agent k, which is denoted j � k. A positive weight ajk
is associated with each edge (j, k) to obtain a weighted graph; the weight is extended
to any pair of vertices by imposing ajk = 0 iff (j, k) does not belong to the edges of
G. The full notation for the resulting digraph (directed graph) is G(V,E,A), where
V = {vertices}, E = {edges}, and A, containing the ajk, is the adjacency matrix. The
convention akk = 0 ∀k is assumed for the representation of communication links.

The out-degree of a vertex k is the quantity d(o)
k =

∑N
j=1 akj of information leaving

k towards other agents; its in-degree is the quantity d
(i)
k =

∑N
j=1 ajk of information

received by k from other agents. These degrees can be assembled in diagonal matrices
D(o) and D(i). A graph is balanced if D(o) = D(i). This is satisfied in particular by
undirected graphs, for which A = AT . A graph is bidirectional if (j, k) ∈ E ⇔ (k, j) ∈
E (but not necessarily A = AT ).
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The Laplacian L of a graph is L = D − A. For directed graphs, D(i) or D(o)

can be used, leading to the in-Laplacian L(i) = D(i) − A and the out-Laplacian
L(o) = D(o) − A. By construction, L(i) has zero column sums and L(o) has zero row
sums. The spectrum of the Laplacian reflects several interesting properties of the
associated graph, especially in the case of undirected graphs (see, for example, [10]).

G(V,E,A) is strongly connected if it contains a directed path from any vertex j
to any vertex l (i.e., a sequence of vertices starting with j and ending with l such that
(vk, vk+1) ∈ E for any two consecutive vertices vk, vk+1); G is weakly connected if
there is such a path in the associated undirected graph, with adjacency matrix A+AT .

For time-varying interconnections, a time-varying graph G(t) is used and all the
previously defined elements simply depend on time. If the elements of A(t) are
bounded and satisfy some threshold ajk(t) ≥ δ > 0 ∀(j, k) ∈ E(t) and ∀t, then
G(t) is called a δ-digraph. The present paper always considers δ-digraphs.

In a δ-digraph G(V,E,A), vertex j is said to be connected to vertex k across
[t1, t2] if there is a path from j to k in the digraph Ḡ(V, Ē, Ā) defined by

ājk =

{ ∫ t2
t1
ajk(t)dt if

∫ t2
t1
ajk(t)dt ≥ δ,

0 if
∫ t2
t1
ajk(t)dt < δ,

(j, k) ∈ Ē iff ājk �= 0 .

Ḡ can be seen as a time-integrated graph, while the δ-criterion prevents vanishing
edges. A δ-digraph G(t) is called uniformly connected if there exist a vertex k and a
time horizon T > 0 such that ∀t, k is connected to all other vertices across [t, t+ T ].

2.2. Specific manifolds. The concepts presented in this paper are illustrated
on two particular manifolds, SO(n) and Grass(p, n).

The special orthogonal Lie group SO(n). This can be viewed as the set of posi-
tively oriented orthonormal bases of R

n, or equivalently, as the set of rotation matrices
in R

n; it is the natural state space for the orientation of a rigid body in R
n. In its

canonical representation, used in the present paper, a point of SO(n) is characterized
by a real n× n orthogonal matrix Q with determinant equal to +1. SO(n) is homo-
geneous (as any Lie group), compact, and connected. It has dimension n(n− 1)/2.

The Grassmann manifold Grass(p, n). Each point on Grass(p, n) denotes a p-
dimensional subspace Y of R

n. The dimension of Grass(p, n) is p(n − p). Since
Grass(n−p, n) is isomorphic to Grass(p, n), by identifying orthogonally complemen-
tary subspaces, in this paper we can assume without loss of generality that p ≤ n

2 .
For the special case p = 1, the Grassmann manifold Grass(1, n) is also known as
the projective space in dimension n. Grass(p, n) is connected, compact, and homoge-
neous as the quotient of the orthogonal Lie group O(n) by O(p)×O(n− p). Indeed,
Y ∈ Grass(p, n) can be represented, for instance, by a (not necessarily positively
oriented) orthonormal basis Q ∈ O(n) whose first p column-vectors span Y; the same
point Y ∈ Grass(p, n) is represented by any Q whose first p column-vectors span
Y (O(p)-symmetry) and whose last n − p column-vectors span the orthogonal com-
plement of Y (O(n − p)-symmetry). Other quotient structures for Grass(p, n) are
discussed in [1].

A matrix manifold representation of Grass(p, n) found in [1] assigns to Y any
n× p matrix Y of p orthonormal column-vectors spanning Y (p-basis representation);
all Y corresponding to rotations and reflections of the p column-vectors in Y represent
the same Y (O(p)-symmetry), so this representation is not unique. The dimension of
this representation is np − p(p + 1)/2. In [29], a point of Grass(p, n) is represented
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by Π = Y Y T , the orthonormal projector on Y (projector representation); using the
orthonormal projector on the space orthogonal to Y, Π⊥ = In − Y Y T where In de-
notes the n × n identity matrix, is strictly equivalent. The main advantage of this
representation is that there exists a bijection between Grass(p, n) and the orthonor-
mal projectors of rank p such that the projector representation makes Grass(p, n)
an embedded submanifold of the cone S

+
n of n × n symmetric positive semidefinite

matrices. A disadvantage of this representation is its large dimension n(n+ 1)/2.

3. The induced arithmetic mean. A homogeneous manifoldM is a manifold
with a transitive group action by a Lie group G: it is isomorphic to the quotient
manifold G/H of a group G by one of its subgroups H. Informally, it can be seen as a
manifold on which “all points are equivalent.” The present paper considers connected
compact homogeneous manifolds satisfying the following embedding property.

Assumption 1. M is a connected compact homogeneous manifold smoothly em-
bedded in R

m with the Euclidean norm ‖y‖ = rM constant over y ∈ M. The Lie
group G acts as a subgroup of the orthogonal group on R

m.
It is a well-known fact of differential geometry that any smooth m

2 -dimensional
Riemannian manifold can be smoothly embedded in R

m. The additional condition
‖y‖ = rM is in agreement with the fact that all points on M should be equivalent.
It is sometimes preferred to represent y ∈ M by a matrix B ∈ R

n1×n2 instead of a
vector. Componentwise identification R

n1×n2 ∼= R
m is assumed whenever necessary;

the corresponding norm is the Frobenius norm ‖B‖ =
√

trace(BTB).
Consider a set of N agents on a manifold M satisfying Assumption 1. The

position of agent k is denoted by yk and its weight by wk.
Definition 3.1. The induced arithmetic mean IAM ⊆M of N agents of weights

wk > 0 and positions yk ∈ M, k = 1, . . . , N , is the set of points in M that globally
minimize the weighted sum of squared Euclidean distances in R

m to each yk as follows:

(3.1) IAM = argmin
c∈M

N∑
k=1

wk d
2
Rm(yk, c) = argmin

c∈M

N∑
k=1

wk (yk − c)T (yk − c) .

The anti induced arithmetic mean AIAM ⊆ M is the set of points in M that glob-
ally maximize the weighted sum of squared Euclidean distances in R

m to each yk as
follows:

(3.2) AIAM = argmax
c∈M

N∑
k=1

wk d
2
Rm(yk, c) = argmax

c∈M

N∑
k=1

wk (yk − c)T (yk − c) .

The terminology is derived from [31], where the IAM on SO(3) is called the
projected arithmetic mean. The point in Definition 3.1 is that distances are measured
in the embedding space R

m. It thereby differs from the canonical definition of mean of
N agents on M, the Karcher mean [24, 36, 16, 20], which uses the geodesic distance
dM along the Riemannian manifoldM (with, in the present setting, the Riemannian
metric induced by the embedding ofM in R

m) as follows:

CKarcher = argmin
c∈M

N∑
k=1

wk d
2
M(yk, c) .

The IAM has the following properties:
1. The IAM of a single point y1 is the point itself.
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2. The IAM is invariant under permutations of agents of equal weights.
3. The IAM commutes with the symmetry group of the homogeneous manifold.
4. The IAM does not always reduce to a single point.

The last feature seems unavoidable for any mean (including the Karcher mean) that
satisfies the other properties. The main advantage of the IAM over the Karcher mean
is computational. The IAM and AIAM are closely related to the centroid.

Definition 3.2. The centroid Ce ∈ R
m of N weighted agents located on M is

Ce =
1
W

N∑
k=1

wk yk , where W =
N∑
k=1

wk .

Since ‖c‖ = rM for c ∈ M by Assumption 1, equivalent definitions for the IAM
and AIAM are

(3.3) IAM = argmax
c∈M

(cT Ce) and AIAM = argmax
c∈M

(−cT Ce) .

Hence, computing the IAM and AIAM just involves a search for the global maximizers
of a linear function on R

m in a very regular search space M. Local maximization
methods would even suffice if the linear function had no maxima onM other than the
global maxima. This is the case for any linear function on SO(n) and Grass(p, n) (see
section 3.1) as well as the n-dimensional sphere Sn in R

n+1. Not knowing whether this
property holds for all manifolds satisfying Assumption 1, we formulate the following
blanket assumption.

Assumption 2. The local maxima of any linear function f(c) = cT b over c ∈ M,
with b fixed in R

m, are all global maxima.

3.1. Examples. These examples exclusively consider the IAM ; from (3.3), the
conclusions for the AIAM are simply obtained by replacing Ce with −Ce.

The circle. The circle embedded in R
2 with its center at the origin satisfies As-

sumptions 1 and 2. The IAM is simply the central projection of Ce onto the circle.
Hence it corresponds to the whole circle if Ce = 0 and reduces to a single point
in other situations. The IAM uses the chordal distance between points, while the
Karcher mean would use arclength distance.

The special orthogonal group. The embedding of SO(n) as orthogonal matrices
Q ∈ R

n×n, det(Q) > 0, satisfies Assumption 1 since ‖Q‖ =
√

trace(QTQ) =
√
n.

It also satisfies Assumption 2 (proof in section 6). Ce =
∑

k Qk is a general n × n
matrix. The IAM is linked to the polar decomposition of Ce. Any matrix B can be
decomposed into UR with U orthogonal and R symmetric positive semidefinite; R is
always unique, and U is unique if B is nonsingular [7]. Each U is a global minimizer
of dRn×n(c, B) over c ∈ O(n). Thus, if det(Ce) ≥ 0, the IAM contains all matrices U :
det(U) > 0 obtained from the polar decomposition of Ce; this was already noticed in
[31]. When det(Ce) < 0, the result is more complicated but still has a closed-form
solution.

Proposition 3.3. Consider U an orthogonal matrix obtained from the polar
decomposition Ce = UR. The IAM of N points on SO(n) is characterized as follows:

1. If det(Ce) ≥ 0, then IAM = {U : det(U) > 0}. It reduces to a single point if
the multiplicity of 0 as an eigenvalue of Ce is less or equal to 1.

2. If det(Ce) ≤ 0, then IAM = {UHJHT}, where det(U) < 0, H contains the
orthonormalized eigenvectors of R with an eigenvector corresponding to the smallest
eigenvalue of R in the first column, and (−1 0

0 In−1
) . The IAM reduces to a single point

if the smallest eigenvalue of R has multiplicity 1.
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Proof. The proof is provided in section 6 after we introduce further necessary
material to compute the critical points of cTCe, among which the local maxima are
selected.

The Grassmann manifold. The representation of Grass(p, n) with p-bases Yk is
not an embedding and cannot be used in the proposed framework because the p-
dimensional subspace of R

n spanned by the columns of Ce =
∑
k Yk would depend

on the particular matrices Yk chosen to represent the subspaces Yk. The IAM is
defined with the projector representation, embedding Grass(p, n) in S

+
n . The latter

satisfies Assumption 1; the Frobenius norm of a p-rank projector is
√
p. It also satisfies

Assumption 2 (proof in section 6). The centroid Ce of N projectors is generally a
symmetric positive semidefinite matrix of rank ≥ p.

Proposition 3.4. The IAM contains all dominant p-eigenspaces of Ce. It re-
duces to a single point if the p largest and (p+1)-largest eigenvalues of Ce are different.

Proof. The proof follows along the same lines as that for SO(n), and is postponed
to section 6.

In fact, for Y ∈ Grass(p, n) with a p-basis Y and the projector ΠY = Y Y T , the
cost function in (3.3) becomes

(3.4) f(ΠY) = trace(ΠYCe) = trace(Y TCeY ) = trace((Y TY )−1 Y TCeY ),

where the last expression is equal to the generalized Rayleigh quotient for the compu-
tation of the dominant p-eigenspace of Ce. The computation of eigenspaces from cost
function (3.4) is extensively covered in [1, 2]. Furthermore, it is a well-known fact
of linear algebra that the p largest eigenvalues (the others being 0) of ΠYΠk are the
squared cosines of the principal angles φik, i = 1, . . . , p, between subspaces Y and Yk.
This provides a geometrical meaning for the IAM of subspaces: it minimizes the sum
of squared sines of principal angles between the set of subspaces Yk, k = 1, . . . , N ,
and a centroid candidate subspace Y, i.e., IAM = argminY

∑N
k=1

∑p
i=1 sin2(φik). The

Karcher mean admits the same formula with sin2(φik) replaced by (φik)
2 [11].

4. Consensus. Consider a set of agents with positions yk, k = 1, . . . , N , on a
manifold M satisfying Assumption 1. The rest of this paper assumes equal weights
wk = 1 ∀k; extension to weighted agents is straightforward. Suppose that the agents
are interconnected according to a fixed digraph G of adjacency matrix A = [ajk].

Definition 4.1. Synchronization is the configuration where yj = yk ∀j, k.
Definition 4.2. A consensus configuration with graph G is a configuration where

each agent k is located at a point of the IAM of its neighbors j � k, weighted according
to the strength of the corresponding edge. Similarly, an anticonsensus configuration
satisfies this definition with IAM replaced by AIAM .

(4.1) Consensus: yk ∈ argmax
c∈M

⎛
⎝cT N∑

j=1

ajk yj

⎞
⎠ ∀k .

(4.2) Anticonsensus: yk ∈ argmin
c∈M

⎛
⎝cT N∑

j=1

ajk yj

⎞
⎠ ∀k .

Note that consensus is defined as a Nash equilibrium: each agent minimizes its
cost function, assuming the others fixed ; the possibility of decreasing cost functions
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by moving several agents simultaneously is not considered. Consensus is graph-
dependent: agent k reaches consensus when it minimizes its distance to agents j � k.

Proposition 4.3. If G is an equally weighted complete graph, then the only
possible consensus configuration is synchronization.

Proof. At consensus the yk satisfy yTk
∑

j �=k yj ≥ cT
∑

j �=k yj∀k and ∀c ∈ M.
Furthermore, it is obvious that yTk yk > yTk c for any c ∈M \ {yk}. As a consequence,
yTk
∑N
j=1 yj > cT

∑N
j=1 yj ∀c ∈ M \ {yk} and ∀k. Thus according to (3.3), each yk

is located at the IAM of all the agents, which moreover reduces to a single point; thus
yk = yj = IAM({yl : l = 1, . . . , N}) ∀k, j.

Synchronization is a configuration of complete consensus. To similarly character-
ize a configuration of complete anticonsensus, it appears meaningful to require that
the IAM of the agents be the entire manifoldM; this is called a balanced configuration.

Definition 4.4. N agents are balanced if their IAM contains all M.
Balancing implies some spreading of the agents on the manifold. A full character-

ization of balanced configurations seems complicated. Balanced configurations do not
always exist (typically, when the number of agents is too small) and are mostly not
unique (they can appear in qualitatively different forms). The following link exists
between anticonsensus for the equally weighted complete graph and balancing.

Proposition 4.5. All balanced configurations are anticonsensus configurations
for the equally weighted complete graph.

Proof. For the equally weighted complete graph, (4.2) can be written

(4.3) yk ∈ argmin
c∈M

(
cT (N Ce − yk)

)
∀k .

Assume that the agents are balanced. This means that f(c) = cT Ce must be constant
over c ∈M. Therefore (4.3) reduces to yk = yk ∀k which is trivially satisfied.

In contrast to Proposition 4.3, Proposition 4.5 does not establish a necessary
and sufficient condition; indeed, anticonsensus configurations for the equally weighted
complete graph that are not balanced do exist, though they seem exceptional.

4.1. Examples. The following examples illustrate, among others, the last as-
sertions about balanced configurations.

The circle. Anticonsensus configurations for the equally weighted complete
graph are fully characterized in [42]. It is shown that the only anticonsensus con-
figurations that are not balanced correspond to (N + 1)/2 agents at one position,
and (N − 1)/2 agents at the opposite position on the circle, for N odd. Balanced
configurations are unique for N = 2 and N = 3 and form a continuum for N > 3.

Another interesting illustration is the equally weighted undirected ring graph in
which each agent is connected to two neighbors such that the graph forms a single
closed undirected path. Regular consensus configurations correspond to situations
with consecutive agents in the path always separated by the same angle 0 ≤ χ ≤
π/2; regular anticonsensus configurations have π/2 ≤ χ ≤ π. In addition, for N ≥
4, irregular consensus and anticonsensus configurations exist where nonconsecutive
angles of the regular configurations are replaced by (π − χ). As a consequence we
have the following:

1. Several qualitatively different (anti)consensus configurations exist.
2. Consensus and anticonsensus configurations can be equivalent when discard-

ing the graph. For example, the positions occupied by 7 agents separated by 2π/7
(consensus) or 4π/7 (anticonsensus) are strictly equivalent; the only difference, based
on which agent is located at which position, concerns the way the links are drawn.
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3. Degenerate configurations of simultaneous consensus and anticonsensus exist
(e.g., χ = π/2 for N = 4, 8, . . .); this singularity is specific to the particular graph.

4. There is no common anticonsensus state for all ring graphs. Indeed, consid-
ering an agent k, a common anticonsensus state would require that any two other
agents, as potential neighbors of k, are either separated by π or located at both sides
of k at a distance of χ ≥ π/2; one easily verifies that this cannot be satisfied ∀ k.

The special orthogonal group. Simulations of the algorithms proposed in this pa-
per suggest that balanced configurations always exist for N ≥ 2 if n is even and for
N ≥ 4 if n is odd. Under these conditions, convergence to an anticonsensus state that
is not balanced is not observed for the equally weighted complete graph.

The Grassmann manifold. Balanced states on Grass(p, n) appear if all eigenval-
ues of Ce are equal. Since trace(Ce) = 1

N

∑
k trace(Πk) = p, this requires Ce = p

nIn.
This is not always possible with N orthonormal projectors of rank p. As for SO(n),
simulations tend to indicate that it is possible when N is large enough; however,
computing the minimal value of N for a given n and p is not straightforward.

5. Consensus optimization strategy. The presence of a maximization condi-
tion in the definitions of the previous sections naturally points to the use of optimiza-
tion methods. The present section introduces a cost function whose optimization leads
to (anti)consensus configurations. For a graph G with adjacency matrix A = [ajk]
and associated Laplacian L(i) = [l(i)jk ] and the variable y = (y1, . . . , yN) ∈MN , define

(5.1) PL(y) =
1

2N2

N∑
k=1

N∑
j=1

ajk y
T
j yk = ξ1 −

1
4N2

N∑
k=1

N∑
j=1

ajk ‖yj − yk‖2

with constant ξ1 = r2M
4N2

∑
k

∑N
j=1 ajk. The index L refers to the fact that (5.1) can

also be written as a quadratic form on the graph Laplacian as follows:

(5.2) PL(y) = ξ2 −
1

2N2

N∑
k=1

N∑
j=1

l
(i)
jk y

T
j yk with constant ξ2 =

r2M
2N2

N∑
k=1

d
(i)
k .

In [37] and [43], this form of PL is studied on the circle for undirected equally weighted
graphs. For the unit-weighted complete graph, P := PL + r2M

2N equals

(5.3) P (y) =
1
2
‖Ce‖2 ,

proportional to the squared norm of the centroid Ce. This is a classical measure of
the synchrony of phase variables on the circle S1, used for decades in the literature
on coupled oscillators; in the context of the Kuramoto model, P (y) is known as the
“complex order parameter” (because R

2 is usually identified with C in that context).
In [42], P is used to derive gradient algorithms for synchronization (by maximizing
(5.3)) or balancing (by minimizing (5.3)) on S1.

Proposition 5.1. Synchronization of the N agents on M is the unique global
maximum of PL whenever the graph G associated with L(i) is weakly connected.

Proof. According to the second form of (5.1), PL reaches its global maximum
when yj = yk for all j, k for which ajk �= 0. If G is weakly connected, this equality
propagates through the whole graph such that y1 = y2 = · · · = yN .

Proposition 5.2. Consider N agents on a manifold M satisfying Assumptions
1 and 2. Given an undirected graph G, a local maximum of the associated cost function
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PL(y) necessarily corresponds to a consensus configuration, and a local minimum of
PL(y) necessarily corresponds to an anticonsensus configuration.

Proof. The proof is given for local maxima; it is strictly equivalent for local
minima. For y∗ = (y∗1 . . . y

∗
N ) to be a local maximizer of PL, y∗k must be, for each k,

a local maximizer of pk(c) := PL(y∗1 . . . y
∗
k−1, c, y

∗
k+1 . . . y

∗
N). Since A = AT , pk takes

the linear form pk(c) = ξk + 1
N2 c

T (
∑N

j=1 ajk y
∗
j ) with ξk constant ∀k. Thanks to

Assumption 2, all local maxima of pk(c) are global maxima. Therefore, y∗k is a global
maximum of pk(c) ∀ k, which corresponds to Definition 4.2 of consensus.

Proposition 5.2 establishes that a sufficient condition for (anti)consensus configu-
rations is to optimize PL. However, nothing guarantees that this is also necessary. In
general, optimizing PL will thus provide proven (anti)consensus configurations, but
not necessarily all of them (this is because consensus maximizes PL on MN for only
moving one agent with others fixed, and not along directions of combined motion of
several agents). The remaining sections of this paper present algorithms that drive the
swarm to (anti)consensus. Being based on the optimization of PL, these algorithms
do not necessarily target all possible (anti)consensus configurations. For instance, for
a tree, maximization of PL always leads to synchronization, although other consensus
configurations can exist.

5.1. Examples. On SO(n) and Grass(p, n), PL with matrix forms for the ele-
ments yk becomes

(5.4) PL(y) =
1

2N2

N∑
j=1

N∑
k=1

ajk trace(yTj yk) with yk ∈ R
n×n ∀k .

The special orthogonal group. Each term QTj Qk = Q−1
j Qk is itself an element

of SO(n). It is actually the unique element of SO(n) translating Qj into Qk by
matrix (group) multiplication on the right. Hence, on the Lie group SO(n), the order
parameter PL measures the sum of the traces of the elements translating connected
agents into each other. Observing that the trace is maximal for the identity matrix
and considering the particular case of SO(2), one can easily imagine how the trace of
Q−1
j Qk characterizes the distance between Qj and Qk. This cost function has been

previously used in [8, 34] as a measure of disagreement on SO(3).
The Grassmann manifold. On Grass(p, n), (5.4) can be rewritten as

PL(Y) =
1

2N2

N∑
j=1

N∑
k=1

ajk

(
p∑
i=1

cos2(φijk)

)

with φijk = the ith principal angle between Yj and Yk. This reformulation has previ-
ously appeared in [11, 4, 1].

6. Gradient consensus algorithms. The previous sections pave the way for
ascent and descent algorithms on P and PL. This paper considers continuous-time
gradient algorithms, but any descent or ascent algorithm—in particular, discrete-
time—will achieve the same task; see [2] for extensive information on this subject. In
the present paper, the gradient is always defined with the canonical metric induced
by the embedding ofM in R

m.

6.1. Fixed undirected graphs. A gradient algorithm for PL leads to

(6.1) ẏk(t) = 2N2α gradk,M(PL) , k = 1, . . . , N ,
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where α > 0 (resp., α < 0) for consensus (resp., anticonsensus), ẏk denotes the time-
derivative of agent k’s position, and gradk,M(f) denotes the gradient of f with respect
to yk alongM. This gradient can be obtained from the gradient in R

m,

gradk,Rm(PL) =
1

2N2

N∑
j=1

(ajk + akj) yj ,

by orthogonal projection ProjTM,k onto the tangent space toM at yk, yielding ∀k,
(6.2)

ẏk(t) = α ProjTM,k

⎛
⎝ N∑
j=1

(ajk + akj)yj

⎞
⎠ = α ProjTM,k

⎛
⎝ N∑
j=1

(ajk + akj)(yj − yk)

⎞
⎠ .

The last equality comes from ProjTM,k(yk) = 0. It shows that to implement this
consensus algorithm, each agent k must know the relative position with respect to
itself of all agents j such that j � k or k � j. Since the information flow is restricted
to j � k, (6.2) can be implemented only for undirected graphs, for which it becomes

(6.3) ẏk(t) = 2α ProjTM,k

⎛
⎝ N∑
j=1

ajk(yj − yk)

⎞
⎠ , k = 1, . . . , N .

In the special case of a complete unit-weighted graph,

(6.4) ẏk(t) = 2αN ProjTM,k (Ce(t)− yk) , k = 1, . . . , N .

Proposition 6.1. A group of N agents moving according to (6.3) on a manifold
M satisfying Assumptions 1 and 2, where the graph G associated to A = [ajk] is undi-
rected, always converges to a set of equilibrium points. If α < 0, all asymptotically
stable equilibria are anticonsensus configurations for G. If α > 0, all asymptotically
stable equilibria are consensus configurations for G (in particular, for the equally
weighted complete graph, the only asymptotically stable configuration is synchroniza-
tion).

Proof. M being compact and the ajk bounded, PL is upper- and lower-bounded.
PL is always increasing (decreasing) for α > 0 (α < 0) along solutions of (6.3), since

ṖL =
N∑
k=1

ẏTk gradk,M(PL) = 2N2α
N∑
k=1

‖gradk,M(PL)‖2 .

By LaSalle’s invariance principle, the swarm converges towards a set where ṖL = 0,
implying gradk,M(PL) = 0 ⇔ ẏk = 0 ∀k, and the swarm converges to a set of
equilibria. For α > 0 (α < 0), since PL always increases (decreases) along solutions,
only local maxima (minima) can be asymptotically stable. Proposition 5.2 states that
all local maxima (minima) of PL correspond to consensus (anticonsensus).

Remark 1. Computing gradk,M directly along the manifold, as in [2], can be
much more efficient if the dimension ofM is substantially lower than m (see section
6.3).

6.2. Extension to directed and time-varying graphs. Formally, algorithm
(6.3) can be written for directed and even time-varying graphs, although the gradient
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property is lost for directed graphs and has no meaning in the time-varying case
(since PL then explicitly depends on time). Nevertheless, the general case of (6.3)
with varying and directed graphs still exhibits synchronization properties.

It can be shown that synchronization is still a stable equilibrium; it is asymp-
totically stable if disconnected graph sequences are excluded. Its basin of attraction
includes the configurations where all the agents are located in a convex set of M.
Indeed, convergence results on Euclidean spaces can be adapted to manifolds when
agents are located in a convex set (see, e.g., [33]). On the other hand, examples where
algorithm (6.3) with α > 0 runs into a limit cycle can be built for cases as simple as
undirected equally weighted (but varying) graphs on the circle (see section 6.3).

Simulations on SO(n) and Grass(p, n) seem to indicate that for randomly gen-
erated digraph sequences,1 the swarm eventually converges to synchronization when
α > 0; this would correspond to generic convergence for unconstrained graphs.

Algorithm (6.3) can lead to a generalization of Vicsek’s phase update law (see [48])
to manifolds. The Vicsek model is a discrete-time algorithm governing the headings
of particles in the plane, and hence operates on the circle. It can be written as

(6.5) yk(t+ 1) ∈ IAM ({yj(t)|j � k in G(t)} ∪ {yk(t)}) , k = 1, . . . , N ,

with the definitions introduced in the present paper; interconnections among particles
depend on their relative positions in the plane (so-called “proximity graphs”). Vicsek’s
law can be directly generalized in the form (6.5) to any manifold satisfying Assumption
1. Based on the previous discussions, it is clear why (6.5) can be viewed as a discrete-
time variant of (6.3). When run asynchronously on a fixed undirected graph, (6.5) is
an ascent algorithm for PL; see [37] for a precise relationship between the continuous-
time and discrete-time consensus algorithms on the circle.

6.3. Examples. Consensus on the circle is studied in [42, 37, 39, 43]; the other
algorithms presented here are original.

The circle. Denoting angular positions by θk, the specific form of (6.3) for S1 is

(6.6) θ̇k = α′
N∑
j=1

ajk sin(θk − θj) , k = 1, . . . , N .

For the equally weighted complete graph, this is strictly equivalent to the Kuramoto
model [26] with identical (zero) natural frequencies.

Algorithm (6.6) can run into a limit cycle for varying graphs. Consider a regu-
lar consensus state for an equally weighted ring graph G1, with consecutive agents
separated by χ < π/2 (local maximum of PL1). Define G2 by connecting each agent
to the agents located at an angle ψ > π/2 from itself with ψ properly fixed. G2 is a
collection of disconnected ring graphs and the swarm is at a local minimum of PL2 .
Starting the system in the neighborhood of that state and regularly switching between
G1 and G2, the system will oscillate in its neighborhood, being driven away by G2

and brought back by G1 if consensus is intended, and conreversely if anticonsensus is
intended.

1More precisely, the following distribution was examined: initially, each element ajk indepen-
dently takes a value in {0, 1} according to a probability Prob(1) = p. The corresponding graph
remains for a time tgraph uniformly distributed in [tmin, tmax], after which a new graph is built as
initially.
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The special orthogonal group. The tangent space to SO(n) at the identity In is the
space of skew-symetric n×n matrices. By group multiplication, the projection of B ∈
R
n×n onto the tangent space to SO(n) at Qk is Qk Skew(Q−1

k B) = Qk (Q
T
k B
2 −

BTQk

2 ).
This leads to the following explicit form of algorithm (6.3) on SO(n), where the right-
hand side depends only on relative positions of the agents with respect to k:

(6.7) Q−1
k Q̇k = α

N∑
j=1

ajk
(
Q−1
k Qj −Q−1

j Qk
)
, k = 1, . . . , N .

Using Lemma A.1 in the appendix, the following proves that SO(n) satisfies Assump-
tion 2. It also includes the proof of Proposition 3.3.

Proposition 6.2. The manifold SO(n) satisfies Assumption 2.
Proof of Propositions 6.2 and 3.3. Consider a linear function f(Q) = trace(QTB)

with Q ∈ SO(n) and B ∈ R
n×n; grad

Rn×n(f) = B, so gradSO(n)(f) = Q
2 (QTB −

BTQ). Since Q is invertible, critical points of f satisfy (QTB − BTQ) = 0, meaning
that they take the form described by Lemma A.1. Using notations of Lemma A.1,
write R = HΛHT , where Λ contains the (nonnegative) eigenvalues of R. This leads
to

Q = UHJHT ⇒ QTB = HJΛHT ⇒ f(Q) = −
l∑

j=1

Λjj +
n∑

j=l+1

Λjj .

If l ≥ 2, select any m ∈ [2, l] and define Qε = UHJAHT , where A is the identity
matrix, except that A(1, 1) = A(m,m) = cos(ε) and A(1,m) = −A(m, 1) = sin(ε)
with ε arbitrarily small. It is straightforward to see that f(Qε) > f(Q), unless
Λ11 = Λmm = 0. Similarly, if l = 1 and ∃ m ≥ 2 such that Λmm < Λ11, then
f(Qε) > f(Q) with Qε and A as defined previously. Therefore,

1. if det(B) ≥ 0, local maxima require l = 0 such that Q = U and f(Q) is the
sum of the eigenvalues of R;

2. if det(B) ≤ 0, local maxima require U to take the form of Lemma A.1 with
l = 1 and Λ11 ≤ Λmm ∀m; thus the first column of H corresponds to a smallest eigen-
value of R, and f(Q) is the sum of n− 1 largest eigenvalues minus the smallest one.

This shows that all maxima of f(Q) are global maxima (since they all take the
same value) and, with B = Ce, characterizes the IAM .

The Grassmann manifold. The projection of a matrix M ∈ S
+
n onto the tangent

space to Grass(p, n) at Πk is given in [29] as ΠkMΠ⊥k + Π⊥kMΠk. This leads to

(6.8) Π̇k = 2α
N∑
j=1

ajk (ΠkΠjΠ⊥k + Π⊥kΠjΠk) , k = 1, . . . , N .

In practice, the basis representation Yk is handier than Πk since it involves smaller
matrices. Computing the gradient of PL({Πk , k = 1, . . . , N}) = PL({Yk Y Tk , k =
1, . . . , N}) directly on the quotient manifold as explained in [1] leads to the algorithm

(6.9) Ẏk = 4α
N∑
j=1

ajk
(
YjMj·k − YkMT

j·kMj·k
)
, k = 1, . . . , N ,

where the p× p matrices Mj·k are defined as Mj·k = Y Tj Yk. For theoretical purposes,
the projector representation is an easier choice, as for the following proofs.
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Proposition 6.3. The Grassmann manifold satisfies Assumption 2.
Proof of Propositions 6.3 and 3.4. Consider a linear function f(Π) = trace(ΠTB),

whereB ∈ S
+
n and Π represents Y ∈ Grass(p, n); grad

Rn×n(f) = B, so gradGrass(p,n)(f)
= ΠBΠ⊥ + Π⊥BΠ. The ranges of the first and second terms in gradGrass(p,n)(f) are
at most Y and its orthogonal complement, respectively, so they both equal zero at a
critical point Y∗, such that Y∗ is an invariant subspace of B. In an appropriate basis
(e1 . . . en), write Π∗ = diag(1, . . . , 1, 0, . . . , 0) and B = diag(μ1, . . . , μp, μp+1, . . . , μn).
If ∃ d ≤ p and l > p such that μd < μl, then any variation of Π∗ rotating ed towards el
strictly increases f(Π). Therefore, at local maxima of f(Π), the p-dimensional space
corresponding to Π must be an eigenspace of B corresponding to p largest eigenvalues.
This implies that at any local maximum, f(Π) equals the sum of p largest eigenvalues
of B, so Assumption 2 is satisfied. Replacing B by Ce proves Proposition 3.4.

7. Consensus algorithms with estimator variables. Section 6 derives algo-
rithms that lead to a consensus situation linked to the interconnection graph. But in
many applications, the interconnection graph is just a restriction on communication
possibilities, under which one actually wants to achieve a consensus for the complete
graph. Moreover, allowing directed and time-varying communication graphs is desir-
able for robustness. This section presents algorithms achieving the same performance
as those of section 6 for the equally weighted complete graph—that is, driving the
swarm to synchronization or to a subset of the anticonsensus configurations for the
equally weighted complete graph which seems to contain little more than balancing—
under very weak conditions on the actual communication graph. However, this re-
duction of information channels must be compensated by adding a consensus variable
xk ∈ R

m, which interconnected agents are able to communicate, to the state space of
each agent.

7.1. Synchronization algorithm. For synchronization purposes, the agents
run a consensus algorithm on their estimator variables xk in R

m, k = 1, . . . , N ,
initialized arbitrarily but independently and such that they can take any value in
an open subset of R

m; ∀k, agent k’s position yk on M independently tracks (the
projection onM of) xk. This leads to

ẋk = β

N∑
j=1

ajk (xj − xk), β > 0,(7.1)

ẏk = γS gradk,M(yTk xk) = γS ProjTM,k(xk), γS > 0 , k = 1, . . . , N.(7.2)

Equation (7.1) is a classical consensus algorithm in R
m, where ẋk(t) points from

xk(t) towards the centroid of the (appropriately weighted) xj(t) for which j � k at
time t. According to [33, 32, 35], if the time-varying communication graph G(t) is
piecewise continuous in time and uniformly connected, then all the xk exponentially
converge to a common consensus value x∞; moreover, if G(t) is balanced for all t,
then x∞ = 1

N

∑
k xk(0) (i.e., x∞ is the centroid of the initial xk). This implies the

following convergence property for (7.1), (7.2), where the notation IAMg generalizes
the definition (3.3) of the IAM when the points defining Ce are not on M.

Proposition 7.1. Consider a piecewise continuous and uniformly connected
graph G(t) and a manifold M satisfying Assumptions 1 and 2. The only stable limit
configuration of the yk under (7.1), (7.2), with the xk initialized arbitrarily but in-
dependently and such that they can take any value in an open subset of R

m, is syn-
chronization at y∞ = ProjTM,k(x∞); if G(t) is balanced, y∞ = IAMg{xk(0), k =
1, . . . , N}.
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Proof. Convergence of (7.1) towards xk = x∞ ∀k is proved in [32]; the property
x∞ = 1

N

∑
k xk(0) for balanced graphs is easy to check (see [35]). As a consequence,

the asymptotic form of (7.1), (7.2) is a set of N independent systems,

xk = x∞,(7.3)
ẏk = γS ProjTM,k(x∞) , k = 1, . . . , N ,(7.4)

where x∞ is a constant. According to [30], the ω-limit sets of the original system
(7.1), (7.2) correspond to the chain recurrent sets of the asymptotic system (7.3),
(7.4). The first equation is trivial. According to Proposition 4 in [21] and Sard’s
theorem, since (7.4) is a gradient ascent algorithm for f(yk) = yTk x∞ and f(yk) is
smooth (as the restriction of a smooth function to the smooth embedded manifold
M), the chain recurrent set of (7.4) is equal to its critical points. Since x∞ is a linear
combination of the xk(0), variations of the xk(0) are equivalent to variations of x∞.

Property o. Any open neighborhood O of any point xo ∈ R
m contains a point

xa for which f(yk) has a unique (local = global, by Assumption 2) maximizer.
Because of Property o, with respect to variations of the xk, the situation “f(yk)

has multiple maximizers” is unstable. The situation “f(yk) has a unique maximizer” is
stable since it corresponds to a nonempty open set in R

m; thus a convex neighborhood
of x∞ can be found in which the xk(t) will stay, by convexity of (7.1), and where
f(yk) has a unique maximizer. With respect to variations of the yk, the (thus unique)
maximizer of yTk xk is the only stable equilibrium for gradient ascent algorithm (7.2)
such that for xk → x∞ the only stable situation is synchronization.

Proof of Property o. If yTk xo has multiple maximizers, select one of them and call
it y∗. Then for σ > 0, yTk xo + σ yTk y∗ ≤ yT∗ xo + σ yTk y∗ ≤ yT∗ xo + σ yT∗ y∗ with equality
holding if and only if yk = y∗, so y∗ is the unique maximizer of yTk (xo + σy∗). Since
any open neighborhood O of xo contains points of the form xa = xo + σy∗, σ > 0,
property o is proved.

7.2. Anticonsensus algorithm. For anticonsensus, in analogy with the previ-
ous section, each yk evolves according to a gradient algorithm to maximize its distance
to xk(t). If xk(t) asymptotically converges to Ce(t), this becomes equivalent to the
gradient anticonsensus algorithm (6.4). Imposing xk(0) = yk(0) ∀k, the following
algorithm achieves this purpose when G(t) is balanced ∀t:

ẋk = β

N∑
j=1

ajk (xj − xk) + ẏk, β > 0,(7.5)

ẏk = γB gradk,M(yTk xk) = γB ProjTM,k(xk), γB < 0 , k = 1, . . . , N .(7.6)

Note that the variables xk and yk are fully coupled; in a discrete-time version of this
system, this essential feature of the algorithm must be retained in the form of implicit
update equations in order to ensure convergence (see [39] for details).

Proposition 7.2. Consider a piecewise continuous, uniformly connected, and
balanced graph G(t) and a manifold M satisfying Assumptions 1 and 2. Then, algo-
rithm (7.5), (7.6) with initial conditions xk(0) = yk(0) ∀k converges to an equilibrium
configuration of the anticonsensus algorithm for the equally weighted complete graph,
that is, (6.4) with α < 0.

Proof. First, show that 1
N

∑
k xk(t) = 1

N

∑
k yk(t) = Ce(t). Since xk(0) = yk(0)

∀k, it is true for t = 0. Thus it remains to show that
∑

k ẋk(t) =
∑
k ẏk(t). This is
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the case because a balanced graph ensures that the first two terms on the right-hand
side of the following expression cancel each other:

N∑
k=1

ẋk(t) = β

N∑
j=1

(
N∑
k=1

ajk

)
xj − β

N∑
k=1

⎛
⎝ N∑
j=1

ajk

⎞
⎠ xk +

N∑
k=1

ẏk(t) .

Next, prove that ∀k, ẏk(t) is a uniformly continuous function in L2(0,+∞) such
that Barbalat’s lemma implies ẏk → 0. First, show that W (t) = 1

2

∑
k xk(t)

Txk(t) is
never increasing along the solutions of (7.5), (7.6). Denoting by (x)j , j = 1, . . . ,m,
the vectors of length N containing the jth component of every xk, k = 1, . . . , N , and
by L(i) the in-Laplacian of the varying graph associated to the ajk, we obtain

Ẇ (t) =
N∑
k=1

xTk ẋk =
N∑
k=1

xTk ẏk − β

N∑
j=1

(x)Tj L
(i)(x)j .

The term containing L(i) is nonpositive because the Laplacian of balanced graphs is
positive semidefinite (see [49]). Replacing ẏk from (7.6) and noting that xTk ProjTM,k(xk)
= (ProjTM,k(xk))TProjTM,k(xk), one obtains

(7.7) Ẇ (t) = γB

N∑
k=1

‖ProjTM,k(xk)‖2 − β

N∑
j=1

(x)Tj L
(i)(x)j ≤ 0 .

Thus W (t) ≤W (0) = N
2 r

2
M, which implies that each ẏk(t) is in L2(0,+∞) since

1
|γB|

N∑
k=1

∫ +∞

0

‖ẏk(t)‖2 dt ≤ −
∫ +∞

0

Ẇ (t) dt ≤ N

2
r2M .

W (t) ≤W (0) also implies that xk is uniformly bounded ∀k; from (7.6), ẏk is uniformly
bounded as well. Combining these two observations, with the ajk bounded, (7.5)
shows that xk has a bounded derivative, and hence is Lipschitz in t ∀k. Now write

‖ẏk(xk(t1), yk(t1))− ẏk(xk(t2), yk(t2))‖
≤ ‖ẏk(xk(t1), yk(t1))− ẏk(xk(t2), yk(t1))‖ + ‖ẏk(xk(t2), yk(t1))− ẏk(xk(t2), yk(t2))‖ .

The first term on the second line is bounded by r1 |t1−t2| for some r1 since ẏk is linear
in xk, and xk is Lipschitz in t. The second term on the second line is bounded by
r2 |t1− t2| for some r2 since ẏk is Lipschitz in yk (as the gradient of a smooth function
along the smooth manifold M), and d

dt (yk) = ẏk is uniformly bounded. Hence, ẏk is
Lipschitz in t, and therefore uniformly continuous in t, such that Barbalat’s lemma
can be applied. Therefore ẏk → 0. Thus from [30], the ω-limit sets of (7.1), (7.2)
correspond to the chain recurrent sets of the asymptotic system

ẋk = β
N∑
j=1

ajk (xj − xk),

0 = γB ProjTM,k(xk) .

The second line is just a static condition. The chain recurrent set of the linear
consensus algorithm in the first line reduces to its equilibrium set xk = x∞ ∀k. But
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then, from the beginning of the proof, xk = Ce ∀k such that the static condition
becomes 0 = γB ProjTM,k(Ce) ∀k. This is the condition for an equilibrium of anti-
consensus algorithm (6.4) with γB = 2αN .

In simulations, a swarm applying (7.5), (7.6) with xk(0) = yk(0) ∀k seems to
generically converge to an anticonsensus configuration of the equally weighted com-
plete graph, that is, a stable equilibrium configuration of (6.4) with α < 0.

7.3. Examples. Applying this strategy to the circle yields the results of [39];
the xk reduce to vectors of R

2 and algorithms (7.2) and (7.6), respectively, drive the
yk towards and away from the central projection of xk onto the unit circle.

The special orthogonal and Grassmann manifolds. The particular balancing algo-
rithms will not be detailed, as they are directly obtained from their synchronization
counterparts. Introducing auxiliary n × n-matrices Xk, (7.1) may be transcribed
verbatim. Using previously presented expressions for ProjTM,k(Xk), (7.2) becomes

On SO(n) : Q−1
k Q̇k =

γS
2
(
QTkXk −XT

k Qk
)
, k = 1, . . . , N ,(7.8)

On Grass(p, n) : Π̇k = γS (ΠkXkΠ⊥k + Π⊥kXkΠk) , k = 1, . . . , N .(7.9)

Note that for Grass(p, n), the projector representation must be used in (7.1) and
(7.5) such that using n× n matrices Xk becomes unavoidable.

7.4. Remark on the communication of estimator variables. To implement
the algorithms of this section, interconnected agents must communicate the values of
their estimator variable xk. It is important to note that the variables xk may not be
just a set of abstract scalars for each agent k; since xk interacts with the geometric
yk, it must be a geometric quantity too. However, the xk evolve in R

m, while the
original system lives on M; the relative position of agents on M is a meaningful
measurement, but nothing ensures a priori that a similar thing can be done in R

m.
A solution could be to use a common (thus external) reference frame in R

m and
transmit the coordinates of the xk in this frame. That solution would unfortunately
imply that the swarm loses its full autonomy; however, the external frame is just used
for “translation” purposes and does not interfere with the dynamics of the system.

WhenM is (a subgroup of) SO(n), the algorithms can be reformulated such that
they work completely autonomously if interconnected agents measure their relative
positions QTkQj . Indeed, define Zk = QTkXk. Then (7.1), (7.2), for instance, becomes

Żk = (QTk Q̇k)
TZk + β

N∑
j=1

ajk
(
(QTkQj)Zj − Zk

)
,(7.10)

QTk Q̇k =
γS
2
(
Zk − ZTk

)
, k = 1, . . . , N .(7.11)

In this formulation, each agent k can represent Zk as an array of scalars, whose
columns express the column-vectors of Xk as coordinates in a local frame attached to
k (i.e., in a frame rotated by Qk with respect to a hypothetical reference frame). Pre-
multiplying Zj by QTkQj expresses Xj in the local frame of k, and QTk Q̇k expresses
the velocity of Qk (with respect to a hypothetical fixed reference) in the local frame
of k as well. Thus (7.10), (7.11) actually corresponds to (7.1), (7.2) written in the
local frame of k. Each agent k gets from its neighbors j � k their relative positions
QTkQj and the n × n arrays of numbers Zj; from this it computes the update Żk to
its own array of numbers Zk and the move it has to make with respect to its current
position, QTk Q̇k. The same can be done for the anticonsensus algorithm.
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8. Conclusion. The present paper makes three main contributions.
First, it defines the induced arithmetic mean of N points on an embedded con-

nected compact homogeneous manifold M; though it differs from the traditional
Karcher mean, it has a clear geometric meaning with the advantage of being easily
computable—see analytical solutions for SO(n) and Grass(p, n).

Second, a definition of consensus directly linked to the induced arithmetic mean is
presented for these manifolds. In particular, the notion of balancing introduced in [42]
for the circle is extended to connected compact homogeneous manifolds. Consensus
for the equally weighted complete graph is equivalent to synchronization. Likewise,
it appears in simulations that anticonsensus for the equally weighted complete graph
leads to balancing (if N is large enough) even though this could not be proved.

Third, consensus is formulated as an optimization problem, and distributed con-
sensus algorithms are designed for N agents moving on a connected compact homo-
geneous manifold. In a first step, gradient algorithms are derived for fixed undirected
interconnection graphs; (anti)consensus configurations are their only stable equilibria.
Similar algorithms are considered when the graph is allowed to be directed and/or
to vary, but their convergence properties are mostly open. In a second step, the al-
gorithms are modified by incorporating an estimator variable for each agent. In this
setting, convergence to the (anti)consensus states of the equally weighted complete
graph can be established theoretically for time-varying and directed interconnection
graphs. The meaningful way of communicating estimators between agents remains an
open issue whenM is not a subgroup of SO(n).

Running examples SO(n) and Grass(p, n) illustrate the validity of the discussion
and provide geometric insight. The models and results obtained by applying this
framework to the circle are strictly equivalent to existing models and results (most
significantly in [42, 43, 39]). This draws a link from the present discussion to the vast
literature about synchronization and balancing on the circle.

Appendix.
Lemma A.1. If g(Q) = QTB − BTQ with Q ∈ SO(n) and B ∈ R

n×n, then
g(Q) = 0 iff Q = UHJHT , where B = UR is a polar decomposition of B, the
columns of H contain (orthonormalized) eigenvectors of R, and

J =
(
−Il 0
0 In−l

)
,

l even if det(U) > 0,
l odd if det(U) < 0.

Proof. All matrices Q of the given form obviously satisfy that QTB is symmetric.
The following constructive proof shows that this is the only possible form.

Since UTB = R is symmetric with U ∈ O(n), the problem is to find all matrices
T = UTQ ∈ O(n) such that S = T TR is symmetric and det(T ) = det(U). Work in
a basis of eigenvectors H∗ diagonalizing R with its eigenvalues placed in decreasing
order λ1 ≥ λ2 . . . ≥ λn ≥ 0. The following shows that T is diagonal in that basis.
Then orthogonality of T imposes value 1 or −1 on the diagonal, the number l of −1
being compatible with det(T ) = det(U); the final form follows by returning to the
original basis and reordering the eigenvectors such that those corresponding to −1
are in the first columns.

The jth column of S is simply the jth column of T multiplied by λj . Therefore,
we have the following cases:

1. If λi = λj , then H∗ may be chosen such that the corresponding submatrix
T (i : j, i : j) = intersection of rows i to j and columns i to j of T is diagonal.
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2. If λp+1 = 0 and λp �= 0, then S symmetric implies T (n − p : n, 1 : p) = 0.
As T (n− p : n, n− p : n) is diagonal from case 1, only diagonal elements are nonzero
in the last n − p rows of T . Because the rows and columns of T are normalized,
T (1 : p, n− p : n) = 0.

3. Consider i− ≤ p and i+ the smallest index such that λi+ < λi− . Note that
(A.1)

n∑
j=1

T 2
i−j =

n∑
j=1

T 2
ji− = 1 (orthogonality) and

n∑
j=1

S2
i−j =

n∑
j=1

S2
ji− (symmetry).

Start with i− = 1 and assume λi+ > 0. Equation (A.1) can be satisfied only if
Tjk = Tkj = 0 ∀j ≥ i+ and ∀k ∈ [i,i+); case 1 further implies Tjk = Tkj = 0 ∀j �= k
and ∀k ∈ [i−, i+). This argument is repeated by defining the new i− as being the
previous i+ until λi+ = 0 (case 2) or λi− = λn > 0. This leaves T diagonal.
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Abstract. This paper focuses on consensus problems for a class of linear systems with distrib-
uted delay that are encountered in modeling traffic flow dynamics. In the application problems the
distributed delay, whose kernel is a γ-distribution with a gap, represents the human drivers’ behavior
in the average. The aim of the paper is to give a characterization of the regions in the corresponding
delay parameter space, where a consensus is reached for all initial conditions. The structure and
properties of the system are fully exploited, which leads to explicit and computationally tractable
expressions. As a by-product a stability theory for distributed delay systems with a γ-distribution
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1. Introduction. Networks of agents are typically large-scale interconnected
systems whose dynamics depend on the topology of the network but also on the indi-
vidual behaviors of the agents. In this context, agreements and cooperation between
agents are needed in order to achieve some common, global objective. Roughly speak-
ing, in a general setting the realization of a consensus consists of finding rules and
strategies for reaching an agreement regarding some certain quantity of interest de-
pending on the states of all the agents (see, e.g., [20, 23] for a recent survey on the
topic).

Consider now a consensus protocol for a multiagent system with a fixed, directed
network topology and a distributed delay in the communication channels (see, e.g.,
[19, 13] and the references therein). More precisely, let the directed graph
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be characterized by the node set V = {1, . . . , p}, a set of edges E where (k, l) ∈ E if
and only if αk,l �= 0, and a weighted adjacency matrix A with zero diagonal entries
and nondiagonal entries equal to αk,l. Let each node correspond to an agent whose
dynamics are described by

(1.2) v̇k(t) = uk(t), k = 1, . . . , p.

Furthermore, consider the following protocol:

(1.3) uk(t) =
∑

(k,l)∈E
αk,l

∫ ∞

0

f(θ)(vl(t− θ)− vk(t− θ)) dθ, k = 1, . . . , p,

where f(·) denotes some delay kernel, and the notation �·� stands for

�l� =

{
l, l = 1, . . . , p,
�l+ p�, l < 1.

We assume that

(1.4) αk,l ≥ 0, k = 1, . . . , p, l = 1, . . . , p, k �= l,

and that the graph G is strongly connected (see, e.g., [19] for the definition).
Let us discuss some of the motivations for introducing such a model. It is well

known and well accepted that networks and, more general, interconnected systems
are subject to propagation and communication delays. If such delays are not critical
in the perception and the observation of various behaviors, they may become critical
if they are used in decision-making, control, or consensus problems. The proposed
model enters in this category.

In this context, most of the cases treated and presented in the literature consider
only constant (piecewise) delays. If such an assumption can be seen as sufficient for
some examples, it becomes quite restrictive and conservative for others and among the
applications concerned by such an argument, we can cite traffic dynamics. Note that
the corresponding models are inherently time delayed because of the limited sensing
and acting capabilities of drivers against velocity and position variations [8, 12].

The idea of using delays in traffic flow dynamics is not new and, to the best of the
authors’ knowledge, was pointed out in the 1960s (see, for instance, [2]). According
to its origin (see, e.g., [8]), we can classify the delays in the traffic flow dynamics as
follows: physiological delays (mainly induced by the human operators), mechanical
time delays (time needed for the vehicle’s response after some driver’s action), and
delays in the vehicles’ action, to cite only a few (see also [25]).

Without any deep discussions on the modeling of the traffic dynamics, one of
the simplest model often discussed in the literature is the (microscopic) car-following
model, describing the behavior of multiple vehicles under the influence of a single
constant time delay [2, 12, 24]. In general, two spatial configurations are dealt with:
the linear and the ring configurations. In what follows, for the sake of brevity, we shall
only consider the ring configuration when discussing the traffic flow application, but
the obtained results can also be applied to the linear configuration (see, e.g., [27, 26]
for further discussions concerning these configurations). The linear model of [2] can
be written conceptually as follows:

(1.5) v̇k(t) = αk(vk−1(t− τ) − vk(t− τ)), k = 1, . . . , p,
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where p is the number of considered vehicles and v0 = vp. The left-hand side represents
the acceleration of the kth vehicle, and the right-hand side expresses the velocity
difference of consecutive vehicles (see also [24] for a multiple-car model). One of
the limitations of the model above is that, in general, humans retain a short-term
memory of the past events and this may affect their control decision strategy and
such a behavior cannot be described by using pointwise (or discrete) delays in the
model. Furthermore, the drivers’ perception and interpretations of the stimuli depend
on various parameters and are different from one driver to another. As pointed out
in [27], a more realistic model should include a delay distribution over the time that
depicts the human behavior in average. Conceptually, defining the delay distribution
represents a challenging problem itself and is far from being solved. In [27], the authors
proposed three types of delay distributions: a uniform distribution, a γ-distribution,
and a γ-distribution with a gap, where the gap corresponds to the minimum reaction
time of the humans with respect to some external signals and/or stimuli. In this
paper we shall assume the third type of distribution. Remarks and discussions on
its applications to other problems from engineering and biology can be found in [16].
Finally, it is important to point out that distributed delays are often encountered in
controlling time-delay systems. Typical examples are given by the finite-spectrum
assignment problems or the approximation of the derivative actions by its delay-
difference counterpart (see, e.g., [9, 15]).

The above discussions lead us to the analysis of the model

(1.6) v̇k(t) =
p−1∑
i=1

αk,�k−i�

∫ ∞

0

f(θ)(v�k−i�(t− θ)− vk(t− θ)) dθ, k = 1, . . . , p,

where, as mentioned above, f(·) denotes the delay kernel. It is easy to see that the
model (1.6) is nothing else than the protocol (1.3) applied to the agents described by
(1.2). Since the delay distribution is assumed to be a γ-distribution with a gap, the
kernel f is given by

(1.7) f(ξ) =

⎧⎨
⎩

0, ξ < τ,

(ξ−τ)n−1e
− ξ−τ

T̄

Tn(n−1)! , ξ ≥ τ,

where n ∈ N, T > 0, and τ ≥ 0. Note that f(ξ) ≥ 0 for all ξ ≥ 0 and
∫∞
0
f(ξ) dξ = 1.

The gap is defined by τ , and the corresponding average delay of (1.7) satisfies

τm =
∫ ∞

0

ξf(ξ) dξ = τ + nT.

As T → 0+, the kernel (1.7) tends to a Dirac impulse centered at ξ = τ and (1.6)
therefore reduces to a system with a pointwise delay τ . As we shall see, the transi-
tion to T = 0 is smooth from a stability point of view, as the stability determining
eigenvalues are continuous with respect to T ≥ 0.

The aim of the paper is to analyze the general consensus problem (1.2)–(1.3) for
a particular delay kernel (γ-distribution with a gap), more precisely, to perform a
stability analysis of (1.6)–(1.7) with respect to the parameters (T, τ) and n, which
determine the shape of the delay distribution. For a given value of n we will determine
regions in the (T, τ) space, such that for all initial conditions a consensus is reached.
In the traffic flow application this corresponds to the fact that all cars eventually get
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80 W. MICHIELS, C.-I. MORĂRESCU, AND S.-I. NICULESCU

the same speed. Note that the corresponding problem for an undirected graph (where
A is symmetric) and a constant time delay was investigated in [19].

The structure of the paper is as follows. In section 2 the stability theory for
systems with distributed delay is addressed, with the emphasis on consensus prob-
lems. Section 3 is devoted to the derivation of conditions on the pair (T, τ) for which
(1.6)–(1.7) realizes a consensus. Illustrative examples are given in section 4. The
analysis of other types of delay models for modeling traffic flow dynamics, in particu-
lar the so-called optimal velocity models, is briefly commented on in section 5. Some
concluding remarks are formulated in section 6.

The following standard notation will be adopted: C (C+, C
−) is the set of complex

numbers (with strictly positive and strictly negative real parts), and j =
√
−1. For

z ∈ C, ∠(z) ∈ (−π π], 	(z), and 
(z) define the argument, the real part, and the
imaginary part of z. R (R+, R

−) denotes the set of real numbers (larger than or equal
to zero, smaller than or equal to zero). N is the set of natural numbers, including
zero and Z is the set of integers. The set C(I,Cp), with I ⊆ R ∪ {±∞} and p ∈ N, is
the space of continuous functions from I to C

p. Finally, the following functions will
be used.

Definition 1.1. For n ∈ N, let gn : R
+ → R

+ be such that y = gn(x) is the
positive solution of |y(1 + jy)n| = x.

2. Stability theory for systems with distributed delays. Motivated by the
structure of (1.6)–(1.7) we develop a stability theory for systems with an unbounded
distributed delay of the form

(2.1) ẋ(t) = A

∫ ∞

0

f(θ)x(t− θ) dθ,

where x(t) ∈ C
p×1, A ∈ C

p×p, and f is given by (1.7). The approach is based on
establishing relations with stability properties of general systems with bounded delay
of the form

(2.2) ẋ(t) =
∫ 0

−τ
dη(θ)x(t + θ), x(t) ∈ C

r×r,

where η(θ), θ ∈ [−τ, 0], is an r × r matrix whose elements are of bounded variation,
because for such systems a well-established stability theory exists [10].

A solution of (2.1) is uniquely determined for an initial condition φ, which belongs
to the set F((−∞, 0],Cp×1), defined as

F((−∞, 0],Cp×1) :=
{
φ ∈ C((−∞, 0],Cp×1) : ‖φ‖f :=

∫ 0

−∞
‖f(−θ)φ(θ)‖2 dθ <∞

}

and equipped with ‖ · ‖f . Denote by t ∈ (−∞,∞)→ x(φ)(t) the forward solution of
(2.1) with initial condition φ. In this way, stability definitions can be formulated in a
similar way as for systems with constant delays; see, e.g., [10, 15] for the latter. We
say, for instance, that the zero solution of (2.1) is asymptotically stable if and only if

∀ε > 0 ∃δ > 0, ∀φ ∈ F((−∞, 0],Cp×1) ‖φ‖f < δ ⇒ ∀t ≥ 0 ‖x(φ)(t)‖2 < ε,

∀φ ∈ F((−∞, 0],Cp×1) limt→∞ x(φ)(t) = 0.

The substitution of a sample solution of the form x(t) = estX , with X ∈ C
p×1,

in (2.1) leads us to the characteristic equation

det(sI −AF (s)) = 0,
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where F (s) is the Laplace transform of f . When f is given by (1.7) the characteristic
equation above is rewritten as

(2.3) det
(
sI −A e−sτ

(1 + sT )n

)
= 0,

which can be factored as

(2.4)
p∏

k=1

(
s− μke

−sτ

(1 + sT )n

)
= 0,

with μk, k = 1, . . . , p, the eigenvalues of A. As we shall see, the roots distribution
of (2.3)–(2.4) determines the stability properties of (2.1). However, the commonly
used arguments, which are based on a spectral decomposition of the solutions (see,
for instance, [6, 10]), cannot be directly applied to a system of the form (2.1). A
major obstacle is the fact that functions of the form estX , t ≤ 0, do not belong to the
space F((−∞, 0],Cp×1) if 	(s) < 1/T . We shall therefore develop arguments based
on a comparison system.

Formally, with

y(t) =
∫ ∞

0

f(θ + τ)x(t − θ) dθ =
∫ t

−∞
f(t+ τ − θ)x(θ) dθ,

we get ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y′(t) =
∫ t
−∞ f ′(t+ τ − θ)x(θ) dθ,

...
y(n−1) =

∫ t
−∞ f (n−1)(t+ τ − θ)x(θ) dθ,

y(n)(t) = f (n−1)(τ)x(t) +
∫ t
−∞ f (n)(t+ τ − θ)x(θ) dθ,

which leads to

(
T d
dt + I

)n
y(t) = T nf (n−1)(τ)x(t) +

∫ t

−∞

(
T d
dt + I

)n
f(t+ τ − θ) dθ

= x(t).

We conclude that a solution x(φ)(t) of (2.1) satisfies

(2.5)

{
ẋ(t) = Ay(t− τ),(
T d
dt + I

)n
y(t) = x(t)

for t ≥ 0, if (2.5), interpreted as an initial value problem, is accordingly initialized
with

(2.6)

⎧⎪⎪⎨
⎪⎪⎩

x(0) = φ(0),

y(θ) =
∫ θ
−∞ f(τ + θ − ξ)φ(ξ) dξ, θ ∈ [−τ, 0],

y(i)(0) =
∫ 0

−∞ f (i)(τ − ξ)φ(ξ) dξ, i = 1, . . . , n− 1.

Note that the integrals on the right-hand side of (2.6) are defined and bounded because
f (i)(ξ), i = 1, . . . , n− 1, has the same asymptotic behavior as f(ξ) as ξ →∞.
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When letting z = [xT yT y′T · · · (y(n−1))T ]T , the comparison system (2.5) can be
written in a first-order form as

(2.7) ż(t) = Āz(t) + B̄z(t− τ),

where

Ā =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 0 I

. . .
I

I
Tn −

(
n
n

)
1
Tn · · · −

(
n
1

)
1
T 1

⎤
⎥⎥⎥⎥⎥⎦ and B̄ =

⎡
⎢⎢⎢⎣

0 A 0 · · · 0
0 0 0 0
...

...
0 · · · 0

⎤
⎥⎥⎥⎦ .

The initial conditions for (2.7) are assumed to belong to the space C([−τ, 0],C(n+1)p×1).
The next lemma summarizes the established relation between the solutions of (2.1)
and (2.7) and also contains a partial converse.

Lemma 2.1. If x(t), t ∈ R, is a solution of (2.1), then there exists a solution
z(t), t ≥ −τ , of (2.7) such that [I 0 · · · 0]z(t) = x(t) for all t ≥ −τ . If (2.7) has a
solution of the form Zest, t ≥ −τ , where 	(s) ≥ 0 and Z ∈ C

(n+1)p×1 \ {0}, then
[I 0 · · · 0]Zest, t ∈ R, is a nontrivial solution of (2.1).

Proof. The first assertion follows from the above construction, and an extension
of (2.6) on the interval [−τ, 0].

To prove the second assertion, we partition Z according to the structure of Ā and
B̄ as Z = [XT Y T0 · · ·Y Tn−1]

T . Substituting Zest in (2.7) yields(
sI −A e−sτ

(1 + sT )n

)
X = 0,(2.8)

Yi =
si

(1 + sT )n
X, i = 0, . . . , n− 1.(2.9)

It follows that Z �= 0 if and only if X �= 0. Furthermore, (2.8) implies that Xest

satisfies (2.1) for all t ∈ R. The function Xest, t ∈ R, is a solution since 	(s) ≥ 0 and
thus Xest, t ≤ 0, belongs to F((−∞, 0],Cp×1).

The system (2.7) is of the form (2.2) and corresponds to taking

η(θ) =

⎧⎨
⎩
−Ā− B̄, θ = −τ,
−Ā, θ ∈ (−τ, 0),
0, θ = 0.

From [10, 6] the zero solution of (2.2) is asymptotically stable if and only if all the
roots of its characteristic equation,

det
(
sI −

∫ 0

−τ
dη(θ) esθ

)
= 0,

are in C
−. For (2.7) the characteristic equation reduces to

(2.10) det(sI − Ā− B̄e−sτ ) = 0

or, equivalently,

(2.11) det
([

sI −Ae−sτ
−I (1 + sT )n

])
= 0.
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In what follows the roots of (2.11) are called eigenvalues of (2.5).
Note that (2.11) reduces to (2.3) if s �= −1/T . Combining this result with

Lemma 2.1 results in the following proposition.
Proposition 2.2. The zero solution of (2.1) is asymptotically stable if and only

if all roots of (2.3) are in C
−.

Next, we derive conditions on the characteristic roots for which the linear system
with unbounded distributed delay (2.1) solves a consensus problem. This stability
property is defined in the following way.

Definition 2.3. The system (2.1) solves a consensus problem if and only if

∀φ ∈ F((−∞, 0],Cp×1) lim
t→∞x(φ)(t) = χ(φ)E0,

where χ(φ) ∈ C and E0 = [1 · · · 1]T . The function χ : F((−∞, 0],Cp×1)→ C is called
the consensus functional. The system (2.1) solves a nontrivial consensus problem if
and only if it solves a consensus problem and the consensus functional is not identically
zero.

We follow the same methodology as for the asymptotic stability condition: we
first address a consensus problem for a system with bounded delay, and next we treat
(2.1) using Lemma 2.1.

Lemma 2.4. The system (2.2) with initial condition φ ∈ C([−τ, 0],Cr×1) solves
a nontrivial consensus problem1 if and only if all the roots of

(2.12) det
(
sI −

∫ 0

−τ
dη(θ) esθ

)
= 0

are in the open left half plane, excepting a zero root with multiplicity one, and E0 =
[1 · · · 1]T is the right null vector of

(2.13)
∫ 0

−τ
dη(θ).

The consensus functional χ : C([−τ, 0],Cr×1)→ C can be expressed as

(2.14) χ(φ) =
V T0

(
x(φ)(t̂) +

∫ 0

−τ
∫ t̂
t̂+θ

dη(θ)x(φ)(ξ) dξ
)

V T0

(
I +

∫ 0

−τ
∫ 0

θ dη(θ) dξ
)
E0

,

where V0 is the left null vector of (2.13) and

(2.15) t̂ ≥ pτ − lim sup
R→∞

log max|s|=R det
(
sI −

∫ 0

−τ dη(θ) e
sθ
)

R
.

Proof. The first assertion is a trivial corollary of the spectrum determined growth
property of the solutions of (2.2); see, e.g., [10, 6]. So we restrict ourselves to the
assertions on the form of the consensus functional.

Let T (t), t ≥ 0, be the time-integration operator associated with the solutions of
(2.2), i.e.,

T (t)φ = xt(φ),

1For the system (2.2) the definition is similar to Definition 2.3, with the difference that the initial
conditions should be taken from the set C([−τ, 0],Cr×1).
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where xt(φ) ∈ C([−τ, 0],Cr×1) is defined by xt(φ)(θ) = x(φ)(t + θ), θ ∈ [−τ, 0]. Note
that T (t) is a strongly continuous semigroup. The roots of (2.12), which are the
eigenvalues of its infinitesimal generator A, are infinite in number, but countable.
Denote these eigenvalues by λi, i ≥ 0, with λ0 = 0, and let Pλi be the spectral
projection onto the corresponding generalized eigenspaceMλi . By Theorem 8.4 of [6],
one can decompose a solution x(φ)(t) on an interval [t1, t2], where t̂ < t1 ≤ t2 < ∞,
in the following way:

(2.16) xt(φ) = T (t)φ =
∞∑
i=0

T (t)Pλi φ.

BecauseM0 = {θ ∈ [−τ, 0] �→ cE0 : c ∈ C} we get

(2.17) xt(φ) = c0E0 +
∞∑
i=1

T (t)Pλiφ,

where c0 ∈ C. Since 	(λi) < 0 if i > 1, and consequently limt→∞ T (t)Pλiφ = 0, we
have

(2.18) χ(φ) = c0.

In section 7 of [11] it is shown how the adjoint of the infinitesimal generator A of
T (t) can be constructed on the space C([0, τ ],C1×r), starting with the bilinear form

(2.19) 〈ψ, φ〉 = ψ(0)φ(0) +
∫ 0

−τ

∫ 0

θ

ψ(ξ − θ) dη(θ)φ(ξ) dξ,

where ψ ∈ C([0, τ ],C1×r) and φ ∈ C([−τ, 0],Cr×1). By Lemma 7.3.6 of this reference,
a left eigenfunction of A is complementary to all right (generalized) eigenfunctions
under the bilinear form (2.19), provided that they correspond to different eigenvalues.
Furthermore, the left eigenfunction corresponding to the zero eigenvalue is given by
the function θ ∈ [0, τ ] �→ V T0 . From these properties, the decomposition (2.17), and
the fact thatMλi is invariant under T (t) we get

(2.20) 〈V T0 , xt(φ)〉 = c0〈V T0 , E0〉+
∞∑
i=1

〈V T0 , T (t)Pλi φ〉 = c0〈V T0 , E0〉.

Expressions (2.18)–(2.20) imply (2.14).
Remark 2.5. Intuitively it is expected that the value of the consensus functional

be some kind of average of the initial function over the interval [−τ, 0] and over the
agents. Expression (2.14) corresponds to an average of the state at time t̂, with t̂ not
necessarily equal to zero. To illustrate the role of condition (2.15) we consider the
system

(2.21)

{
ẋ1(t) = −x1(t) + x1(t)+x2(t−τ)

2 ,

ẋ2(t) = −x2(t) + x1(t)+x2(t)
2 .

From the characteristic equation

(2.22) s2 + s+
1
4
e−sτ = 0
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it can be seen that it solves a consensus problem for any τ > 0. Because the highest
power of e−sτ in (2.22) is equal to one, condition (2.15) becomes t̂ ≥ τ , and the
consensus functional satisfies (with t̂ = τ)

V (φ) =
x1(φ)(τ) + x2(φ)(τ) + 1

2

∫ τ
0 x2(φ)(ξ) dξ

2 + 1
2τ

.

The underlying reason why t̂ cannot be chosen equal to zero is that for t ≥ 0 the
solution of (2.21) with initial condition φ = [φT1 φT2 ]T is determined only by

(2.23) φ1(0), φ2(θ), θ ∈ [−τ, 0],

while the function segment φ1(θ), θ ∈ [−τ, 0), has no influence on the future behavior
and on the value of the consensus functional. By taking t̂ ≥ τ , i.e., by considering
the state at time t̂ ≥ τ which only depends on (2.23), the irrelevant part of the initial
condition is ignored.

This phenomenon is strongly related to the presence of so-called small solutions,
that is, solutions that vanish in a finite time (in the example the small solutions satisfy
φ2(θ) = 0, θ ∈ [−τ, 0], and φ1(0) = 0). Condition (2.15) ensures that the contributions
from such small solutions have disappeared in the solution under consideration. For
more details on small solutions we refer the reader to [6, Chapter V].

Remark 2.6. The consensus functional proposed in Theorem 2.1 of [3] is a special
case of the general functional (2.14), for compartmental time-delay systems.

Corollary 2.7. If the system

(2.24) ẋ(t) = A0x(t− τ), x(t) ∈ C
r×1,

with initial condition φ ∈ C
(
[−τ, 0],Cn×1

)
solves a nontrivial consensus problem, then

the consensus functional satisfies

(2.25) χ(φ) =
V T0 φ(0)
V T0 E0

.

Proof. System (2.24) is a special case of (2.2) and can be obtained by taking

η(θ) =
{
−A1, θ = −τ,

0, θ ∈ (−τ, 0].

It follows that

(2.26) V T0 A1 = 0.

Furthermore, integrating (2.2),

xt̂(φ) = φ(0) +
∫ t̂

0

A1x(θ − τ) dθ

makes clear that

(2.27) V T0 xt̂(φ) = V T0 φ(0).

Taking into account (2.26) and (2.27), expression (2.14) simplifies to (2.25).
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Proposition 2.8. The system (2.1) solves a nontrivial consensus problem if and
only if all roots of (2.3) are in the open left half plane, excepting a root at zero with
multiplicity one, and AE0 = 0, with E0 = [1 . . . 1]T . The corresponding consensus
functional V : F((−∞, 0],Cp×1)→ C satisfies

(2.28) χ(φ) =
V T0 φ(0)
V T0 E0

,

where V0 is the left eigenvector of A corresponding to the zero eigenvalue.
Proof. We split the proof of the first assertion into two parts.
(⇒) We give a proof by contradiction, which allows to exclude all other possibil-

ities. If (2.3) has a root in C
+ or in jR \ {0}, then the comparison system (2.7) has a

corresponding exponential solution, and by virtue of Lemma 2.1, so does (2.1). This
contradicts the fact that the latter solves a consensus problem. The multiplicity of
zero as a root of (2.3) is equal to its multiplicity as an eigenvalue of A. If AE = 0
and E �= E0, then x(t) = E is a solution of (2.1), which also leads to a contradiction.
Next, we consider the case where zero is a multiple eigenvalue of A, yet with only one
eigenvector E0. Then there exists a generalized eigenvector H0 such that AH0 = E0.
Consequently, x(t) = H0 + tE0 is a solution of (2.1) (note that its restriction to
t ≤ 0 belongs to F((−∞, 0],Cp×1)) and we arrive again at a contradiction. Finally,
if all roots of (2.3) are in C

−, then the zero solution of (1.6) is asymptotically stable
(Proposition 2.2), hence it does not solve a nontrivial consensus problem.

(⇐) Following Lemma 2.1 a solution x(φ)(t) of (2.1), restricted to t ≥ τ , also
appears as a component of a corresponding solution of the comparison system (2.7),
which we call z(φ̄) in what follows. The left and right eigenvectors of Ā + B̄ corre-
sponding to the zero eigenvalue are given by

V̄0 = [V T0 0 · · · 0]T and Ē0 = [ET0 −ET0 0 · · · 0]T .

Note that V̄ T0 Ā = V T0 B̄ = 0. Given the condition on the roots of (2.3), one proves,
using the same arguments as in the proof of Lemma 2.4 (based on spectral decompo-
sition), that

(2.29) lim
t→∞ z(φ̄)(t) =

V̄ T0

(
zt̂(φ̄)(0) + B̄

∫ t̂
t̂−τ z(φ)(θ) dθ

)
V̄ T0 (I + τB̄)Ē0

Ē0 =
V T0 φ(0)
V T0 E0

Ē0,

where

t̂ ≥ p(n+ 1)τ − lim sup
R→∞

logF (R)
R

, F (R) = max
|s|=R

det
(
sI − Ā− B̄e−sτ

)
.

It follows that

(2.30) lim
t→∞ x(φ)(t) =

V T0 φ(0)
V T0 E0

E0,

implying that (2.7) solves a consensus problem.
The assertion on the consensus function follows from (2.30).
Remark 2.9. Expressions (2.25) and (2.28) also follow from a simple geometric

argument. As in both cases V T0 ẋ(t) = 0 a solution x(φ)(t) is constrained to the plane
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V T0 x = V T0 φ(0) for all t ≥ 0. Furthermore, a constant stationary solution must be a
multiple of E0. Thus x∗(φ) = limt→∞ x(φ)(t) satisfies the equations{

V T0 x
∗(φ) = V T0 φ(0),

x∗(φ) = χ(φ)E0,

which can be interpreted as the intersection of the plane through φ(0) and perpen-
dicular to V0 with a line with slope E0. A similar argument was used in section X
of [19].

3. Conditions for the realization of a consensus. We perform a stability
analysis of the system (1.6)–(1.7) in the (T, τ) parameter space. In particular, we give
necessary and sufficient conditions such that it solves a consensus problem.

The system (1.6)–(1.7) can be written in the form (2.1), yet has some special
properties due to the induced structure of A, which we outline first. Next, we make
an analysis of an auxiliary scalar equation and, finally, we present the main results.

3.1. Properties. The system (1.6)–(1.7) is of the form (2.1), where A = [ak,l]
is defined as

(3.1) ak,l =

{
αk,l, k �= l,

−
∑p
i=1, i
=k αk,i, k = l.

Note that in the context of multiagent systems −A is typically called the graph
Laplacian of (1.1). By construction A has the following property.

Property 3.1. All eigenvalues of A, defined by (3.1), are in C
−, excepting a

zero eigenvalue with multiplicity one.
Proof. A is a Metzler matrix with zero row sums. Furthermore, the graph (1.1) is

strongly connected. Under these conditions the statement of the proposition follows
from Theorems 1 and 2 of [19].

Note that zero also appears as a root of (2.3) and (3.1), whatever the values of T ,
τ , and n. If all other roots are in C

−, we have from Proposition 2.8 that the system
(1.6)–(1.7) solves a (nontrivial) consensus problem with delay. In the car-following
application the consensus variables are the speed of the vehicles. This means that,
whatever the initial values, the speed of the vehicles will eventually converge to a
common value (which depends on the initial values). In what follows we shall use the
following terminology to characterize parameter values in the (T, τ) space for which
a consensus is reached.

Definition 3.2. The consensus region of (1.6)–(1.7) in the (T, τ) parameter
space is the set of parameters (T, τ) for which the system (1.6)–(1.7) solves a consensus
problem.

3.2. Analysis of an auxiliary function. Motivated by Property 3.1 and the
factorization of the characteristic equation (2.3) as (2.4) we are led to study the zeros
of the function

(3.2) ξ(s;T, τ) := s(1 + sT )nesτ − μ, μ ∈ C
−,

as a function of the parameters T and τ . Note that the zeros of (3.2) are in C
− if and

only if the roots of

s− μe−sτ

(1 + sT )n
= 0
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are in C
−. We need the following lemmas.

Lemma 3.3. In the parameter domain a change of the number of zeros ξ in the
closed right half plane is invariably associated with zeros crossing the imaginary axis.

Proof. The proof follows from the continuous dependence of the individual zeros
with respect to the parameters and the fact that the zeros of ξ in the closed right half
plane satisfy

|s| ≤ |μ| |e
−sτ |

|1 + sT |n ≤ |μ|,

which excludes roots coming from the point at infinity.
Lemma 3.4. If the function (3.2) has a zero on the imaginary axis, then the mul-

tiplicity of this zero is equal to one. Furthermore, an increase of τ leads to a crossing
towards C

+. If τ = 0, then also an increase of T leads to a crossing towards C
+.

Proof. The first assertion is due to the fact that

∂ξ

∂s
(jω;T, τ) = (1 + jωT )n−1ejωτ (1 + jωT + jωn+ jωτ(1 + jωT ))

is nonzero for all ω ∈ R.
Next, let jω̄, ω̄ ∈ R, be an isolated zero of (3.2) for (T, τ) = (T̄ , τ̄). It is clear that

ω̄ �= 0. Since the zeros of (3.2) behave continuously with respect to the parameters T
and τ , there exists a function

r : R
+ × R

+ → R, (T, τ) �→ r(T, τ),

satisfying r(T̄ , τ̄ ) = jω̄ and

(3.3) ξ(r(T, τ);T, τ) = 0.

Differentiating (3.3) at (T̄ , τ̄) yields

∂r

∂τ
(T̄ , τ̄) = −

∂ξ
∂τ (jω̄; T̄ , τ̄ )
∂ξ
∂s (jω̄; T̄ , τ̄)

,
∂r

∂T
(T̄ , τ̄) = −

∂ξ
∂T (jω̄; T̄ , τ̄)
∂ξ
∂s (jω̄; T̄ , τ̄)

,

from which one obtains

	
((

∂r
∂τ (T̄ , τ̄ )

)−1
)

= 1
ω̄2 + nT̄

1+ω̄2T̄ 2 , 	
((

∂r
∂T (T̄ , τ̄)

)−1
)

= 1
ω̄2 − T̄ τ̄

n .

The first expression is strictly positive; the second is if τ̄ = 0. This implies the second
assertion.

We adopt a two-stage approach, similar to the one proposed by [17]. First we
characterize the zeros distribution of (3.2) as a function of T , under the condition
τ = 0.

Proposition 3.5. If μ is real and n = 1, then the zeros of ξ(s;T, 0) are in C
−

for all T ≥ 0. Otherwise, the zeros of ξ(s;T, 0) are in C
− if and only if T ∈ [0, Tμ),

where

(3.4) Tμ =
tan

( |∠(μ)| − π
2

n

)

|μ|
[
cos
( |∠(μ)| − π

2

n

)]n .
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Proof. Assume that ξ(s;T, 0) has a zero on the imaginary axis for some value of
T . Then there exists a corresponding frequency ω > 0 such that either

ξ(jω/T ;T, 0) = 0 or ξ(−jω/T ;T, 0) = 0,

which is equivalent to

(3.5) T =
±jω(1± jω)n

μ
.

If n = 1 and μ is real, then the right-hand side of (3.5) cannot be real, whatever the
value of ω. Hence, ξ(s;T, 0) cannot have zeros on the imaginary axis. Combining this
fact with the continuity of the zeros with respect to T and the assumption μ ∈ C

−,
i.e., all zeros are in C

− for T = 0, yields the first statement of the proposition.
If n > 1 or 
(μ) �= 0, then there always exist pairs (T, ω), T > 0, which satisfy

(3.5), that is, ξ(s;T, 0) has zero +jω/T or −jω/T . Because, by Lemma 3.4, the
corresponding crossing direction of the imaginary axis is towards C

+ as T is increased,
and because μ ∈ C

−, all zeros of ξ(s;T, 0) are in C
− if and only if T ∈ [0, Tμ), where

Tμ = min {T > 0 : (T, ω) satisfies (3.5) for some ω > 0} .

Since the functions ω > 0 → |±jω(1 ± jω)n|/|μ| are strictly increasing, Tμ is deter-
mined by the first intersection of one of the two curves

(3.6) ω > 0→ ±jω(1± jω)n

μ

with the positive real axis, as ω is increased from zero. In what follows we distinguish
between two cases.

Case 1. 
(μ) ≥ 0. The first intersection of (3.6) with the positive real axis is due
to the curve corresponding to the plus sign. It is characterized by ω = ω̄, satisfying

∠(jω̄) + ∠((1 + jω̄)n)− ∠(μ) = 0.

It follows that

(3.7) ω̄ = tan (∠(1 + jω̄)) = tan
(
∠(μ)− π/2

n

)

and

(3.8) (1 + jω̄)n = (1 + ω̄2)n/2ej(∠μ−π/2) =
ej(∠(μ)−π/2)[

cos
(

∠(μ)−π/2
n

)]n .
Expression (3.4) is obtained when substituting (3.7) and (3.8) in

Tμ =
jω̄(1 + jω̄)n

μ
.

Case 2. 
(μ) < 0. The first intersection of (3.6) with the positive real axis is due
to the curve corresponding to the minus sign and characterized by ω = ω̂, where

∠(−jω̂) + ∠((1 − jω̂)n) + |∠(μ)| = 0.
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One can proceed as in the former case.
Second, we fix T and characterize the zeros distribution of (3.2) as a function of

the delay parameter τ . We make use of the functions gn described by Definition 1.1.
Proposition 3.6. The function ξ(s;T, τ), with T fixed, has a zero on the imag-

inary axis for some delay value τ if and only if τ ∈ Tμ(T ), where2

(3.9) Tμ(T ) =
{
τ ≥ 0 | τ =

±∠(μ)− ∠(jω(1 + jω)n) + 2πl
ω/T

,

l ∈ Z, ω = gn(T |μ|)
}
.

Furthermore, all zeros are in C
− if and only if the zeros of ξ(s;T, 0) are in C

− and
τ ∈ [0, τμ(T )), where

(3.10) τμ(T ) =
|∠(μ)| − ∠(jω(1 + jω)n)

ω/T
, ω = gn(T |μ|).

Proof. The function ξ(s;T, τ) has a zero jω/T or −jω/T , ω > 0, if and only if

jω(1 + jω)n = Tμe−jωτ/T or −jω(1− jω)n = Tμejωτ/T .

Equating modulus and phase of left- and right-hand sides leads to (3.9).
From the second assertion of Lemma 3.4 it follows that ξ(s;T, τ) has its zeros in

the open left half plane if and only if ξ(s;T, 0) does so and τ ∈ [0, τm(T )), where

τm(T ) = min
τ>0
Tμ(T ).

It remains to prove that τm(T ) = τμ(T ), with τμ(T ) defined by (3.10), for all T such
that ξ(s;T, 0) has its zeros in C

− (described by Proposition 3.5).
For sufficiently small T , and thus sufficiently small ω(T ) = gn(T |μ|), we have

(3.11) 0 < |∠(μ)| − ∠(jω(T )(1 + jω(T ))n) ≤ π/2

and

−|∠(μ)| − ∠(jω(T )(1 + jω(T ))n) + 2π
= |∠(μ)| − ∠(jω(T )(1 + jω(T ))n) + 2(π − |∠(μ)|)
≥ |∠(μ)| − ∠(jω(T )(1 + jω(T ))n),

(3.12)

which imply

(3.13) τm(T ) = τμ(T ).

As the function T → ω(T ) is monotonically increasing, (3.11)–(3.12), and conse-
quently (3.13), hold either for all T ≥ 0 or for values of T which belong to a finite
number of intervals. In the latter case, one of these intervals is given by [0, Tm), with
Tm satisfying

|∠(μ)| − ∠(jω(Tm)(1 + jω(Tm))n) = 0.

2The right-hand side of expression (3.9) is not defined for T = 0, which implies ω = gn(T |μ|) = 0.
In that case one should interpret gn(T |μ|)/T as limT→0+ gn(T |μ|)/T = |μ| and ∠(jω(1 + jω)n) as
limω→0+ ∠(jω(1 + jω)n) = π/2.
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It follows that 0 ∈ Tμ(Tm), which implies on its turn that Tμ exists and Tm ≥ Tμ. We
conclude that τμ(T ) = τm(T ) for T ∈ [0, Tμ).

Remark 3.7. In expression (3.9), the plus sign of ±∠μ refers to zeros on the
positive imaginary axis, the minus sign to zeros on the negative imaginary axis. If

(μ) �= 0, the corresponding values of τ are in general different.

Finally, combining Propositions 3.5 and 3.6 yields the following proposition.
Proposition 3.8. If μ is real and n = 1, then the zeros of (3.2) are in C

− if
and only if T ∈ [0,∞) and τ ∈ [0, τμ(T )). Otherwise, the zeros are in C

− if and only
if T ∈ [0, Tμ) and τ ∈ [0, τμ(T )).

3.3. Main results. Taking into account the factorization of (2.3) as (2.4), Prop-
erty 3.1, and Proposition 3.8, we obtain the following characterization of the consensus
region (cf. Definition 3.2) of the system (1.6)–(1.7) in the (T, τ) space.

Theorem 3.9. If n = 1 and all eigenvalues of A, defined by (3.1), are real, then
the consensus region of (1.6)–(1.7) in the (T, τ) plane is unbounded and characterized
by

T ∈ [0,∞), τ ∈ [0, τ∗(T )),

where

(3.14) τ∗(T ) = min
k=1,...,p, μk 
=0

|∠(μk)| − ∠(jωk(T )(1 + jωk(T ))n)
ωk(T )
T

and ωk(T ) = gn(T |μk|). Otherwise, the consensus region is bounded and characterized
by

T ∈ [0, T ∗), τ ∈ [0, τ∗(T )),

where

(3.15) T ∗ = min
k=1,...,p,�(μk)>0

tan
(∠(μk)− π

2

n

)

|μk|
[
cos
(∠(μk)− π

2

n

)]n

and τ∗(T ) is given by (3.14).
Based on this result the consensus region of (1.6)–(1.7) can be computed fully

automatically. For large p the overall computational complexity is determined by the
computation of the eigenvalues of the p× p matrix A.

Theorem 3.9 does not make assumptions on the multiplicity of the eigenvalues
of A and is generally applicable. If A has eigenvalues with multiplicity larger than
one, then the stability study of (1.6)–(1.7) is even facilitated as not all factors in
(2.4) are different. The following proposition clarifies the connection between multiple
eigenvalues ofA and multiple eigenvalues of the comparison system (2.7) of (1.6)–(1.7).

Proposition 3.10. Let μ̂ be a nonzero eigenvalue of A with multiplicity m1 and
a corresponding eigenspace of dimension m2. Then the roots of

(3.16) s(1 + sT )nesτ − μ̂ = 0

with multiplicity m3 are eigenvalues of the comparison system (2.7) with multiplicity
m1m3 and an eigenspace of dimension m2. Furthermore, if m3 = 1, then these roots
smoothly depend on the parameters T and τ .
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Proof. Let ŝ be a zero of (3.16) with multiplicity m3. The factorization (2.4)
implies that ŝ is an eigenvalue of (2.7) with multiplicity m1m3. Following [10], the
corresponding eigenfunctions have the form eŝθZ, θ ∈ [−τ, 0], where Z ∈ R

p(n+1)×1

satisfies

(3.17) (ŝI − Ā− B̄e−ŝτ )Z = 0.

With Z partitioned according to the structure of Ā and B̄ as Z = [XT Y T0 · · ·Y Tn−1]
T ,

writing out (3.17) yields(
ŝI −A e−ŝτ

(1 + ŝT )n

)
X = 0, Yi =

ŝi

(1 + ŝT )n
X, i = 0, . . . , n− 1.

Since (
ŝI −A e−ŝτ

(1 + ŝT )n

)
X =

e−ŝτ

(1 + ŝT )n
(μ̂I −A)X,

X must be an eigenvector of A corresponding μ̂. Hence, the dimension of the
eigenspace of ŝ is equal to m2.

If m3 = 1, then ŝ is an isolated root of (3.16), and the last statement can be
proven using the arguments spelled out in the proof of Lemma 3.4.

Remark 3.11. If m1 > m2, then the roots of (3.16) with multiplicity one (this
is, for instance, always the case for roots on the imaginary axis; see Proposition 3.5)
are multiple, nonsemisimple eigenvalues of (2.7), yet they smoothly depend on the
parameters T and τ . Small changes of T and τ do not lead to a splitting of these
multiple eigenvalues.

The next proposition addresses a scaling property of the consensus region.
Proposition 3.12. If the matrix A is scaled with a factor ε > 0, then the

consensus region of (1.6)–(1.7) in the (T, τ) plane is scaled with a factor ε−1 in both
directions.

Proof. The proof follows from the scaling property

det
(
sI − εA e−sτ

(1 + Ts)n

)
= εp det

(
s̄I −A e−s̄(ετ)

(1 + (εT )s̄)n

)
, s̄ = s/ε.

Remark 3.13. Proposition 3.12 implies an inherent trade-off between the rate
with which the undelayed system (τ = T = 0) reaches a consensus (determined by
the rightmost nonzero eigenvalue of A), and the robustness of this stability property
with respect to delays. Such an observation was already made in [19], where the case
of a symmetric matrix A and a pointwise delay was dealt with.

In the remainder of this section, we refine Theorem 3.9 to two special cases where
exploiting the additional structure leads to a simpler characterization of the consensus
region, and also allows an analytical expression for the solutions corresponding to an
onset of instability. The proof of the resulting propositions can be found in the
appendix.

The following result corresponds to the situation where all cars/drivers have an
identical behavior and the reaction of a driver is determined by the preceding car
only.

Proposition 3.14. Consider the system (1.6)–(1.7), where

(3.18) αk,l =

{
α > 0, �k − l� = 1,
0 otherwise.
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If n = 1 and p = 2, then the consensus region in the (T, τ) plane is unbounded and
characterized by

T ∈ [0,∞), τ ∈ [0, τ∗(T )),

where

(3.19) τ∗(T ) =
π
p − n arctan(ω(T ))

ω(T )
T

, ω(T ) = gn

(
2αT sin

(
π

p

))
.

Otherwise, the consensus region is bounded and characterized by

T ∈ [0, T ∗), τ ∈ [0, τ∗(T )),

where

(3.20) T ∗ =
tan

(
π
pn

)
2α sin

(
π
p

)(
cos
(
π
pn

))n
and τ∗(T ) is given by (3.19).

For τ = τ∗(T ) the stationary solutions are backwards traveling waves:

(3.21)

⎡
⎢⎢⎢⎣
vs1(t)
vs2(t)

...
vsp(t)

⎤
⎥⎥⎥⎦ = C1

⎡
⎢⎢⎢⎢⎢⎢⎣

cos
(
ω(T )
T t+ ϕ

)
cos
(
ω(T )
T t+ ϕ− 2π

p

)
...

cos
(
ω(T )
T t+ ϕ− 2π(p−1)

p

)

⎤
⎥⎥⎥⎥⎥⎥⎦

+ C2

⎡
⎢⎢⎢⎣

1
1
...
1

⎤
⎥⎥⎥⎦ ,

where ω(T ) is defined in (3.19) and the constants C1, C2, and φ depend on the initial
conditions.

Second, we consider the case where (1.6)–(1.7) is of the form (2.1), with the matrix
A symmetric. Although this is not a realistic assumption from the car-following
application point of view, it makes sense in the context of consensus algorithms for
multiagent systems. The symmetry of A there corresponds to an undirected network
topology.

Proposition 3.15. Consider the system (1.6)–(1.7) with A symmetric. If n = 1,
then the consensus region of (1.6)–(1.7) in the (T, τ) plane is unbounded and charac-
terized by

T ∈ [0,∞), τ ∈ [0, τ∗(T )),

where

(3.22) τ∗(T ) =
π
2 − n arctan(ω(T ))

ω(T )
T

, ω(T ) = gn(T |λmax(A)|).

Otherwise, the consensus region is bounded and characterized by

T ∈ [0, T ∗), τ ∈ [0, τ∗(T )),
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where

(3.23) T ∗ =
tan

(
π
2n

)
|λmax(A)|

[
cos
(
π
2n

)]n
and τ∗(T ) is given by (3.22).

If, in addition,

(3.24) αk,l =

{
α > 0, �k − l� = 1 or �l − k� = 1,
0 otherwise,

then

λmax(A) =

{
−4α (multiplicity 1), p even,

−2α
(
1 + cos

(
π
p

))
(multiplicity 2), p odd.

The stationary solutions for τ = τ∗(T ) take the form

(3.25)

⎡
⎢⎢⎢⎣

vs1(t)
...

vsp−1(t)
vsp(t)

⎤
⎥⎥⎥⎦ = C1

⎡
⎢⎢⎢⎣

(−1)p−1

...
(−1)

1

⎤
⎥⎥⎥⎦ cos

(
ω(T )
T

t+ ϕ1

)
+ C2

⎡
⎢⎢⎢⎣

1
...
1
1

⎤
⎥⎥⎥⎦

if p is even and

(3.26)

⎡
⎢⎢⎢⎣

vs1(t)
...

vsp−1(t)
vsp(t)

⎤
⎥⎥⎥⎦ = C3

⎡
⎢⎢⎢⎢⎢⎣

(−1)p−1 cos
(
π(p−1)

p

)
...

(−1) cos
(
π.1
p

)
1

⎤
⎥⎥⎥⎥⎥⎦ cos

(
ω(T )
T

t+ ϕ2

)

+ C4

⎡
⎢⎢⎢⎢⎢⎣

(−1)p−1 sin
(
π(p−1)

p

)
...

(−1) sin
(
π.1
p

)
0

⎤
⎥⎥⎥⎥⎥⎦ cos

(
ω(T )
T

t+ ϕ3

)
+ C5

⎡
⎢⎢⎢⎣

1
...
1
1

⎤
⎥⎥⎥⎦

if p is odd. The constants C1, . . . , C5 and ϕ1, . . . , ϕ3 depend on the initial conditions.
Remark 3.16. Under the assumption of the above proposition the consensus

functional satisfies

V (φ) =
1
p

[1 · · · 1]φ(0).

This follows from (2.8), taken into account that V0 = E0 if A is symmetric. Hence,
under the conditions of the above proposition an average consensus problem is solved,
in the sense that all components of a solution x(φ)(t) converge to the average of these
components at the starting time, i.e., φ(0). Observe that φ(θ), θ < 0, has no influence
on the limit reached.

Remark 3.17. Expression (3.23) reduces to the statement of Theorem 10 in [19]
if T → 0+.
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Fig. 1. Boundary of the consensus regions of (1.6)–(1.7) with parameters (4.1) (solid curve).
Boundaries of stability regions of (4.2) (dotted curves).

Let us briefly compare the stationary solutions (3.21) with (3.25)–(3.26). In the
former case, the directed “network topology” (a driver only reacts—with some delay—
on its predecessor, and not the other way around) naturally leads to a backward
traveling wave. In the latter case, one would from the symmetry of the coupling
intuitively expect a stationary wave, where subsequent agents oscillate in antiphase.
This is indeed the case for (3.25) which holds if p is even. However, if p is odd, such
a solution is incompatible with the ring configuration, and (3.26) holds. If p is large,
(3.26) can be seen as an approximation of a stationary wave with subsequent agents
oscillating in antiphase that is compatible with the ring configuration.

4. Examples. As a first example we compute the consensus regions in the (T, τ)
plane of system (1.6)–(1.7) with n = 1 and

(4.1) A =

⎡
⎢⎢⎣
−5 0 0 5

1 −1 0 0
0 1 −1 0
0 0 5 −5

⎤
⎥⎥⎦ .

The eigenvalues of this matrix are given by

μ1 = −6, μ2 = μ̄3 = −3 + j, μ4 = 0.

An application of Theorem 3.9 yields the consensus region

T ∈ [0, 3), τ ∈ [0, τ∗(T )),

where the function T → τ∗(T ) is displayed in Figure 1 as a solid line. The dotted
lines bound the “stability” regions of the auxiliary equations

(4.2) s(1 + sT )esτ − μ1,2 = 0,
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Fig. 2. Boundary of the consensus region of a system satisfying (3.18), with parameters α = 2
and n = 1.

which are described by Proposition 3.8. The stability region corresponding to μ1 is
unbounded as μ1 is real and n = 1.

To illustrate the asymptotic behavior when the number of cars is large, we take a
system satisfying condition (3.18) of Proposition 3.14. Figure 2 shows the consensus
region in the (T, τ) plane for α = 2, n = 1, and p = 2k, k = 1, . . . , 4. It follows from
(3.19) that as p → ∞, the boundary of the consensus region uniformly converges to
the function

τ∗l (T ) =
1
2α
− nT,

indicated in Figure 2 with a dashed line.
Finally, we consider the system

(4.3) v̇k(t) =
3∑
l=1

αk,�k−l�

∫ ∞

0

f(θ)(v�k−l�(t− θ)− vk(t− θ)) dθ, k = 1, . . . , 1000,

where f is given by (1.7), with n = 2. The parameters

αk,�k−1� ∈ [1, 5],

αk,�k−2� ∈
[
0, 3

4αk,�k−1�
]
,

αk,�k−3� ∈
[
0, 3

4αk,�k−2�
]
, k = 1, . . . , 1000,

(4.4)

are randomly generated according to a uniform distribution over the above intervals.
For 30 sets of parameters obtained in this way, the consensus region in the (T, τ)
plane was computed. The results are displayed in Figure 3.

5. Other models. For general time-delay systems of retarded type with multi-
ple constant delays and distributed delays with γ-distribution kernels, stability and/or
consensus regions of equilibria in a two-parameter spaces can be computed semi-
automatically by numerical continuation; see, for instance, [14] and the package DDE-
BIFTOOL [7]. Such an approach involves the discretization of an infinite-dimensional
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Fig. 3. Consensus region of (4.3)–(4.4) for 30 different data sets.

evolutionary operator, associated with the time-delay system, to compute the right-
most eigenvalues. Roughly speaking, the computation of the boundary of a stability
or consensus region involves solving r eigenvalue problems of dimension pq×pq, where
p is the dimension of the system, q denotes the number of discretization points, and
r is the number of points on the stability crossing curves where stability information
is checked. When using Theorem 3.9 only one eigenvalue problem of dimension p× p
needs to be solved to determine the complete stability region of (1.6)–(1.7) in the (T, τ)
space. The underlying reason is that the structure of the system allowed a decompo-
sition into small subproblems, which is apparent from the form of the characteristic
equation (2.4).

Let us now take a brief look at the so-called optimal velocity models, also fre-
quency encountered in the literature. The linearization around the equilibrium of the
models studied in [1], respectively [5, 21, 22] and the references therein, takes the
form

(5.1) τkẍk(t) + ẋk(t− τ) = α(x�k−1�(t− τ)− xk(t− τ)), k = 1, . . . , p,

respectively

(5.2) τkẍk(t) + ẋk(t) = α(x�k−1�(t− τ)− xk(t− τ)), k = 1, . . . , p.

In both cases, xk denotes the position of the kth vehicle. The left-hand side models
the dynamics of the vehicle and the right-hand side is the reference velocity, which
is a function of the distance to the preceding vehicle and models the behavior of the
driver. Note that (5.1) and (5.2) can be generalized to

(5.3) ẍk(t) =
∫ ∞

0

f(θ)

((
p−1∑
i=1

αk,�k−i�(x�k−i�(t− θ)− xk(t− θ))
)

− βkẋk(t− θ)
)

dθ − γkẋk(t), k = 1, . . . , p,
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with f given by (1.7). General purpose tools for the stability and bifurcation analysis
of time-delay systems like DDE-BIFTOOL can be applied directly to (5.3). However,
if all vehicles have similar characteristics (but not necessarily the drivers), that is,
βk ≡ β, γk ≡ γ, then the characteristic equation can again be factorized:

0 = det
(
s(s+ γ)I − (A− βsI) e−sτ

(1+sT )n

)

=
p∏
k=1

(
s(s+ γ)− (μk−βs)e−sτ

(1+sT )n

)
,

where A is given by (3.1) and μ1, . . . , μp denote its eigenvalues. Also here, it is
beneficial to exploit this decomposition into small subproblems, in particular if the
number of vehicles is large.

6. Conclusions. The stability analysis of a linear system including a γ-distrib-
uted delay with a gap for modeling traffic flow dynamics was considered. A com-
plete characterization of the regions in the delay-parameter space, where a consensus
is reached for all initial conditions, was obtained. In particular, by exploiting the
structure of the system, analytical expressions were derived for the bounds on the
parameters of the delay distribution. These expressions give rise to a fully automatic
computation of the consensus region, whose complexity is determined by the com-
putation of the eigenvalues of one matrix with dimensions equal to the number of
vehicles. Some illustrative examples were presented.

From a theoretical point of view some stability theory for linear systems with γ-
distributed delays was developed. As this type of distributed delays is characterized
by kernels with an infinite support, which prohibits a full spectral decomposition of the
solutions, the relation between the growth properties of the solutions and the roots of
an appropriate characteristic equations was established via a comparison system with
constant delays. Necessary and sufficient conditions for the realization of a consensus
problem and an explicit construction of the consensus functional were provided, for
both systems with constant and distributed delays.

Appendix A. Proof of Proposition 3.14. The system matrix A, defined
by (3.1), becomes circulant under condition (3.18). It is readily verified that its
eigenvalues are given by

(A.1) μk = −α+ αej
2π
p k, k = 1, . . . , p,

with corresponding eigenvectors

(A.2) [(1 + μk/α)p−1 · · · (1 + μk/α)2 (1 + μk/α) 1]T .

The eigenvalues of A are real if and only if p = 2.
Let q = p/2 if p is even and q = (p− 1)/2 otherwise. From (A.1) it follows that

|μk| = 2α sin
(
π
p k
)
,

∠(μk) = π
2 + π

p k, k = 1, . . . , q.
(A.3)

Substituting these values in (3.14) yields

(A.4) τ∗(T ) = min
k=1,...,q

(
π
p k − n arctan(ωk(T ))

)
T

ωk(T )
,
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where

|jωk(T )(1 + jωk(T ))n| = 2αT sin
(
π

p
k

)
, k = 1, . . . , q.

We have

k

ωk(T )
=
k |(1 + jωk(T ))n|

2αT sin
(
π
p k
) ≥ |(1 + jω1(T ))n|

2αT sin
(
π
p

) =
1

ω1(T )
, k = 1, . . . , q,

where we used ωk(T ) ≥ ω1(T ) and sin(kx) ≤ k sin(x) for x ∈ [0, π/(2k)]. This
estimate and the fact that the function x→ arctan(x)/x is decreasing on [0,∞) lead
to

( π
p k−n arctan(ωk(T )))T

ωk(T ) =
(

πk
pωk(T ) −

n arctan(ωk(T ))
ωk(T )

)
T

>
(

π
pω1(T ) −

n arctan(ω1(T ))
ω1(T )

)
T

= (π
p −n arctan(ω1(T )))T

ω1(T ) , k = 1, . . . , q.

(A.5)

From (A.4) and (A.5), one obtains (3.19).
Using (A.3) expression (3.15) becomes

T ∗ = min
k=1,...,q

tan
(
π
pnk
)

2α sin
(
π
p k
)(

cos
(
π
pnk
))n .

Taking into account that the function x �→ tan(x/n)
sin(x) cosn(x/n) is increasing on [0, π/2], one

obtains (3.20).
Finally we consider the stationary solutions for τ = τ∗(T ). From the proof of

Proposition 3.6, (A.1), and (A.3)–(A.5) it follows that the equation

s(1 + sT )nesτ
∗(T ) ∓ μ1 = 0

has solutions s± = ± jωT , where ω = gn
(
2αT sin

(
π
p

))
. From Lemma 3.4, (A.1), and

Proposition 3.10 these solutions are eigenvalues of (2.7) with multiplicity one. As
spelled out in the proof of Proposition 3.10 the corresponding eigenfunctions have the
form Z± e

±jωT
T , where Z± can be partitioned as Z = [X± T Y ± T

0 . . . Y ± T
n−1 ]T , with

(A.6) e
±jωt

T X± = e
±jωt

T

[
e±j

2π(p−1)
p · · · e±j

2π
p 1

]T
.

In the above we used (A.2). Note from Lemma 2.1 that (A.6) is a solution of (2.1).
The solution (3.21) is a linear combination of (A.6), the solutions corresponding to
the eigenvalues ±jω/T , and [1 · · · 1]T (the eigenfunction corresponding to the zero
eigenvalue).

Appendix B. Proof of Proposition 3.15. The expressions (3.22) and (3.23)
follow directly from Theorem 3.9, when taking into account that the eigenvalues of A
are negative real.

Under condition (3.24) the eigenvalues of A are given by

μk = −2α+ 2α cos
(

2π
p

(k − 1)
)
, k = 1, . . . , q,
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where q = (p + 2)/2 if p is even and q = (p + 1)/2 if p is odd. All eigenvalues have
multiplicity two, excepting μ1 and, if p is even, μ p+2

2
. The corresponding eigenvectors

are ⎡
⎢⎢⎢⎢⎢⎣

cos
(

2π(k−1).(p−1)
p

)
...

cos
(

2π(k−1).1
p

)
1

⎤
⎥⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎢⎣

sin
(

2π(k−1).(p−1)
p

)
...

sin
(

2π(k−1).1
p

)
0

⎤
⎥⎥⎥⎥⎥⎦ .

One can proceed as in the proof of Proposition 3.14.
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Abstract. Average consensus consists in the problem of determining the average of some quan-
tities by means of a distributed algorithm. It is a simple instance of problems arising when designing
estimation algorithms operating on data produced by sensor networks. Simple solutions based on
linear estimation algorithms have already been proposed in the literature and their performance
has been analyzed in detail. If the communication links which allow the data exchange between
the sensors have some loss, then the estimation performance will degrade. In this contribution the
performance degradation due to this data loss is evaluated.
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convergence
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1. Introduction. Average consensus problems have been widely studied in re-
cent years [20, 12, 18, 2, 15, 9, 16], both in the context of coordination of mobile
autonomous vehicles and in the context of distributed estimation. In fact, average
consensus can be considered a simple paradigm for designing estimation algorithms
implemented on sensor networks and working in a distributed way. More precisely,
we assume in this setup that all sensors independently measure the same quantity
with some error due to noise. A simple way to improve the estimate is to average all
the measures. To do this, the sensors need to exchange their information. Energy
limitations force transmission to take place directly along nearby sensors and also
impose bounds on the amount of data an agent can process. A global description of
the allowed exchange of information can be given by a directed graph in which the
sensors are the nodes and in which an edge from agent i to agent j represents the
possibility for i to send information to j. Algorithms which allow us to obtain this
average are called average consensus algorithms. The performance of an average con-
sensus algorithm may be measured by the speed of convergence toward the average.
In [15] a simple algorithm is proposed which is based on a linear dynamical system.
Moreover, in [15, 3] the relation between the performance of this algorithm and the
degree of connectivity of the graph is also evaluated. In [20, 11, 13, 18] variations
of this algorithm which handle time-varying communication graphs are considered.
Since in these cases the analysis proposed is essentially a worst case analysis, the
performance evaluation can be rather conservative. Different results can be obtained
if the graphs vary in time randomly [2, 3]. In fact, randomly time-varying graphs
typically yield improved performance.

In this paper we consider a more realistic model of the data exchange. In fact,
in many practical applications, the data exchange between sensors takes place over
a wireless communication network leading to the possibility that some packets get
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lost during the transmission. In this contribution this phenomenon is modeled by
assuming that at every time instant the transmission of a number from one sensor to
another can occur with a certain probability, and so there is a certain probability that
the link will fail and the data will be lost. We can expect that this will produce a
performance degradation. The main objective of this contribution is to provide some
instruments that allow us to quantify this degradation as a function of the probability
of the link failure. The problem is similar to the one considered in [9] where a more
limited class of random graphs were considered and where only the convergence of
the algorithm was considered. We have recently realized that other researchers [17]
have independently studied similar problems; their results, however, are different from
ours.

In section 2, after recalling classical average consensus algorithms, we propose two
different adaptations of such algorithms which can cope with lossy links: the biased
and the balanced compensation methods. The essential difference between the two
methods is that in the biased version, local averaging weights at each node are kept
fixed while, in the balanced case, weights are scaled depending on the available data
at every instant. Both algorithms will be shown to converge (almost surely and in
mean square sense) to a consensus value which in general may not coincide with the
average of the initial states. For both cases, performance degradation will be analyzed
through two figures showing the rate of convergence and the asymptotic displacement
from the average consensus. Analysis will always be carried out in a mean square
sense. Analysis of the degradation of the convergence rate is undertaken in section
3, where the problem is reduced to finding the largest eigenvalue of a suitable linear
operator L acting on a space of N2 dimensions (where N is the number of agents).
This reduction, besides giving an important theoretical characterization, is amenable
to efficient numerical analysis simulations. Sections 4 and 5 are devoted to the case
when the network possesses symmetries, in particular when it can be modeled by
an Abelian Cayley graph. In this case, the operator L can actually be substituted
with an N -dimensional operator. This allows us to obtain deeper analytical results
and, in particular, to obtain explicit solutions in special important cases (e.g., com-
plete graph, cycle graph, and hypercube graph). A comparison of the two methods
shows that, at least in some examples, the balanced method presents a better rate
of convergence. Finally, in section 6, we analyze the asymptotic displacement from
the average consensus due to packet drop and we prove that for the Abelian Cayley
case, this displacement is infinitesimal in the number of agents for both methods. We
will also show that with respect to the asymptotic displacement the biased method
outperforms the other.

2. Problem formulation. We assume that we have N agents. Each agent i
measures a quantity di ∈ R and at each time instant t it can transmit a real number
to some agents. The data exchange can be described by a directed graph G with
vertices {1, . . . , N}, in which there is an edge (j, i) if and only if the agent j can send
data to agent i. The objective is to find a distributed algorithm which allows the
agents to obtain a shared estimate of the average of the di’s. An efficient algorithm
solving this problem consists in the dynamic system

xi(t+ 1) =
N∑
j=1

Pijxj(t), xi(0) = di,
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where P is a suitable matrix such that Pij = 0 if (j, i) is not an edge in G. We assume
that G always includes all the self loop edges (i, i), meaning that each agent i has
access to its own data. More compactly we can write

(1) x+ = Px, x(0) = d,

where x, d ∈ R
N and where x+ is a shorthand notation for x(t + 1). According to

this algorithm, the agent i needs to receive the value of xj(t) from the agent j to
update the value of xi(t) only if Pij �= 0. In this case, we say that the agents reach
the consensus, if for any initial condition x(0) ∈ R

N , the closed loop system (1) yields

(2) lim
t→∞ x(t) = 1α,

where 1 := (1, . . . , 1)∗ and where α is a scalar depending on x(0) and P . Moreover, if
α coincides with the average N−1

∑N
i=1 di = N−11∗x(0), then we say that the agents

reach the average consensus.
To make the concepts more precise it is useful to recall some notation and results

on directed graphs (the reader can further refer to textbooks on graph theory such
as [8] or [5]). Fix a directed graph G with a set of vertices V and a set of arcs E ⊆ V ×V .
The adjacency matrix E is a {0, 1}-valued square matrix indexed by the elements in
V defined by letting Eij = 1 if and only (i, j) ∈ E . Define the out-degree of a vertex
j as outdeg(j) :=

∑
i Eij and the in-degree of a vertex i as indeg(i) :=

∑
j Eij . A

graph is called in-regular (resp., out-regular) of degree k if each vertex has in-degree
(resp., out-degree) equal to k. A path in G consists of a sequence of vertices i1i2 . . . ir
such that (i�, i�+1) ∈ E for every � = 1, . . . , r− 1; i1 (resp., ir) is said to be the initial
(resp., terminal) vertex of the path. A path is said to be closed if the initial and the
terminal vertices coincide. A vertex i is said to be connected to a vertex j if there
exists a path with initial vertex i and terminal vertex j. A directed graph is said to
be connected if, given any pair of vertices i and j, either i is connected to j or j is
connected to i. A directed graph is said to be strongly connected if, given any pair of
vertices i and j, i is connected to j.

With an N ×N matrix P we associate a directed graph GP with a set of vertices
{1, . . . , N} in which there is an arc from j to i whenever the element Pij �= 0. The
graph GP is said to be the communication graph associated with P . Conversely, given
any directed graph G with the set of vertices {1, . . . , N}, we say that a matrix P
is compatible with G if GP is a subgraph of G. After introducing this notation we
can make the consensus problem more precise. We say that the (average) consensus
problem is solvable on a graph G if there exists a matrix P compatible with G and
solving the (average) consensus problem.

As shown in [18, 15, 3], if G is strongly connected, it is always possible to choose
P so as to obtain the consensus. Indeed, if P is a stochastic matrix (namely, Pij ≥ 0
for every i, j and P1 = 1), GP is strongly connected, and Pii > 0 for some i, then
P solves the consensus problem. To obtain average consensus P needs to satisfy an
extra condition: It must be doubly stochastic (1∗P = 1∗). If G is strongly connected,
a P also satisfying this last condition can be found even if the construction becomes,
in general, more involved. There is an important case when the construction of such
a P is quite simple—when all agents have the same out- and in-degree ν (without
considering self loops). In this case, we can simply choose P = kI + (1− k)ν−1E for
any k ∈]0, 1[. Undirected graphs are clearly an example which fits into this case and
P in this case is actually symmetric.
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In the following we will give an elementary example which casts the average
consensus problem into the topic of distributed estimation.

Example 1 (estimation from distributed measures [14, 2]). Assume we have N
sensors which measure a quantity z ∈ R. However, due to noise, each sensor obtains
different measures yi = z + vi, where vi are independent random variables with zero
mean and the same variance. It is well known that the average

α = N−1
N∑
i=1

yi

provides the best possible linear estimate of z (in the sense of the minimum mean
square error) from yi. Running an average consensus problem with initial conditions
xi(0) = yi will lead to a distributed computation of α by every agent.

2.1. Packet drop consensus algorithms. We start from a fixed graph G and
we assume that on each edge (j, i) of G, communication from the node j to the
node i can occur with some probability p. In order to describe this model more
precisely, we introduce the family of independent binary random variables Lij(t),
t ∈ N, i, j = 1, . . . , N , i �= j, such that

P[Lij(t) = 1] = p, P[Lij(t) = 0] = 1− p.

We emphasize the fact that independence is assumed among all Lij(t) as i, j and t
vary. Let E be the adjacency matrix of G, and let H := E − I. Consider the random
matrix Ē(t) = I + H̄(t), where H̄ij(t) = HijLij(t). Clearly, Ē(t) is the adjacency
matrix of a random graph Ḡ(t) obtained from G by deleting the edge (i, j) when
Lij(t) = 0.

In this paper we will propose consensus strategies compatible with the random
varying communication graphs Ḡ(t); they will consist of a sequence of random stochas-
tic matrices P (t) such that GP (t) ⊆ Ḡ(t) for all t.

Our construction always starts from the choice of a stochastic matrix P adapted
to G yielding average consensus and we modify it in a way to compensate for the
lack of some data. There is, in principle, more than one way to obtain this. We
will propose two solutions. In the first, which will be called the biased compensation
method, each agent, in updating the estimate of the average, adds the weights of the
unavailable data to the weight it assigns to its own old estimate. In the second, which
will be called the balanced compensation method, the compensation for the lack of data
is done by modifying all the weights in a more balanced way. We want to emphasize
the fact that we are assuming all agents to be time synchronized. As a consequence,
at every time instant t, any agent i knows which data he has received; this means
that agent i knows the value of Lij(t) for every neighbor j.

The biased compensation method. We consider the following updating law:

xi(t+ 1) =

⎛
⎝Pii +

∑
j �=i

(1− Lij(t))Pij

⎞
⎠ xi(t) +

∑
j �=i

Lij(t)Pijxj(t).

According to this strategy, the agent i, in computing the new estimate, compensates
for the loss of data by accumulating the weights of the lost data with the weight
assigned to its previous estimate. Intuitively, according to this method, the agent i
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substitutes the unavailable xj(t) with xi(t) in the consensus algorithm. If we define
the random matrices D(t), Q(t) as

Dij(t) :=
{
Pii +

∑
j �=i(1− Lij(t))Pij = 1−

∑
h �=i Lih(t)Pih if i = j,

0 if i �= j,

and

Qij(t) :=
{

0 if i = j,
Lij(t)Pij if i �= j,

then we can describe this method through the stochastic system

(3) x(t + 1) = P (t)x(t),

where

P (t) := D(t) +Q(t).

The balanced compensation method. As opposed to the previous method, here we
prefer to distribute the weights equally between the available data. The updating
equation is thus

xi(t+ 1) =
1

Pii +
∑

j �=i Lij(t)Pij

⎛
⎝Piixi(t) +

∑
j �=i

Lij(t)Pijxj(t)

⎞
⎠ .

In this case it is convenient to define, for i = 1, . . . , N , the binary random variable
Lii which is equal to 1 with probability 1. In this way, by defining

νi(t) =
N∑
j=1

Lij(t)Pij

and introducing the diagonal matrix D(t) having

Dii(t) :=
1

νi(t)

and the matrix Q(t) such that

Qij(t) := Lij(t)Pij ,

we can more compactly write

x(t+ 1) = P (t)x(t)

with

P (t) := D(t)Q(t).

Our goal will be to evaluate the asymptotic behavior of system (3) in the two
cases. The following result shows that, for both of the above methods, communica-
tion failures will never prevent us from reaching consensus. The proof is a simple
consequence of Theorem 6 in [4] and is a particular instance of Corollary 3.2 in [6].
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Theorem 2.1. Assume that P achieves the consensus and that Pii > 0 for every
i. Then, both the biased compensation method and the balanced compensation method
yield consensus almost surely; namely, (2) almost surely holds for any initial condition
x(0) with an α which is general a random variable. Moreover, the convergence in (2)
also holds in the mean square sense; namely,

(4) lim
t→∞ E

[
||x(t) − 1α||2

]
= 0,

where E[·] is the expected value and || · || is the 2-norm in R
N .

Notice that the random variable α depends linearly on the initial condition x(0).
In other terms there exists an N -dimensional random vector v such that α = v∗x(0).

In spite of the previous theorem, we do expect a performance degradation due to
communication failures. Degradation will show up in two ways; first, as a diminished
convergence speed of the limit (4) and, second, as the deviation of the random variable
α from the average. The aim of this paper is to quantify such a degradation. The
next section will focus on the speed of convergence.

3. Mean square analysis. In this section we assume we have fixed a matrix P
adapted to the graph G yielding consensus and such that Pii > 0 for every node i. We
then undertake a mean squared analysis of our stochastic models and we characterize
their asymptotic rate of convergence. Precisely, our aim is to evaluate the exponential
rate of convergence to 0 of E[||x(t) − 1α||2]. We start with a preliminary result. Let

(5) xA(t) :=
1
N

N∑
i=1

xi(t) =
1
N

1∗x(t),

which coincides with the average of the current states.
Proposition 3.1. Assume that we have almost sure consensus, namely, that

x(t)→ α1 almost surely. Then,

(6) E[||x(t) − 1xA(t)||2] ≤ E[||x(t) − 1α||2] ≤ (1 +
√
N)2E[||x(t) − 1xA(t)||2].

Proof. From

x(t) − 1xA(t) = (I −N−111∗)x(t) = (I −N−111∗)(x(t) − 1α),

we obtain

||x(t) − 1xA(t)|| ≤ ||x(t)− 1α|| .

This proves the left inequality.
The following identity holds for every t and s:

x(t) − x(t+ s) = (I − P (t+ s− 1) · · ·P (t)) (I −N−111∗)x(t) .

Using the fact that for any stochastic matrix P , ||P || ≤
√
N , we obtain that

(7) ||x(t)− x(t+ s)|| ≤ (1 +
√
N)||x(t) − 1xA(t)|| .

Letting s→∞ and taking the average of this yields the right inequality.
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The proposition shows that E[||x(t) − 1α||2] and E[||x(t) − 1xA(t)||2] have the
same exponential rate of convergence to zero or, in other words, that, for any initial
condition x(0), we have that

lim sup
t→+∞

E[||x(t) − 1α||2]1/t = lim sup
t→+∞

E[||x(t) − 1xA(t)||2]1/t .

For this reason, in what follows we will study the right-hand expression, which turns
out to be simpler to analyze. In order to have a single figure not dependent on the
initial condition, we will concentrate on this worst case exponential rate of conver-
gence:

R := sup
x(0)

lim sup
t→+∞

E[||x(t) − 1xA(t)||2]1/t .

Remark 1. Some of the considerations carried out above hold true even without
a priori knowledge of almost sure consensus. This is true for (7) in the proof of
Proposition 3.1 which, in any case, yields

(8) (E||x(t) − x(t + s)||2)1/2 ≤ (1 +
√
N)(E||x(t) − 1xA(t)||2)1/2 .

Hence, from the simple knowledge that E||x(t) − 1xA(t)||2 converges to 0, we can
deduce that x(t) is a Cauchy sequence and so, for completeness arguments, x(t)
converges in mean square to some random vector x(∞). Notice, moreover, that for
any vector ζ ∈ R

N orthogonal to 1 we have that

|ζ∗x(t)| = |ζ∗(x(t) − 1xA(t))| ≤ ||ζ||||x(t) − 1xA(t)|| −→ 0.

Since ζ∗x(t) −→ ζ∗x(∞), for the limit uniqueness we have that ζ∗x(∞) = 0. This
implies that x(∞) = 1α for some random variable α. Hence, convergence of E||x(t)−
1xA(t)||2 yields consensus in the mean square sense.

In order to study the behavior of E[||x(t)−1xA(t)||2], the following characteriza-
tion turns out to be very useful. Indeed, notice that

E[||x(t) − 1xA(t)||2] = E[x∗(t)(I −N−111∗)x(t)] = x∗(0)Δ(t)x(0),

where

Δ(t) := E[P (0)∗P (1)∗ · · ·P (t− 1)∗(I −N−111∗)P (t− 1) · · ·P (1)P (0)],

if t ≥ 1 and where Δ(0) := I −N−111∗. Therefore we have that

R = max
ij

lim sup
t→+∞

Δ(t)1/tij .

We now study the evolution of the matrices Δ(t).
Notice first that

Δ(t+ 1)
= E[P (0)∗P (1)∗ · · ·P (t− 1)∗P (t)∗(I −N−111∗)P (t)P (t− 1) · · ·P (1)P (0)]
= E[E[P (0)∗P (1)∗ · · ·P (t− 1)∗P (t)∗(I −N−111∗)P (t)P (t− 1) · · ·P (1)P (0)|P (0)]]
= E[P (0)∗E[P (1)∗ · · ·P (t− 1)∗P (t)∗(I −N−111∗)P (t)P (t− 1) · · ·P (1)]P (0)]
= E[P (0)∗Δ(t)P (0)],
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where the last equality follows from the fact that, since the random matrices P (t)
are independent and identically distributed, the two sequences of random matrices
(P (0), . . . , P (t− 1)) and (P (1), . . . , P (t)) have the same probability distribution.

It is convenient to introduce the linear operator L : R
N×N → R

N×N defined by

L(Δ) = E[P (0)∗ΔP (0)].

In this way Δ(t) is governed by the recursive relation

Δ(t+ 1) = L(Δ(t)) .

If we consider now the reachable subspaceR of the pair (L,Δ(0)), namely, the smallest
L-invariant subspace of R

N×N containing Δ(0), we clearly have that

R = max{|λ| : λ eigenvalue of L|R} ,

where L|R denotes the restriction of the operator L to the invariant subspace R.
The previous proposition implies that, under mild hypotheses, L∗ is an irreducible

aperiodic stochastic matrix row and therefore the eigenvalue 1 has algebraic multi-
plicity 1.

The operator L has many interesting properties which have been studied in [6] in
a more general context. It has been shown in particular that L can be interpreted as
an aperiodic row-stochastic operator. As a consequence, 1 is an eigenvalue of algebraic
multiplicity one. It is easy to find a corresponding eigenvector. Notice indeed that
x(0)∗Lt(Δ)x(0) = E[x(t)∗Δx(t)]. Since x(t) → 1v∗x(0) in mean square sense, it
follows that

E[x(t)∗Δx(t)]→ x(0)∗1∗Δ1E[vv∗]x(0) .

As a consequence,

lim
t→+∞L

t(Δ) = (1∗Δ1)E[vv∗] .

In particular, L(E[vv∗]) = E[vv∗]. Clearly the reachability subspace R will be con-
tained in the subspace generated by the eigenvectors different from E[vv∗].

In what follows we will write the operator L in a more explicit form. This will
allow us to determine R numerically. To do this we now need to study the two cases
separately.

3.1. The biased compensation method. For any matrix M we will denote
diag (M) as the diagonal matrix with the same diagonal elements ofM and out (M) :=
M − diag (M) which is out-diagonal, namely, has zero diagonal elements.

Proposition 3.2. The sequence of matrices Δ(t) satisfies the recursive relation

Δ+ = [(1− p)I + pP ]∗Δ[(1 − p)I + pP ]
+p(1− p)diag {out (P )out (P )∗diag (Δ) + out (P )∗diag (Δ)out (P )}(9)
− p(1− p)

{
diag (Δ)out (P̃ ) + out (P̃ )∗diag (Δ)

}
,

where the matrix P̃ is defined by letting P̃ij := P 2
ij .

Proof. LetD := D(0) andQ := Q(0). Notice, preliminarily, that E[Q] = p out (P )
and that E[D] = (1− p)I + pdiag (P ). Notice, moreover, that

(10) E[DiiDjj ] =
{

(1− p+ pPii)(1− p+ pPjj) if i �= j,
(1− p+ pPii)2 + p(1− p)

∑
k �=i P

2
ik if i = j,
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and that

(11) E[DiiQij ] = (1− p+ pPii)pPij − p(1− p)P 2
ij .

Notice now that

Δ+ = E[DΔD] + E[DΔQ] + E[Q∗ΔD] + E[Q∗ΔQ].

Using (10) we obtain that

E[DΔD]ij

= E [DiiDjj ] Δij =

{
(1− p+ pPii)(1 − p+ pPjj)Δij if i �= j,
(1− p+ pPii)2Δii + p(1− p)

(∑
k �=i P

2
ik

)
Δii if i = j.

More compactly, we can write

E[DΔD] = [ (1 − p)I + pdiag (P )]Δ[(1 − p)I + pdiag (P )]
+ p(1− p)diag{out(P )out (P )∗}diag (Δ).

Notice now that

E[DΔQ]ii =
∑
k �=i

E [DiiΔikQki] = E [Dii]
∑
k �=i

ΔikE [Qki] = p(1− p+ pPii)
∑
k �=i

ΔikPki.

If instead i �= j, then, using (11), we obtain

E[DΔQ]ij =
∑
k �=j

E [DiiΔikQkj ] = E [Dii]
∑
k �=i
k �=j

ΔikE [Qkj ] + E [DiiΔiiQij ]

= p(1− p+ pPii)
∑
k �=i
k �=j

ΔikPkj + p(1− p+ pPii)PijΔii − p(1− p)P 2
ijΔii.

More compactly, we can write

E[DΔQ] = p[(1− p)I + pdiag (P )]Δout (P )− p(1− p)diag (Δ)out (P̃ ).

Finally, observe that

E[Q∗ΔQ]ii =
∑
h�=i
k �=i

E [QhiΔhkQki] = p2
∑

h�=i k �=i
h�=k

PhiΔhkPki + p
∑
h �=i

P 2
hiΔhh

= p2
∑
h�=i
k �=i

PhiΔhkPki + p(1− p)
∑
h �=i

P 2
hiΔhh.

If instead i �= j, then

E[Q∗ΔQ]ij =
∑
h�=i
k �=j

E [QhiΔhkQkj ] = p2
∑
h�=i
k �=j

PhiΔhkPkj .

More compactly, we can write

E[Q∗ΔQ] = p2out (P )∗Δout (P ) + p(1− p)diag {out (P )∗diag (Δ)out (P )}.
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Putting all the pieces together we obtain relation (9).
Following previous considerations, we are interested in evaluating the eigenvalues

of the linear map which furnishes Δ(t+ 1) from Δ(t). These matrices are symmetric
and so the linear dynamic system described in the previous proposition has a state
space of dimension N(N−1)

2 .
Remark 2. Numerical algorithms can clearly be employed to evaluate such eigen-

values. The following is a concrete way to achieve this. Given a matrix A ∈ R
N×N ,

we define vect(A) to be the N2 column vector having Ai,j in position (i − 1)N + j.
Moreover, let

(12) M :=

⎡
⎢⎢⎢⎣
e1e

∗
1 0 · · · 0

0 e2e
∗
2 · · · 0

...
...

. . .
...

0 0 · · · eNe
∗
N

⎤
⎥⎥⎥⎦ ,

where ei is the vector with all zeros except for a 1 in the ith position. This matrix
is such that vect(diag (A)) = Mvect(A). Finally, notice that vect(ABC) = (C∗ ⊗
A)vect(B), where ⊗ is the Kronecker product of matrices. Using these facts and the
properties of the Kronecker product we can argue that

vect(Δ+) = Zvect(Δ),

where

Z = {(1− p)I + pP )∗ ⊗ ((1− p)I + pP )∗}
+ p(1− p)M{I ⊗ (out (P )out (P )∗) + out (P )∗ ⊗ out (P )∗}M
− p(1− p){out (P̃ )∗ ⊗ I + I ⊗ out (P̃ )∗}M.

Then the rate of convergence R will coincide with the absolute value of the dominant
reachable eigenvalue of the pair (Z, vect(Δ(0))).

Example 2. We apply the previous method for evaluating the rate of convergence
for the following matrices:

P1 =

⎡
⎢⎢⎣

3/4 1/4 0 0
1/8 1/2 3/8 0
0 1/8 5/8 1/4

1/8 1/8 0 3/4

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

⎤
⎥⎥⎦ ,

P3 =

⎡
⎢⎢⎣

1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2

⎤
⎥⎥⎦ , P4 =

⎡
⎢⎢⎣

1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3

⎤
⎥⎥⎦ .

The corresponding rate of convergence is illustrated in Figure 1. We will see in what
follows that the same results can be found more easily for the matrices P2, P3, P4.

3.2. The balanced compensation method. In the analysis of this case the
following parameters will play a fundamental role:

βih := E

[
PihLih
νi

]
= E[Pih(0)],

ρihk := E

[
PihLihPikLik

ν2
i

]
= E[Pih(0)Pik(0)].
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Fig. 1. The graph of the rate of convergence for the matrices P1, P2, P3, P4 in Example 2.

Notice that

βih =
∑

v∈{0,1}N

vi=1

Pihvh∑
s vsPis

pwH(v)−1(1− p)N−wH(v)

and

ρihk =
∑

v∈{0,1}N

vi=1

PihvhPikvk
(
∑

s vsPis)2
pwH(v)−1(1 − p)N−wH(v),

where wH(v) is the Hamming weight. Therefore these parameters are polynomial
functions of p of degree at most N − 1. It is clear that ρihk = ρikh. The following
lemma presents some other properties.

Lemma 3.3. The following relations hold true:∑
h

βih = 1,

∑
hk

ρihk = 1,(13)

∑
k

ρihk = βih.

Proof. We prove only the first one. The remaining relations can be proved in a
similar way.

∑
h

βih =
∑
h

E

[
PihLih
νi

]

= E

[∑
h PihLih
νi

]
= 1.
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Now define the matrix

β̄ := {βij}.

Notice that β̄ = E[P (0)]. By (13) this is a stochastic matrix and its graph coincides
with the graph associated with the matrix P . Introduce, moreover, the linear operator
ρ̄ from the space of diagonalN×N matrices to the space of symmetric N×N matrices
defined as follows:

ρ̄(diag {a1, . . . , aN})ij :=
∑
k

ρkijak.

Using these definitions, the relations proposed in the previous lemma can be translated
to the following ones:

β̄1 = 1, 1∗ρ̄(eie∗i )1 = 1, ρ̄(eie∗i )1 = β̄∗ei

for all i = 1, . . . , N , where ei is the vector with all zeros except for a 1 in the ith
position. The second condition is implied by the third and so can be eliminated.
Moreover, the third condition is equivalent to the fact that for all diagonal matrices
A, we have that

ρ̄(A)1 = β̄∗A1.

The following result is less immediate to prove.
Lemma 3.4. If A is a nonnegative diagonal matrix, then ρ̄(A)−β̄∗Aβ̄ is a positive

semidefinite matrix.
Proof. Notice that

x∗ρ̄(A)x =
∑
i

∑
hk

aiρihkxhxk =
∑
i

∑
hk

aiE

[
PihLihPikLik

ν2
i

]
xhxk

=
∑
i

aiE

[∑
hk

PihLihPikLikxhxk
ν2
i

]

=
∑
i

aiE

⎡
⎣(∑

h

PihLihxh
ν2
i

)2
⎤
⎦

≥
∑
i

aiE

[∑
h

PihLihxh
ν2
i

]2

= x∗β̄∗Aβ̄x.

We are now in a position to present the following result.
Proposition 3.5. The sequence of matrices Δ(t) satisfies the recursive relation

(14) Δ+ = β̄∗ out (Δ)β̄ + ρ̄(diag (Δ)).
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Proof. Notice that

E[P (0)∗ΔP (0)]ij = E[Q∗DΔDQ]ij =
∑
h

∑
k

E

[
PhiLhi
νh

PkjLkj
νk

]
Δhk

=
∑
h �=k

E

[
PhiLhi
νh

] [
PkjLkj
νk

]
Δhk +

∑
k

E

[
PkiLkiPkjLkj

ν2
k

]
Δkk

=
∑
k �=h

βhiΔhkβkj +
∑
k

ρkijΔkk

= {β̄∗ out (Δ)β̄ + ρ̄(diag (Δ))}ij .

This easily yields (14).
Remark 3. Also in this case numerical algorithms can be employed to evaluate

the rate of convergence. Introduce, moreover, the N2 × N2 matrix T which is zero
except in the following entries:

T(j−1)N+i,(s−1)N+s = ρsij .

The matrix T is constructed in such a way that, for any diagonal matrix D, we have
that

vect(ρ̄(D)) = Tvect(D).

Using the same arguments implemented in the previous remark we can argue that

vect(Δ+) = Zvect(Δ),

where

Z = [β̄∗ ⊗ β̄∗](I −M) + TM,

and where the matrix M was defined in (12). Then the rate of convergence R will
coincide with the absolute value of the dominant reachable eigenvalue of the pair
(Z, vect(Δ(0))).

Example 3. We applied the previous method for evaluating the rate of convergence
for the same matrices P1, P2, P3, P4 considered in Example 2. The corresponding rate
of convergence is illustrated in Figure 2 and compared with the rates obtained by
the biased compensation method. The balanced compensation method outperforms
the biased compensation method for all the matrices except for P3 in which the two
methods coincide. We will see in what follows that the same results can be found
more easily for the matrices P2, P3, P4.

In what follows we will make further analytical developments assuming the graph
G possesses some more symmetry; more precisely, we will work with Cayley graphs.

4. Cayley matrices over Abelian groups. For graphs possessing symmetries,
the theoretical results obtained in the previous section can be refined quite a bit. In
this paper we will deal with a special class of symmetric graphs: Abelian Cayley
graphs [1].

Let G (with an addition +) be any finite Abelian group of order |G| = N , and let
S be a subset of G containing zero. The Cayley graph G(G,S) is the directed graph
with vertex set G and arc set

E = {(g, h) : h− g ∈ S} .
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Fig. 2. The graph of the rate of convergence for the matrices P1, P2, P3, P4. Biased compensa-
tion method rate of convergence is described by the continuous line; balanced compensation method
rate of convergence is described by the dashed line.

Notice that a Cayley graph is always in-regular and out-regular: Both the in-degree
and the out-degree of each vertex are equal to |S|. Notice also that strong connectivity
can be checked algebraically. Indeed, it can be seen that a Cayley graph G(G,S) is
strongly connected if and only if the set S generates the group G, which means that
any element in G can be expressed as a finite sum of (not necessarily distinct) elements
in S. If S is such that −S = S, then the graph obtained is symmetric.

Symmetries can also be introduced on matrices. Let G be any finite Abelian
group of order |G| = N . A matrix P ∈ R

G×G is said to be a Cayley matrix over the
group G if

Pi,j = Pi+h,j+h ∀ i, j, h ∈ G .

It is clear that for a Cayley matrix P there exists a π : G→ R such that Pi,j = π(i−j).
The function π is called the generator of the Cayley matrix P . Notice that, if π
and π′ are generators of the Cayley matrices P and P ′, respectively, then π + π′

is the generator of P + P ′ and π ∗ π′ is the generator of PP ′, where (π ∗ π′)(i) :=∑
j∈G π(j)π′(i − j) for all i ∈ G. This in particular shows that P and P ′ commute.

It is easy to see that for any Cayley matrix P we have that P1 = 1 if and only
if 1∗P = 1∗. This implies that a Cayley stochastic matrix is automatically doubly
stochastic.

4.1. Spectral properties and Fourier analysis of Cayley matrices over
Abelian groups. In this subsection we will show that the spectral properties of
Cayley matrices over Abelian groups are particularly simple to analyze. We briefly
review the theory of Fourier transform over finite Abelian groups (see [19] for a com-
prehensive treatment of the topic). Let G be a finite Abelian group of order N as
above, and let C

∗ be the multiplicative group of the nonzero complex numbers. A
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character on G is a group homomorphism χ : G → C
∗, namely, a function χ from G

to C
∗ such that χ(g + h) = χ(g)χ(h) for all g, h ∈ G. Since we have that

χ(g)N = χ(Ng) = χ(0) = 1 ∀g ∈ G,

it follows that χ takes values on the Nth roots of unity. The character χ0(g) = 1 for
every g ∈ G is called the trivial character.

The set of all characters of the group G forms an Abelian group with respect
to the pointwise multiplication. It is called the character group and denoted by Ĝ.
The trivial character χ0 is the zero of Ĝ. If we consider the vector space C

G of all
functions from G to C with the canonical Hermitian form

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g)∗ ,

then it can be shown that the set {N−1/2χ | χ ∈ Ĝ} is an orthonormal basis of C
G.

The Fourier transform of a function f : G→ C is defined as

f̂ : Ĝ→ C , f̂(χ) =
∑
g∈G

χ(−g)f(g) .

Now fix a Cayley matrix P on the Abelian group G generated by the function
πP : G → R. The spectral structure of P is very simple. Namely, it can be shown
that the characters χ ∈ Ĝ are eigenvectors of P and so P is diagonalizable. Moreover,
the spectrum of P is given by the Fourier transform of the generator πP of P :

σ(P ) = {π̂P (χ) | χ ∈ Ĝ} .

Notice that, if A,B are Cayley matrices with Fourier transforms π̂A(χ), π̂B(χ),
then

π̂A+B(χ) = π̂A(χ) + π̂B(χ), π̂AB(χ) = π̂A(χ)π̂B(χ).

Moreover, observe that, if A is a Cayley matrix, then diag (A) and out (A) are also
Cayley and we have

diag (A) = N−1trace (A) I = N−1
∑
χ̄

π̂A(χ̄) I .

This implies that, for every χ ∈ Ĝ,

π̂diag (A)(χ) = N−1
∑
χ̄∈Ĝ

π̂A(χ̄),

π̂out (A)(χ) = π̂A(χ)−N−1
∑
χ̄

π̂A(χ̄).

5. Mean square analysis for Cayley matrices. In this section we will show
that when P is a Cayley matrix, the analysis proposed above simplifies considerably.
Let G be a finite Abelian of order N , and let P be a Cayley matrix with respect
to G. It easily follows from Propositions 3.2 and 3.5 that Δ(t) are Cayley matrices.
This in particular implies that the matrices Δ(t) admit a common orthonormal basis
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of eigenvectors. In other words, there exists an N × N unitary matrix U such that
U∗Δ(t)U = Δ̃(t) is diagonal for every t. We can then write

(15) Δ̃(t+ 1) = E[U∗P (0)∗UΔ̃(t)U∗P (0)U ].

This shows that there exists a linear operator L̃ such that Δ̃(t + 1) = L̃(Δ̃(t)) for
every t. It is clear that

R = max{|λ| : λ eigenvalue of L̃|R̃},

where R̃ is the reachable subspace of the pair (L̃, Δ̃(0)), where

Δ̃(0) = U(I −N−111∗)U∗ =

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ .

Notice that (15) is an evolution equation on the eigenvalues of the matrices Δ(t)
which we know to be given by the Fourier transforms π̂Δ(t)(χ) of the generating
function πΔ(t)(g). We will use these representations to express, in a more explicit
form, the operator L̃. As before we will handle the two cases separately.

5.1. The biased compensation method. In the event that P is a Cayley
matrix, for the biased compensation method the evolution of the eigenvalues of Δ(t)
is described by the following proposition. First notice that, since P is a Cayley matrix,
P̃ and P ∗P are also Cayley matrices.

Proposition 5.1. For all χ ∈ Ĝ we have that

(16) π̂Δ(t+1)(χ) = A(χ)π̂Δ(t)(χ) +B(χ)N−1
∑
χ̄∈Ĝ

π̂Δ(t)(χ̄),

where

(17) A(χ) = |1− p+ pπ̂P (χ)|2

and

(18) B(χ) = 2p(1− p) {π̂P̃ (χ0)−� [π̂P̃ (χ)]} .

Proof. We start with formula (9). First notice that, since the matrix diag (Δ) is
Cayley and diagonal, it is a scalar multiple of the identity, namely, diag (Δ) = xI.
This implies that

Δ+ = [(1− p)I + pP ]∗Δ[(1− p)I + pP ]

+ p(1− p)
{

diag [out (P )out (P )∗ + out (P )∗out (P )]− out (P̃ )

−out (P̃ )∗
}

diag (Δ)

= [(1− p)I + pP ]∗Δ[(1− p)I + pP ] + p(1− p)
{
diag [PP ∗ + P ∗P ]− P̃ − P̃ ∗

}
xI.

Notice now that

diag [PP ∗ + P ∗P ] = 2π̂P̃ (χ0) I
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and that

x = N−1
∑
χ̄∈Ĝ

π̂Δ(χ̄).

These facts yield (16).
Remark 4. Notice that P̃ is an irreducible nonnegative Cayley matrix and so

π̂P̃ (χ0) is its spectral radius. This implies that B(χ) ≥ 0 and that B(χ) = 0 if and
only if χ = χ0.

The linear dynamic system described in (16) can finally be rewritten in a more
compact way as follows. Enumerate in some way the characters ofG, Ĝ = {χ0, χ1, . . . ,
χN−1}, and define the column vector in R

N as

(19) Π(t) :=

⎡
⎢⎣

π̂Δ(t)(χ0)
...

π̂Δ(t)(χN−1)

⎤
⎥⎦ .

Define, moreover, the column vector B in R
N such that for all i = 0, 1, . . . , N − 1, we

have that Bi := B(χi) and the diagonal matrix A such that for all i = 0, 1, . . . , N −1,
we let Aii := A(χi). Then we can write the linear dynamic system (16) as follows:

Π(t+ 1) =
(
A+N−1B1∗)Π(t).

Notice that both A and B depend on the probability p and so in some cases we will
write A(p) and B(p) to make this dependence evident. Notice that Aii(p) < 1 if
p > 0, while Aii(0) = 1 for all i. Moreover, we have that B0(p) = 0 for all i and
0 < Bi(p) < 1 if i �= 0 and 0 < p < 1, while Bi(0) = Bi(1) = 0.

We have the following result.
Proposition 5.2. We have the following properties:
(a) The matrix A+N−1B1∗ has nonnegative entries.
(b) It has the structure

(20) A+N−1B1∗ =
(

1 0 · · · 0
X21 X22

)
,

where X21 ∈ R
1×(N−1) and X22 ∈ R

(N−1)×(N−1) have nonnegative entries.
(c) R = max{|λ| : λ eigenvalue of X22} ≥ max{Aii : 1 = 1, . . . , N − 1}.
(d) The eigenvector of A + N−1B1∗ relative to the eigenvalue 1 has a nonzero

first component.
Proof. (a) follows from the previous remark.
(b) can be proven by inspection.
(c) Notice that Π(0) = (0, 1, . . . , 1)∗. Because of (a), this shows that the reacha-

bility subspace R̃ of the pair (X,Π(0)) has the structure R̃ = {0} × R̃2, where R̃2 is
the reachability subspace of (X22,1). Since X22 has nonnegative entries, its spectral
radius is achieved by a nonnegative eigenvalue λ with a corresponding nonnegative
eigenvector w̄ [7, p. 66]. Clearly, we can write 1 = aw̄+w′ for some a > 0 and another
nonnegative vector w′. Hence,

Xt
221 = aλtw̄ +Xt

22w
′ ≥ aλtw̄ .

From this it immediately follows that R ≥ λ. This clearly proves the equality in (c).
Finally, the fact that R ≥ max{Aii : 1 = 1, . . . , N − 1} follows from the fact that B
has nonnegative entries [10, Corollary 8.1.19].
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(d) Finally, consider any eigenvector w ∈ R
N of A+N−1B1∗ relative to the eigen-

value 1. If the first component w0 of w were zero, then the vector (w1, . . . , wN−1)∗

would be an eigenvector of X22 relative to the eigenvalue 1. This could not be pos-
sible, however, since we know that 1 is an eigenvalue of A +N−1B1∗ with algebraic
multiplicity equal to 1.

Proposition 5.2 reduces the computation of R to the computation of the sec-
ond dominant eigenvalue of the N × N matrix (20). An explicit expression for the
characteristic polynomial of (20) can be obtained through the following lemma.

Lemma 5.3.

det
(
A+N−1B1∗) =

N−1∏
j=0

Ajj +N−1
N−1∑
i=0

Bi

N−1∏
j=0
j �=i

Ajj

Proof. Notice that

det
(
A+N−1B1∗)

= det(A) det
(
I +N−1B1∗A−1

)
= det(A)

(
1 +N−11∗A−1B

)
.

From this lemma we can argue that

F (z, p) := det
(
zI −A(p)−N−1B(p)1∗)

=
N−1∏
j=0

(z −Ajj(p))−N−1
N−1∑
i=0

Bi(p)
N−1∏
j=0
j �=i

(z −Ajj(p)).

The polynomial F (z, p) has degree N in z and degree 2n in p. The stability analysis of
this polynomial can be in general quite complicated. We will investigate this problem
through some examples.

We start with a couple of examples in which the eigenvalues can be determined
exactly and also some natural optimization design can be carried out.

Example 4. Consider the matrix P = (1−k)I+ k
N 11∗. It is clear that the matrix

P is in this case a Cayley matrix over the group ZN and with S = ZN . After some
computation we can find that

(21) Aii(k, p) =
{

1 if i = 0,
(1− kp)2 if i �= 0

and

(22) Bi(k, p) =

{
0 if i = 0,
2p(1−p)k2

N if i �= 0,

and so the eigenvalues are

z̄0(k, p) = 1,

z̄1(k, p) = (1− kp)2 + 2p(1− p)k2N − 1
N2

,

z̄i(k, p) = (1− kp)2 i = 2, . . . , N − 1.
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Fig. 3. The graph of the rate of convergence in Example 4 for N = 4, 16, 64.

The rate of convergence to the consensus is determined by the eigenvalue z̄1(k, p). In
this case the optimal k yielding the fastest convergence can be computed analytically.
Indeed, it can be seen that

k =
N2

N2p+ 2(1− p)(N − 1)
.

For large N we have that k � 1/p. In Figure 3 we show the graph of the rate of
convergence as a function of the probability p for N = 4, 16, 64 when k = 1. It can
be shown that the graph relative to the case N = 4 coincides up to numerical errors
with the one obtained in Example 2 for the matrix P2.

Example 5. Consider the case in which the group is ZN and S = {0, 1}. Consider
a matrix P with generator πP (0) = 1 − k, πP (1) = k, and πP (g) = 0 for all g �= 0, 1.
In this case we have that

π̂P (χi) = 1− k + kej
2π
N i,

π̂P̃ (χi) = (1 − k)2 + k2ej
2π
N i.

From this we can argue that

(23) Aii(p) = 1− 2pk(1− pk)
(

1− cos
(

2π
N
i

))
,

(24) Bi(p) = 2p(1− p)k2

(
1− cos

(
2π
N
i

))
.

With fixed probability p one can find the optimal k yielding the fastest convergence.
We did this numerically for N = 5, 10, 20. The graph showing the optimal k as a
function of p is illustrated in Figure 4. In Figure 5 we show the graph of the rate of
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Fig. 4. The graph of the optimal k as a function of the probability p in Example 5 for N =
5, 10, 20.

convergence as a function of the probability p for N = 2, 4, 8 when k = 1/2. It can
be shown that the graph relative to the case N = 4 coincides up to numerical errors
with the one obtained in Examples 2 and 3 for the matrix P3.

The next example relates instead to the hypercube graph. We present only the
analytical computation of the eigenvalues.

Example 6. Consider the case in which the group is Z
n
2 and

S = {0, e1, . . . , en},
where ei is the vector with all zeros except for a 1 in the ith position. Let E be the
adjacency matrix of the graph defined in this way and consider the matrix P := 1

n+1E.
This means that given u, v ∈ Z

n
2 we have that

Pu,v =
{

1
n+1 if u+ v ∈ S,
0 otherwise.

Notice that, in this case, we have that P̃ = 1
n+1P . It can be shown that for all v ∈ Z

n
2

we have that

π̂P (v) = 1− 2
n+ 1

wH(v),

where wH(v) is the Hamming weight of v, namely, the number of 1’s. From this we
can argue that

Av =
(

1− 2p
n+ 1

wH(v)
)2

,

Bv =
4p(1− p)
(n+ 1)2

wH(v).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

122 FABIO FAGNANI AND SANDRO ZAMPIERI

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

rate

N = 2

N = 4

N = 8

Fig. 5. The graph of the rate of convergence in Example 5 for N = 2, 4, 8.

From this it follows that

F (z, p) =
n∏
h=0

(z −Ah)(
n
h )−1

⎧⎪⎨
⎪⎩

n∏
h=0

(z −Ah)−N−1
n∑
k=0

(n
k

)
Bk

n∏
h=0
h�=k

(z −Ah)

⎫⎪⎬
⎪⎭ ,

where, for h = 0, 1, . . . , n, we let

Ah =
(

1− 2p
n+ 1

h

)2

,

Bh =
4p(1− p)
(n+ 1)2

h.

This implies that N − n eigenvalues coincide with Ah(p), h = 0, 1, . . . , n, while the
remaining n are the roots of

n∏
h=0

(z −Ah)−N−1
n∑
k=0

(n
k

)
Bk

n∏
h=0
h�=k

(z −Ah).

Figure 7 shows the graph of the rate of convergence as a function of the probability
p for n = 2, 4. It can be shown that the graph relative to the case n = 2 coincides up
to numerical errors with the one obtained in Example 2 for the matrix P4.

Now we present an example where instead only numerical results can be obtained.

5.2. The balanced compensation method. First notice that, if P is a Cayley
matrix, we have the following result.

Lemma 5.4. If P is a Cayley matrix, then β̄, ρ̄(I) are also Cayley matrices.
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Proof. Notice that

βi+l,h+l =
∑

v∈{0,1}N

vi+l=1

Pi+l,h+lvh+l∑
s vsPi+l,s

pwH(v)−1(1 − p)N−wH(v)

=
∑

v∈{0,1}N

vi+l=1

Pi,hvh+l∑
s vsPi,s−l

pwH(v)−1(1− p)N−wH(v).

We now define for any v ∈ {0, 1}N a u ∈ {0, 1}N such that vs = us−l. Then

βi+l,h+l =
∑

u∈{0,1}N

ui=1

Pi,huh∑
s us−lPi,s−l

pwH(u)−1(1− p)N−wH (u)

=
∑

u∈{0,1}N

ui=1

Pi,huh∑
s usPi,s

pwH(u)−1(1− p)N−wH(u) = βi,h.

In a similar way we can prove that ρk,i,j = ρk+l,i+l,j+l. From this it follows that ρ̄(I)
is a Cayley matrix.

In this case we have the following proposition.
Proposition 5.5. For all χ ∈ Ĝ we have that

(25) π̂Δ(t+1)(χ) = A(χ)π̂Δ(t)(χ) +B(χ)N−1
∑
χ̄∈Ĝ

π̂Δ(t)(χ̄),

where

(26) A(χ) =
∣∣π̂β̄(χ)

∣∣2
and

(27) B(χ) = π̂ρ̄(I)(χ)−
∣∣π̂β̄(χ)

∣∣2 .
Proof. We start from the equation

Δ+ = β̄∗out (Δ)β̄ + ρ̄(diag (Δ)).

Notice now that diag (Δ) is a multiple of the identity, namely diag (Δ) = xI. This
implies that

Δ+ = β̄∗Δβ̄ + {ρ̄(I)− β̄∗β̄}x.

Considering the fact that

x := N−1
∑
χ̄

π̂Δ(χ̄),

we obtain the thesis.
As in the previous case, using the notation (19), we can rewrite (25) as

Π(t+ 1) = (A+N−1B1∗)Π(t),
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where B is the column vector in R
N such that for all i = 0, 1, . . . , N − 1, we have

that Bi := B(χi) and A is the diagonal matrix such that Aii(χ) := A(χi). As in the
previous case we will use the notation A(p) and B(p) whenever we want to underline
the dependence on p.

Notice that, as observed above, when p > 0, the matrix β̄ is an irreducible stochas-
tic matrix. This implies that Aii(p) < 1 if p > 0. On the other hand, since when
p = 0 we have β̄ = ρ̄(I) = I, then Aii(0) = 1 and Bi(0) = 0 for all i. Finally, when
p = 1 we have that β̄ = P and ρ̄(I) = P ∗P , and so Bi(1) = 0.

From Lemma 3.3 we can argue that π̂ρ̄(I)(χ0) = π̂β̄(χ0) = 1 and so B0(p) = 0 for
all p. Using Lemma 3.4 it can be shown that Proposition 5.2 still holds and as above
we can argue that the eigenvalues of A(p)+N−1B(p)1∗ coincide with the roots of the
polynomial

F (z, p) =
N−1∏
j=0

(z − Ajj(p))−N−1
N−1∑
i=0

Bi(p)
N−1∏
j=0
j �=i

(z −Ajj(p)).

In some cases some further simplifications can be introduced. Consider a Cayley
graph G. Since each node of G has exactly the same number n (excluding self loops) of
incoming edges and outgoing edges, we can introduce a Cayley matrix P̄ compatible
with G by letting

P̄ij =
{

1/n if (j, i) is an edge of the graph,
0 otherwise.

Moreover, let

(28) P := (1− k)I + kP̄ .

In this way we obtained a family of Cayley matrices P compatible with the graph G.
In this case the parameters βih, ρihk become simpler to evaluate. Indeed, let E be
the adjacency matrix of the graph and H := E − I. Moreover, let bk be a binomial
random variable, namely, a random variable taking value on the nonnegative integers
with law

P[bk = i] =
(
k

i

)
pi(1− p)k−i, i = 0, 1, . . . , k.

After some simple but lengthy calculations it can be shown that

βii = α ∀ i,
βih = βHih ∀ i, h such that i �= h,
ρiii = γ,
ρiih = ρihi = δHih ∀ i, h such that i �= h,
ρihh = ξHih ∀ i, h such that i �= h,
ρihk = ρHihHik ∀ i, h, k that are different from each other,
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where
(29)

α := E

[
n− nk + k

n− nk + k + kbn−1

]
, β := pE

[
k

n− nk + 2k + kbn−2

]
,

γ := E

[
(n− nk + k)2

(n− nk + k + kbn−1)2

]
, δ := pE

[
(n− nk + k)k

(n− nk + 2k + kbn−2)2

]
,

ξ := pE

[
k2

(n− nk + 2k + kbn−2)2

]
, ρ := p2

E

[
k2

(n− nk + 3k + kbn−3)2

]
.

These parameters depend on k, n, and p. The relations (13) become

α+ β(n− 1) = 1,
γ + δ(n− 1) = α,

(n− 2)ρ = β − ξ − δ.

It is clear that β̄ = αI + βH . Moreover, after some computations, it can be shown
that, if D is any diagonal matrix, then in this case

(30) ρ̄(D) = ρH∗DH + (ξ − ρ)diag (H∗DH) + γD + δ(H∗D +DH).

Under these assumptions we can write

A(χ) = |α+ βπ̂H(χ)|2

and

B(χ) = ρ |π̂H(χ)|2 + (ξ − ρ)(n− 1) + γ + 2δ � [π̂H(χ)]− |α+ βπ̂H(χ)|2 .

We now want to compare the two compensation methods proposed here through
the examples presented previously. Notice that in Example 5 the two compensation
methods coincide.

Example 7. Now consider the matrix P = (1 − k)I + N−111∗ considered in
Example 4. After some computation we can find that, for i = 1, . . . , N − 1,

(31) Aii(k, p) = (1 −Nβ)2, Bi(k, p) = (1−Nβ)Nβ +N(ξ − δ)

and so the eigenvalues are

z̄0(k, p) = 1,
z̄1(k, p) = (1−Nβ)(1− β) + (N − 1)(ξ − δ),
z̄i(k, p) = (1− βN)2, i = 2, . . . , N − 1.

The rate of convergence to the consensus is determined by z̄1(k, p). Figure 6 shows
the graph of the dominant eigenvalue z̄1(1, p) as a function of the probability p for
N = 4, 16, 64 when k = 1. (We are not making any optimization in this case.) It can
be shown that the graph relative to the case N = 4 coincides up to numerical errors
with the one obtained in Example 2 for the matrix P2.

Example 8. Consider the same matrix P introduced in Example 6. It can be
shown that for all v ∈ Z

n
2 we have that

Av = (1− 2βwH(v))2,
bv = 4wH(v)(δ − ρ+ wH(v)(ρ− β2)),
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Fig. 6. The graph of the rate of convergence in Example 7 for N = 4, 16, 64.

where wH(v) is the Hamming weight of v, namely, the number of 1’s. From this it
follows that

F (z, p) =
n∏
h=0

(z −Ah)(
n
h )−1

⎧⎪⎨
⎪⎩

n∏
h=0

(z −Ah)−N−1
n∑
k=0

(n
k

)
bk

n∏
h=0
h�=k

(z −Ah)

⎫⎪⎬
⎪⎭ ,

where, for h = 0, 1, . . . , n, we let

Ah = (1 − 2βh)2,
bh = 4h(δ − ρ+ h(ρ− β2)).

This implies that N − n eigenvalues coincide with Ah(p), h = 0, 1, . . . , n while the
remaining n are the roots of

n∏
h=0

(z −Ah)−N−1
n∑
k=0

(n
k

)
bk

n∏
h=0
h�=k

(z −Ah)

and can be estimated when p � 1 by the method proposed above. Figure 7 shows the
graph of the rate of convergence as a function of the probability p for N = 2, 4 in the
case of the biased compensation and the balanced compensation methods. It can be
shown that the graph relative to the case n = 2 coincides up to numerical errors with
the one obtained in Example 2 for the matrix P4.

6. Average consensus. Even if the original algorithm was chosen to solve the
average consensus problem, in general the perturbed solutions due to packet drops
will no longer satisfy this property. In this section we will show how to estimate
the distance of the consensus point from the average of the initial conditions. From
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Fig. 7. The graph of the rate of convergence in Examples 6 and 8 for n = 2, 4 in the case of
the biased compensation method and the balanced compensation method.

now on we will assume that the matrix P is doubly stochastic so that P1 = 1 and
1∗P = 1∗. Consider xA(t) as defined in (5) and let

D := sup
||x(0)||≤1

E[|xA(∞)− xA(0)|2] = sup
||x(0)||≤1

E[|(v∗ −N−11∗)x(0)|2]

= sup
||x(0)||≤1

x(0)∗E[(v −N−11)(v −N−11)∗]x(0)

= max{|λ| : λ eigenvalue of E[(v −N−11)(v −N−11)∗]} .

Notice that D is expressed in terms of the random vector v which in general may
not be explicitly available. A further step, however, allows us to write

(32) E[(v −N−11)(v −N−11)∗] = E[vv∗]−N−1
E[v]1∗ − 1N−1

E[v]∗ +N−211∗.

We now recall that E[vv∗] is the dominant eigenvector of the positive operator L and
can thus be computed using standard techniques. As far as E[v] is concerned, notice
that, since x(t)→ v∗x(0)1 almost surely, it follows that

E[x(t)] = E[P (0)]tx(0)→ E[v]∗x(0)1.

Since E[P (0)] is an aperiodic stochastic matrix, it follows that E[v] coincides with the
the dominant left eigenvector of E[P (0)] and thus it is computable using standard
techniques.

We now start to analyze the Cayley setting for which more precise results can
be obtained. First, it can be checked that, for both the biased and the balanced
compensation methods, the matrix P is Cayley. As a consequence, in this case we
have E[v] = N−11 and hence

E[(v −N−11)(v −N−11)∗] = E[vv∗]−N−211∗.
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What remains to be computed is the normalized dominant eigenvector of L or, equiv-
alently, the normalized dominant eigenvector of the matrix A +N−1B1∗ introduced
above, where the matrix A is diagonal such that Aii = A(χi) and B is a column vector
such that Bi = B(χi). The quantities A(χ) and B(χ) have been defined in (17) and
(18) for the biased case, and in (26) and (27) for the balanced case. Notice that, in
both cases, we have that

A(χ0) = 1 , 0 ≤ A(χi) < 1 ∀i = 1, . . . , N − 1,
B(χ0) = 0 , B(χi) ≥ 0 ∀i = 1, . . . , N − 1 .

We have the following result.
Lemma 6.1. The vector w ∈ R

N with components

w0 = 1 , wh =
N−1

1−N−1
N−1∑
i=1

Bi

1−Aii

Bh
1−Ahh

∀h = 1, . . . , N − 1

is an eigenvector of (A+N−1B1∗) relative to the eigenvalue 1.
Proof. Notice first that, since A+N−1B1∗ is a nonnegative matrix, there exists

an eigenvector w ∈ R
N of A+N−1B1∗ relative to the eigenvalue 1 with nonnegative

entries. By Proposition 5.2 we can argue that the first component w0 of w must be
positive. Notice now that the relation (A+N−1B1∗)w = w is equivalent to the N−1
linear conditions

(33) (1−Ahh)wh = N−1Bh1∗w , h = 1, . . . , N − 1 .

Since, as noticed above, Ahh < 1, we have that

(34) w =
(
w0, λ

B1

1−A11
, . . . , λ

BN−1

1−AN−1N−1

)∗
,

where λ = N−11∗w. This implies that

w0 + λ
N−1∑
i=1

Bi
1−Aii

= Nλ,

which is equivalent to (
1−N−1

N−1∑
i=1

Bi
1−Aii

)
λ = N−1w0.

Finally, notice that, since w0 > 0,

1 >
N−1

∑N−1
i=1 wi
λ

= N−1
N−1∑
i=1

Bi
1−Aii

,

which implies that 1−N−1
∑N−1
i=1

Bi

1−Aii
< 1 and so, by taking w0 = 1, we obtain the

thesis.
Notice that, if we go back to the matrix form, the corresponding eigenmatrix of

L is given by

W = N−1
N−1∑
i=0

wiχiχ
∗
i .
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To find the right normalization constant, notice that 1∗W1 = N . This implies that

(35) E[vv∗] = N−2
N−1∑
i=0

wiχiχ
∗
i .

Notice that, since E[vv∗] is positive semidefinite, surely all wi ≥ 0. We can now state
the following proposition.

Proposition 6.2. Assume P to be a Cayley matrix. Then, for both the biased
and the balanced compensation methods, we have that

D =
N−2

1−N−1
N−1∑
i=1

Bi

1−Aii

max
h=1,...,N−1

{
Bh

1−Ahh

}
.

Proof. Notice that, from (32), we obtain

E[(v −N−11)(v −N−11)∗]

= N−211∗ +N−2
N−1∑
i=1

wiχiχ
∗
i − 2N−211∗ +N−211∗ = N−2

N−1∑
i=1

wiχiχ
∗
i .

Notice now that

D = max{N−1wi | i = 1, . . . , N − 1} .

This proves the result.
Let us make explicit computations in the examples considered above.
Example 9. Consider the matrix P = (1 − k)I + k

N 11∗ introduced in Examples
4 and 7. In the biased compensation method, using computation (21) and (22), we
obtain that for any h �= 0,

Bh
1−Ahh

=
2p(1− p)k2

N

1
1− (1− p+ p(1− k))2 = N−1 2(1− p)k

2− pk .

Hence,

D =
N−2

1−N−2(N − 1)2(1−p)k
2−pk

N−1 2(1− p)k
2− pk = N−3 2(1− p)k

2− pk − 2N−2(N − 1)(1− p)k .

As expected for p → 1 we have that D → 0. More interestingly, note also that for
N → +∞, we have that D → 0 as N−3.

Consider now the balanced case. We limit the analysis to the optimal case in
which we let k = 1. Using computation (31), we obtain that for any h �= 0,

Bh
1−Ahh

=
(1−Nβ)Nβ
1− (1−Nβ)2

=
1−Nβ
2−Nβ .

Hence,

D =
N−2

1−N−1(N − 1)1−Nβ
2−Nβ

1−Nβ
2−Nβ = N−2 1−Nβ

1 +N−1(1−Nβ)
.
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Fig. 8. The graphs of N3D as a function of N in the biased and balanced cases, both assuming
that k = 1 and p = 1/2 as in Example 9.

Even in this case, for p→ 1 we have that D → 0 since it is easy to see that Nβ → 1.
Also the convergence to 0 for N →∞ is maintained. In Figure 8 we plot the graphs
showing N3D as a function of N in the biased and balanced cases, both assuming that
k = 1 and p = 1/2. In both cases we notice that D converges to zero as fast as N−3,
and that the biased compensation method outperforms the balanced compensation
method.

Example 10. Now consider Example 5, where the group is ZN and S = {0, 1}. As
we already noticed, for this example the biased and the balanced methods coincide.
From the computations of the matrix A and of the vector B we obtain

Bh
1−Ahh

=
2p(1− p)k2

(
1− cos

(
2π
N i
))

2pk(1− pk)
(
1− cos

(
2π
N i
)) =

(1− p)k
1− pk .

Hence,

D =
N−1

1− (1−p)k
1−pk

(1− p)k
1− pk = N−2 k(1− p)

1− k +N−1(1− p)k .

Also in this case, for p → 1, or for N → +∞, we have that D → 0. Notice that the
speed of convergence to 0 with respect to N is lower than in the complete case.

In order to have a clearer insight into the behavior of D we make some further
estimations by analyzing the two cases separately.

Let us start with the biased case. Notice that we have
Bh

1−Ahh
=

B(χh)
1−A(χh)

=
2p(1− p)[π̂P̃ (χ0)−�[π̂P̃ (χh)]]

1− |1− p+ pπ̂P (χh)|2
.

Assume that πP (j) = kj , and notice that we have

π̂P (χh) =
∑
j

kjχh(−j) , π̂P̃ (χh) =
∑
j

k2
jχh(−j) .
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Hence,

π̂P̃ (χ0)−�[π̂P̃ (χh)] =
∑
j

kj(1−�[χh(−j)]) ,

while

1− |1− p+ pπ̂P (χh)|2 = −p2 + 2p− p2|π̂P (χh)|2 − 2p(1− p)
∑
j

kj�χh(j)

= 2p(1− p)
∑
j

kj(1−�[χh(j)]) + p2(1− |π̂P (χh)|2) .

We have thus obtained that

(36)
Bh

1−Ahh
=

2(1− p)
∑

j k
2
j (1−�[χh(−j)])

2(1− p)
∑
j kj(1−�[χh(−j)]) + p(1− |π̂P (χh)|2)

.

This explicit expression allows us to estimate D. We have the following result.
Proposition 6.3. Consider a Cayley matrix P and let πP (j) be its generator.

Let M = max{πP (j) | j = 1, . . . , N − 1}. Then

D ≤ N−2 M

1−M .

Proof. From (36) we can argue that

Bh
1−Ahh

≤ π̂P̃ (χ0)−�[π̂P̃ (χh)]
1−�[π̂P (χh)]

.

Assume that πP (j) = kj , and notice that we have

π̂P (χh) =
∑
j

kjχh(−j) , π̂P̃ (χh) =
∑
j

k2
jχh(−j) .

Hence,

Bh
1−Ahh

≤
∑

j k
2
j (1 −�[χh(j)])∑

j kj(1−�[χh(j)])
≤M .

The thesis now simply follows from Proposition 6.2.
The key point of Proposition 6.3 is that if we have a sequence of consensus strate-

gies indexed by N , for which M is bounded away from 1, then D will converge to
0 at least as fast as N−2. Notice that this is in agreement with the two examples
considered above.

We now proceed to analyze the balanced case. We can prove the following result.
Proposition 6.4. Denote

M = πρ̄(I)(0);

then

(37) D ≤ N−2 1
1−M .
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Proof. In the balanced case Ahh and Bh are defined in (26) and (27). We obtain

(38)
Bh

1−Ahh
=
π̂ρ̄(I)(χh)−

∣∣π̂β̄(χh)∣∣2
1−

∣∣π̂β̄(χh)∣∣2 .

It follows from (38), using the inequality 0 ≤ π̂ρ̄(I)(χh) ≤ 1, that

(39)
Bh

1−Ahh
≤ π̂ρ̄(I)(χh) ≤ 1 .

Notice now that

(40) N−1
N−1∑
j=1

Bj
1−Ajj

≤ N−1
N−1∑
j=1

π̂ρ̄(I)(χj) ≤ N−1
N−1∑
j=0

π̂ρ̄(I)(χj) = πρ̄(I)(0) .

The thesis now follows from Proposition 6.2 and estimations (39) and (40).
Notice that M is strictly smaller than 1. It clearly depends on the matrix P but

also, as opposed to the biased case, on the probability p. Let us analyze a simple case
in more detail. Assume that the matrix P is defined as in (28). In this case, using
(30), we have that

M = πρ̄(I)(0) = N−1trace ρ̄(I)

= N−1trace (ρH∗H + (ξ − ρ)diag (H∗H) + γI + δ(H +H∗))
= (n− 1)ξ + γ.

Therefore M depends on n and p and k, but it does not depend on N . It thus follows
that δ converges to 0 as fast as N−2 in the biased case.

7. Conclusions. In this paper we proposed some tools which allow us to evaluate
the performance degradation due to failing transmission links in the average consensus
algorithm. Though the tools proposed here seem to be very effective for the evaluation
of the effect of packet drop in the data transmission between the agents in a consensus
seeking problem, many problems are still to be investigated, such as the following:

1. The analysis of convergence has been carried out in a mean square sense.
Concentration results can be obtained in certain cases (see [6]) and it would
be important to study them in the context of packet drop models.

2. Many problems are still open in the general (non-Cayley) case, such as the
evaluation of the mean distance of the limit from the average as a function
of the number N of agents.

3. The analysis is still quite intricate and it is difficult to use in design. We
expect that some interesting simplifications could occur when N tends to
infinity. It is important to determine whether this is really the case and to
exploit these simplifications in the design process.

4. The average consensus algorithm we considered is somehow memoryless. We
expect that algorithms with memory in principle could yield better perfor-
mance (consider for instance an algorithm which, when data is lost, can sub-
stitute it with its past version). It is important to understand whether adding
memory will improve the performance or not.
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COORDINATION AND CONSENSUS OF NETWORKED AGENTS
WITH NOISY MEASUREMENTS: STOCHASTIC ALGORITHMS

AND ASYMPTOTIC BEHAVIOR∗
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Abstract. This paper considers the coordination and consensus of networked agents where each
agent has noisy measurements of its neighbors’ states. For consensus seeking, we propose stochastic
approximation-type algorithms with a decreasing step size, and introduce the notions of mean square
and strong consensus. Although the decreasing step size reduces the detrimental effect of the noise,
it also reduces the ability of the algorithm to drive the individual states towards each other. The key
technique is to ensure a trade-off for the decreasing rate of the step size. By following this strategy,
we first develop a stochastic double array analysis in a two-agent model, which leads to both mean
square and strong consensus, and extend the analysis to a class of well-studied symmetric models.
Subsequently, we consider a general network topology, and introduce stochastic Lyapunov functions
together with the so-called direction of invariance to establish mean square consensus. Finally, we
apply the stochastic Lyapunov analysis to a leader following scenario.

Key words. multiagent systems, graphs, consensus problems, measurement noise, stochastic
approximation, mean square convergence, almost sure convergence
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1. Introduction. The recent years have witnessed an enormous growth of re-
search on the coordination and control of distributed multiagent systems, and specific
topics appear in different forms such as swarming of honeybees, flocking of birds,
migration of animals, synchronization of coupled oscillators, and formation of au-
tonomous vehicles; see [48, 14, 17, 29, 43, 33] and the references therein. A common
feature of these systems, which take diverse forms, is that the constituent agents need
to maintain a certain coordination so as to cooperatively achieve a group objective,
wherein the decision of individual agents is made with various constraints due to the
distributed nature of the underlying system. The study of these multiagent models is
crucial for understanding many complex phenomena related to animal behavior, and
for designing distributed control systems.

For multiagent coordination, it is usually important to propagate shared infor-
mation within the system by communication rules which may be supported by the
specific interconnection structure between the agents. This is particularly important
in cooperative control systems since they often operate in a dynamic environment,
and the involved agents need to collectively acquire key information at the overall
system level [38, 3]. In this context, of fundamental importance is the so-called con-
sensus or agreement problem, where consensus means a condition where all the agents
individually adjust their own value for an underlying quantity (e.g., a location as the
destination of a robot team) so as to converge to a common value. For many prac-
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tical situations, the chief objective is to agree on the same state; the actual state
is of secondary importance. In view of primarily being required to converge, one
might suggest to simply set the agents’ states to any fixed state. In reality, however,
such a consensus protocol is trivial and less interesting; its more serious limitation
is that this protocol is overly sensitive to small relative errors when the individual
states initially have been very close to each other. For these reasons, in the literature,
almost all consensus algorithms are constructed based on averaging rules, and this
leads to good dynamic properties (such as good transient behavior and convergence)
[23, 50, 6]. We mention that there has been a long history of research on consensus
problems due to the broad connections of this subject with a wide range of disciplines
including statistical decision theory, management science, distributed computing, ad
hoc networks, biology [49, 20, 10, 18, 28, 26, 48], and the quickly developing area
of multiagent control systems [3, 14, 17, 29, 33, 34, 43]. A comprehensive survey on
consensus problems in multiagent coordination can be found in [38].

In the context of coordinating spatially distributed agents, a basic consensus
model consists of a time-invariant network in which each agent updates its state by
forming a convex combination of the states of its neighbors and itself [23, 6, 50], such
that the iterates of all individual states converge to a common value. Starting from
this formulation, many generalizations are possible. A variety of consensus algorithms
has been developed to deal with delayed measurements [5, 31, 34], dynamic topologies
[34], or unreliable (on/off) communication links (see the survey [38]). For convergence
analysis, stochastic matrix analysis is an important tool [23], and in models with time-
dependent communications, set-valued Lyapunov theory is useful [32].

In this paper, we are interested in consensus seeking in an uncertain environment
where each agent can obtain only noisy measurements of the states of its neighbors;
see Figure 1 for illustration. Such modeling reflects many practical properties in
distributed networks. For instance, the interagent information exchange may involve
the use of sensors, quantization [36, 37], and wireless fading channels, which makes
it unlikely to have exact state exchange. We note that most previous research has
used noise-free state iteration by assuming exact data exchange between the agents,
with only a few exceptions (see, e.g., [51, 39, 9]). A least mean square optimization
method was used in [51] to choose the constant coefficients in the averaging rule with
additive noises so that the long term consensus error is minimized. In a continuous
time consensus model [15], deterministic disturbances were included in the dynamics.
In [9], multiplicative noises were introduced to model logarithmic quantization error.
In [21, 42], convergence results were obtained for random graph based consensus
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problems, and [21] used an approach of stochastic stability. In earlier work [7, 46,
47], convergence of consensus problems was studied in a stochastic setting, but the
interagent exchange of random messages was assumed to be error-free. In particular,
Tsitsiklis, Bertsekas, and Athans [47] obtained consensus results via asynchronous
stochastic gradient based algorithms for a group of agents minimizing their common
cost function.

In models with noisy measurements, one may still construct an averaging rule
with a constant coefficient matrix. However, the resulting evolution of the state
vector dramatically differs from the noise-free case, leading to divergence. The reason
is that the noise causes a steady drift of the agents’ states during the iterates, which
in turn prevents generating a stable group behavior.

To deal with the measurement noise, we propose a stochastic approximation-type
algorithm with the key feature of a decreasing step size. The algorithm has a gradient
descent interpretation. Our formulation differs from [47] since in the averaging rule of
the latter, the exogenous term, which may be interpreted as a local noisy gradient of
the agents’ common cost, is assigned a controlled step size while the weights for the
exact messages received from other agents are maintained to be above a constant level;
such a separability structure enables the authors in [47] to obtain consensus with a
sufficiently small constant step size for the gradient term, or with only an upper bound
for the deceasing rate of the step size. In contrast, in our model the signal received
from other agents is corrupted by additive noise (see Figure 1), and consequently in
selecting the step size, it is critical to maintain a trade-off in attenuating the noise to
prevent long term fluctuations and meanwhile ensuring a suitable stabilizing capability
of the recursion so as to drive the individual states towards each other. To achieve
this objective, the step size must be decreased neither too slowly, nor too quickly.
It turns out, for proving mean square consensus via stochastic Lyapunov functions,
that we may simply use the standard step size condition in traditional stochastic
approximation algorithms. But in the stochastic double array analysis, some mild
lower and upper bound conditions will be imposed on the step size.

We begin by analyzing a two-agent model. As it turns out, this simple model
provides a rich structure for developing convergence analysis and motivates the so-
lution to more general models. In this setup, the key technique is the stochastic
double array analysis [45, 12]. Next, we extend the analysis to a class of symmetric
models. In fact, many symmetric models have arisen in practical applications includ-
ing platoons of vehicles, robot teams, unicycle pursuit models [30, 29], cooperative
sensor network deployment for tracking [1] or sampling [25], and consensus problems
[9]. Subsequently, to deal with a general network topology, we develop a stochastic
Lyapunov analysis, and convergence is established under a connectivity condition for
the associated undirected graph.

The paper is organized as follows. In section 2 we formulate the consensus problem
in the setting of directed graphs and propose the consensus algorithm. Section 3
establishes convergence results in a two-agent model, and the analysis is extended
to models with circulant symmetry in section 4. We develop stochastic Lyapunov
analysis in section 5 and apply it to leader following in section 6. Section 7 presents
numerical simulations, and section 8 concludes the paper.

2. Formulation of the stochastic consensus problem. We begin by con-
sidering directed graphs for modeling the spatial distribution of n agents. A directed
graph (or digraph) G = (N , E) consists of a set of nodes N = {1, 2, . . . , n} and a
set of edges E ⊂ N × N . An edge in G is denoted as an ordered pair (i, j), where
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i �= j (so there is no edge between a node and itself) and i, j are called the initial
and terminal node, respectively. A path (from i1 to il) in G consists of a sequence of
nodes i1, i2, . . . , il, l ≥ 2, such that (ik, ik+1) ∈ E for all 1 ≤ k ≤ l − 1. The digraph
G is said to be strongly connected if for any two distinct nodes i and j, there exist a
path from i to j and also a path from j to i.

For convenience of exposition, we often refer to node i as agent Ai. The two
names, agent and node, will be used interchangeably. Agent Ak (resp., node k) is a
neighbor of Ai (resp., node i) if (k, i) ∈ E , where k �= i. Denote the neighbors of node
i by Ni ⊂ N . Note that any undirected graph1 can be converted into a directed graph
simply by splitting each edge in the former into two edges, one in each direction.

For agent Ai, let xit ∈ R be its state at time t ∈ Z
+ = {0, 1, 2, . . .}. Denote the

state vector xt = [x1
t , . . . , x

n
t ]T . For each i ∈ N , agent Ai receives noisy measurements

of the states of its neighbors. Denote the resulting measurement by Ai of Ak’s state
by

yikt = xkt + wikt , t ∈ Z
+, k ∈ Ni,(1)

where wikt ∈ R is the additive noise; see Figure 1. The underlying probability space
is denoted by (Ω,F , P ). We shall call yikt the observation of the state of Ak ob-
tained by Ai, and we assume each Ai knows its own state xit exactly. The additive
noise wikt in (1) reflects unreliable information exchange during interagent sensing and
communication; see, e.g., [39, 2, 41] for related modeling.

(A1) The noises {wikt , t ∈ Z
+, i ∈ N , k ∈ Ni} are independent and identically

distributed (i.i.d.) with respect to the indices i, k, t and each wikt has zero mean and
variance Q ≥ 0. The noises are independent of the initial state vector x0 and E|x0|2 <
∞.

Condition (A1) means that the noises are i.i.d. with respect to both space (asso-
ciated with neighboring agents) and time. We will begin with our analysis based on
the above assumption for simplicity.

The state of each agent is updated by

xit+1 = (1− at)xit +
at
|Ni|

∑
k∈Ni

yikt , t ∈ Z
+,(2)

where i ∈ N and at ∈ [0, 1] is the step size. This gives a weighted averaging rule
in that the right-hand side is a convex combination of the agent’s state and its |Ni|
observations, where |S| denotes the cardinality of a set S. The objective for the
consensus problem is to select the sequence {at, t ≥ 0} so that the n individual states
xit, i ∈ N , converge to a common limit in a certain sense.

To get some insight into algorithm (2), we rewrite it in the form

xit+1 = xit + at(mi
t − xit),(3)

where mi
t = (1/|Ni|)

∑
k∈Ni

yikt . The structure of (3) is very similar to the recur-
sion used in classical stochastic approximation algorithms in that mi

t − xit provides
a correction term controlled by the step size at. Indeed, by introducing a suitable
local potential function, mi

t − xit may be interpreted as the noisy measurement of a
scaled negative gradient of the local potential along the direction xit. A more detailed
discussion will be presented in section 5 when developing the stochastic Lyapunov

1The edge in an undirected graph is denoted as an unordered pair.
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Fig. 2. (a) The three nodes. (b) In the noise-free case, the states of the nodes quickly converge
to the same constant level ≈ 2.143. Under Gaussian measurement noises with variance σ2 = 0.01,
the three state trajectories have large fluctuations.

analysis. Due to the noise contained in {mi
t, t ≥ 0}, each state xit will fluctuate ran-

domly. These fluctuations will not die off if at does not converge to 0. For illustration,
we introduce an example as follows.

Example 1. Consider a strongly connected digraph with N = {1, 2, 3}, as in
Figure 2(a), where N1 = {2}, N2 = {1, 3}, and N3 = {2}. We follow the measurement
model (1), and the states are updated by x1

t+1 = (x1
t +y

12
t )/2, x2

t+1 = (x2
t+y

21
t +y23

t )/3,
and x3

t+1 = (x3
2 + y32

t )/2, t ≥ 0. The i.i.d. Gaussian noises wikt satisfy (A1) with
variance σ2 = 0.01.

The simulation for Example 1 takes the initial condition [x1
0, x

2
0, x

3
0] = [4, 1, 2].

For the noise-free case, we change the state update rule in Example 1 by replacing
each yikt by xkt , which results in a standard rule in the literature; see, e.g., [23].
Figure 2(b) shows that measurement noises cause a dramatic loss of convergence.
In fact, by recasting to the form (2), the algorithm in Example 1 essentially takes
the step size a(i) = |Ni|/(|Ni|+ 1) for node i to give equal weights 1/(|Ni|+ 1) to
|Ni| + 1 nodes; for instance, we may rewrite x2

t+1 = (x2
t + y21

t + y23
t )/3 as x2

t+1 =
x2
t + a(2)[(y21

t + y23
t )/2− x2

t ], where a(2) = 2/3.
With the aim of obtaining a stable behavior for the agents, we make the following

assumption.
(A2) (i) The sequence {at, t ≥ 0} satisfies at ∈ [0, 1], and (ii) there exists T0 ≥ 1

such that

αt−γ ≤ at ≤ βt−γ(4)

for all t ≥ T0, where γ ∈ (0.5, 1] and 0 < α ≤ β <∞.
By requiring at > αt−γ for t ≥ T0 with a suitable T0, we may take large values

for α while still ensuring at ∈ [0, 1], t ≥ T0. This offers more flexibility in selecting
the step size sequence. Here {at, t < T0} may be chosen freely as long as at ∈ [0, 1];
this resulting algorithm gives a convex combination at all times in the averaging rule
as in conventional consensus algorithms. The parameters T0, α, β, γ will be treated
as fixed constants associated with {at, t ≥ 0}. Note that (A2) implies the following
weaker condition.
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(A2′) (i) The sequence {at, t ≥ 0} satisfies at ∈ [0, 1], and (ii)
∑∞
t=0 at = ∞,∑∞

t=0 a
2
t <∞.

Notice that (A2′)(ii) is a typical condition used in classical stochastic approxi-
mation theory [11, 24]. In the subsequent sections, the double array analysis will be
developed based on the slightly stronger assumption (A2) while (A2′) will be used for
the stochastic Lyapunov analysis.

The vanishing rate of {at, t ≥ 0} is crucial for consensus. When at → 0 in (2),
the signal xkt (contained in yikt ), as the state of Ak, is attenuated together with the
noise. Hence, at cannot decrease too fast since, otherwise, the agents may prematurely
converge to different individual limits.

Since the averaging rule (2) can be considered a stochastic approximation algo-
rithm [27, 4], we may apply the standard method of analysis to it; namely, we can
average out the noise component in (2) to derive an associated ordinary differential
equation (ODE) system

dxi(s)
ds

= (1/|Ni|)
∑
k∈Ni

xk(s)− xi(s), s ≥ 0, i ∈ N .(5)

The important feature of the ODE system (5) is that it has an equilibrium set as a
linear subspace of R

n, instead of a singleton. This indicates more uncertain asymptotic
behavior in the state evolution of the stochastic consensus algorithm due to the lack
of a single equilibrium point generating the attracting effect, and is in contrast to
typical stochastic approximation algorithms where the associated ODE usually has a
single equilibrium, at least locally.

We introduce some definitions to characterize the asymptotic behavior of the
agents.

Definition 2 (weak consensus). The agents are said to reach weak consensus if
E|xit|2 <∞, t ≥ 0, i ∈ N , and limt→∞ E|xit − x

j
t |2 = 0 for all distinct i, j ∈ N .

Definition 3 (mean square consensus). The agents are said to reach mean
square consensus if E|xit|2 <∞, t ≥ 0, i ∈ N , and there exists a random variable x∗

such that limt→∞E|xit − x∗|2 = 0 for all i ∈ N .
Definition 4 (strong consensus). The agents are said to reach strong consensus

if there exists a random variable x∗ such that with probability 1 (w.p.1) and for all
i ∈ N , limt→∞ xit = x∗.

It is obvious that mean square consensus implies weak consensus. If a sequence
converges w.p.1, we also say it converges almost surely (a.s.). Note that for both
mean square and strong consensus, the states xit, i ∈ N , must converge to a common
limit, which may depend on the initial states, the noise sequence, and the consensus
algorithm itself.

2.1. The generalization to vector states. It is straightforward to generalize
the results of this paper to the case of vector individual states xkt ∈ R

d, where d > 1,
and (1)–(2) may be extended to the vector case by taking a vector noise term. For
the vector version of (2), we see that the d components in xkt are decoupled during
iteration and may be treated separately. Throughout this paper, we consider only
scalar individual states.

3. Convergence in a two-agent model. We begin by analyzing a two-agent
model, which will provide interesting insight into understanding consensus seeking
in a noisy environment. The techniques developed for such a system will provide
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motivation for analyzing more general models. The rich structure associated with
this seemingly simple model well justifies a careful investigation.

3.1. Mean square consensus. Let (1)–(2) be applied by the two agents where
N = {1, 2}. In the subsequent analysis, a key step is to examine the evolution of the
difference ξt = x1

t − x2
t between the two states. We notice the relation

ξt+1 = (1− 2at)ξt + atvt, t ≥ 0,(6)

where vt = w12
t − w21

t . By inequality (4), we may find an integer T1 > T0 such that

1− 2αt−γ ≥ 1− 2at > 0 for all t ≥ T1.(7)

In the estimate below, we start with T1 as the initial time. It follows from (6) that

ξt+1 =
t∏

i=T1

(1 − āi)ξT1 +
t∑

k=T1

[
t∏

i=k+1

(1− āi)
]
akvk, t ≥ T1,(8)

where āt = 2at. Define

Πl,k =
l∏

i=k+1

(1− āi)ak,(9)

where l > k ≥ T1. By convention, Πk,k = ak.
Lemma 5. Let Πl,k be defined by (9) with k ≤ l and assume (A2).
(i) If γ = 1, we have

Πl,k ≤ exp

{
−2α

l∑
t=k+1

t−1

}
β

k
≤ β(k + 1)2α

k(l + 1)2α
.(10)

(ii) If 1/2 < γ < 1, we have

Πl,k ≤ exp
{
−2α
1− γ [(l + 1)1−γ − (k + 1)1−γ ]

}
β

kγ
.(11)

Proof. First, for the case k < l, it is obvious that

Πl,k ≤
(

1− 2α
lγ

)
· · ·

(
1− 2α

(k + 1)γ

)
β

kγ
.(12)

By the fact ln(1− x) < −x for all x ∈ (0, 1), it follows that

(
1− 2α

lγ

)
· · ·

(
1− 2α

(k + 1)γ

)
≤ exp

{
−2α

l∑
t=k+1

t−γ
}
.(13)

By (12)–(13), we get (i) and (ii) for k < l. Clearly, (i) and (ii) hold for k = l.
Let {c(t), t ≥ t0} and {h(t), t ≥ t0} be two sequences of real numbers indexed

by integers t ≥ t0, and h(t) > 0 for all t ≥ t0. Denote c(t) = O(h(t)) (resp.,
c(t) = o(h(t))) if limt→∞ |c(t)|/h(t) ≤ Cd < ∞ (resp., limt→∞ |c(t)|/h(t) = 0). Here
Cd is called a dominance constant in the relation c(t) = O(h(t)). In practice, it is
desirable to take a value for Cd as small as possible.
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Lemma 6. Under (A2), we have the upper bound estimate (i) if γ = 1,

t∑
k=T1

Π2
t,k =

⎧⎨
⎩

O(t−4α) if 0 < α < 1/4,
O(t−1 ln t) if α = 1/4,
O(t−1) if α > 1/4,

(14)

where T1 is specified in (7), and (ii) if 1/2 < γ < 1,

t∑
k=T1

Π2
t,k = O(t−γ).(15)

Proof. See the appendix.
Remark. We give some discussions on estimating the dominance constant Cd for

Lemma 6. For (14), when α �= 1/4 but is close to 1/4 from the left (resp., right), our
estimation method shows that we need to take a large Cd associated with O(t−4α)
(resp., t−1). For the case α = 1/4 in (14), we may take Cd = β2. For (15), we take
Cd = 4α, regardless of the value of γ ∈ (1/2, 1).

Corollary 7. Let {ãt, t ≥ 1} be a sequence such that (i) ãt ∈ [0, 1] and (ii)
there exists γ0 ∈ (0, 1/2) such that α̃t−γ0 ≤ ãt ≤ β̃t−γ0 , where α̃ > 0. Denote Π̃l,k =∏l
i=k+1(1− ãi)ãk, l ≥ k ≥ 1. Then for any fixed T̃1 ≥ 1,

∑t
k=T̃1

Π̃2
t,k = O(t−γ0).

Proof. First, (11) is still valid after replacing γ (resp., Πl,k) by γ0 (resp., Π̃l,k).
The argument in proving (15) can be repeated when γ is replaced by γ0, which leads
to the corollary.

Theorem 8. Suppose (A1)–(A2) hold for the system of two agents, and x1
t , x

2
t

are updated according to algorithm (2). Then there exists a random variable x∗ such
that limt→∞E|xit − x∗|2 = 0 for i = 1, 2, which implies mean square consensus.

Proof. First, denote zt = (x1
t +x2

t )/2 and w̃t = (w12
t +w21

t )/2 for t ≥ 0. It is easy
to check that

zt+1 = zt + atw̃t, t ≥ 0,(16)

which leads to zt+1 = z0 +
∑t
k=0 akw̃k. Since

∑∞
t=0 a

2
t < ∞, there exists a random

variable z∗ such that limt→∞ E|zt − z∗|2 = 0.
Now we estimate ξt = x1

t − x2
t . We see that

Eξ2t+1 ≤ 2

(
Eξ2T1

t∏
k=T1

|1− 2ak|2 + sup
k≥T1

Ev2
k ×

t∑
k=T1

Π2
t,k

)
.

By Lemma 6, limt→∞ Eξ2t+1 = 0. Then mean square consensus follows easily.
The i.i.d. noise assumption in Theorem 8 may be relaxed to independent noises

with zero mean and uniformly bounded variances.
We use this two-agent model to illustrate the importance of a trade-off in the

decreasing rate of at. To avoid triviality, assume the noise variance Q > 0 in (A1).
First, let γ0 ∈ (0, 1/2) and a0 = 0, at = t−γ0 for t ≥ 1, which decreases more

slowly than in (4). By (16), it follows that limt→∞ E|zt|2 = ∞. Let ξt be given by
(6). By Corollary 7, we can show limt→∞ ξ2t = 0. So we conclude that this too-slowly-
decreasing step size causes divergence of x1

t and x2
t due to inadequately attenuated

noise, although they reach weak consensus since limt→∞ ξ2t = 0.
Next, we take γ1 > 1 and a0 = 0, at = t−γ1 for t ≥ 1, which decreases faster than

in (4). Then there exists a random variable z∗ such that limt→∞ E|zt − z∗|2 = 0.
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Furthermore, by the fact
∏∞
i=2(1 − 2āi) > 0, we obtain from (8) that there exists a

random variable ξ∗ such that limt→∞E|ξt − ξ∗|2 = 0 and E|ξ∗|2 > 0. So x1
t and

x2
t both converge in mean square. But the state gap ξt cannot be asymptotically

eliminated due to the excessive loss of the stabilizing capability, associated with the
homogenous part of (6), when at decreases too quickly.

3.2. Strong consensus. So far we have shown that the two states converge in
mean square to the same limit. It is well known that in classical stochastic approxi-
mation theory [11, 24], similarly structured algorithms have sample path convergence
properties under reasonable conditions. It is tempting to analyze sample path behav-
ior in this consensus context. The analysis below moves towards this objective. The
following lemma is instrumental.

Lemma 9 (see [45]). Let {w,wt, t ≥ 1} be i.i.d. real-valued random variables with
zero mean, and {aki, 1 ≤ i ≤ lk ↑ ∞, k ≥ 1} a double array of constants. Assume
(i) max1≤i≤lk |aki| = O((l1/pk log k)−1), 0 < p ≤ 2, and log lk = o(log2 k), and (ii)
E|w|p <∞. Then limk→∞

∑lk
i=1 akiwi = 0 a.s.

This lemma is an immediate consequence of Theorem 4 and Corollary 3 in [45,
pp. 331 and 340], which deal with the sum of random variables with weights in a
double array.

Now we need to estimate the magnitude of the individual terms Πt,k. Note that
for each t > T1, Πt,k is defined for k starting from T1 up to t. Hereafter, for notational
brevity, we make a convention about notation by setting Πt,k ≡ 0 for 1 ≤ k < T1

when t ≥ T1, and Πt,k ≡ 0 for 1 ≤ k ≤ t when 1 ≤ t < T1. After this extension, all
the entries Πt,k constitute a triangular array.

Lemma 10. For case (i) with γ = 1, under (A2) we have

sup
1≤k≤t

Πt,k =
{
O(t−2α) if 0 < α < 1/2,
O(t−1) if α ≥ 1/2,(17)

and for case (ii) with 1/2 < γ < 1, we have sup1≤k≤t Πt,k = O(t−γ).
Proof. By use of (10), it is easy to obtain the bound for case (i). Now we give

the proof for case (ii). By Lemma 5(ii), it follows that

Πt,k ≤ e−δ(t+1)1−γ

eδ(k+1)1−γ β

kγ
≤ e−δ(t+1)1−γ

max
1≤k≤t

eδ(k+1)1−γ β

kγ
,

where δ = 2α/(1− γ). Denote the function f(s) = eδ(s+1)1−γ

(β/sγ), where the real
number s ∈ [1,∞). By calculating the derivative f ′(s), it can be shown that for all
s ≥ s0 = [1 + γ

δ(1−γ) ]
1/(1−γ), f ′(s) > 0. Hence there exists c0 > 0 independent of t

such that

max
1≤k≤t

eδ(k+1)1−γ β

kγ
≤ max

s∈[1,t]
f(s) ≤ c0 ∨

(
eδ(t+1)1−γ β

tγ

)
,

which implies that sup1≤k≤t Πt,k = O(t−γ). This completes the proof.
Theorem 11. Assume all conditions in Theorem 8 hold and, in addition, α > 1/4

in the case γ = 1. Then we have (a) zt converges a.s., (b) limt→∞ ξt = 0 a.s., and (c)
the two sequences {x1

t , t ≥ 0} and {x2
t , t ≥ 0} converge to the same limit a.s., which

implies strong consensus.
Proof. Recall that zt+1 = z0 +

∑t
k=0 akw̃k for t ≥ 0, where w̃t = (w12

t + w21
t )/2.

Since {w̃k, k ≥ 0} is a sequence of independent random variables with zero mean
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Fig. 3. A symmetric ring network where each agent has two neighbors.

and satisfies
∑∞

k=0 E|akw̃k|2 ≤ supk E|w̃k|2(
∑∞

k=0 a
2
k) < ∞, by the Khintchine–

Kolmogorov convergence theorem [13],
∑∞
k=0 akw̃k converges a.s. Hence assertion

(a) holds.
Now we prove (b). By Lemma 10 we have

sup
1≤k≤t

Πt,k = O((t1/2 log t)−1),(18)

whenever α > 0 (resp., α > 1/4) in the case 1/2 < γ < 1 (resp., γ = 1). To
apply Lemma 9, we take lk = k and p = 2, which combined with (18) yields
limt→∞

∑t
k=1 Πt,kvk = 0, a.s. Hence limt→∞ ξt = 0 a.s. by (8), and (b) follows.

Assertion (c) immediately follows from (a) and (b).
The requirement α > 1/4, associated with γ = 1, is a mild condition, and from

an algorithmic point of view, it is not an essential restriction since in applications
{at, t ≥ 0} is a sequence to be designed. In fact, by a slightly more complicated
procedure, the restriction α > 1/4 can be removed; see the more recent work [22].

4. Models with symmetric structures. We continue to consider models where
the neighboring relation for the n agents displays a certain symmetry. A simple ex-
ample is shown in Figure 3 with ring-coupled agents each having two neighbors.

We specify the associated digraph as follows. First, the n nodes are listed by the
order 1, 2, . . . , n. The ith node has a neighbor set Ni listed as (αi1, . . . , αiK) as a subset
of {1, . . . , n}. The constantK ≥ 1 denotes the number of neighbors, which is the same
for all agents. Then the (i+1)th node’s neighbors are given by (αi1+1, . . . , αiK+1). In
other words, by incrementing each αik (associated with Ai) by one, where 1 ≤ k ≤ K,
we obtain the neighbor set for node i+ 1, and after a total of n steps, we retrieve node
i and its neighbors Ni. In fact, the underlying digraph may be realized by arranging
the n nodes sequentially on a ring and adding the edges accordingly. For this reason,
we term the fulfillment of the above incrementing rule as the circulant invariance
property of the digraph. In this section, if an index (e.g., αik + 1) for a node or agent
exceeds n, we identify it as an integer between 1 and n by taking mod(n).

Notice that the above symmetry assumption does not ensure the strong con-
nectivity of the digraph. For illustration, consider a digraph with the set of nodes
N = S1∪S2, where S1 = {1, 3, 5} and S2 = {2, 4, 6}. All nodes inside each Si, i = 1, 2,
are neighbors to each other, but there exists no edge between two nodes with one in
S1 and the other in S2. This digraph has the circulant invariance property without
connectivity. Throughout this section, we make the following assumption.

(A3) The digraph G = (N , E) has the circulant invariance property and strong
connectivity.
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Define the centroid of the state configuration (x1
t , . . . , x

n
t ) as zt = (1/n)

∑n
i=1 x

i
t.

Under (A3), it is easy to show that zt satisfies

zt+1 = zt + (at/(nK))
∑
i∈N

∑
k∈Ni

wikt , t ≥ 0.(19)

Lemma 12. Under (A1)–(A3), the sequence {zt, t ≥ 0} converges in mean square
and a.s.

Proof. The lemma may be proved by the same method as in analyzing {zt, t ≥ 0}
in Theorems 8 and 11 for the two-agent model, and the details are omitted.

We further denote the difference between xi+1
t and xit by

ξit = xi+1
t − xit, 1 ≤ i ≤ n.(20)

Note that i and i+1 are two consecutively labelled agents, unnecessarily being neigh-
bors to each other. By our convention, xn+1

t is identified as x1
t . Thus ξnt = x1

t − xnt .
The variables ξit, 1 ≤ i ≤ n, are not linearly independent. Recall that |Ni| = K for
all i ∈ N . Specializing algorithm (2) to the model of this section, we have

xit+1 = (1− at)xit + (at/K)
∑
k∈Ni

(xkt + wikt )(21)

for each i ∈ N , and

xi+1
t+1 = (1− at)xi+1

t + (at/K)
∑

k∈Ni+1

(xkt + wi+1,k
t )

= (1− at)xi+1
t + (at/K)

∑
k∈Ni

(xk+1
t + wi+1,k+1

t ),(22)

where we obtain (22) by use of the circulant invariance of the neighboring relation.
By subtracting both sides of (22) by (21), we get the dynamics

ξit+1 = (1− at)ξit + (at/K)
∑
k∈Ni

ξkt + (at/K)w̃it, i ∈ N ,(23)

where

w̃it =
∑
k∈Ni

w̃i,kt , w̃i,kt = wi+1,k+1
t − wi,kt(24)

with k ∈ Ni for w̃i,kt .
Lemma 13. Let ξit and w̃it be defined by (20) and (24), respectively. Under (A3)

we have the zero-sum property:
∑
i∈N ξit = 0 and

∑
i∈N w̃it = 0 for all t ≥ 0.

Proof. The first equality holds by the definition of ξit, 1 ≤ i ≤ n. We now prove
the second equality: ∑

i∈N
w̃it =

∑
i∈N

∑
k∈Ni

wi+1,k+1
t −

∑
i∈N

∑
k∈Ni

wi,kt

=
∑
i∈N

∑
k∈Ni

wi,kt −
∑
i∈N

∑
k∈Ni

wi,kt(25)

= 0,
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where we get (25) by the circulant invariance property.
Before further analysis, we introduce the n× n stochastic matrix

M(a) = I + aM c, a ∈ [0, 1].(26)

The circulant matrix M c is given in the form

M c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 c1 c2 · · · cn−1

cn−1 −1 c1
. . .

...

cn−2 cn−1 −1
. . . c2

...
. . . . . . . . . c1

c1 · · · cn−2 cn−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where M c
ii = −1 for 1 ≤ i ≤ n, and for 2 ≤ k ≤ n,

M c
1k = ck−1 =

{
1/K if k ∈ N1,
0 otherwise.

Since M c is a circulant matrix [16], it is well defined after the first row is determined.
In fact, both M c and M(a) are circulant matrices.

Proposition 14. Under (A3), M(a) is doubly stochastic for any a ∈ [0, 1]; i.e.,
both M(a) and [M(a)]T are stochastic matrices, and M(a) is irreducible for a ∈ (0, 1].

Proof. All row and column sums in M(a) are equal to one. Hence M(a) is doubly
stochastic. Since G is strongly connected, M(a) is irreducible for a > 0.

Define ξt = [ξ1t , . . . , ξ
n
t ]T and w̃t = [w̃1

t , . . . , w̃
n
t ]T . We can check that ξt satisfies

ξt+1 = M(at)ξt + (at/K)w̃t, t ≥ 0.(27)

The following lemma plays an essential role for the stability analysis of (27).
Lemma 15. Assume (A2)–(A3) hold, and the real vector θ = [θ1, . . . , θn]T has a

zero column sum, i.e.,
∑n
i=1 θi = 0. Then for all t ≥ k ≥ 0, we have

(i) The column sum of M(at) . . .M(ak)θ is zero, i.e.,
∑n

i=1M
θ
t,k(i) = 0, where

we denote Mθ
t,k = [Mθ

t,k(1), . . . ,Mθ
t,k(n)]T = M(at) . . .M(ak)θ.

(ii) There exist constants δ∗ ∈ (0, 1) and T2 > 0, both independent of θ, such that

|M(at) . . .M(ak)θ| ≤ |(1 − δ∗at) . . . (1− δ∗ak)θ|

for all t ≥ k ≥ T2, where T2 is chosen such that at ≤ 1/2 for all t ≥ T2.
Proof. The matrix M(ak), k ≥ 0, is doubly stochastic by Proposition 14. Then

θ having a zero column sum implies M(ak)θ has a zero column sum. Repeating this
argument, we obtain part (i).

We now prove (ii). First, let ωn = e2πi/n, where i =
√
−1 is the imaginary unit,

and denote

Fn =
1√
n

⎛
⎜⎜⎜⎝

1 1 1 · · · 1
1 ωn ω2

n · · · ωn−1
n

...
...

...
...

...
1 ωn−1

n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n

⎞
⎟⎟⎟⎠ ,
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which is the so-called Fourier matrix of order n and satisfies F ∗
nFn = I, where F ∗

n is
the conjugate transpose of Fn. For a ∈ [0, 1], we introduce the polynomial

ϕ(a, z) = (1− a) + a(c1z + c2z
2 + · · ·+ cn−1z

n).

By well-known results for circulant matrices [16, 8], the n eigenvalues {λ1,t, . . . , λn,t}
of M(at) are given by λk,t = ϕ(at, ωk−1

n ) for 1 ≤ k ≤ n. Obviously, λ1,t = 1. Further-
more, M(at) may be diagonalized in the form M(at) = F ∗

n ×diag(λ1,t, . . . , λn,t)×Fn.
It is easy to verify that

M(at) . . .M(ak) = F ∗
n ×Πt

j=k diag(λ1,j , . . . , λn,j)× Fn
= F ∗

n ×Πt
j=k diag(0, λ2,j , . . . , λn,j)× Fn + (1/n)1n1Tn .

Since 1n1Tnθ = 0 for any θ with a zero column sum, we have

M(at) . . .M(ak)θ = F ∗
n ×Πt

j=k diag(0, λ2,j , . . . , λn,j)× Fnθ.(28)

Notice that we may write ϕ(a,wk−1
n ) = 1 + ck,1a + ick,2a for 2 ≤ k ≤ n, where

ck,1 and ck,2 are constants independent of a. For 0 < a < 1, the matrix M(a)
is irreducible and aperiodic,2 and hence for 2 ≤ k ≤ n, |ϕ(a,wk−1

n )| < λ1,t = 1;
the reader is referred to [40] for additional details on spectral theory of stochastic
matrices. Then we necessarily have ck,1 < 0, and in addition, for 0 < a < 1,

|ϕ(a, ωk−1
n )|2 = (1 + ck,1a)2 + c2k,2a

2 < 1, 2 ≤ k ≤ n.(29)

By taking a ↑ 1 in (29), we get −2 ≤ ck,1 < 0, |ck,2| ≤ 1, and c2k,1 + c2k,2 ≤ −2ck,1 for
2 ≤ k ≤ n. Hence it follows that, for 2 ≤ k ≤ n,

|λk,t|2 = (1 + ck,1at)2 + c2k,2a
2
t

≤ 1 + 2ck,1at − 2ck,1a2
t

= (1 + ck,1at/2)2 + ck,1at − c2k,1a2
t/4− 2ck,1a2

t .

Since−2 ≤ ck,1 < 0, we have ck,1at−c2k,1a2
t/4−2ck,1a2

t = |ck,1|at(ck,1at/4+2at−1) ≤ 0
for all at ≤ 1/2. Hence for all t ≥ T2 such that at ≤ 1/2, we have

|λk,t| = |ϕ(at, ωk−1
n )| ≤ 1 + ck,1at/2,(30)

where 2 ≤ k ≤ n. Denote δ∗ = inf2≤k≤n(1/2)|ck,1| > 0. Then it follows that

Πt
j=l|λk,j | < Πt

j=l(1− δ∗aj)(31)

for 2 ≤ k ≤ n, where t ≥ l ≥ T2. Hence we obtain

|M(at) . . .M(ak)θ|2 = θTF ∗
n [Πt

j=k diag(0, λ2,j , . . . , λn,j)]∗FnF ∗
n

× [Πt
j=k diag(0, λ2,j , . . . , λn,j)]Fnθ

≤ Πt
j=k(1 − δ∗aj)2|θ|2.

This completes the proof.

2When a < 1, the n diagonal entries of M(a) are all positive, which ensures aperiodicity of M(a).
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Corollary 16. Let θ, T2 and δ∗ be given as in Lemma 15 and denote M(t, k) =
M(at) . . .M(ak) for t > k ≥ T2. Then Mo(t, k) = F ∗

n [Πt
j=k diag(0, λ2,j , . . . , λn,j)]Fn

is a real matrix satisfying

M(t, k)θ = Mo(t, k)θ.(32)

Moreover, |Mo(t, k)|∞ ≤ CΠt
j=k(1 − δ∗aj) for some C > 0 independent of t, k. The

infinity norm | · |∞ denotes the largest absolute value of the elements in the matrix.
Proof. Obviously Mo(t, k) is a real matrix since Mo(t, k) = M(at) . . .M(ak) −

(1/n)1n1Tn , and (32) follows from (28). The estimate for |Mo(t, k)|∞ follows from
(31).

Theorem 17. Assume (A1)–(A3). Then algorithm (2) achieves (i) mean square
consensus, and (ii) strong consensus for (a) γ ∈ (1/2, 1) associated with any α > 0 in
(A2), and (b) γ = 1 provided that α > 1/(2δ∗).

Proof. The theorem is proved using the same procedure as in the two-agent case.
For {ξt, t ≥ 0}, we first write the recursion of ξt by (27) with the initial time t = T1∨T2

and show its mean square convergence by Lemma 13 and Lemma 15(ii). For proving
almost sure convergence of ξt, we use Lemma 13, Corollary 16, and Lemma 9 to carry
out the double array analysis, where we need to take α > 1/(2δ∗) for the case γ = 1.

These combined with Lemma 12 lead to the mean square and almost sure con-
vergence of the n sequences {xit, t ≥ 0}, i ∈ N , to the same limit.

For deterministic models, if the coefficient matrix in the consensus algorithm is
doubly stochastic, the sum of the individual states remains a constant during the
iterates. Moreover, if the algorithms achieve consensus, the state of each agent con-
verges to the initial state average, giving the so-called average-consensus [34, 51]. In
our model, due to the noise, the limit is a random variable differing from the initial
state average although M(at) is a doubly stochastic matrix. We have the following
performance estimate which illustrates the effect of the noise.

Proposition 18. Under (A1)–(A3), the state iterates in (2) satisfy

E| lim
t→∞ xit − ave(x0)| = lim

t→∞E|xit − ave(x0)|2 = O(Q) for all i ∈ N ,(33)

where ave(x0) = (1/n)
∑n
k=1 x

k
0 is the initial state average and Q is the variance of

the i.i.d. noises.
Proof. This follows from the mean square consensus result in Theorem 17 and

the relation (19).
As the noise variance tends to zero, (33) indicates that the mean square error

between limt→∞ xit and ave(x0) converges to zero. This is consistent with the corre-
sponding average-consensus results in deterministic models.

5. Consensus seeking on connected undirected graphs. In this section we
consider more general network topologies but require that all links are bidirectional;
i.e., we restrict our attention to undirected graphs.

Let the location of the n agents be associated with an undirected graph (to be
simply called a graph) G = (N , E) consisting of a set of nodes N = {1, 2, . . . , n} and
a set of edges E ⊂ N × N . We denote each edge as an unordered pair (i, j), where
i �= j. A path in G consists of a sequence of nodes i1, i2, . . . , il, l ≥ 2, such that
(ik, ik+1) ∈ E for all 1 ≤ k ≤ l−1. The graph G is said to be connected if there exists
a path between any two distinct nodes. The agent Ak (resp., node k) is a neighbor
of Ai (resp., node i) if (k, i) ∈ E , where k �= i. Denote the neighbors of node i by
Ni ⊂ N . We make the following assumption.

(A4) The undirected graph G is connected.
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5.1. The measurement model and stochastic approximation. The for-
mulation in section 2 is adapted to the undirected graph G = (N , E) as follows. For
each i ∈ N , we denote the measurement by agent Ai of agent Ak’s state by

yikt = xkt + wikt , t ∈ Z
+, k ∈ Ni,(34)

where wikt is the additive noise. Write the state vector xt = [x1
t , . . . , x

n
t ]T . We

introduce the following assumption which is slightly weaker for the noise condition
than (A1).

(A1′) The noises {wikt , t ∈ Z
+, i ∈ N , k ∈ Ni} are independent with respect to the

indices i, k, t and also independent of x0, and each wikt has zero mean and variance
Qi,kt . In addition, E|x0|2 <∞ and supt≥0,i∈N supk∈Ni

Qikt <∞.
We use the state updating rule

xit+1 = (1− at)xit +
at
|Ni|

∑
k∈Ni

yikt , t ∈ Z
+,(35)

where i ∈ N and at ∈ [0, 1], and we have the relation

xit+1 = xit + at(mi
t − xit),(36)

where mi
t = (1/|Ni|)

∑
k∈Ni

yikt .

5.2. Stochastic Lyapunov functions. The specification of the stochastic Lya-
punov function makes use of the relative positions of the agents. For agent Ai, we
define its local potential as

Pi(t) = (1/2)
∑
j∈Ni

|xit − x
j
t |2, t ≥ 0.

Accordingly, the total potential and total mean potential are given by

PN (t) =
∑
i∈N

Pi(t), V (t) = E
∑
i∈N

Pi(t), t ≥ 0.

It is easy to show that mi
t − xit in (36) may be decomposed into the form

mi
t − xit = − 1

|Ni|
∂Pi(t)
∂xit

+
1
|Ni|

∑
j∈Ni

wijt .(37)

This means the state of each agent is updated along the descent direction of the
local potential subject to an additive noise, and justifies a stochastic approximation
interpretation of algorithm (35). This interpretation is also applicable to digraphs.

Under (A4), it is easy to show that PN (t) = 0 if and only if x1
t = · · · = xnt . For

our convergence analysis, we will use PN (t) as a stochastic Lyapunov function. We
introduce the graph Laplacian for G as a symmetric matrix L = (aij)1≤i,j≤n, where

aij =

⎧⎨
⎩

di if j = i,
−1 if j ∈ Ni,
0 otherwise,

(38)

and di = |Ni| is the degree (i.e., the number of neighbors) of node i. Denote 1n =
[1, 1, . . . , 1]T ∈ R

n. Since G is connected, rank(L) = n − 1 and the null space of L
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is span{1n} [19, 35]. We have the following relation in terms of the graph Laplacian
[19]:

PN (t) = (1/2)
∑
i∈N

∑
j∈Ni

|xit − x
j
t |2 = xTt Lxt, t ≥ 0.

By (35), we have the state updating rule

xit+1 = (1 − at)xit + (at/|Ni|)
∑
j∈Ni

xjt + (at/|Ni|)
∑
j∈Ni

wijt .(39)

Denote

w̃it = (1/|Ni|)
∑
j∈Ni

wijt , w̃t = [w̃1
t , . . . , w̃

n
t ]T .(40)

With di = |Ni|, we further introduce the matrix L̂ = (âij)1≤i,j≤n, where

âij =

⎧⎨
⎩

1 if j = i,
−d−1

i if j ∈ Ni,
0 otherwise.

(41)

Define the diagonal matrix DN = diag(d−1
1 , . . . , d−1

n ). Note that L̂ = DNL.
Lemma 19. For t ≥ 0 and {xt, t ≥ 0} generated by (34)–(35), we have

PN (t+ 1) = PN (t)− 2atxTt LDNLxt + a2
tx
T
t LDNLDNLxt

+ 2atxTt Lw̃t − 2a2
tx
T
t LDNLw̃t + a2

t w̃
T
t Lw̃t.(42)

Proof. By (39), we get the vector equation

xt+1 = xt − atL̂xt + atw̃t, t ≥ 0,(43)

which leads to the recursion of the total potential as follows:

PN (t+ 1) = xTt+1Lxt+1

= xTt Lxt − 2atxTt LDNLxt + a2
tx
T
t LDNLDNLxt

+ 2atxTt Lw̃t − 2a2
tx
T
t LDNLw̃t + a2

t w̃
T
t Lw̃t,

and the lemma follows.
In the subsequent proofs, we use A ⇒ B as the abbreviation for “A implies B,”

and A⇔ B for “A is equivalent to B.”
Lemma 20. Under (A4), we have the following assertions:
(i) The null spaces of L, LDNL, and LDNLDNL are each given by span{1n}.
(ii) There exist c1 > 0 and c2 > 0 such that LDNL ≥ c1L and LDNLDNL ≤ c2L.
(iii) In addition, we assume (A1′)–(A2′) and let Tc be such that 1−2atc1+a2

t c2 ≥ 0
for all t ≥ Tc. Then for all t ≥ Tc, we have

V (t+ 1) ≤ (1− 2atc1 + a2
t c2)V (t) +O(a2

t ).(44)

Proof. See the appendix.
Theorem 21. Under (A1′)–(A2′) and (A4), algorithm (35) achieves weak con-

sensus.
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Proof. For Tc given in Lemma 20(iii), we select T̂c ≥ Tc to ensure at ≤ c1c
−1
2 .

Hence 1 − c1at ≥ 1 − 2c1at + c2a
2
t ≥ 0 for all t ≥ T̂c, and we find a fixed constant

C > 0 such that

V (t+ 1) ≤ (1 − c1at)V (t) + Ca2
t

for all t ≥ T̂c; this leads to

V (t+ 1) ≤ V (T̂c)
t∏

j=T̂c

(1− c1aj) + C
t∑

k=T̂c

t∏
j=k+1

(1− c1aj)a2
k,(45)

where
∏t
j=t+1(1− c1aj) � 1. Under (A2′), elementary estimates using (45) yield

lim
t→∞V (t) = 0.(46)

It immediately follows that

lim
t→∞E|xit − xkt |2 = 0, i ∈ N , k ∈ Ni.(47)

Since G is connected, there exists a path between any pair of distinct nodes i and k.
By repeatedly applying (47) to all pairs of neighboring nodes along that path, we can
show that limt→∞E|xit − xkt |2 = 0 for any i, k ∈ N .

Corollary 22. In Theorem 21, we assume all other assumptions but replace
(A2′)(ii) by the condition (H): There exists T0 > 0 such that for t ≥ T0, α0t

−γ0 ≤
at ≤ β0t

−γ0 holds for some 0 < α0 < β0 <∞ and γ0 ∈ (0, 1/2]. Then algorithm (35)
still achieves weak consensus.

Proof. For (45), we have
∏t
j=k+1(1 − c1aj)a2

k ≤
∏t
j=k+1(1 − c1aj/2)2a2

k. We
apply Corollary 7 to show that (46) still holds. This completes the proof.

Remark. Notice that under (H),
∑∞

t=0 a
2
t =∞. The conditions of Corollary 22 in

general do not ensure mean square consensus.

5.3. The direction of invariance. Theorem 21 shows the difference between
the states of any two agents converges to zero in mean square. However, this alone does
not mean that they will converge to a common limit. The asymptotic vanishing of the
stochastic Lyapunov function indicates only that the state vector xt will approach the
subspace span{1n}. To obtain mean square consensus results, we need some additional
estimation. The strategy is to show that the oscillation of the sequence {xt, t ≥ 0}
along the direction 1n will gradually die off. This is achieved by proving the existence
of a vector η which is not orthogonal to 1n and such that the linear combination ηTxt
of the components in xt converges. For convenience, η will be chosen to satisfy the
additional requirement that ηTxt+1 depends not on the whole of xt but only on ηTxt;
this will greatly facilitate the associated calculation.

Definition 23. Let xt = [x1
t , . . . , x

n
t ]T be generated by (35). If η = [η1, . . . , ηn]T

is a real-valued vector of unit length, i.e., |η|2 =
∑n
i=1 η

2
i = 1, and satisfies

ηTxt+1 = ηTxt + atη
T w̃t, t ≥ 0,(48)

for any initial condition x0 and any step size sequence at ∈ [0, 1], where w̃t is given
in (40), then η is called a direction of invariance associated with (35).

The directions of invariance associated with the consensus algorithm (35) are
easily characterized in terms of the degrees of the nodes of the underlying graph.
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Theorem 24. We have the following assertions:
(i) There exists a real-valued vector η = (η1, . . . , ηn)T of unit length satisfying

ηT L̂ = 0, where L̂ is defined by (41).
(ii) If |η| = 1, then η is a direction of invariance for (35) if and only if ηT L̂ = 0.
(iii) Under (A4), the direction of invariance for (35) has the representation η =

c[d1, . . . , dn]T , where c = ±(
∑n
i=1 d

2
i )

1/2 and di = |Ni| is the degree of node i.
Proof. It is easy to prove (i) since L̂ does not have full rank, and η is in fact the

left eigenvector of L̂ associated with the eigenvalue 0.
We now show (ii). The condition ηT L̂ = 0 combined with (43) implies

ηTxt+1 = ηTxt + atη
T w̃t.

The sufficiency part of (ii) follows easily. Conversely, if the unit length vector η
satisfies (48) for all initial states xi0 and the step size at as specified in Definition 23,
then we necessarily have ηT L̂ = 0. So the necessity part of (ii) holds.

We continue to prove (iii) under (A4). By (ii) and the definition of L̂, η with
|η| = 1 is a direction of invariance if and only if ηTDNL = 0, which in turn is
equivalent to LDN η = 0. By (A4) and Lemma 20, we have DN η = c1n, where c �= 0
is a constant to be determined. This gives η = c[d1, . . . , dn]T , where c is determined
by the condition |η| = 1. The direction of invariance is unique up to sign.

If η is a direction of invariance, then Theorem 24 shows under (A4) that all
elements of η have the same sign. Therefore, η is not orthogonal to 1n, and the
requirement stated at the beginning of this section is met. Geometrically, the notion of
the direction of invariance means under (35) and zero noise conditions, the projection
(i.e., (ηTxt)η) of xt in R

n along the direction η would remain a constant vector
regardless of the value of at ∈ [0, 1] used in the iterates.

5.4. Mean square consensus. Now we are in a position to establish mean
square consensus.

Lemma 25. Assume (A1′)–(A2′) and (A4), and let {xt, t ≥ 0} be given by (35),
η0 = [d1, . . . , dn]T , where di = |Ni|. Then there exists a random variable y∗ such that
limt→∞ E|η0xt − y∗|2 = 0.

Proof. By Theorem 24, η0/|η0| is a direction of invariance. Hence, we have

ηT0 xt+1 = ηT0 x0 + a0η
T
0 w̃0 + · · ·+ atη

T
0 w̃t.

By (A1′) and (A2′), it follows that ηT0 xt converges in mean square.
The weak consensus result combined with the convergence of ηT0 xt ensures that

xt itself converges.
Theorem 26. Under (A1′)–(A2′) and (A4), algorithm (35) achieves mean square

consensus.
Proof. By Theorem 21, we have weak consensus, i.e.,

lim
t→∞E|xit − xkt |2 = 0 for all i, k ∈ N .(49)

On the other hand, by Lemma 25, as t→∞,

ηT0 xt = ηT0 [x1
t − x1

t , . . . , x
n
t − x1

t ]
T + ηT0 [x1

t , . . . , x
1
t ]
T

converges in mean square, which combined with (49) implies x1
t converges in mean

square. By (49) again, the mean square consensus result follows.
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6. Leader following and convergence. Now we apply the stochastic Lya-
punov function approach to the scenario of leader following [23, 44]. Suppose there
are n agents located in the digraph Gd = (N , E), and without loss of generality, de-
note the leader by agent A1. We denote by NF = N\{1} the set of follower agents.
For i ∈ N , denote the individual states by xit, t ∈ Z

+. The leader A1 does not re-
ceive measurements from other agents; to capture this feature in Gd, there is no edge
reaching A1 from other agents. The initial state of A1 is chosen randomly, after which
the state remains constant. That is, x1

t ≡ ϑ, where ϑ is a random variable, which is
unknown to any other agent Ai, i ∈ NF .

For node i ∈ NF , its measurement is given as

yi,kt = xkt + wi,kt , t ∈ Z
+, k ∈ Ni,

where wi,kt is the additive noise. For i ∈ NF , the state is updated by

xit+1 = (1 − at)xit +
at
|Ni|

∑
j∈Ni

yijt .(50)

We adapt (A1′) to the graph Gd = (N , E) in an obvious manner. But it should be
kept in mind that in this leader following model the noise term wikt is defined only
for i ∈ NF since the leader has no neighbor. Also, x1

0 ≡ ϑ since A1 is the leader, and
under (A1′), we have E|ϑ|2 <∞.

To make the problem nontrivial, we use the following underlying assumption.
(A5) In Gd = (N , E), node 1 is the neighbor of at least one node in NF .
Now, based on the digraph Gd = (N , E), we set each (i, j) ∈ E as an unordered

pair and this procedure induces an undirected graph Gu = (N , Eu) with its associated
graph Laplacian Lu. We decompose Lu into the form

Lu =
[

Lu1
Lun−1

]
,

where Lu1 is the first row in Lu.
In order to develop the stochastic Lyapunov analysis, we need some restrictions

on the set of nodes NF and the associated edges. Let (NF , EF ) denote the directed
subgraph of (N , E) obtained by removing node 1 and all edges containing 1 as the
initial node. We introduce the following assumption.

(A6) An ordered pair (i, j) ∈ EF implies the ordered pair (j, i) is also in EF .
Remark. (A5)–(A6) imply that at least one follower can receive information from

the leader while the information exchange among the followers is bidirectional.
In analogy to the construction of Gu, we induce from the digraph (NF , EF ) an

undirected graph, denoted by GFu = (NF , EuF ). We introduce the following assump-
tion.

(A7) The undirected graph GFu = (NF , EuF ) is connected.
Proposition 27. Under (A5)–(A7), the undirected graph Gu = (N , Eu) is con-

nected and rank(Lu) = rank(Lun−1) = n− 1.
Proof. It is obvious that Gu is connected. Hence rank(Lu) = n − 1. Since

1TnL
u = 0, it follows that Lu1 is a linear combination of the rows in Lun−1, which

implies rank(Lun−1) = n− 1.
Denote xϑ,t = [ϑ, x2

t , . . . , x
n
t ]T , w̃i = (1/|Ni|)

∑
k∈Ni

wi,kt for i ≥ 2, and w̃t =
[0, w̃2

t , . . . , w̃
n
t ]T . Write D0 = diag(0, d−1

2 , d−1
n ). By writing (50) in the vector form,

we get the following lemma.
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Lemma 28. We have the recursion for the state vector

xϑ,t+1 = xϑ,t − atD0L
uxϑ,t + atw̃t, t ≥ 0,

where xϑ,t is generated by algorithm (50).
Theorem 29. Under (A1′)–(A2′), (A5)–(A7), and algorithm (50), we have

lim
t→∞E|xit − ϑ|2 = 0(51)

for all i ∈ NF , where ϑ is the fixed random variable as the state for the leader.
Proof. Step 1. Define the stochastic Lyapunov function Pϑ,N (t) = xTϑ,tL

uxϑ,t,
where Lu ≥ 0, and denote V (t) = EPϑ,N (t), t ≥ 0. By Lemma 28, it is easy to show

V (t+ 1) = V (t)− 2atE[xTϑ,tL
uD0L

uxϑ,t]

+ a2
tE[xTϑ,tL

uD0L
uD0L

uxϑ,t] +O(a2
t ).(52)

Let yθ = [θ, y2, . . . , yn]T , where θ denotes a fixed real number. First, by rank(Lu) =
n−1, we can show that Luyθ = 0⇔ yθ = θ1Tn . Obviously Luyθ = 0⇒ LuD0L

uyθ = 0
⇒ LuD0L

uD0L
uyθ = 0. On the other hand, letting Lu = [(Lu)1/2]2, where (Lu)1/2 ≥

0, we have LuD0L
uD0L

uyθ = 0 ⇒ (Lu)1/2D0L
uyθ = 0 ⇒ LuD0L

uyθ = 0 ⇒
diag(0, d−1/2

2 , . . . , d
−1/2
n )Luyθ = 0 ⇔ diag(d−1/2

2 , . . . , d
−1/2
n )Lun−1yθ = 0 ⇔ Lun−1yθ =

0 ⇔ Luyθ = 0 since rank(Lun−1) = rank(Lu) = n − 1 by Proposition 27. Now
we conclude that θ1n is the unique point where each of yTθ L

uyθ, yTθ L
uD0L

uyθ, and
yTθ L

uD0L
uD0L

uyθ attains its minimum 0.
Step 2. Letting y(n−1) = [y2, . . . , yn]T , we introduce three positive semidefinite

quadratic forms in terms of y(n−1): Q1(y(n−1)) = yTθ L
uyθ, Q2(y(n−1)) = yTθ L

uD0L
uyθ,

and Q3(y(n−1)) = yTθ L
uD0L

uD0L
uyθ. Let z = y(n−1) − θ1n−1, and we may write

0 ≤ Q1(y(n−1)) = zTM1z + vT z + c,

where M1 is an (n − 1) × (n − 1) symmetric matrix, v ∈ R
n−1, and c ∈ R. Clearly

zTM1z + vT z + c = 0 ⇔ z = 0 since Q1(y(n−1)) = 0 ⇔ yθ = θ1n by Step 1; by
elementary linear algebra and a contradictory argument we can show c = 0, vT = 0,
and M1 > 0. Hence, Q1(y(n−1)) = zTM1z. Since M1 is constructed based on the
second order coefficient of y(n−1) in yTθ L

uyθ, we see that M1 is independent of θ.
Similarly, we can find matrices M2 > 0 and M3 > 0, both independent of θ, such that

Q2(y(n−1)) = zTM2z, Q3(y(n−1)) = zTM3z,

where z = y(n−1) − θ1n−1. We denote the smallest and largest eigenvalue of Mi,
respectively, by λi,min > 0 and λi,max > 0 for i = 1, 2, 3. Now we have

Q2(y(n−1)) = zTM2z ≥ λ2,minλ
−1
1,maxz

TM1z = λ2,minλ
−1
1,maxQ1(y(n−1)),(53)

Q3(y(n−1)) = zTM3z ≤ λ3,maxλ
−1
1,minz

TM1z = λ3,maxλ
−1
1,minQ1(y(n−1)).(54)

Step 3. Now it follows from (52) and (53)–(54) that

V (t+ 1) ≤ (1 − 2τ1at + τ2a
2
t )V (t) +O(a2

t ),(55)

where τ1 = λ2,minλ
−1
1,max and τ2 = λ3,maxλ

−1
1,min. Consequently, by use of product

estimates as in (45), we can show limt→∞ V (t) = 0. Since the first entry in xϑ,t
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1

2 3

Fig. 4. A digraph with 3 nodes.

is ϑ and the associated undirected graph Gu = (N , Eu) is connected, by the same
argument as in proving weak consensus in Theorem 21, we can obtain (51).

Remark. In Theorem 29, if (A2′)(ii) is replaced by the condition (H): α0t
−γ0 ≤

at ≤ β0t
−γ0 for t ≥ T0, where α0 > 0 and γ0 ∈ (0, 1/2] (see Corollary 22), then

Theorem 29 still holds. This may be proved by combining the proving argument for
Corollary 22 with (55) to get limt→∞ V (t) = 0.

7. Numerical studies.

7.1. Simulations with a symmetric digraph. The digraph is shown in Figure
4, whereN1 = {2},N2 = {3}, andN3 = {1}. The initial condition for xt = [x1

t , x
2
t , x

3
t ]

is [4, 3, 1] at t = 0, and the i.i.d. Gaussian measurement noises have variance σ2 = 0.01.
Figure 5 shows the simulation with equal weights to an agent’s neighbors and itself
(as in Example 1) in the averaging rule (x1

t+1 = (x1
t + y12

t )/2, etc.), without obtaining
consensus. Figure 6 shows the convergence of algorithm (2) with the step size sequence
{at = (t+ 5)−0.85, t ≥ 0}.

0 500 1000 1500 2000 2500 3000
1

1.5

2

2.5

3

3.5

4

iterates

x t

Fig. 5. Equal weights are used for each agent’s state and observation.

7.2. Simulations with an undirected graph. The undirected graph is shown
in Figure 7 with N = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (2, 4)}. The initial condition
is xt|t=0 = [5, 1, 3, 2]T , and the i.i.d. Gaussian noises have variance σ2 = 0.01. The
simulation of the averaging rule with equal weights is given in Figure 8; hence we have
x1
t+1 = (x1

t +y12
t )/2 and x2

t+1 = x2
t /4+(y21

t +y23
t +y24

t )/4, etc., where t ≥ 0. It is seen
that the 4 state trajectories in Figure 8 move towards each other rather quickly at the
beginning, but they maintain long term fluctuations as the state iteration continues.
The stochastic algorithm (35) is used in Figure 9, where at = (t + 5)−0.85, t ≥ 0.
Figure 9 shows the 4 trajectories all converge to the same constant level.
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Fig. 6. The 3-agent example using decreasing step size at = (t + 5)−0.85.

12

3

4

Fig. 7. The undirected graph with 4 nodes.

7.3. The leader following model. We adapt the undirected graph in Figure
7 to the leader following situation as follows. We set node 1 as the leader (without a
neighbor) and N2 = {1, 3, 4}, N3 = {2}, N4 = {2}. We take x1

0 ≡ 4 and the initial
condition is given as xt|t=0 = [4, 2, 1, 3]T . Figure 10 shows the simulation with equal
weights for each follower agent and its neighbors. We see that all three states of the
follower agents move into a neighborhood of the constant level 4 and oscillate around
that value. Compared with Figure 8, the trajectories of the followers in Figure 10
have a far smaller fluctuation. The reason is that in the leader following case, the
total potential attains its minimum only at the leader’s state rather than at all points
in span{1n}, which results in more regular behavior for the agents. In Figure 11 we
show the simulation of algorithm (50) with at = (t + 5)−0.65, t ≥ 0, which exhibits a
satisfactory convergent behavior.

8. Concluding remarks. We consider consensus problems for networked agents
with noisy measurements. First, the double array analysis is developed to analyze
mean square and almost sure convergence. Next, stochastic Lyapunov functions are
introduced to prove mean square consensus with the aid of the so-called direction of
invariance, and this approach is further applied to leader following. We note that the
methods developed in this paper may be extended to deal with general digraphs, and
the second order moment condition for the noise may be relaxed when applying the
stochastic double array analysis; see the recent work [22] for details. For future work,
it is of interest to develop stochastic algorithms in models with dynamic topologies
and asynchronous state updates, and in particular, extend the double array analysis
to networks with switching topologies.
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Fig. 8. The 4-agent example using equal weights for each agent’s state and observations.
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Fig. 9. The 4-agent example using a decreasing step size at = (t + 5)−0.85.
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Fig. 10. Leader following using equal weights for each follower agent’s state and observations.
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Fig. 11. Leader following using a decreasing step size at = (t + 5)−0.65.

Appendix.
Proof of Lemma 6. For case (i), by (10) we have

t∑
k=T1

Π2
t,k ≤

t∑
k=T1

β2(k + 1)4α

k2(t+ 1)4α
.

The desired upper bound is obtained from elementary estimates by considering three
scenarios for α as in (14).

We continue with the estimate for case (ii). Let δ = 2α/(1− γ) > 0 and define

St =
t∑

k=1

k−2γe2δ(k+1)1−γ

, Ht = t−γe2δ(t+1)1−γ

, t ≥ 1.

Clearly there exists a sufficiently large t0 > 0 such that Ht is strictly increasing for
t ≥ t0. In addition, both St and Ht diverge to infinity. If we can show that for t > t0,

0 < Rt =
St − St−1

Ht −Ht−1
→ R∗, as t→∞,(A.1)

for some R∗ > 0, then it is straightforward to show that St = O(Ht). To show the
existence of a limit in (A.1), we write

Rt =
t−2γe2δ(t+1)1−γ

t−γe2δ(t+1)1−γ − (t− 1)−γe2δt1−γ .(A.2)

We have

t−γe2δ(t+1)1−γ

− (t− 1)−γe2δt
1−γ

= t−γe2δ(t+1)1−γ

− t−γe2δ[(t+1)1−γ+t1−γ−(t+1)1−γ ](1 − t−1)−γ

= t−γe2δ(t+1)1−γ

[1− e2δ[t
1−γ−(t+1)1−γ ](1 − t−1)−γ ]

= t−γe2δ(t+1)1−γ [
1− e−2δ[(1−γ)t−γ+o(t−γ)]

]
[1 + γt−1 + o(t−1)]

= t−γe2δ(t+1)1−γ

[2δ(1− γ)t−γ + o(t−γ)][1 + γt−1 + o(t−1)]

= 2δ(1− γ)t−2γe2δ(t+1)1−γ

[1 + o(1)]

= 4αt−2γe2δ(t+1)1−γ

[1 + o(1)].(A.3)
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By combining (A.2) and (A.3), it follows that limt→∞Rt = 4α > 0, and hence
St = O(Ht). Subsequently, we have

t∑
k=T1

Π2
t,k = O

(
e−2δ(t+1)1−γ

t∑
k=1

k−2γe2δ(k+1)1−γ

)

= O(e−2δ(t+1)1−γ

Ht)

= O(t−γ),

which completes the proof for case (ii), and the lemma follows.
Proof of Lemma 20. (i) First, it is a well-known fact [19, 35] that when G is

connected, the null space of L is span{1n}. Since L ≥ 0, there exists a positive
semidefinite matrix, denoted as L1/2 such that L = (L1/2)2. We also write D1/2

N =
diag(d−1/2

1 , . . . , d
−1/2
n ) which gives DN = (D1/2

N )2. For x ∈ R
n, we have Lx = 0 ⇒

LDNLx = 0⇒ LDNLDNLx = 0.
On the other hand, we have

LDNLDNLx = 0⇒ xTLDNLDNLx = 0

⇔ |L1/2DNLx|2 = 0⇔ L1/2DNLx = 0

⇒ LDNLx = 0⇒ xTLDNLx = 0

⇔ D
1/2
N Lx = 0⇔ Lx = 0.

Hence, it follows that Lx = 0⇔ LDNLx = 0⇔ LDNLDNLx = 0, and assertion (i)
follows. Hence the matrices L, LDNL, and LDNLDNL each have a rank of n− 1.

(ii) We begin by proving the first part. Let 0 = λ1, 0 < λ2 ≤ λ3 ≤ · · · ≤ λn
and 0 = λ̂1, 0 < λ̂2 ≤ λ̂3 ≤ · · · ≤ λ̂n, respectively, denote the eigenvalues of L and
LDNL. Let Φ = (α1, . . . , αn) and Φ̂ = (α̂1, . . . , α̂n) be two orthogonal matrices (i.e.,
ΦTΦ = I, and Φ̂T Φ̂ = I) such that

LΦ = Φ diag(λ1, . . . , λn), LDNLΦ̂ = Φ̂ diag(λ̂1, . . . , λ̂n).

In view of λ1 = λ̂1 = 0, we get Lα1 = LDNLα̂1 = 0. By (i), we necessarily have either
α1 = α̂1 or α1 = −α̂1. In fact, we may take α1 = α̂1 = ±(1/

√
n) · 1n. Consequently,

it is easy to show that span{α2, . . . , αn} = span{α̂2, . . . , α̂n}, which is the orthogonal
complement of span{1n} in R

n.
Take any x ∈ R

n. We may write x =
∑n

i=1 yiαi, x =
∑n

i=1 ŷiα̂i, where
y = (y1, . . . , yn), ŷ = (ŷ1, . . . , ŷn) are uniquely determined and satisfy

∑n
i=1 y

2
i =∑n

i=1 ŷ
2
i = |x|2. Recalling that we have taken α1 = α̂1 �= 0, it necessarily follows that

y1 = ŷ1 since, otherwise, (y1 − ŷ1)α1 ∈ span{α2, . . . , αn} with y1 − ŷ1 �= 0, which is
impossible. Hence we get

n∑
i=2

y2
i =

n∑
i=2

ŷ2
i .(A.4)

For x ∈ R
n, since λ1 = λ̂1 = 0 we have the estimate

xTLDNLx = ŷT Φ̂TLDNLΦ̂ŷ =
n∑
i=2

λ̂iŷ
2
i ≥ λ̂2

n∑
i=2

ŷ2
i .
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On the other hand, we have xTLx ≤ λn
∑n

i=2 y
2
i = λn

∑n
i=2 ŷ

2
i , where the equality

follows from (A.4). Hence it follows that xTLDNLx ≥ λ̂2λ
−1
n xTLx, and therefore,

the first part of (ii) is proved by taking c1 = λ̂2λ
−1
n > 0.

We denote the eigenvalues of LDNLDNL by 0 = λ̃1, 0 < λ̃2 ≤ λ̃3 ≤ · · · ≤ λ̃n.
Following a very similar argument, we can show that for any x ∈ R

n,

xTLDNLDNLx ≤ λ̃nλ−1
2 xTLx,

which implies the second part with c2 = λ̃nλ
−1
2 > 0.

(iii) We obtain (44) by taking expectation on both sides of (42) and using (ii).
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CONTROLLABILITY OF MULTI-AGENT SYSTEMS FROM A
GRAPH-THEORETIC PERSPECTIVE∗
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Abstract. In this work, we consider the controlled agreement problem for multi-agent net-
works, where a collection of agents take on leader roles while the remaining agents execute local,
consensus-like protocols. Our aim is to identify reflections of graph-theoretic notions on system-
theoretic properties of such systems. In particular, we show how the symmetry structure of the
network, characterized in terms of its automorphism group, directly relates to the controllability of
the corresponding multi-agent system. Moreover, we introduce network equitable partitions as a
means by which such controllability characterizations can be extended to the multileader setting.

Key words. multi-agent systems, networked systems, controllability, automorphism group,
equitable partitions, agreement dynamics, algebraic graph theory
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1. Introduction. A networked system is a collection of dynamic units that in-
teract over an information exchange network for its operation. Such systems are
ubiquitous in diverse areas of science and engineering. Examples include physiolog-
ical systems and gene networks [12]; large-scale energy systems; and multiple space,
air, and land vehicles [1, 2, 20, 27, 37, 38]. There is an active research effort underway
in the control and dynamical systems community to study these systems and lay out
a foundation for their analysis and synthesis [6, 7, 9, 26]. As a result, over the past
few years, a distinct area of research at the intersection of systems theory and graph
theory has emerged. An important class of problems that lies at this intersection
pertains to the agreement or the consensus problem [4, 15, 28, 30, 39]. The agreement
problem concerns the development of processes by which a group of dynamic units,
through local interactions, reach a common value of interest. As such, the agreement
protocol is essentially an unforced dynamical system whose trajectory is governed by
the interconnection geometry and the initial condition for each unit.

Our goal in this paper is to consider situations where network dynamics can be
influenced by external signals and decisions. In particular, we postulate a case in-
volving nodes in the network that do not abide by the agreement protocol; we refer
to these agents as leaders or anchors.1 The complement of the set of leaders in the
network will be referred to as followers (respectively, floating nodes). The presence of
these leader nodes generally alters the system behavior. The main topic under con-
sideration in this paper is network controllability when leaders are agents of control.
The controllability issue in leader-follower multi-agent systems was introduced in [36]

∗Received by the editors October 30, 2006; accepted for publication (in revised form) April 8,
2008; published electronically February 11, 2009. A preliminary version of this work was presented
at the 2006 American Control Conference.

http://www.siam.org/journals/sicon/48-1/67490.html
†Department of Aeronautics and Astronautics, University of Washington, Seattle, WA 98195

(arahmani@aa.washington.edu, mesbahi@aa.washington.edu). The first and third authors are sup-
ported by the National Science Foundation under grant ECS-0501606.

‡School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30332 (mengji@ece.gatech.edu, magnus@ece.gatech.edu). The second and fourth authors are sup-
ported by the U.S. Army Research Office through grant 99838.

1Depending on the context, we could equally consider them as the nonconformist agents.

162



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROLLABILITY FROM A GRAPH-THEORETIC PERSPECTIVE 163

by Tanner, who provided necessary and sufficient conditions for system controllability
in terms of the eigenvectors of the graph Laplacian; we also refer to the related work
of Olfati-Saber and Shamma in the context of consensus filters [31]. Subsequently,
graph-theoretic characterizations of controllability for leader-follower multi-agent sys-
tems were examined by Ji, Muhammad, and Egerstedt [18] and Rahmani and Mesbahi
[34]. In the present work, we further explore the ramifications of this graph-theoretic
outlook on multi-agent systems controllability. First, we examine the roles of the
graph Laplacian eigenvectors and the graph automorphism group for single-leader
networks. We then extend these results to multileader setting via equitable partitions
of the underlying graph.

This paper begins with the general form of the agreement dynamics over graphs.
Next, we introduce transformations that, given the location of the leader nodes, pro-
duce the corresponding controlled linear time-invariant system. The study of the
controllability for single-leader systems is then pursued via tools from algebraic graph
theory. In this venue, we provide a sufficient graphical condition in terms of graph
automorphisms for the system’s uncontrollability. Furthermore, we introduce network
equitable partitions as a means by which such controllability characterizations can be
extended to the multileader setting.

2. Notation and preliminaries. In this section we recall some basic notions
from graph theory, which is followed by the general setup of the agreement problem
for multi-agent networks.

2.1. Graphs and their algebraic representation. Graphs are broadly adopt-
ed in the multi-agent literature to encode interactions in networked systems. An
undirected graph G is defined by a set VG = {1, . . . , n} of nodes and a set EG ⊂ VG×VG
of edges. Two nodes i and j are neighbors if (i, j) ∈ EG ; the neighboring relation is
indicated with i ∼ j, while P(i) = {j ∈ VG : j ∼ i} collects all neighbors of node i.
The degree of a node is given by the number of its neighbors; we say that a graph
is regular if all nodes have the same degree. A path i0i1 . . . iL is a finite sequence
of nodes such that ik−1 ∼ ik, k = 1, . . . , L, and a graph G is connected if there is a
path between any pair of distinct nodes. A subgraph G′ is said to be induced from
the original graph G if it can be obtained by deleting a subset of nodes and edges
connecting to those nodes from G.

The adjacency matrix of the graph G, A(G) ∈ R
n×n, with n denoting the number

of nodes in the network, is defined by

[A(G) ]ij :=
{

1 if (i, j) ∈ EG ,
0 otherwise.

If G hasm edges and is given an arbitrarily orientation, its node-edge incidence matrix
B(G) ∈ R

n×m is defined as

[B(G) ]kl :=

⎧⎨
⎩

1 if node k is the head of edge l,
−1 if node k is the tail of edge l,
0 otherwise,

where k and l are the indices running over the node and edge sets, respectively.
A matrix that plays a central role in many graph-theoretic treatments of multi-

agent systems is the graph Laplacian, defined by

(1) L(G) := B(G)B(G)T ;
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thus the graph Laplacian is a (symmetric) positive semidefinite matrix. Let di be the
degree of node i, and let D(G) := Diag([di]ni=1) be the corresponding diagonal degree
matrix. It is easy to verify that L(G) = D(G)−A(G) [11]. As the Laplacian is positive
semidefinite, its spectrum can be ordered as

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ · · · ≤ λn(L(G)),

with λi(L(G)) being the ith ordered eigenvalue of L(G). It turns out that the multiplic-
ity of the zero eigenvalue of the graph Laplacian is equal to the number of connected
components of the graph [14]. In fact the second smallest eigenvalue λ2(L(G)) provides
a judicious measure of the connectivity of G. For more on the related matrix-theoretic
and algebraic approaches to graph theory, we refer the reader to [5, 14, 24].

2.2. Agreement dynamics. Given a multi-agent system with n agents, we can
model the network by a graph G where nodes represent agents and edges are inter-
agent information exchange links.2 Let xi(t) ∈ R

d denote the state of node i at time
t, whose dynamics is described by the single integrator

ẋi(t) = ui(t), i = 1, . . . , n,

with ui(t) being node i’s control input. Next, we allow agent i to have access to
the relative state information with respect to its neighbors and use it to compute its
control. Hence, interagent coupling is realized through ui(t). For example, one can
let

(2) ui(t) = −
∑
i∼j

(xi(t)− xj(t)).

The localized rule in (2) happens to lead to the solution of the rendezvous problem,
which has attracted considerable attention in the literature [8, 17, 22]. Some other
important networked system problems, e.g., formation control [3, 10, 13], consensus
or agreement [25, 29, 30], and flocking [32, 35], share the same distributive flavor as
the rendezvous problem.

The single integrator dynamics in conjunction with (2) can be represented as the
Laplacian dynamics of the form

ẋ(t) = −L(G)x(t),(3)

where x(t) = [x(t)T1 , x(t)T2 , . . . , x(t)Tn ]T denotes the aggregated state vector of the
multi-agent system, L(G) := L(G) ⊗ Id, with Id denoting the d-dimensional identity
matrix, and ⊗ is the matrix Kronecker product [16]. In fact, if the dynamics of
the agent’s state is decoupled along each dimension, the behavior of the multi-agent
system can be investigated one dimension at a time. Although our results can directly
be extended to the case of (3), in what follows we will focus on the system

ẋ(t) = −L(G)x(t),(4)

capturing the multi-agent dynamics with individual agent states evolving in R.

2Throughout this paper we assume that the network is static. As such, the movements of the
agents will not cause edges to appear or disappear in the network.
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1 2

3 4
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Fig. 1. A leader-follower network with Vf = {1, 2, 3, 4} and Vl = {5, 6}.

3. Controlled agreement. We now endow leadership roles to a subset of agents
in the Laplacian dynamics (4); the other agents in the network, the followers, continue
to abide by the agreement protocol. In this paper, we use subscripts l and f to denote
affiliations with leaders and followers, respectively. For example, a follower graph Gf
is the subgraph induced by the follower node set Vf ⊂ VG . Leadership designations
induce a partition of incidence matrix B(G) as

(5) B(G) =
[
Bf (G)
Bl(G)

]
,

where Bf(G) ∈ R
nf×m, and Bl(G) ∈ R

nl×m. Here nf and nl are the cardinalities of
the follower group and the leader group, respectively, and m is the number of edges.
The underlying assumption of this partition, without loss of generality, is that leaders
are indexed last in the original graph G. As a result of (1) and (5), the graph Laplacian
L(G) is given by

(6) L(G) =
[
Lf (G) lfl(G)
lfl(G)T Ll(G)

]
,

where

Lf (G) = BfBTf , Ll(G) = BlBTl , and lfl(G) = BfBTl .

Here we omitted the dependency of B,Bf , and Bl on G, which we will continue to do
whenever this dependency is clear from the context. As an example, Figure 1 shows
a leader-follower network with Vl = {5, 6} and Vf = {1, 2, 3, 4}. This gives

Bf =

⎡
⎢⎢⎣

1 0 0 −1 0 1 0 0
−1 1 0 0 0 0 0 −1

0 −1 1 0 0 0 1 0
0 0 −1 1 −1 0 0 0

⎤
⎥⎥⎦ , Bl=

[
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 −1 1

]
,

and

Lf (G) =

⎡
⎢⎢⎣

3 −1 0 −1
−1 3 −1 0

0 −1 3 −1
−1 0 −1 3

⎤
⎥⎥⎦ , lfl(G) =

⎡
⎢⎢⎣
−1 0

0 −1
0 −1
−1 0

⎤
⎥⎥⎦ .

The control system we now consider is the controlled agreement dynamics (or
leader-follower system), where followers evolve through the Laplacian-based dynamics

ẋf (t) = −Lf xf (t)− lfl u(t),(7)
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where u denotes the exogenous control signal dictated by the leaders’ states.
Definition 3.1. Let l be a leader node in G, i.e., l ∈ Vl(G). The indicator vector

with respect to l,

δl : Vf → {0, 1}nf ,

is such that

δl(i) :=
{

1 if i ∼ l,
0 otherwise.

We note that each column of−lfl is an indicator vector, i.e., lfl = [−δnf+1, . . . ,−δn].
Let dil, with i ∈ Vf , denote the number of leaders adjacent to follower i, and

define the follower-leader degree matrix

(8) Dfl(G) := Diag([dil]
nf

i=1),

which leads to the relationship

(9) Lf (G) = L(Gf ) +Dfl(G),

where L(Gf ) is the Laplacian matrix of the follower graph Gf .
Remark 3.2. We should emphasize the difference between Lf (G) and L(Gf ). The

matrix Lf (G) is the principle diagonal submatrix of the original Laplacian matrix
L(G) related to the followers, while L(Gf ) is the Laplacian matrix of the subgraph Gf
induced by the followers. For simplicity, we will write Lf and lfl to represent Lf (G)
and lfl(G), respectively, when their dependency on G is clear from the context.

Since the row sum of the Laplacian matrix is zero, the sum of the ith row of
Lf (G) and that of −lfl(G) are both equal to dil, i.e.,

(10) Lf (G)1nf
= Dfl(G)1nf

= −lfl(G)1nl
,

where 1 is a vector with ones at each component.
If there is only one leader in the network, then according to the indexing con-

vention, Vl = {n}. In this case, we have lfl(G) = −δn and Dfl(G) = Diag(δn). For
instance, the indicator vector for the node set Vf = {1, 2, 3} in the graph shown in
Figure 2 with respect to the leader {4} is δ4 = [ 1, 1, 0 ]T .

Proposition 3.3. If a single node is chosen to be the leader, the original Lapla-
cian L(G) is related to the Laplacian of the follower graph L(Gf ) via

L(G) =
[
L(Gf ) +Dfl(G) −δn

−δTn dn

]
,(11)

where dn denotes the degree of agent n.

Fig. 2. Path graph with node “4” being the leader.

Another way to construct the system matrices Lf (G) and lfl(G) is from the Lapla-
cian of the original graph via

Lf = PTf L(G)Pf and lfl = PTf L(G)Tfl,(12)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROLLABILITY FROM A GRAPH-THEORETIC PERSPECTIVE 167

where Pf ∈ R
n×nf is constructed by eliminating the columns of the n × n identity

matrix that correspond to the leaders, and Tfl ∈ R
n×nl is formed by grouping these

eliminated columns into a new matrix. For example, in Figure 1 these matrices assume
the form

Pf =
[

I4
02×4

]
and Tfl =

[
04×2

I2

]
.

Proposition 3.4. If a single node is chosen to be the leader, one has

Tfl = (In − P̃ )1n and lfl = −Lf1nf

in (12), where P̃ = [Pf 0n×nl
] is the n× n square matrix obtained by expanding Pf

with zero block of proper dimensions.
Proof. The first equality directly follows from the definition of Pf and Tfl. With-

out loss of generality, assume that the last node is the leader; then [Pf Tfl ] = In.
Multiplying both sides by 1n and noting that P̃ 1n = Pf1nf

, one has Tfl = (In−P̃ )1n.
Moreover,

lfl = PTf L(G){(I − P̃ )1n} = PTf L(G)1n − PTf L(G)Pf1nf
.

The first term on the right-hand side of the equality is zero, as 1 belongs to the null
space of L(G); the second term, on the other hand, is simply Lf1.

Alternatively, for the case when the exogenous signal is constant, the dynamics
(7) can be rewritten as[

ẋf (t)
u̇(t)

]
= −

[
Lf lfl
0 0

] [
xf (t)
u(t)

]
.(13)

This corresponds to zeroing-out the rows of the original graph Laplacian associated
with the leader. Zeroing-out a row of a matrix can be accomplished via a reduced
identity matrix Qr, with zeros at the diagonal elements that correspond to the leaders,
with all other diagonal elements being kept as one. In this case,[

Lf lfl
0 0

]
= QrL(G),(14)

where

Qr =
[
Inf

0
0 0

]
,

and all the zero matrices are of proper dimensions.

4. Reachability. First, we examine whether we can steer the system (7) into
the agreement subspace, span{1}, when the exogenous signal is constant, i.e., xi = c,
for all i ∈ Vl and c ∈ R is a constant. As shown in (14), in this case the controlled
agreement can be represented as

ẋ(t) = −QrL(G)x(t) = −Lr(G)x(t),(15)

where Qr is the reduced identity matrix and Lr(G) := QrL(G) is the reduced Lapla-
cian matrix. Let us now examine the convergence properties of (15) with respect to
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span{1}. Define ζ(t) as the projection of the followers’ state xf (t) onto the sub-
space orthogonal to the agreement subspace span{1}. This subspace is denoted by
1⊥; in [30] it is referred to as the disagreement subspace. One can then model the
disagreement dynamics as

ζ̇(t) = −Lr(G) ζ(t).(16)

Choosing a standard quadratic Lyapunov function for (16),

V (ζ(t)) =
1
2
ζ(t)T ζ(t),

reveals that its time rate of change assumes the form

V̇ (ζ(t)) = −ζ(t)T Lr(G) ζ(t),

where Lr(G) = (1/2) [Lr(G) + Lr(G)T ].
Proposition 4.1. The agreement subspace is reachable for the controlled agree-

ment protocol (7).
Proof. Since V̇ (ζ) < 0 for all ζ �= 0 and QrL(G)1 = 0, for any leader nodes, the

agreement subspace remains a globally attractive subspace of (15).
Proposition 4.2. In the case of one leader, the matrix Lr(G) has a real spectrum

and the same inertia as L(G).
Proof. Let E = 11T denote the matrix of all ones. Since EL(G) = 0 and

QrL(G) = Lr(G), (Qr + E)L(G) = Lr(G). Hence Lr(G) is a product of a positive
definite matrix, namely Qr+E, and the symmetric matrix L(G). By Theorem 7.6.3 of
[16], Lr(G) is diagonalizable and has a real spectrum. In fact, it has the same inertia
as L(G).

5. Controllability analysis of single-leader networks. In this section, we
investigate the controllability properties of single-leader networks. Following our pre-
viously mentioned indexing convention, the index of the leader is assumed to be n.
For notational convenience in this section, we will equate xf with x and xl with u.
Moreover, we identify matrices A and B with −Lf and −lfl, respectively. Thus, the
system (7) is specified by

(17) ẋ(t) = Ax(t) +Bu(t).

The controllability of the controlled agreement (17) can be investigated using the
Popov–Hautus–Belevitch (PHB) test [19, 33]. Specifically, (17) is uncontrollable if
and only if there exists a left eigenvector ν of A, i.e., νTA = λνT for some λ, such
that

νTB = 0.

Since A is symmetric, its left and right eigenvectors are the same. Hence, the necessary
and sufficient condition for controllability of (17) is that none of the eigenvectors of
A should be simultaneously orthogonal to all columns of B. Additionally, in order to
investigate the controllability of (17), one can form the controllability matrix as

C = [B AB · · · Anf−1B ].(18)

As A is symmetric, it can be written in the form UΛUT , where Λ is the diagonal
matrix of eigenvalues of A; U , on the other hand, is the unitary matrix comprised of
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A’s pairwise orthogonal unit eigenvectors. Since B = UUTB, by factoring the matrix
U from the left in (18), the controllability matrix assumes the form

C = U [UTB ΛUTB . . . Λnf−1UTB ].(19)

In this case, U is full rank and its presence does not alter the rank of the matrix
product in (19). If one of the columns of U is perpendicular to all the columns of B,
then C will have a row equal to zero, and hence the matrix C is rank deficient [36].
On the other hand, in the case of one leader, if any two eigenvalues of A are equal,
then C will have two linear dependent rows, and again, the controllability matrix
becomes rank deficient. Assume that ν1 and ν2 are two eigenvectors corresponding
to the same eigenvalue and that none of them is orthogonal to B. Then ν = ν1 + cν2
is also an eigenvector of A for that eigenvalue. This will then allow us to choose
c = −νT1 B/νT2 B, which renders νTB = 0. In other words, we are able to find an
eigenvector that is orthogonal to B. Hence, we arrive at the following observation.

Proposition 5.1. Consider a leader-follower network whose evolution is de-
scribed by (17). This system is controllable if and only if none of the eigenvectors of
A is (simultaneously) orthogonal to (all columns of) B. Moreover, if A does not have
distinct eigenvalues, then (17) is not controllable.

Proposition 5.1 is also valid for the case with more than one leader and implies
that in any finite time interval, the floating dynamic units can be independently
steered from their initial states to an arbitrary final one based on local interactions
with their neighbors. This controllability results is of course valid when the states of
the leader nodes are assumed to be unconstrained.

Corollary 5.2. The networked system (17) with a single leader is controllable
if and only if none of the eigenvectors of A is orthogonal to 1.

Proof. As shown in Proposition 3.4, the elements of B correspond to row-sums of
A, i.e., B = −A1. Thus, νTB = −νTA1 = −λ (νT 1). By Proposition 4.2 one has
λ �= 0. Thereby, νTB = 0 if and only if 1T ν = 0.

Proposition 5.3. If the networked system (17) is uncontrollable, there exists an
eigenvector ν of A such that

∑
i∼n ν(i) = 0.

Proof. Using Corollary 5.2, when the system is uncontrollable, there exists an
eigenvector of A that is orthogonal to 1. As Aν = λν, we deduce that 1T (Aν ) = 0.
Moreover, using Proposition 3.3, we obtain

νT {L(Gf ) +Dfl(G) } 1 = 0.

But L(Gf )1 = 0, and thereby

νT Dfl(G)1 = νT δn = 0,

which implies that
∑

i∼n ν(i) = 0.
Proposition 5.4. Suppose that the leader-follower system (17) is uncontrollable.

Then there exists an eigenvector of L(G) that has a zero component on the index that
corresponds to the leader.

Proof. Let ν be an eigenvector of A that is orthogonal to 1 (by Corollary 5.2,
such an eigenvector exists). Attach a zero to ν; using the partitioning (11), we then
have

L(G)
[
ν
0

]
=
[

A −δn
−δTn dn

] [
ν
0

]
=
[

λν
−δTn ν

]
,
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where δn is the indicator vector of the leader’s neighbors. From Proposition 5.3 we
know that δTn ν = 0. Thus,

L(G)
[
ν
0

]
= λ

[
ν
0

]
.

In the other words, L(G) has an eigenvector with a zero on the index that corresponds
to the leader.

A direct consequence of Proposition 5.4 is the following.
Corollary 5.5. Suppose that none of the eigenvectors of L(G) has a zero compo-

nent. Then the leader-follower system (7) is controllable for any choice of the leader.

5.1. Controllability and graph symmetry. The controllability of the inter-
connected system depends not only on the geometry of the interunit information
exchange but also on the position of the leader with respect to the graph topology. In
this section, we examine the controllability of the system in terms of graph-theoretic
properties of the network. In particular, we will show that there is an intricate re-
lation between the controllability of (17) and the symmetry structure of the graph,
as captured by its automorphism group. We first need to introduce a few useful
constructs.

Definition 5.6. A permutation matrix is a {0, 1}-matrix with a single nonzero
element in each row and column.

Definition 5.7. The system (17) is anchor symmetric with respect to anchor a
if there exists a nonidentity permutation J such that

JA = AJ,(20)

where A = −Lf = −PTf L(G)Pf is constructed as in (12). We call the system asym-
metric if it does not admit such a permutation for any anchor.

As an example, the graph represented in Figure 3(a) is leader symmetric with
respect to {6} but asymmetric with respect to any other leader node set. On the
other hand, the graph of Figure 3(b) is leader symmetric with respect to a single
leader located at every node. The utility of the notion of leader symmetry is now
established through its relevance to the system-theoretic concept of controllability.

Fig. 3. Interconnected topologies that are leader symmetric: (a) only with respect to node {6};
(b) with respect to a leader at any node.

Proposition 5.8. The system (17) is uncontrollable if it is leader symmetric.
Proof. If the system is leader symmetric, then there is a nonidentity permutation

J such that

JA = AJ.(21)

Recall that, by Proposition 5.1, if the eigenvalues of A are not distinct, then (17) is not
controllable. We thus consider the case where all eigenvalues λ are distinct and satisfy
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Aν = λν; thereby, for all eigenvalue/eigenvector pairs (λ, ν) one has JAν = J(λν).
Using (21), however, we see that A (Jν) = λ (Jν), and Jν is also an eigenvector of
A corresponding to the eigenvalue λ. Given that λ is distinct and A admits a set of
orthonormal eigenvectors, we conclude that for one such eigenvector ν, ν − Jν is also
an eigenvector of A. Moreover, J B = JTB = B, as the elements of B correspond to
the row-sums of the matrix A, i.e., B = −A1. Thereby,

(ν − Jν)TB = νTB − νTJT B = νTB − νTB = 0.(22)

This, on the other hand, translates into having one of the eigenvectors of A, namely
ν − Jν, be orthogonal to B. Proposition 5.1 now implies that the system (17) is
uncontrollable.

Proposition 5.8 states that leader symmetry is a sufficient condition for uncon-
trollability of the system. It is instructive to examine whether leader asymmetry leads
to a controllable system.

Proposition 5.9. Leader symmetry is not a necessary condition for system
uncontrollability.

Proof. In Figure 4, the subgraph shown by solid lines, Gf , is the smallest asym-
metric graph [21], in the sense that it does not admit any nonidentity automorphism.
Let us augment this graph with the node “a” and connect it to all vertices of Gf .
Constructing the corresponding system matrix A (i.e., setting it equal to −Lf (G)),
we have

−A = L(Gf ) +Dfl(G) = L(Gf ) + I,

where I is the identity matrix of proper dimensions. Consequently, A has the same
set of eigenvectors as L(Gf ). Since L(Gf ) has an eigenvector orthogonal to 1, A also
has an eigenvector that is orthogonal to 1. Hence, the leader-follower system is not
controllable. Yet, the system is not symmetric with respect to a; more on this will
appear in section 5.2.

Fig. 4. Asymmetric information topology with respect to the leader {a}. The subgraph shown
by solid lines is the smallest asymmetric graph.

It is intuitive that a highly connected leader will result in faster convergence
to the agreement subspace. However, a highly connected leader also increases the
chances that a symmetric graph, with respect to leader, emerges. A limiting case
for this latter scenario is the complete graph. In such a graph, n − 1 leaders are
needed to make the corresponding controlled system controllable. This requirement
is of course not generally desirable, as it means that the leader group includes all
nodes except for one node! The complete graph is “the worse” case configuration as
far as its controllability properties. Generally at most n − 1 leaders are needed to
make any information exchange network controllable. In the meantime, a path graph
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with a leader at one end is controllable. Thus it is possible to make a complete graph
controllable by keeping the links on the longest path between a leader and all other
nodes and deleting the unnecessary information exchange links to break its inherent
symmetry. This procedure is not always feasible; for example, a star graph is not
amenable to such graphical alterations.

5.2. Leader symmetry and graph automorphism. In section 5.1 we dis-
cussed the relationship between leader symmetry and controllability. In this section
we will further explore the notion of leader symmetry with respect to graph automor-
phisms.

Definition 5.10. An automorphism of G = (V , E) is a permutation ψ of its node
set such that

(ψ(i) , ψ(j)) ∈ EG ⇐⇒ (i, j) ∈ EG .

The set of all automorphisms of G, equipped with the composition operator,
constitutes the automorphism group of G; note that this is a “finite” group. It is clear
that the degree of a node remains unchanged under the action of the automorphism
group; i.e., if ψ is an automorphism of G, then dv = dψ(v) for all v ∈ VG .

Proposition 5.11 (see [5]). Let A(G) be the adjacency matrix of the graph G and
ψ a permutation on its node set V. Associate with this permutation the permutation
matrix Ψ such that

Ψij :=
{

1 if ψ(i) = j,
0 otherwise.

Then ψ is an automorphism of G if and only if

ΨA(G) = A(G)Ψ.

In this case, the least positive integer z for which Ψz = I is called the order of the
automorphism.

Recall that from Definition 5.7 leader symmetry for (17) corresponds to having

JA = AJ,

where J is a nonidentity permutation. From Proposition 3.3, however,

A = −(L(Gf ) +Dfl(G)).

Thus using the identity L(Gf ) = D(Gf )−A(Gf ), one has

J {D(Gf )−A(Gf ) + Dfl(G)} = {D(Gf )−A(Gf ) +Dfl(G)} J.(23)

Pre- and postmultiplication of (a permutation matrix) J does not change the structure
of diagonal matrices. Also, all diagonal elements of A(G) are zero. We can thereby
rewrite (23) as two separate conditions,

JDf (G) = Df (G)J and JA(Gf ) = A(Gf )J,(24)

with Df (G) := D(Gf ) + Dfl(G). The second equality in (24) states that sought after
J in (20) is in fact an automorphism of Gf .
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Proposition 5.12. Let Ψ be the permutation matrix associated with ψ. Then
ΨDf(G) = Df (G)Ψ if and only if

di + δn(i) = dψ(i) + δn(ψ(i)).

In the case where ψ is an automorphism of Gf , this condition simplifies to

δn(i) = δn(ψ(i)).

Proof. Using the properties of permutation matrices, one has

[ΨDf(G)]ik =
∑
t

ΨitDtk =
{
dk + δn(k) if i→ k,

0 otherwise

and

[Df (G)Ψ]ik =
∑
t

Dit Ψtk =
{
di + δn(i) if i→ k,

0 otherwise.

For these matrices to be equal elementwise, one needs to have di + δn(i) = dk +
δn(k) when ψ(i) = k. The second statement in the proposition follows from the fact
that the degree of a node remains invariant under the action of the automorphism
group.

The next two results follow immediately from the above discussion.
Proposition 5.13. The interconnected system (17) is leader symmetric if and

only if there is a nonidentity automorphism for Gf such that the indicator function
remains invariant under its action.

Corollary 5.14. The interconnected system (17) is leader asymmetric if the
automorphism group of the floating (or follower) subgraph contains only the trivial
(identity) permutation.

5.3. Controllability of special graphs. In this section we investigate the con-
trollability of ring and path graphs.

Proposition 5.15. A ring graph, with only one leader, is never controllable.
Proof. With only one leader in the ring graph, the follower graph Gf becomes

the path graph with one nontrivial automorphism, i.e., its mirror image. Without
loss of generality, choose the first node as the leader and index the remaining follower
nodes by a clockwise traversing of the ring. Then the permutation i→ n − i+ 2 for
i = 2, . . . , n is an automorphism of Gf . In the meantime, the leader “1” is connected
to both node 2 and node n; hence δn = [ 1, 0, . . . , 0, 1 ]T remains invariant under
the permutation. Using Proposition 5.13, we conclude that the corresponding system
(17) is leader symmetric and thus uncontrollable.

Proposition 5.16. A path graph is controllable for all choices of the leader node
if and only if it is of even order.

Proof. Suppose that the path graph is of odd order; then choose the middle node
n+1

2 as the leader. Note that ψ(k) = n − k + 1 is an automorphism for the floating
subgraph. Moreover, the leader is connected to nodes n+1

2 − 1 and n+1
2 + 1, and

ψ(n+1
2 − 1) = n+1

2 + 1. Thus

δn = [ 0, . . . , 0, 1, 1, 0, . . . , 0 ]T

remains invariant under the permutation ψ and the system is uncontrollable. The
converse statement follows analogously.
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Hence although in general leader symmetry is a sufficient—yet not necessary—
condition for uncontrollability of (17), it is necessary and sufficient for uncontrollabil-
ity of the path graph.

Corollary 5.17. A path graph with a single leader is controllable if and only if
it is leader asymmetric.

6. Rate of convergence. In previous sections, we discussed controllability
properties of controlled agreement dynamics in terms of the symmetry structure of the
network. When the resulting system is controllable, the nodes can reach agreement
arbitrarily fast.

Proposition 6.1. A controllable agreement dynamics (17) can reach the agree-
ment subspace arbitrarily fast.

Proof. The (invertible) controllability Grammian for (17) is defined as

Wa(t0, tf ) =
∫ tf

t0

esABBT esA
T

ds.(25)

For any tf > t0, the leader can then transmit the signal

u(t) = BT eA
T (tf−t0)Wa(t0, tf )−1

(
xf − eA(tf−t0)x0

)
(26)

to its neighbors; in (26) x0 and xf are the initial and final states for the follower
nodes, and t0 and tf are prespecified initial and final maneuver times.

Next let us examine the convergence properties of the leader-follower network
with a leader that transmits a constant signal (15). In this venue, define the quantity

μ2(Lr(G)) := min
ζ �=0
ζ⊥1

ζT Lr(G) ζ
ζT ζ

.(27)

Proposition 6.2. The rate of convergence of the disagreement dynamics (16) is
bounded by μ2(Lr(G)) and λ2(L(G)), when the leader transmits a constant signal.

Proof. Using the variational characterization of the second smallest eigenvalue of
the graph Laplacian [14, 16], we have

λ2(L(G)) = min
ζ �=0
ζ⊥1

ζTL(G)ζ
ζT ζ

≤ min
ζ �=0
ζ⊥1

ζ=Qβ

ζTL(G)ζ
ζT ζ

= min
Qβ �=0
Qβ⊥1

βTQL(G)Qβ
βTQβ

= min
Qβ �=0
Qβ⊥1

βTQ
{

1
2 (QL(G) + L(G)Q)

}
Qβ

βTQβ

= min
Qβ �=0
Qβ⊥1

βTQ
(

1
2 (Lr(G) + Lr(G)T )

)
Qβ

βTQβ

= min
ζ �=0
ζ⊥1

ζTLr(G)ζ
ζT ζ

= μ2(Lr(G)),

where β is an arbitrary vector with the appropriate dimension, Q is the matrix in-
troduced in (14), and Q2 = Q. In the last variational statement, we observe that ζ
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should have a special structure, i.e., ζ = Qβ (a zero at the row corresponding to the
leader). An examination of the error dynamics suggests that such a structure always
exists. As the leader does not update its value in the static leader case, the difference
between the leader’s state and the agreement value is always zero. Thus with respect
to the disagreement dynamics (16),

V̇ (ζ) = −ζT Lr(G) ζ ≤ −μ2(Lr(G))ζT ζ
≤ −λ2(L(G)) ζT ζ.

7. Controllability of multiple-leader networks. Some applications of multi-
agent systems may require multiple leaders. As our subsequent discussion shows, in
this case, one needs an additional set of graph-theoretic tools to analyze the network
controllability. In this venue, we first introduce equitable partitions and interlacing
theory that play important roles in our analysis. We then present the main theo-
rem of this section, providing a graph-theoretic characterization of controllability for
multiple-leader networks.

7.1. Interlacing and equitable partitions. A cell C ⊂ VG is a subset of the
node set. A partition of the graph is then a grouping of its node set into different
cells.

Definition 7.1. An r-partition π of VG, with cells C1, . . . , Cr, is said to be
equitable if each node in Cj has the same number of neighbors in Ci for all i, j. We
denote the cardinality of the partition π by r = |π|.

Let bij be the number of neighbors in Cj of a node in Ci. The directed graph with
the cells of an equitable r-partition π as its nodes, and with bij edges from the ith to
the jth cells of π, is called the quotient of G over π and is denoted by G/π. An obvious
trivial partition is the n-partition, π = {{1}, {2}, . . . , {n}}. If an equitable partition
contains at least one cell with more than one node, we call it a nontrivial equitable
partition (NEP), and the adjacency matrix of a quotient is given by

A(G/π)ij = bij .

Equitable partitions of a graph can be obtained from its automorphisms. For
example, in the Peterson graph shown in Figure 5(a), one equitable partition π1

(Figure 5(b)) is given by the two orbit of the automorphism groups, namely the 5
inner vertices and the 5 outer vertices. The adjacency matrix of the quotient is then
given by

A(G/π1) =
[

2 1
1 2

]
.

The equitable partition can also be introduced by the equal distance partition.
Let C1 ⊂ VG be a given cell, and let Ci ⊂ VG be the set of vertices at distance i− 1
from C1. C1 is said to be completely regular if its distance partition is equitable. For
instance, every node in the Peterson graph is completely regular and introduces the
partition π2 as shown in Figure 5(c). The adjacency matrix of this quotient is given
by

A(G/π2) =

⎡
⎣ 0 3 0

1 0 2
0 1 2

⎤
⎦ .
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Fig. 5. (a) Example of equitable partitions on the Peterson graph G = J(5, 2, 0) and the
quotients; (b) the NEP introduced by the automorphism is π1 = {C1

1 , C
1
2}, C1

1 = {1, 2, 3, 4, 5},
C1

2 = {6, 7, 8, 9, 10}; and (c) the NEP introduced by an equal-distance partition is π2 = {C2
1 , C

2
2 , C

2
3},

C2
1 = {1}, C2

2 = {2, 5, 6}, C2
3 = {3, 4, 7, 8, 9, 10}.

Fig. 6. (a) The equitable partition and (b) the quotient of a graph.

The adjacency matrix of the original graph and the quotient are closely related
through the interlacing theorem. First, let us introduce the notion of the characteristic
matrix of an equitable partition.

Definition 7.2. A characteristic vector pi ∈ R
n of a nontrivial cell Ci has 1’s in

components associated with Ci and 0’s elsewhere.3 A characteristic matrix P ∈ R
n×r

of a partition π of VG is a matrix with characteristic vectors of the cells as its columns.
For example, the characteristic matrix of the equitable partition of the graph in Figure
6(a) is given by

(28) P =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Lemma 7.3 (see [14, Lemma 9.3.1]). Let P be the characteristic matrix of an
equitable partition π of the graph G, and let Â = A(G/π). Then AP = P Â and
Â = P+AP , where P+ = (PTP )−1PT is the pseudo-inverse of P .

3A nontrivial cell is a cell with more than one node.
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As an example, the graph in Figure 6 has a nontrivial cell (2, 3). The adjacency
matrix of the original graph is

A =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

The adjacency matrix of the quotient, on the other hand, is

Â = P+AP =

⎡
⎢⎢⎣

0 2 0 0
1 0 1 0
0 2 0 1
0 0 1 0

⎤
⎥⎥⎦ .

Lemma 7.4 (see [14, Lemma 9.3.2]). Let G be a graph with adjacency matrix A,
and let π be a partition of VG with characteristic matrix P . Then π is equitable if and
only if the column space of P is A-invariant.

Lemma 7.5 (see [23]). Given a symmetric matrix A ∈ R
n×n, let S be a subspace

of R
n. Then S⊥ is A-invariant if and only if S is A-invariant.
The proof of this lemma is well known and can be found, for example, in [23].
Remark 7.6. Let R(·) denote the range space. Suppose |VG | = n, |Ci| = ni, and

|π| = r. Then we can find an orthogonal decomposition of R
n as

(29) R
n = R(P )⊕R(Q).

In this case the matrix Q satisfies R(Q) = R(P )⊥, and its columns, together with
those of P , form a basis for R

n. Note that by Lemma 7.5, R(Q) is also A-invariant.
One way of obtaining the Q matrix is via the orthonormal basis of R(P )⊥. Let

us denote the normalized matrix (each column of which is a norm one vector) by Q̄.
Next, define

(30) P̄ = P (PTP )−
1
2

as the normalized P matrix.4 Since P̄ and Q̄ have the same column space as P and
Q, respectively, they satisfy P̄T Q̄ = 0 and Q̄T Q̄ = In−r. In other words,

(31) T = [P̄ | Q̄]

is a matrix, constructed based on the equitable partition π, whose columns constitute
an orthonormal basis for R

n.
Theorem 7.7 (see [14, Theorem 9.3.3]). If π is an equitable partition of a

graph G, then the characteristic polynomial of Â = A(G/π) divides the characteristic
polynomial of A(G).

Lemma 7.8 (see [14, Theorem 9.5.1]). Let Φ ∈ R
n×n be a real symmetric matrix,

and let R ∈ R
n×m be such that RTR = Im. Set Θ = RTΦR and let ν1, ν2, . . . , νm be

an orthogonal set of eigenvectors for Θ such that Θνi = λi(Θ)νi, where λi(Θ) ∈ R is

4Note that the invertibility of PTP follows from the fact that the cells of the partition are
nonempty. In fact, PTP is a diagonal matrix with (PTP )ii = |Ci|.
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an eigenvalue of Θ. Then
1. the eigenvalues of Θ interlace the eigenvalues of Φ.
2. if λi(Θ) = λi(Φ), then there is an eigenvector v of Θ with eigenvalue λi(Θ)

such that Rν is an eigenvector of Φ with eigenvalue λi(Φ).
3. if λi(Θ) = λi(Φ) for i = 1, . . . , l, then Rνi is an eigenvector for Φ with

eigenvalue λi(Φ) for i = 1, . . . , l.
4. if the interlacing is tight, then ΦR = RΘ.

Based on the controllability results introduced in section 5, together with some
basic properties of the graph Laplacian, we first derive the following lemma.

Lemma 7.9. Given a connected graph, the system (7) is controllable if and only
if L and Lf do not share any common eigenvalues.

Proof. We can reformulate the lemma as stating that the system is uncontrollable
if and only if there exists at least one common eigenvalue between L and Lf .

Necessity. Suppose that the system is uncontrollable. Then by Proposition 5.1
there exists a vector νi ∈ R

nf such that Lfνi = λνi for some λ ∈ R, with lTflνi = 0.
Now, since [

Lf lfl
lTfl Ll

] [
νi
0

]
=
[
Lfνi
lTflνi

]
= λ

[
νi
0

]
,

λ is also an eigenvalue of L, with eigenvector [νTi ,0]T . The necessary condition thus
follows.

Sufficiency. It suffices to show that if L and Lf share a common eigenvalue, then
the system (L, lfl) is not completely controllable. Since Lf is a principal submatrix
of L, it can be given by

Lf = PTf LPf ,

where Pf = [Inf
, 0]T is the n × nf matrix defined in (12). Following the fourth

statement of Lemma 7.8,5 if Lf and L share a common eigenvalue, say λ, then the
corresponding eigenvector satisfies

ν = Pfνf =
[
νf
0

]
,

where ν is λ’s eigenvector of L and νf is that of Lf . Moreover, we know that

Lν =
[
Lf lfl
lTfl Ll

] [
νf
0

]
= λ

[
νf
0

]
,

which gives us lTflνf = 0; thus the system is uncontrollable.
Remark 7.10. Lemma 7.9 is an extension of Corollary 5.2, Propositions 5.3, and

Proposition 5.4 to multileader settings.

7.2. Controllability analysis based on equitable partitions. In this sec-
tion, we will utilize a graph-theoretic approach to characterize the necessary condition
for a multiple-leader networked system to be controllable. The way we approach this
necessary condition is through Lemma 7.9. In what follows we will show first that
matrices L and Lf are both similar to some block diagonal matrices. Furthermore,

5Here the matrix Pf plays the same role as the matrix R in the fourth statement of Lemma 7.8.
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we show that under certain assumptions, the diagonal block matrices obtained from
the diagonalization of L and Lf have common diagonal block(s).

Lemma 7.11. If a graph G has an NEP π with characteristic matrix P , then the
corresponding adjacency matrix A(G) is similar to a block diagonal matrix

Ā =
[
AP 0
0 AQ

]
,

where AP is similar to the adjacency matrix Â = A(G/π) of the quotient graph.
Proof. Let the matrix T = [P̄ | Q̄] be the orthonormal matrix with respect to π,

as defined in (31). Let

(32) Ā = T TAT =
[
P̄TAP̄ P̄TAQ̄
Q̄TAP̄ Q̄TAQ̄

]
.

Since P̄ and Q̄ have the same column spaces as P and Q, respectively, they inherit
their A-invariance property, i.e., there exist matrices B and C such that

AP̄ = P̄B and AQ̄ = Q̄C.

Moreover, since the column spaces of P̄ and Q̄ are orthogonal complements of each
other, one has

P̄TAQ̄ = P̄T Q̄C = 0

and

Q̄TAP̄ = Q̄T P̄B = 0.

In addition, by letting D2
p = PTP , we obtain

(33) P̄TAP̄ = D−1
P PTAPD−1

P = DP (D−2
P PTAP )D−1

P = DP ÂD−1
P ,

and therefore the first diagonal block is similar to Â.
Lemma 7.12. Let P be the characteristic matrix of an NEP in G. Then R(P ) is

K-invariant, where K is any diagonal block matrix of the form

K = Diag([k1, . . . , k1︸ ︷︷ ︸
n1

, k2, . . . , k2︸ ︷︷ ︸
n2

, . . . , kr, . . . , kr︸ ︷︷ ︸
nr

]T ) = Diag([ki1ni ]
r
i=1),

ki ∈ R, ni = |Ci| is the cardinality of the cell, and r = |π| is the cardinality of the
partition. Consequently,

Q̄TKP̄ = 0,

where P̄ = P (PTP )−
1
2 and Q̄ is chosen in such a way that T = [P̄ | Q̄] is an

orthonormal matrix.
Proof. We note that

P =

⎡
⎢⎢⎢⎣
P1

P2

...
Pr

⎤
⎥⎥⎥⎦ =

[
p1 p2 . . . pr

]
,
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where Pi ∈ R
ni×r is a row block which has 1’s in column i and 0’s elsewhere. On the

other hand, pi is a characteristic vector representing Ci, which has 1’s in the positions
associated with Ci and zeros otherwise. Recall the example given in (28) with

(34) P =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0
0 1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ;

we can then find

P2 =
[

0 1 0 0
0 1 0 0

]
,

while p2 = [0 1 1 0 0]T . A little algebra reveals that

KP =

⎡
⎢⎢⎢⎣
k1P1

k2P2

...
krPr

⎤
⎥⎥⎥⎦ =

[
k1p1 k2p2 . . . krpr

]
= PK̂,

where K̂ = Diag([k1, k2, . . . , kr]T ) = Diag([ki]ri=1); hence R(P ) isK-invariant. Since
R(Q̄) = R(P )⊥, by Lemma 7.5 it is K-invariant as well and

Q̄TKP̄ = Q̄T P̄ K̂ = 0.

By the definition of equitable partitions, the subgraph induced by a cell is regular
and every node in the same cell has the same number of neighbors outside the cell.
Therefore, the nodes belonging to the same cell have the same degree, and thus by
Lemma 7.12, R(Q̄) and R(P ) are D-invariant, where D is the degree matrix given by

D = Diag([di1ni ]
r
i=1),

with di ∈ R denoting the degree of each node in the cell. Since the graph Laplacian
satisfies L(G) = D(G)−A(G), Lemmas 7.11 and 7.12 imply that R(Q̄) and R(P ) are
L-invariant. Thereby, we have following corollary.

Corollary 7.13. Given the same condition as in Lemma 7.11, L is similar to
a diagonal block matrix

(35) L̄ = T TLT =
[
LP 0
0 LQ

]
,

where LP = P̄TLP̄ and LQ = Q̄TLQ̄, and T = [P̄ | Q̄] defines an orthonormal basis
for R

n with respect to π.
As (35) defines a similarity transformation, it follows that LP and LQ carry all

the spectral information of L, i.e., they share the same eigenvalues as L.
As we have shown in section 2, in a leader-follower network, the graph Laplacian

can be partitioned as

L =
[
Lf lfl
lTfl Ll

]
.
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Transformations similar to (35) can also be found for Lf in the presence of NEPs in
the follower graph Gf .

Corollary 7.14. Let Gf be a follower graph, and let Lf be the diagonal sub-
matrix of L related to Gf . If there is an NEP πf in Gf and a π in G such that all the
nontrivial cells in πf are also cells in π, then there exists an orthonormal matrix Tf
such that

(36) L̄f = T Tf LfTf =
[
LfP 0
0 LfQ

]
.

Proof. Let P̄f = Pf (PTf Pf )
1
2 , where Pf is the characteristic matrix for πf .

Moreover, let Q̄f be defined on an orthonormal basis of R(Pf )⊥. In this way,
we obtain an orthonormal basis for R

nf with respect to πf . Moreover, by (9),
Lf (G) = Dlf (G) + L(Gf ), where L(Gf ) denotes the Laplacian matrix of Gf while
Dlf is the diagonal follower-leader degree matrix defined in (8). Since all the nontriv-
ial cells in πf are also cells in π, Df satisfies the condition in Lemma 7.12, i.e., nodes
from an identical cell in πf have the same degree. Hence by Lemma 7.11 and Lemma
7.12, R(P̄f ) and R(Q̄f ) are Lf -invariant and consequently,

(37) L̄f = T Tf LfTf =
[
LfP 0
0 LfQ

]
,

where Tf = [P̄f | Q̄f ], LfP = P̄Tf Lf P̄f , and LfQ = Q̄Tf Lf Q̄f .
Again, the diagonal blocks of L̄f contain the entire spectral information of Lf .

We are now in the position to prove the main result of this section.
Theorem 7.15. Given a connected graph G and the induced follower graph Gf ,

the system (7) is not controllable if there exist NEPs on G and Gf , say π and πf ,
such that all nontrivial cells of π are contained in πf ; i.e., for all Ci ∈ π\πf , one has
|Ci| = 1.

Proof. In Corollaries 7.13 and 7.14, we have shown that L and Lf are similar to
some block diagonal matrices. Here we further expand on the relationship between
such matrices.

Assume that π ∩ πf = {C1, C2, . . . , Cr1}. According to the underlying condition,
one has |Ci| ≥ 2, i = 1, 2, . . . , r1. Without loss of generality, we can index the nodes
in such a way that the nontrivial cells comprise the first n1 nodes, where6

n1 =
r1∑
i=1

|Ci| ≤ nf < n.

As all the nontrivial cells of π are in πf , their characteristic matrices have similar
structures,

P =
[
P1 0
0 In−n1

]
n×r

and Pf =
[
P1 0
0 Inf−n1

]
nf×rf

,

where P1 is an n1 × r1 matrix containing the nontrivial part of the characteristic
matrices. Since P̄ and P̄f are the normalizations of P and Pf , respectively, they

6We have introduced n1 for notational convenience. It is easy to verify that n1 − r1 = n− r =
nf − rf .
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have the same block structures. Consequently Q̄ and Q̄f , the matrices containing the
orthonormal bases of R(P ) and R(Pf ), have the following structures:

Q̄ =
[
Q1

0

]
n×(n1−r1)

and Q̄f =
[
Q1

0

]
nf×(n1−r1)

,

where Q1 is an n1 × (n1 − r1) matrix that satisfies QT1 P1 = 0. We observe that Q̄f is
different from Q̄ only by n− nf rows of zeros. In other words, the special structures
of Q̄ and Q̄f lead to the relationship

Qf = RTQ,

where R = [Inf
, 0]T . Now, recall the definition of LQ and LQf from (35) and (36),

leading us to

(38) LQ = Q̄TLQ̄ = Q̄Tf R
TLRQ̄f = Q̄Tf Lf Q̄f = LfQ.

Therefore Lf and L share the same eigenvalues associated with LQ; hence by Lemma
7.9, the system is not controllable.

Theorem 7.15 provides a method to identify uncontrollable multi-agent systems
in the presence of multiple leaders. In an uncontrollable multi-agent system, ver-
tices in the same cell of an NEP, satisfying the condition in Theorem 7.15, are not
distinguishable from the leaders’ point of view. In other words, agents belonging to
a shared cell among π and πf , when identically initialized, remain undistinguished
to the leaders throughout the system evolution. Moreover, the controllable subspace
for this multi-agent system can be obtained by collapsing all the nodes in the same
cell into a single “meta-agent.” However, since the NEPs may not be unique, as we
have seen in the case of the Peterson graph, more work is required before a complete
understanding of the intricate interplay between controllability and NEPs is obtained.

Two immediate ramifications of the above theorem are as follows.
Corollary 7.16. Given a connected graph G with the induced follower graph

Gf , a necessary condition for (7) to be controllable is that no NEPs π and πf , on G
and Gf , respectively, share a nontrivial cell.

Corollary 7.17. If G is disconnected, a necessary condition for (7) to be con-
trollable is that all of its connected components are controllable.

8. Simulation and discussions. In this section we will explore controllable
and uncontrollable leader-follower networks that are amenable to analysis via methods
proposed in this paper.

Example 1 (single leader with symmetric followers). In Figure 6, if we choose node
5 as the leader, the symmetric pair (2, 3) in the follower graph renders the network
uncontrollable, as stated in [34]. The dimension of the controllable subspace is three,
while there are four nodes in the follower group. This result can also be interpreted via
Theorem 7.15, since the corresponding automorphisms introduce equitable partitions.

Example 2 (single leader with equal distance partitions). We have shown in Fig-
ure 5 that the Peterson graph has two NEPs. One is introduced by the automorphism
group and the other (π2) is introduced by the equal-distance partition. Based on π2,
if we choose node 1 as the leader, the leader-follower network ends up with a con-
trollable subspace of dimension two. Since there are four orbits in the automorphism
group,7 this dimension pertains to the two-cell equal-distance partitions.8

7They are {2, 5, 6}, {7, 10}, {8, 9}, and {3, 4}.
8They are {2, 5, 6} and {3, 4, 7, 8, 9, 10}.
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Fig. 7. A 2-leader network based on the Peterson graph.

Fig. 8. A path-like information exchange network.

Example 3 (multiple leaders). This example is a modified leader graph based on
the Peterson graph. In Figure 7, we add another node (11) connected to {3, 4, 7, 8, 9, 10}
as the second leader in addition to node 1. In this network, there is an equal-distance
partition with four cells {1}, {2, 5, 6}, {3, 4, 7, 8, 9, 10}, and {11}. In this case, the
dimension of the controllable subspace is still two, which is consistent with the second
example above.

Example 4 (single-leader controllability). To demonstrate the controllability no-
tion for the leader-follower system (7), consider a path-like information network, as
shown in Figure 8. In this figure, the last node is chosen as the leader. By Proposition
5.17, this system is controllable. The system matrices in (7) assume the form

A =

⎡
⎣ −1 1 0

1 −2 1
0 1 −2

⎤
⎦ and B =

⎡
⎣ 0

0
1

⎤
⎦ .

Using (26), one can find the controller that drives the leader-follower system from
any initial state to an arbitrary final state. For this purpose, we chose to re-orient
the planar triangle on the node set {1, 2, 3}. The maneuver time is set to be five
seconds. Figure 9 shows the initial and the final positions of the nodes along with
their respective trajectories.

Figure 10, on the other hand, depicts the leader node state trajectory as needed to
perform the required maneuver. This trajectory corresponds to the speed of node 4 in
the xy-plane. We note that as there are no restrictions on the leader’s state trajectory,
the actual implementation of this control law can become infeasible, especially when
the maneuver time is arbitrarily short. This observation is apparent in the previous
example, in this scenario, the speed of node 4 changes rather rapidly from 20 [m/s] to
−50 [m/s]. To further explore the relationship between the location of the leader node
and the convergence time to the agreement subspace, an extensive set of simulations
was also carried out. In these simulations, at each step, a random connected graph
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Fig. 9. Initial and final positions of dynamic units and their respective state trajectories; f#i
denotes the final position for agent i, i = 1, 2, 3.
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Fig. 10. The leader node’s velocity acts as a controller for the networked system.

with 12 nodes and an edge probability of 0.3 was constructed. We then monitored the
dynamics of the agreement protocol for the case when the center point of the graph
was chosen to be the leader, as well as for the cases when the an arbitrary noncentral
node is chosen.9 These simulations were performed with 10 sets of randomly chosen
initial conditions; the overall convergence time for each system was chosen to be the
average of the total convergence times for all initial conditions. Figure 11 shows the
result for 50 such iterations. We note that the convergence time is improved for the
cases where the center of the graph is chosen as the leader.

9. Conclusions. In this paper, we considered the controlled agreement dynam-
ics over a network. We first derived a set of transformations that can be employed
to derive the system matrices for scenarios where one or more of the nodes (leader
nodes) update their state values based on an external command. The other nodes
in the graph (floating vertices) are assumed to update their states according to their
relative states with their neighbors. In such a setting, we studied the controllabil-
ity of the resulting dynamic system. It was shown that there is an intricate rela-
tionship between the uncontrollability of the corresponding multi-agent system and
various graph-theoretic properties of the network. In particular, we pointed out the

9The center of the graph is a node with the following property: Its maximum distance to other
nodes in the graph is minimum. We note that the center does not have to be unique.
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Fig. 11. Convergence time comparison (x: center node is the leader. o: an arbitrary noncentral
point is the leader).

importance of the network automorphism group and its nontrivial equitable partitions
in the controllability properties of the interconnected system. Some of the ramifica-
tions of this correspondence were then explored. The results of the present work
point to a promising research direction at the intersection of graph theory and control
theory that aims to study system-theoretic attributes from a purely graph-theoretic
outlook.
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MAINTAINING LIMITED-RANGE CONNECTIVITY AMONG
SECOND-ORDER AGENTS∗
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Abstract. In this paper we consider ad-hoc networks of robotic agents with double integrator
dynamics. For such networks, the connectivity maintenance problems are as follows: (i) Do there
exist control inputs for each agent to maintain network connectivity, and (ii) given desired controls
for each agent, can we compute the closest connectivity-maintaining controls in a distributed fashion?
The proposed solution is based on three contributions. First, we define and characterize admissible
sets for double integrators to remain inside disks. Second, we establish an existence theorem for the
connectivity maintenance problem by introducing a novel state-dependent graph, called the double-
integrator disk graph. Specifically, we show that one can always maintain connectivity by maintaining
a spanning tree of this new graph, but one will not always maintain connectivity of a particular agent
pair that happens to be connected at one instant of time. Finally, we design a distributed “flow-
control” algorithm for distributed computation of connectivity-maintaining controls.

Key words. multi-agent systems, connectivity maintenance, admissible sets, proximity graphs,
distributed computation, solvability of linear inequalities
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1. Introduction. This work is a contribution to the emerging discipline of mo-
tion coordination for ad-hoc networks of mobile autonomous agents. This loose ter-
minology refers to groups of robotic agents with limited mobility and communication
capabilities. It is envisioned that such networks will perform a variety of useful tasks
including surveillance, exploration, and environmental monitoring. The interest in
this topic arises from the potential advantages of employing arrays of agents rather
than single agents in certain applications. For example, from a control viewpoint,
a group of agents inherently provides robustness to failures of single agents or of
communication links.

The motion coordination problem for groups of autonomous agents is a control
problem in the presence of communication constraints. Typically, each agent makes
decisions based only on partial information about the state of the entire network
that is obtained via communication with its immediate neighbors. One important
difficulty is that the topology of the communication network depends on the agents’
locations and, therefore, changes with the evolution of the network. In order to ensure
a desired emergent behavior for a group of agents, it is necessary that the group does
not disintegrate into subgroups that are unable to communicate with each other.
In other words, some restrictions must be applied on the movement of the agents to
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ensure connectivity among the members of the group. In terms of design, it is required
to constrain the control input such that the resulting topology maintains connectivity
throughout its course of evolution. In [2], a connectivity constraint was developed
for a group of agents modeled as first-order discrete time dynamic systems. In [2]
and the related references [3, 4], this constraint is used to solve rendezvous problems.
Connectivity constraints for line-of-sight communication are proposed in [5]. Another
approach to connectivity maintenance for first-order systems is proposed in [6]. In
[7], a centralized procedure for finding the set of control inputs that maintain k-hop
connectivity for a network of agents is given. However, there is no guarantee that the
resulting set of feasible control inputs is nonempty. In this paper we fully characterize
the set of admissible control inputs for a group of agents modeled as second-order
discrete time dynamic systems, which ensures connectivity of the group in the same
spirit as described earlier.

The contributions of the paper are threefold. First, we consider a control system
consisting of a double integrator with bounded control inputs. For such a system, we
define and characterize the admissible set that allows the double integrator to remain
inside disks. Second, we define a novel state-dependent graph—the double-integrator
disk graph—and give an existence theorem for the connectivity maintenance prob-
lem for networks of second-order agents with respect to an appropriate version of
this new graph. Specifically, we show that one can always maintain connectivity by
maintaining a spanning tree through a subset of all edges without necessarily main-
taining connectivity of any particular agent pair that happens to be connected at an
instant of time. Remarkably, this conclusion is different from the one for the single
integrator kinematic agent model. Finally, we formulate and solve an optimization
problem for the distributed computation of connectivity-maintaining controls. Specif-
ically, given a set of desired control inputs for all the agents, we aim to compute the
set of connectivity-mantaining inputs that are “closest” to the desired ones. We set
up this design problem as a standard quadratic programming problem and provide a
distributed “flow-control” algorithm to solve it. As an example application, we solve
this optimization problem for a particular set of desired controls to achieve a behavior
reminiscent of the well-studied “flocking” behavior (see, e.g., [8]) among second-order
agents with bounded controls while maintaining connectivity, something that has not
been reported in the literature so far.

The paper is organized as follows. In section 2, we define and characterize the
admissible sets for a double integrator to remain inside a disk, and based on this we
define a new graph—the double-integrator disk graph. In section 3, we provide an
existence theorem for the set of control inputs for the whole network of second-order
agents that maintains connectivity with respect to an appropriately scaled version of
this new graph. We also characterize and give an inner polytopic representation of
the constraint set for these connectivity-maintaining control inputs. In section 4, we
propose an optimization problem to compute connectivity-maintaining controls.

We also provide some illustrative simulations which suggest an alternative way
of achieving a weak form of flocking of the agents. Finally, in section 5 we conclude
with a few remarks about future work.

2. Preliminary developments. We begin with some notations. We let N,
N0, and R+ denote the natural numbers, the nonnegative integer numbers, and the
positive real numbers, respectively. For d ∈ N, we let 0d and 1d denote the vectors in
R
d whose entries are all 0 and 1, respectively. We let ‖p‖ denote the Euclidean norm

of p ∈ R
d. For r ∈ R+ and p ∈ R

d, we let B(p, r) denote the closed ball centered at
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p with radius r, i.e., B(p, r) = {q ∈ R
d | ‖p − q‖ ≤ r}. For x, y ∈ R

d, we let x � y
denote component-wise inequality, i.e., xk ≤ yk for k ∈ {1, . . . , d}. We let f : A⇒ B
denote a set-valued map; in other words, for each a ∈ A, f(a) is a subset of B. We
identify R

d × R
d with R

2d.

2.1. Maintaining a double integrator inside a disk. For t ∈ N0, consider
the discrete time control system in R

2d,

p[t+ 1] = p[t] + v[t],
v[t+ 1] = v[t] + u[t],

(2.1)

where the norm of the control is upper-bounded by rctr ∈ R+, i.e., u[t] ∈ B(0d, rctr) for
t ∈ N0. We refer to this control system as the discrete time double integrator in R

d or,
more loosely, as a second-order system. Given (p, v) ∈ R

2d and {uτ}τ∈N0 ⊆ B(0d, rctr),
let φ(t, (p, v), {uτ}) denote the solution of (2.1) at time t ∈ N0 from initial condition
(p, v) with inputs u1, . . . , ut−1.

In what follows we consider the following problem: Assume that the initial posi-
tion of (2.1) is inside a disk centered at 0d, then find inputs that keep it inside that
disk. This task is impossible for general values of the initial velocity. In what follows
we identify assumptions on the initial velocity that render this task possible.

For rpos ∈ R+, we define the admissible set at time zero by

Ad0(rpos) = B(0d, rpos)× R
d.

For rpos, rctr ∈ R+, we define the admissible set for m time steps by

Adm(rpos, rctr) =
{
(p, v) ∈ R

2d | ∃{uτ}τ∈[0,m−1] ⊆ B(0d, rctr)

s.t. φ(t, (p, v), {uτ}) ∈ Ad0(rpos) ∀t ∈ [0,m]
}
,

and we define the admissible set by

Ad(rpos, rctr) =
{
(p, v) ∈ R

2d | ∃{uτ}τ∈N0 ⊆ B(0d, rctr)

s.t. φ(t, (p, v), {uτ}) ∈ Ad0(rpos) ∀t ∈ N0

}
.

With slight abuse of notation we shall sometimes suppress the arguments in the defini-
tions of admissible sets. The following theorem establishes some important properties
of the admissible sets.

Theorem 2.1 (properties of the admissible sets). For all d ∈ N and rpos, rctr ∈
R+, the following statements hold:

(i) For all m ∈ N, Adm(rpos, rctr) ⊆ Adm−1(rpos, rctr) and

Ad(rpos, rctr) = lim
m→+∞A

d
m(rpos, rctr) = lim

m→+∞∩
m
k=1Adk(rpos, rctr) ;

(ii) Ad(rpos, rctr) is a convex, compact set and is the largest controlled-invariant 1

subset of Ad0(rpos);
(iii) Ad(rpos, rctr) is invariant under orthogonal transformations in the sense that,

if (p, v) ∈ Ad(rpos, rctr), then also (Rp,Rv) ∈ Ad(rpos, rctr) for all orthogo-
nal 2 matrices R in R

d×d;

1A set is controlled invariant for a control system if there exists a feedback law such that the set
is positively invariant for the closed-loop system.

2A matrix R ∈ R
d×d is orthogonal if RRT = RT R = Id.
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(iv) if 0 < r1 < r2, then Ad(rpos, r1) ⊂ Ad(rpos, r2) and Ad(r1, rctr) ⊂ Ad(r2, rctr).
Proof. The two facts in statement (i) are direct consequences of the definitions

of Adm and Ad. Regarding statement (ii), each Adm, m ∈ N, is closed, the intersection
of closed sets is closed, and, therefore, Ad = limm→+∞ ∩mk=1Adk is closed. To show
that Ad is bounded it suffices to show that Ad1 is bounded. Note that (p, v) ∈ Ad1
implies that there exists u ∈ B(0d, rctr) such that (p, v) ∈ Ad0 and (p+ v, v+ u) ∈ Ad0.
This, in turn, implies that p ∈ B(0d, rpos) and p + v ∈ B(0d, rpos). Therefore, Ad1 is
bounded. Next, we prove that Adm is convex. Given (p1, v1) and (p2, v2) in Adm, let u1

and u2 be controls that ensure that φ(t, (pi, vi), {ui}) ∈ Ad0, t ∈ [0,m], i ∈ {1, 2}. For
λ ∈ [0, 1], consider the initial condition (pλ, vλ) = (λp1 + (1 − λ)p2, λv1 + (1 − λ)v2)
and the input uλ = λu1 + (1− λ)u2, and note that, by linearity,

φ(t, (pλ, vλ), uλ) = λφ(t, (p1, v1), {u1}) + (1− λ)φ(t, (p2, v2), {u2}), t ∈ [0,m].

Since φ(t, (p1, v1), {u1}) and φ(t, (p2, v2), {u2}) belong to the convex set Ad0, so does
their convex combination. Therefore, (pλ, vλ) belongs to Adm, and Adm is convex.
Finally, Ad is convex because the intersection of convex sets is convex.

Next, we show that Ad is controlled invariant. Given (p, v) ∈ Ad (with corre-
sponding control sequence {uτ}τ∈N0), we need to show that there exists a control
input x ∈ B(0d, rctr) such that φ(1, (p, v), x) ∈ Ad. Such an input can be chosen as
x = u0. Indeed, the control sequence {uτ+1}τ∈N0 keeps the trajectory starting from
φ(1, (p, v), x) inside Ad0 and, therefore, φ(1, (p, v), x) ∈ Ad. Additionally, it is easy to
see that Ad ⊂ Ad0. Finally, we need to prove that Ad is the largest controlled-invariant
subset ofAd0. Assume that there exists Ad∗ with the same properties and that is larger
than Ad. This means that there exists (p, v) ∈ Ad∗ \ Ad. This is equivalent to saying
that ∃ τ∗ ∈ N0 such that for every choice of the input u, φ(τ∗, (p, v), u) /∈ Ad0. But,
since Ad∗ ⊂ Ad0, this leads to a contradiction.

Regarding statement (iii), observe that, if (p, v) ∈ Ad0, then (Rp,Rv) ∈ Ad0 and,
if u ∈ B(0, rctr), then Ru ∈ B(0, rctr). Therefore, using again the linearity of the
maps φ, the proof follows. Regarding statement (iv), the two results follow from the
definition of Ad(rpos, rctr) and the facts that for all 0 < r1 < r2, B(0, r1) ⊂ B(0, r2)
and Ad0(r1) ⊂ Ad0(r2).

Next, we study the set-valued map that associates to each state in Ad(rpos, rctr)
the set of control inputs that keep the state inside Ad(rpos, rctr) in one step. We define
the admissible control set Ud(rpos, rctr) : Ad(rpos, rctr)⇒ B(0d, rctr) by

Ud(rpos, rctr) · (p, v) = {u ∈ B(0d, rctr) | (p+ v, v + u) ∈ Ad(rpos, rctr)},

or, equivalently,

(2.2) Ud(rpos, rctr) · (p, v) = B(0d, rctr)∩{w − v | (p+ v, w) ∈ Ad(rpos, rctr)}.

Lemma 2.2 (properties of the admissible control set). For all (p, v) ∈ Ad(rpos, rctr),
the set Ud(rpos, rctr) · (p, v) is nonempty, convex, and compact. For generic (p, v) ∈
Ad(rpos, rctr), the set Ud(rpos, rctr) · (p, v) does not contain 0d.

Proof. The nonemptiness of the set Ud(rpos, rctr) · (p, v) derives directly from the
definition of Ad(rpos, rctr). Clearly, from (2.2), Ud(rpos, rctr) · (p, v) is closed (it is the
intersection of two closed sets). It is also bounded (Ud(rpos, rctr) · (p, v) ⊂ B(0d, rctr));
hence it is compact. To prove that it is convex, we need to show the following:
Given (p, v) ∈ Ad(rpos, rctr), if there exist u1 and u2 in Ud(rpos, rctr) · (p, v) such that
φ(1, (p, v), u1) and φ(1, (p, v), u2) belong to Ad(rpos, rctr), then u12 = λu1 +(1−λ)u2,
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Fig. 2.1. The admissible set A1 for generic values of rpos and rctr.

λ ∈ [0, 1], belongs to Ud(rpos, rctr) · (p, v), that is, φ(1, (p, v), u12) ∈ Ad(rpos, rctr). But
this fact follows directly from the linearity of φ and the convexity ofAd(rpos, rctr). This
proves that Ud(rpos, rctr)·(p, v) is convex. The fact that it does not necessarily contain
the origin can be proved by contradiction as follows. Consider a (p, v) ∈ Ad(rpos, rctr)
such that v �= 0d and Ud(rpos, rctr) · (p, v) contains 0d. This means that (p+ v, v) also
belongs to Ad(rpos, rctr). Now, either Ud(rpos, rctr) · (p+ v, v) does not contain 0d, in
which case we have proved the statement, or Ad(rpos, rctr) also contains (p + 2v, v).
Continuing along these lines, if it were true that Ud(rpos, rctr) · (p, v) contains the
origin for all (p, v) ∈ Ad(rpos, rctr), then one could show that (p + tv, v) belongs to
Ad(rpos, rctr) for all t ∈ N. However, Ad(rpos, rctr) is bounded by Theorem 2.1. Hence,
one can always find a t∗ ∈ N such that (p+t∗v, v) ∈ Ad(rpos, rctr) but (p+(t∗+1)v, v) /∈
Ad(rpos, rctr), thereby proving that Ud(rpos, rctr)·(p+t∗v, v) does not contain 0d.

2.2. Computing admissible sets. We characterize Ad for d = 1 in the follow-
ing result and we illustrate the outcome in Figure 2.1.

Lemma 2.3 (admissible set in one dimension). For rpos, rctr ∈ R+, the following
hold:

(i) A1(rpos, rctr) is the polytope containing the points (p, v) ∈ R
2 satisfying

(2.3) −rpos

m
− m− 1

2
rctr ≤ v +

p

m
≤ rpos

m
+
m− 1

2
rctr

for all m ∈ N, and p ∈ [−rpos, rpos];
(ii) if m̂(rpos, rctr) ∈ N is defined by

(2.4) m̂(rpos, rctr) =

⌈
− 1

2
+
√

1
4

+
4rpos

rctr

⌉
,

then A1 = A1
m = A1

m̂(rpos,rctr)
, for m ≥ m̂(rpos, rctr).

Proof. Regarding statement (i), it suffices to show that, for m ∈ N, A1
m(rpos, rctr)

is the set of points in A1
m−1(rpos, rctr) that satisfy (2.3). If we show that this property

holds for all m, then we can use statement (i) of Theorem 2.1 to complete the proof.
Consider the set of equations (2.1) for m consecutive time indices after t. The solution
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of the linear system can be written in terms of the state at instant t as

(2.5)
[
p[t+m]
v[t+m]

]
=
[
1 m
0 1

] [
p[t]
v[t]

]
+
m−1∑
τ=0

[
1 (m− 1− τ)
0 1

] [
0
1

]
u[t+ τ ].

It is clear that the points on the boundary of A1
m have the property that the maximum

control effort is needed to enforce the constraint. In other words we look for the points
(p[t], v[t]) ∈ A1

0 with v[t] ≥ 0 (the case v[t] ≤ 0 can be solved in a similar way) such
that the points p[t + m] ≤ rcmm are reached by using the maximum control effort
u[t+ τ ] = −rctr, τ ∈ {0, . . . ,m− 1}.

Substituting the expression of the control in (2.5), we obtain

p[t+m] = p[t] +mv[t]− rctr
m−1∑
τ=0

(m− 1− τ), v[t+m] = v[t]−mrctr,

and using the equality
∑m−1
τ=0 (m− 1− τ) = m(m−1)

2 , we have

(2.6) p[t+m] = p[t] +mv[t]− rctr
m(m− 1)

2
, v[t+m] = v[t]−mrctr.

In order to belong to A1
m, the point (p[t], v[t]) must satisfy the constraint p[t+ τ ] ≤

rcmm, τ ∈ {1, . . . ,m}, or equivalently,

v[t] ≤ −p[t]
τ

+
rcmm

τ
+ rctr

(τ − 1)
2

, τ ∈ {1, . . . ,m}.

Using the same procedure for the points in the half plane v[t] ≤ 0 (in this case the
control is u[t+ τ ] = rctr, τ ∈ {0, . . . ,m− 1}), it turns out that A1

m is equal to the set
of all pairs (p, v) ∈ A1

0 satisfying

−p
τ
− rcmm

τ
− τ − 1

2
rctr ≤ v ≤ −

p

τ
+
rcmm

τ
+
τ − 1

2
rctr, τ ∈ {1, . . . ,m}.

By using statement (i) of Theorem 2.1, the proof is complete.
Regarding statement (ii), let us consider the case v[t] ≥ 0 and evaluate the points

on the boundary such that (p[t+m], v[t+m]) = (rcmm, 0), m ∈ N. These points are
obtained by substituting the above value of (p[t + m], v[t +m]) in (2.6). The points
obtained are (p, v) such that

p = rcmm −m
(m+ 1)

2
rctr, m ∈ N0.

It is easy to see that m̂(rpos, rctr), as defined in (2.4), is the lowest m such that
p ≤ −rcmm.

Remarks 2.4.

(i) If rctr ≥ 2rpos, then A1 = A1
1; that is, for sufficiently large rctr/rpos, the

admissible set is equal to the admissible set in one time step.
(ii) The methodology for constructingA1(rpos, rctr) is related to the procedure for

constructing the so-called isochronic regions for discrete time optimal control
of double integrators, as outlined in [9].
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Next, we introduce some definitions useful for providing an inner approximation
of Ad when d ≥ 2. Given p ∈ R

d and v ∈ R
d \ {0d}, define p‖ ∈ R and p⊥ ∈ R

d by

p = p‖
v

‖v‖ + p⊥,

where p⊥ · v = 0. For rpos, rctr ∈ R+, define

(2.7) Ad‖(rpos, rctr) =
{

(p, v) ∈ B(0d, rpos)× R
d | v = 0d or

(p‖, ‖v‖) ∈ A1
(√

r2pos − ‖p⊥‖2, rctr
)}
.

Lemma 2.5. For rpos, rctr ∈ R+, Ad‖(rpos, rctr) is a compact subset of Ad(rpos, rctr).
Proof. We begin by showing that definition (2.7) is equivalent to

(2.8) Ad‖(rpos, rctr) =
{

(p, v) ∈ Ad0v = 0d or ∃{u‖τ}τ∈N0 ⊆ [−rctr, rctr]

s.t. φ
(
t, (p, v), {u‖τ}

v

‖v‖

)
∈ Ad0(rpos) ∀t ∈ N0

}
.

To establish this equivalence, we use the definition of the set A1. For v �= 0d, we
rewrite the solution of the system as

φ(t, (p, v), {uτ}) = φ‖(t, (p, v), {uτ})
v

‖v‖ + φ⊥(t, (p, v), {uτ}),

where φ⊥(t, (p, v), {uτ}) · v = 0 for all t ∈ N0. It is easy to see that, if {uτ}τ∈N0 =
{u‖τ}τ∈N0

v
‖v‖ , then φ⊥(t, (p, v), {uτ}) = (p⊥, 0d) for all t ∈ N0. Therefore,

φ(t, (p, v), {uτ}) = φ‖(t, (p, v), {uτ})
v

‖v‖ + (p⊥, 0d).

Note that, if p = p‖ v
‖v‖ + p⊥, then ‖p‖ ≤ rpos if and only if p‖ ≤

√
rpos

2 − ‖p⊥‖2.
Therefore, the property φ

(
t, (p, v), {u‖τ}

v
‖v‖
)
∈ Ad0(rpos) is equivalent to

φ‖

(
t, (p, v), {u‖τ}

v

‖v‖

)
∈ A1

0

(√
r2pos − ‖p⊥‖2

)
,

and, in turn, definitions (2.7) and (2.8) are equivalent. In order to prove that
Ad‖(rpos, rctr) is compact, we simply observe that it is a closed subset of the com-
pact set Ad(rpos, rctr).

Remark 2.6. In what follows we use our representation of Ad‖ to compute an inner
approximation for the convex set Ad, for d ≥ 2. For example, for fixed p ∈ B(0d, rpos),
we compute velocity vectors v such that (p, v) ∈ Ad by considering a sample of unit-
length vectors w ∈ R

d and computing the maximum allowable velocity v parallel
to w according to (2.7). Furthermore, we perform computations by adopting inner
polytopic representations for the various compact convex sets.
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2.3. The double-integrator disk graph. Let us introduce some concepts
about state-dependent graphs and some useful examples. For a set X , let F(X)
be the collection of finite subsets of X ; e.g., P ∈ F(Rd) is a set of points. For a finite
set X , let G(X) be the set of undirected graphs whose vertices are elements of X ,
i.e., whose vertex set belongs to F(X). For a set X , a state-dependent graph on X
is a map G : F(X) → G(X) that associates to a finite subset V of X an undirected
graph with vertex set V and edge set EG(V ), where EG : F(X)→ F(X ×X) satisfies
EG(V ) ⊆ V × V . In other words, what edges exist in G(V ) depends on the elements
of V that constitute the nodes.

The following three examples of state-dependent graphs play an important role.
First, given rpos ∈ R+, the disk graph Gdisk(rpos) is the state-dependent graph on R

d

defined as follows: For {p1, . . . , pn} ⊂ R
d, the pair (pi, pj) is an edge in Gdisk(rpos) ·

({p1, . . . , pn}) if and only if

‖pi − pj‖ ≤ rpos ⇐⇒ pi − pj ∈ B(0d, rpos).

Second, given rpos, rctr ∈ R+, the double-integrator disk graph Gdi-disk(rpos, rctr) is the
state-dependent graph on R

2d defined as follows: For {(p1, v1), . . . , (pn, vn)} ⊂ R
2d,

the pair ((pi, vi), (pj , vj)) is an edge if and only if the relative positions and velocities
satisfy

(pi − pj , vi − vj) ∈ Ad(rpos, rctr).

Third, it is convenient to define the disk graph also as a state-dependent graph on
R

2d by stating that ((pi, vi), (pj , vj)) is an edge if and only if (pi, pj) is an edge of the
disk graph on R

d. We illustrate the first two graphs in Figure 2.2.

Fig. 2.2. The disk graph and the double-integrator disk graph in R
2 for 20 agents with random

positions and velocities.

Remark 2.7. As is well known, the disk graph is invariant under rigid transforma-
tions and reflections. Loosely speaking, the double-integrator disk graph is invariant
under the following class of transformations: Position and velocities of the agents
may be expressed with respect to any rotated and translated frame that is moving
at constant linear velocity. These transformations are related to the classic Galilean
transformations in geometric mechanics.

3. Connectivity constraints among second-order agents. In this section
we state the model, the notion of connectivity, and a sufficient condition that guar-
antees connectivity can be preserved.
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3.1. Networks of robotic agents with second-order dynamics and the
connectivity maintenance problem. We begin by introducing the notion of net-
work of robotic agents with second-order dynamics in R

d. Let n be the number of
agents. Each agent has the following computation, motion control, and communica-
tion capabilities. For i ∈ {1, . . . , n}, the ith agent has a processor with the ability
of allocating continuous and discrete states and performing operations on them. The
ith agent occupies a location pi ∈ R

d, moves with velocity vi ∈ R
d, according to the

discrete time double-integrator dynamics in (2.1), i.e.,

pi[t+ 1] = pi[t] + vi[t],
vi[t+ 1] = vi[t] + ui[t],

(3.1)

where the norm of all controls ui[t], i ∈ {1, . . . , n}, t ∈ N0, is upper-bounded by
rctr ∈ R+. The communication model is the following. The processor of each agent
has access to the agent’s location and velocity. Each agent can transmit information
to other agents within a distance rcmm ∈ R+. We remark that the control bound rctr
and the communication radius rcmm are the same for all agents.

Remarks 3.1.

(i) Our network model assumes synchronous execution, although it would be
important to consider more general asynchronous networks.

(ii) We will not address in this paper the correctness of our algorithms in the
presence of measurement errors or communication quantization.

We now state the control design problem of interest.
Problem 3.2 (connectivity maintenance). Choose a state-dependent graph Gtarget

on R
2d and design (state-dependent) control constraints sets with the following prop-

erty: If each agent’s control takes values in the control constraint set, then the agents
move in such a way that the number of connected components of Gtarget (evaluated at
the agents’ states) does not increase with time.

This objective is to be achieved with the limited information available through
message exchanges between agents. This problem was originally stated and solved for
first-order agents in [2].

3.2. A known result for agents with first-order dynamics. In [2], a con-
nectivity constraint was developed for a set of agents modeled by first-order discrete-
time dynamics:

pi[t+ 1] = pi[t] + ui[t].

Here the graph whose connectivity is of interest is the disk graph Gdisk(rcmm) over
the vertices {p1[t], . . . , pn[t]}. Network connectivity is maintained by restricting the
allowable motion of each agent. In particular, it suffices to restrict the motion of each
agent as follows. If agents i and j are neighbors in the rcmm-disk graph Gdisk(rcmm) at
time t, then their positions at time t+1 are required to belong to B

( pi[t]+pj [t]
2 , rcmm

2

)
.

In other words, connectivity between i and j is maintained if

ui[t] ∈ B
(
pj [t]− pi[t]

2
,
rcmm

2

)
,

uj[t] ∈ B
(
pi[t]− pj [t]

2
,
rcmm

2

)
.

The constraint is illustrated in Figure 3.1.
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pj

pi

Fig. 3.1. Starting from pi and pj, the agents are restricted to moving inside the disk centered

at
pi+pj

2
with radius rcmm

2
.

Note that this constraint takes into account only the positions of the agents; this
fact can be attributed to the first-order dynamics of the agents. We wish to construct
a similar constraint for agents with second-order dynamics. It is reasonable to expect
that this new constraint will depend on the positions as well as the velocities of the
neighboring agents.

3.3. An appropriate graph for the connectivity maintenance problem
for agents with second-order dynamics. We begin working on the stated problem
with a negative result regarding two candidate target graphs.

Lemma 3.3 (unsuitable graphs). Consider a network of n agents with double
integrator dynamics (3.1) in R

d. Let rcmm be the communication range and let rctr
be the control bound. Let Gtarget be either Gdisk(rcmm) on R

2d or Gdi-disk(rcmm, 2rctr).
There exist states {(pi, vi)}i∈{1,...,n} such that

(i) the graph Gtarget at {(pi, vi)}i∈{1,...,n} is connected, and
(ii) for all {ui}i∈{1,...,n} ⊆ B(0d, rctr), the graph Gtarget at {(pi+vi, vi+ui)}i∈{1,...,n}

is disconnected.
Proof. The proof of the statement for Gtarget = Gdisk(rcmm) is straightforward.

Consider two agents whose relative position and velocity belong to Ad0 \ Ad1. Then,
after one time step, the two agents will not be connected in Gdisk(rcmm) no matter
what their controls are. Next, consider the case Gtarget = Gdi-disk(rcmm, 2rctr). For
d = 1, let v̄ be the maximal velocity in A1(rcmm, 2rctr) at p = 0, that is, v̄ =
min{rcmm/m + (m− 1)rctr | m ∈ N}. Take three agents with positions p1 = p2 =
p3 = 0 and velocities v1 = −v̄, v2 = 0, and v3 = v̄. At this configuration, the graph
Gdi-disk(rcmm, 2rctr) contains two edges: one between agents 1 and 2, and the other
between agents 2 and 3. Connectivity is preserved after one time step if agent 2
remains connected to both agents 1 and 3 after one time step. However, to remain
connected to agent 1, its control u2 must be equal to −rctr and, analogously, to
remain connected with agent 3, its control u2 must be equal to +rctr. Clearly this is
impossible.

Remarks 3.4.

(i) The result in Lemma 3.3 on the double integrator graph has the follow-
ing interpretation. Assume that agent i has two neighbors j and k in the
graph Gdi-disk(rcmm, rctr). By definition of the neighboring law for this graph,
we know that there exists bounded controls for i and j to maintain the
((pi, vi), (pj , vj)) link and that there exists bounded controls for i and k to
maintain the ((pi, vi), (pk, vk)) link. The lemma states that, for some states
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of the agents i, j, and k, there might not exist controls that maintain both
links simultaneously.

(ii) In other words, Lemma 3.3 shows how the disk graph Gdisk(rcmm) and the
double integrator disk graph Gdi-disk(rcmm, 2rctr) are not appropriate choices
for the connectivity maintenance problem.

The following theorem suggests that an appropriate scaling of the control bound
is helpful in identifying a suitable state-dependent graph for Problem 3.2.

Theorem 3.5 (a scaled double-integrator disk graph is suitable). Consider a
network of n agents with double-integrator dynamics (3.1) in R

d. Let rcmm be the
communication range and let rctr be the control bound. For k ∈ {1, . . . , n− 1}, define

ν(k) =
2

k
√
d
.

Assume that k ∈ {1, . . . , n−1} and the state {(pi, vi)}i∈{1,...,n} together have the prop-
erty that the graph Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} contains a spanning
tree T with diameter at most k. Then there exists {ui}i∈{1,...,n} ⊆ B(0d, rctr) such
that if ((pi, vi), (pj , vj)) is an edge of T , then ((pi + vi, vi + ui), (pj + vj , vj + uj)) is
an edge of Gdi-disk(rcmm, ν(k)rctr) at {(pi + vi, vi + ui)}i∈{1,...,n}.

These results are based upon Shostak’s theory for systems of inequalities, as
exposed in [10]. We provide the proof in the appendix. The following results are
immediate consequences of this theorem.

Corollary 3.6 (simple sufficient condition). With the same notation in Theo-
rem 3.5, define νmin = 2

(n−1)
√
d
. Assume that the state {(pi, vi)}i∈{1,...,n} has the prop-

erty that the graph Gdi-disk(rcmm, νminrctr) is connected at {(pi, vi)}i∈{1,...,n}. Then
(i) there exists {ui}i∈{1,...,n} ⊆ B(0d, rctr), such that the graph Gdi-disk(rcmm,

νminrctr) is also connected at {(pi + vi, vi + ui)}i∈{1,...,n}; and
(ii) if T is a spanning tree of Gdi-disk(rcmm, νminrctr) at {(pi, vi)}i∈{1,...,n},

then there exists {ui}i∈{1,...,n} ⊆ B(0d, rctr) such that for all edges
((pi, vi), (pj , vj)) of T , it holds that ((pi + vi, vi + ui), (pj + vj , vj + uj)) is
an edge of Gdi-disk(rcmm, νminrctr) at {(pi + vi, vi + ui)}i∈{1,...,n}.

Remark 3.7 (scaling of νmin with n). The condition νmin = 2√
d(n−1)

implies that,
according to the sufficient conditions in Corollary 3.6, as the number of agents grows,
the velocities of the agents must be closer and closer in order for the agents to be able
to remain connected.

If Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} is not connected for some k, then
Theorem 3.5 applies to its connected components. In what follows we fix k and without
loss of generality assume the graph Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} to be
connected.

Remark 3.8 (distributed computation of connectivity and of spanning trees).
Each agent can compute its neighbors in the graph Gdi-disk(rcmm, ν(k)rctr) just by
communicating with its neighbors in Gdisk(rcmm) and exchanging with them position
and velocity information. Alternatively, this computation may also be performed if
each agent may sense relative position and velocity with all other agents at a distance
no larger than rcmm.

It is possible to compute spanning trees in networks via standard depth-first search
distributed algorithms. It is also possible [11] to distributively compute a minimum
diameter spanning tree in a network.

3.4. The control constraint set and its polytopic representation. We
now concentrate on two agents with indices i and j. For t ∈ N0, we define the
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relative position, velocity, and control by pij [t] = pi[t]− pj[t], vij [t] = vi[t]− vj [t], and
uij [t] = ui[t]− uj[t], respectively. It is easy to see that

pij [t+ 1] = pij [t] + vij [t],
vij [t+ 1] = vij [t] + uij [t].

Assume that agents i, j are connected in Gdi-disk(rcmm, ν(k)rctr) at time t. By defini-
tion, this means that the relative state (pij [t], vij [t]) belongs to Ad(rcmm, ν(k)rctr). If
this connection is to be maintained at time t+ 1, then the relative control at time t
must satisfy

(3.2) ui[t]− uj[t] ∈ Ud(rcmm, ν(k)rctr) · (pij [t], vij [t]).

Also, implicit are the following bounds on individual control inputs ui[t] and uj [t]:

(3.3) ui[t] ∈ B(0d, rctr), uj [t] ∈ B(0d, rctr).

This discussion motivates the following definition.
Definition 3.9. Given rcmm, rctr, ν(k) ∈ R+ and given a set E of edges in

Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n}, the control constraint set is defined by

UdE(rcmm, rctr, ν(k)) · ({pi, vi}i∈{1,...,n})
= {(u1, . . . , un) ∈ B(0d, rctr)n | ∀((pi, vi), (pj , vj)) ∈ E,

ui − uj ∈ Ud(rcmm, ν(k)rctr) · (pi − pj , vi − vj)}.

In other words, the control constraint set for an edge set E is the set of controls
for each agent with the property that all edges in E will be maintained in one time
step.

Remark 3.10. We can now interpret the results in Theorem 3.5 as follows.
(i) To maintain connectivity between any pair of connected agents, we

should simultaneously handle constraints corresponding to all edges of
Gdi-disk(rcmm, ν(k)rctr). This might render the control constraint set empty.

(ii) However, if we only consider constraints corresponding to edges belonging to
a spanning tree T of Gdi-disk(rcmm, ν(k)rctr), then the set UdT (rcmm, ν(k)rctr) ·
({pi, vi}i∈{1,...,n}) is guaranteed to be nonempty.

Let us now provide a concrete representation of the control constraint set. Given
a pair i, j of connected agents, the admissible control set Ud(rcmm, ν(k)rctr) · (pij , vij)
is convex and compact (Lemma 2.2). Hence, we can fit a polytope with Npoly sides
inside it. This approximating polytope leads to the following tighter version of the
constraint in (3.2):

(3.4) (Cηij)
T (ui − uj) ≤ wηij , η ∈ {1, . . . , Npoly},

for some appropriate vector Cηij ∈ R
d and scalar wηij ∈ R. Similarly, one can compute

an inner polytopic approximation of the closed ball B(0d, rctr) and write the following
linear vector inequalities:

(3.5) (Cηiθ)
Tui ≤ wηiθ , η ∈ {1, . . . , Npoly},

where the symbol θ has the interpretation of a fictional agent. In this way, we have
cast the original problem of finding a set of feasible control inputs into a satisfiability
problem for a set of linear inequalities.
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Remark 3.11. Rather than a network-wide control constraint set, one might
like to obtain decoupled constraint sets for each individual agent. However, (1) it
is not clear how to design a distributed algorithm to perform this computation, (2)
such an algorithm will likely have large communication requirements, and (3) such
a calculation might lead to a very conservative estimate for the decoupled control
constraint sets. Therefore, rather than explicitly decoupling the control constraint
sets, we next focus on a distributed algorithm to search the control constraint set for
feasible controls that are optimal according to some criterion.

4. Distributed computation of optimal controls. In the previous section,
we derived sufficient conditions for the existence of connectivity-maintaining control
inputs. In this section, we utilize these analysis results to tackle a design problem.
We provide an algorithm to compute connectivity-maintaining control inputs and
we do so satisfying two requirements: We require the algorithm to be distributed
and to be optimal in the following sense. We assume a “high level” controller is
available to compute desired control inputs for the agents to achieve a specific task
independent of the connectivity-maintaining constraints. We then design a “low level”
filter which computes, inside the set of connectivity-maintaining inputs, the closest
inputs to the desired ones. We set up this filter design problem in the form of an
optimization problem with the performance criteria being the minimization of the
(squared) Euclidean norm of the deviation away from the desired inputs. The resulting
quadratic optimization problem can be solved through a distributed “flow control”
algorithm. As an example application, we illustrate by simulations that solving this
optimization problem for a simple choice of the desired inputs achieves a weak form
of connectivity-preserving “flocking” behavior among the agents.

4.1. Problem formulation. We consider the following optimization problem:
Given an array of desired control inputs Udes = (udes,1, . . . , udes,n)T ∈ (Rd)n, find,
via local computation, the array U = (u1, . . . , un) belonging to the control constraint
set, that is closest to the desired array Udes. To formulate this problem precisely,
we need some additional notations. Let E be a set of edges in the undirected graph
Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n}. To deal with the linear inequalities of
the forms (3.4) and (3.5) associated to each edge of E, we introduce an appropriate
multigraph. A multigraph (or multiple edge graph) is, roughly speaking, a graph
with multiple edges between the same vertices. More formally, a multigraph is a pair
(Vmult, Emult), where Vmult is the vertex set and the edge set Emult contains numbered
edges of the form (i, j, η), for i, j ∈ V and η ∈ N, and where Emult has the property
that if (i, j, η) ∈ Emult and η > 1, then also (i, j, η − 1) ∈ Emult. In what follows,
we let Gmult denote the multigraph with vertex set {1, . . . , n} and with edge set
Emult = {(i, j, η) ∈ {1, . . . , n}2 × {1, . . . , Npoly} | ((pi, vi), (pj , vj)) ∈ E, i > j}. Note
that to each element (i, j, η) ∈ Emult is associated the inequality (Cηij)

T (ui−uj) ≤ wηij .
We are now ready to formally state the optimization problem at hand in the form of
the following quadratic programming problem:

Minimize
1
2

n∑
i=1

‖ui − udes,i‖2

s.t. (Cηij)
T (ui − uj) ≤ wηij for (i, j, η) ∈ Emult,

(Cηiθ)
Tui ≤ wηiθ for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly}.

(4.1)

Here, somehow arbitrarily, we have adopted the 2-norm to define the cost function.
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Remark 4.1 (feasibility). If E is a spanning tree of Gdi-disk(rcmm, νrctr)
at a connected configuration {(pi, vi)}i∈{1,...,n}, then the control constraint set
UdE(rcmm, rctr, ν(k)) ·({pi, vi}i∈{1,...,n}) is guaranteed to be nonempty by Theorem 3.5.
In turn, this implies that the optimization problem (4.1) is feasible.

4.2. Solution via duality: The projected Jacobi method. The problem (4.1)
can be written in a compact form as

minimize
1
2
‖U − Udes‖2

s.t. BTmultU � w,

for appropriately defined matrix Bmult and vector w. A dual “projected Jacobi
method” algorithm for the solution of this standard quadratic program is described
in [12]. According to this algorithm, let λ∗ be the value of Lagrange multipliers at
optimality. Then the global minimum for U is achieved at

(4.2) U∗ = Udes −Bmultλ
∗.

The projected Jacobi iteration for each component of λ is given by

(4.3) λα(t+ 1) = max
{

0, λα(t)− τ

(BTmultBmult)αα

(
(w −BTmultUdes)α

+
Npoly(e+n)∑

β=1

(BTmultBmult)αβλβ(t)
)}

,

where α ∈ {1, . . . , Npoly(e + n)} and τ is the step size parameter. We can select
τ = 1

Npoly(e+n) to guarantee convergence.

4.3. A distributed implementation of the dual algorithm. Because of the
particular structure of the matrix BTmultBmult, the iterations (4.3) can be implemented
in a distributed way over the original graph G. To highlight the distributed structure
of the iteration we denote the components of λ by referring to the nodes that they share
and the inequality to which they are related. In particular for each edge in Gmult, the
corresponding Lagrange multiplier will be denoted as ληij if the edge goes from node i to
node j, i > j, and the edge is associated to the inequality constraintCηij(ui−uj) ≤ w

η
ij .

This makes up the first Npolye entries of the vector λ. To be consistent with this
notation, the next Npolyn entries will be denoted λ1

1θ, . . . , λ
Npoly
1θ , . . . , λ1

nθ, . . . , λ
Npoly
nθ .

Additionally, define N (i) = {j ∈ {1, . . . , n} | {(pi, vi), (pj , vj)} ∈ E} ∪ {θ}. The
symbol θ has the interpretation of a fictional node.

Defining ληij := ληji and Cηij := −Cηji for i < j, we can write (4.2) and (4.3) in
components as follows. Equation (4.2) reads, for i ∈ {1, . . . , n},

u∗i = udes,i −
∑

k∈N (i)

Npoly∑
η=1

Cηikλ
η
ik.

One can easily work out an explicit expression for matrix product BTmultBmult in (4.3).
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Then, (4.3) reads, for (i, j, η) ∈ Emult,

ληij(t+ 1) = max

⎧⎨
⎩0, ληij(t)−

τ

2(Cηij)TC
η
ij

·

⎛
⎝ ∑
k∈N (i)

Npoly∑
σ=1

(
(Cηij)

TCσikλ
σ
ik

)
+
∑

k∈N (j)

Npoly∑
σ=1

(
(Cηji)

TCσjkλ
σ
jk

)

+ wηij − (Cηij)
T (udes,i − udes,j)

⎞
⎠
⎫⎬
⎭ ,

together with, for i ∈ {1, . . . , n}, η ∈ {1, . . . , Npoly},

ληiθ(t+ 1) = max

{
0, ληiθ(t)

− τ

(Cηiθ)TC
η
iθ

( ∑
k∈N (i)

Npoly∑
σ=1

((Cηiθ)
TCσikλ

σ
ik) + wηiθ − (Cηiθ)

Tudes,i

)}
.

We distribute the task of running iterations for these Npoly(e + n) Lagrange
multipliers among the n agents as follows: An agent i carries out the updates for
all quantities ληiθ and all ληij for which i > j. By means of this partition and by means
of iterated one-hop communication among agents, it is possible to compute the global
solution for the optimization problem (4.1) in a distributed fashion over the double
integrator disk graph.

4.4. Simulations. To illustrate our analysis we focus on the following scenario.
For the two-dimensional setting, i.e., for d = 2, we assume that there are n = 5 agents
with (randomly chosen) initial condition and such that they are connected according
to Gdi-disk. The bound for the control input is rctr = 2 and the communication radius
is rcmm = 10.

We assigned to one of the agents a derivative feedback control ux[p, v] = (vx− 2),
uy[p, v] = (vy − 5) as desired input. For the other agents the desired input is set to
zero. We show the agent trajectories in Figure 4.1(a), the velocities of the agents
with respect to time in Figure 4.1(b), and the distances between agents which are
neighbors in the spanning tree in Figure 4.1(c). Notice that the agents move with
approximately identical velocity reaching a configuration in which all of them are
at the limit distance rcmm = 10. The interesting aspect of this simulation is that
the maintenance of connectivity leads to the accomplishment of apparently unrelated
coordination tasks as velocity alignment and cohesiveness. This numerical result
illustrate how our connectivity maintenance approach might indeed be a starting
point for novel investigations into the problem of flocking with connectivity.

5. Conclusion. We provide some distributed algorithms to enforce connectiv-
ity among networks of agents with double-integrator dynamics. Future directions of
research include (i) evaluating the communication complexity of the proposed dis-
tributed dual algorithm and possibly designing faster ones, (ii) studying the rela-
tionship between the connectivity maintenance problem and the platooning and mesh
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Fig. 4.1. Velocity alignment and cohesiveness for five agents in the plane (d = 2).

stability problem, and (iii) investigating the flocking phenomenon and designing flock-
ing algorithms which do not rely on a blanket assumption of connectivity.

Appendix. Shostak’s test. This section provides a proof for Theorem 3.5.
The proof amounts to showing that if E is the edge set of a spanning tree T in
Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n}, then the control constraint set
UdE(rcmm, rctr, ν(k)) · ({pi, vi}i∈{1,...,n}) is nonempty. We first consider a polytopic
approximation of constraints (3.2) and (3.3). Among all possible choices, we use
the conservative orthotope approximation that allows us to decouple the constraints
into d independent sets of linear inequalities (one for each dimension). Then we use
Shostak’s theory to obtain sufficient conditions for the feasibility of these linear in-
equalities. For brevity, we drop the dependence of the quantities on t and we assume
that the variables ui are scalars for all i ∈ {1, . . . , n} and t ≥ 0. The resulting sets of
linear inequalities for one particular dimension are

δli,j ≤ ui − uj ≤ δui,j and − rctr√
d
≤ ui ≤

rctr√
d
,(A.1)

where −ν(k)rctr ≤ δli,j ≤ δui,j ≤ ν(k)rctr for all i, j ∈ {1, . . . , n} and i �= j.

A.1. Shostak’s theory. In this section we present Shostak’s theory for feasi-
bility of linear inequalities involving at most two variables, similar to the ones in
(A.1). These ideas will then be used to prove Theorem 3.5. The notations used in
[10] adapted to our case are presented next. Let u0 be an auxiliary zero variable that
always occurs with zero coefficient—the only variable that can do this. Without loss
of generality, we can thus assume that all the inequalities in L contain two variables.
As a result of this, the inequalities in (A.1) can be succinctly written as

(A.2) ui − uj ≤ δi,j ∀i, j ∈ {0, . . . , n},

where for all i, j ∈ {1, . . . , n}, i �= j,−ν(k)rctr ≤ δi,j ≤ ν(k)rctr and for all i ∈
{1, . . . , n}, δi,0 = δ0,i = rctr√

d
. Also implicit in this formulation is the relation that

δi,j + δj,i ≥ 0 for all i, j ∈ {0, . . . , n} and i �= j.
Let L denote the system of inequalities in (A.2). We construct the graph G(L)

with n+ 1 vertices and 2(2n− 1) edges as follows: (a) For each variable ui occurring
in L, add a vertex i to G(L). (b) For each inequality of the form ai,jui + bi,juj ≤ δi,j
in L, add an undirected edge between i and j to G(L), and label the edge with
the inequality (see Figure A.1). It is easy to see the following relations between the
spanning tree T in Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n} that is used to derive



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONNECTIVITY FOR SECOND-ORDER AGENTS 203

ui − uj ≤ δi,j

uj − ui ≤ δj,i−ui ≤ rctr√
d

−uj ≤ rctr√
d

uj ≤ rctr√
d

ui ≤ rctr√
d

0
i

j

Fig. A.1. Snippet of the graph G(L) for the system of inequalities in (A.2).

the constraints in the inequalities (A.2) and the graph G(L): (a) The vertex set of
G(L) is the union of the vertex set of T and the auxiliary vertex 0; (b) for every edge
{i, j} in T , there are two edges between the vertices i and j in G(L); (c) additionally,
G(L) contains two edges between 0 and every other vertex i for all i ∈ {1, . . . , n}.

To every edge represented by the inequality of the form ai,jui + bi,juj ≤ δi,j , we
associate a triple 〈ai,j , bi,j , δi,j〉. Note that 〈bi,j , ai,j , δi,j〉 is also a triple associated
with the same edge. Without loss of generality, consider a path of G(L) determined
by the vertices {1, 2, . . . , l + 1} and the edges e1,2, e2,3, . . . , el,l+1 between them. A
triple sequence, P , associated with the path is defined as

〈a1,2, b1,2, δ1,2〉, 〈a2,3, b2,3, δ2,3〉, . . . , 〈al,l+1, bl,l+1, δl,l+1〉,

where, for 1 ≤ i ≤ l, ai,i+1ui + bi,i+1uj ≤ δi,i+1 is the inequality associated with the
edge ei,i+1. If ai+1,i+2 and bi,i+1 have opposite signs for 1 ≤ i < l, then P is called
admissible.

Define 〈aP , bP , δP 〉, the residue of P , as

〈aP , bP , δP 〉 = 〈a1,2, b1,2, δ1,2〉 � 〈a2,3, b2,3, δ2,3〉 � · · · � 〈al,l+1, bl,l+1, δl,l+1〉,

where � is the associativity binary operator defined on triples by

〈a, b, δ〉 � 〈a′, b′, δ′〉 = 〈κaa′,−κbb′, κ(δa′ − δ′b)〉,
where κ = a′/|a′|.

Intuitively, the operator � takes two inequalities and derives a new inequality by
eliminating a common variable; e.g., ax+by ≤ δ and a′y+b′z ≤ δ′ imply−aa′x+bb′z ≤
−(δa′ − δ′b) if a < 0 and b > 0. Note that the signs of aP and a1,2 agree, as do the
signs of bP and b1,2.

A path is called a loop if the initial and final vertices are identical. (A loop is not
uniquely specified unless its initial vertex is given.) If all the intermediate vertices of
a path are distinct, the path is simple. An admissible triple sequence P associated
with a loop with initial vertex x is infeasible if its residue satisfies aP + bP = 0 and
δP < 0. A loop which contains an infeasible triple sequence is called an infeasible
loop. Thus if G(L) has an infeasible loop, the system of inequalities L is unsatisfiable.
However, the converse is not true in general. Next, we show how to extend L to an
equivalent system L′ such that G(L′) has an infeasible simple loop if and only if L is
unsatisfiable.
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For each vertex i of G(L) and for each admissible triple sequence P with aP+bP �=
0 associated with a simple loop of G(L) and initial vertex i, add a new inequality
(aP + bP )ui ≤ δP to L. This new system L′ is referred to as the Shostak extension
of L. We now state the necessary and sufficient condition on the extended system of
inequalities L′ for the satisfiability of the original system L.

Theorem A.1 (see Shostak’s theorem [10]). Let L′ be the Shostak extension of
L. The system of inequalities L is satisfiable if and only if G(L′) contains no infeasible
simple loop.

A.2. Satisfiability test. In this section we use the Shostak criterion to derive
conditions for the satisfiability of the inequalities in (A.2).

Lemma A.2. Let L be the system of inequalities of the form (A.2) obtained
by considering pairwise neighbors in a spanning tree T in Gdi-disk(rcmm, ν(k)rctr) at
{(pi, vi)}i∈{1,...,n}. Then the Shostak extension of L is itself.

Proof. Consider a simple loop of G(L) with the initial vertex i ∈ {0, 1, . . . , n}.
Consider an admissible triple sequence P associated with the loop. Since ai,j , bi,j ∈
{−1,+1} for all i, j ∈ {1, . . . , n}, i �= j, and a0,i, ai,0, bi,0, b0,i ∈ {−1, 0,+1} for all
i ∈ {1, . . . , n}, the residue of P , 〈aP , bP , δP 〉 is such that ap + bp = 0. Hence, no new
inequality must be added to obtain the Shostak extension of L.

Lemma A.3. Let L be the system of inequalities of the form (A.2) obtained by
considering pairwise neighbors in a spanning tree T of depth at most k in
Gdi-disk(rcmm, ν(k)rctr) at {(pi, vi)}i∈{1,...,n}. If ν(k) = 2

k
√
d
, then there is no infeasible

simple loop in G(L).
Proof. Looking at Figure A.1, it is clear that there are two types of simple loops

with admissible triple sequences in G(L):
(i) 〈+1,−1, δi,j〉, 〈+1,−1, δj,i〉, or 〈−1,+1, δi,j〉, 〈−1,+1, δj,i〉,

where i, j ∈ {0, . . . , n− 1} and {i, j} is an edge in T .
(ii) 〈0,−1, rctr√

d
〉, 〈+1,−1, δi1,i2〉, . . . , 〈+1,−1, δil−1,il〉, 〈+1, 0, rctr√

d
〉 or

〈0,+1, rctr√
d
〉, 〈−1,+1, δi2,i1〉, . . . , 〈−1,+1, δil,il,l−1〉, 〈−1, 0, rctr√

d
〉,

where il ∈ {1, . . . , ζ} for all l ∈ {1, . . . , ζ} and {il, il+1} is an edge in T .
The residue for the first set of loops is 〈+1,−1, δi,j + δj,i〉 or 〈−1,+1, δi,j + δj,i〉. The
feasibility condition is trivially satisfied by construction since δi,j + δj,i ≥ 0. For the
second set of loops, the residue is

〈
0,−1,

rctr√
d

〉
� 〈+1,−1, δi1,i2〉 � · · · � 〈+1,−1, δiζ−1,iζ 〉 �

〈
+1, 0,

rctr√
d

〉

=

〈
0, 0, 2

rctr√
d

+
ζ−1∑
l=1

δil,il+1

〉
,

or 〈
0,+1,

rctr√
d

〉
� 〈−1,+1, δi2,i1〉 � · · · � 〈−1,+1, δiζ,iζ−1〉 �

〈
−1, 0,

rctr√
d

〉

=

〈
0, 0, 2

rctr√
d

+
ζ−1∑
l=1

δil,il+1

〉
.

In order to guarantee the feasibility of the second set of loops, we need that 2 rctr√
d

+∑ζ−1
l=1 δil,il+1 ≥ 0. We derive conditions for the worst case, which occurs when the loop
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is written for the longest path in T , i.e., when ζ = k+1 and when δil,il+1 = −ν(k)rctr,
for all l ∈ {1, . . . , k}. In this case, there is no infeasible simple loop if and only if

2
rctr√
d
− kν(k)rctr ≥ 0,

that is, if and only if ν(k) = 2
k
√
d
.

Finally, the proof of Theorem 3.5 follows from Theorem A.1, Lemma A.2, and
Lemma A.3.
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CONTROL OF MINIMALLY PERSISTENT FORMATIONS IN THE
PLANE∗
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Abstract. This paper studies the problem of controlling the shape of a formation of point agents
in the plane. A model is considered where the distance between certain agent pairs is maintained
by one of the agents making up the pair; if enough appropriately chosen distances are maintained,
with the number growing linearly with the number of agents, then the shape of the formation will
be maintained. The detailed question examined in the paper is how one may construct decentralized
nonlinear control laws to be operated at each agent that will restore the shape of the formation in the
presence of small distortions from the nominal shape. Using the theory of rigid and persistent graphs,
the question is answered. As it turns out, a certain submatrix of a matrix known as the rigidity
matrix can be proved to have nonzero leading principal minors, which allows the determination of a
stabilizing control law.

Key words. multi-agent system, directed formations, distributed control, coordinated motion
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1. Introduction and problem description. The problem of controlling agent
formations is gaining more and more attention, as witnessed by an increasing number
of contributions in recent years. Among the older contributions, we note, e.g., [1, 2, 3,
4, 5, 6, 7, 8]. Roughly speaking, a collection of agents is prescribed, to move in two- or
three-dimensional space, and it is envisaged that they will move as a formation from
point A to point B, possibly executing some mission, possibly avoiding obstacles, etc.
An agent can be possibly but not necessarily treated as a massless point agent. The
words “move as a formation” have the following meaning which a layman might ascribe
to them: the formation at one instant of time is congruent to the formation at another
instant of time, or equivalently, interagent distances are preserved over all time. Many
early contributions deal with the question of just what interagent distances or other
constraints are needed to assure this property; see, e.g., [1, 4, 9, 10].

Exactly how motion is achieved in a stable way is an issue of great interest, and
recent papers have tended to focus more on the control laws required [11, 12, 13,
14, 15, 16]. It has been observed that if some interagent distances are preserved,
for example 2n − 3 well-chosen distances where n is the number of agents in a two-
dimensional formation of point agents, then all interagent distances could be possibly
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preserved as a consequence, and a scalable and even distributed control algorithm can
be envisaged. Other schemes for control of formation shape can be envisaged too; for
example, some angles can be preserved instead of just the distances.

In this paper, like many predecessors, we consider control of formation shape
based on interagent distance preservation. What distinguishes this work, however,
from most, but not all, work up to this point is that we assign the task of controlling
the distance between two agents to a set-point value to only one of the two agents,
hence the task is a directed one.

Among papers dealing with what one might term directed formation control, we
note those of [8, 2, 1, 11, 17]. Directed formation control is straightforward if the un-
derlying directed graph is acyclic, since it engenders a triangular coupling, based on a
partial ordering of the agents due to an absence of cycles. Thus the challenging prob-
lems lie with cyclic graphs. Tabuada, Pappas, and Lima [8] emphasize cyclic graphs,
while maintaining a great degree of generality about the nature of the constraints
linking the agents. Bailleul and Suri [1] raise the possibility of considering cyclic
structures, where there are distance measurements used to achieve control, and argue
that such structures are inherently flawed, at least in the presence of noise/bias errors,
etc. Lee and Spong [11] consider directed structures, but with the requirement that
the underlying graph be balanced (i.e., each node has the same number of inwardly
and outwardly directed edges, though a variation is possible with a concept called
weighted balancing), and in fact their work is aimed at a different problem (flock-
ing) than preservation of the shape of a two-dimensional formation. Nevertheless,
preliminary work of this paper suggests the notion that balanced graphs might also
allow efficacious treatment of distance-based formation shape preserving problems,
differently to the scheme of this paper.

Earlier on in this work, it was identified that the concept of graph rigidity could
helpfully underpin much of the control law development. In the undirected graph case,
where two agents work together to maintain the correct separation between them, a
distributed control law that stabilizes a formation exists only if the underlying graph is
rigid, a point specially emphasized in the contributions of Olfati-Saber and colleagues;
see, e.g., [5, 2, 3, 4]. In the directed graph case, rigidity is not enough. One needs a
further concept, termed persistence; see [9, 10]. This concept is reviewed in the next
section. It includes rigidity, but overlays this with a further condition that rules out
certain information-flow or sensing patterns that are otherwise consistent with the
rigidity property. In a persistent graph, it remains possible to have cycles.

The purpose of this work is to demonstrate in detail how control based on distance
preservation can be achieved in a directed formation even when cycles are present.
We particularly consider a class of such formations termed minimally persistent for-
mations ; the word minimal naturally reflects a certain optimality. For this class we
present a distributed, nonlinear control law and demonstrate its local stability.

In section 2, we review some background concepts, such as (minimal) rigidity and
(minimal) persistence, and introduce different ways of arranging degrees of freedom
(DOFs), which eventually affects the control structure. In fact, we focus on formations
that have one particular type of DOF distribution. As will be explained later, the
specific formations that we address are called “leader-first follower” formations. We
then set up the equations of motion for various types of agents, characterized in
terms of the number of constraints that each agent maintains. The main results are
provided in section 4 and presented by way of verifying a principal minor condition.
The structure of eigenvalues is examined in section 5. The paper ends with some
concluding remarks in section 6.
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2. Background concepts. In this section, we recall a number of graph theoret-
ical concepts related to the maintenance of the shape of a formation. Consider a set of
n point agents in the plane. Suppose that they are required to undergo a continuous
motion so that the distance between any pair of agents remains constant. As is cus-
tomary, we will model the formations as graphs: nodes will correspond to the agent
positions. An edge will exist between two agents if the distance between these agents
is specified as part of the formation specification. We will require that the formation
can translate and rotate as a whole, but not flex within itself. This requirement for
the formation and its underlying graph, viz., the graph modeling it, is called rigidity,
which is formally defined together with some other fundamental notions of rigid graph
theory in the following; see, e.g., [18].

Definition 2.1. In �2, a representation of an undirected graph G = (V,E) with
vertex set V and edge set E is a function π : V → �2. We say that π(i) ∈ �2 is the
position of the vertex i and define the distance between two representations π1 and π2

of the same graph by d(π1, π2) = maxi∈V ‖π1(i)− π2(i)‖. A distance set d̄ for G is a
set of distances dij > 0, defined for all edges (i, j) ∈ E. A distance set is realizable
if there exists a representation π of the graph for which ‖π(i) − π(j)‖ = dij for all
(i, j) ∈ E. Such a representation is then called a realization.

A representation π is rigid if there exists ε > 0 such that for all realizations π′ of
the distance set induced by π and satisfying d(π, π′) < ε, there holds ‖π′(i)− π′(j)‖ =
‖π(i) − π(j)‖ for all i, j ∈ V (we say in this case that π and π′ are congruent). A
graph is said to be generically rigid (or simply rigid) if almost all its representations
are rigid.1 A rigid graph is further called minimally rigid if no single edge can be
removed without losing rigidity.

Consider a formation F in �2 with agents in generic positions and with defined
agent pairs having the interagent distances maintained, and let G = (V,E) be the
associated graph. Then the formation F is called rigid if G is rigid. If G is minimally
rigid, then F is also called minimally rigid.

In a rigid formation, it is evident that if enough interagent distances are main-
tained, then the remainder will be consequentially maintained. For example, see
Figure 1; if the distances between the agent pairs (1, 2), (2, 3), (3, 4), (4, 1), and (1,
3) are maintained, then the distance between the pair (2, 4) will be consequentially
maintained. For a graph with n agents, it turns out that it is normally enough to
maintain 2n−3 well-distributed distances that are constant in order that all distances
are constant. The adverb “normally” connotes that there are some exceptional cases
associated with exceptional agent positions. For example, if agents are collinear, or
occupy the same position, the conclusion may fail. This conclusion is a standard
result of the rigid graph theory and is due to [19, 18]. Figure 2 shows an example of
two graphs, (a) with well-distributed edges, and (b) without.

Theorem 2.1 (Laman’s theorem [19]). Consider a formation F in �2 with
agents in generic positions and with defined agent pairs having the interagent distances
maintained, and let G = (V,E) be the associated graph. Then F is rigid if and only
if there exists a subgraph of G, call it G′, with G′ = (V,E′), E′ ⊂ E such that
|E′| = 2|V | − 3 and for any V ′ ⊂ V defining an induced subgraph G′′ = (V ′, E′′) of

1In the graph rigidity literature, the vertex positions in a representation (or the agent positions
of a formation) are termed generic if the set corresponding to the coordinates of the vertex (or agent)
positions is independent over the rationals. An obvious example of nongenericity is when three or
more vertices (agents) are collinear. Some discussions on the need for using “generic” and “almost
all” can be found in [9, 18].
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2 

 3 

1 

4 

 

Fig. 1. A rigid formation in the plane.

 

(a) (b) 

Fig. 2. (a) Well-distributed edges guarantee rigidity. (b) Ill-distributed edges result in nonrigid
formation.

G′, there holds |E′′| ≤ 2|V ′| − 3.
As a particular immediate corollary of Theorem 2.1, we see that a minimally rigid

graph G = (V,E) obeys |E| = 2|V | − 3. An alternative characterization of rigidity is
provided by the rigidity matrix, which we now define.

Definition 2.2. Order the agents of the formation. Let pi ∈ �2 be the position
of agent i. Each edge has a length ||pi − pj || for some i, j. Order these edges as
e1, e2, . . . , then define the edge function f(p1, p2, . . . ) = 1

2 (||e1||2, ||e2||2, . . . ). The
Jacobian of f is called the rigidity matrix.

The detailed structure of the rigidity matrix will be important in what follows,
and so we record it now. Suppose that the formation has |V | agents and |E| agent
pairs with maintained distances (and so there are |V | vertices and |E| edges in the
corresponding graph). The rigidity matrix has |E| rows and 2|V | columns, with
columns 2i− 1 and 2i corresponding to vertex i. When edge i joins vertices j and k,
the ith row of the rigidity matrix has four nonzero entries, in columns 2j−1, 2j, 2k−1,
and 2k (corresponding to vertices j and k). These entries are, respectively, xj − xk,
yj − yk, xk − xj , yk − yj, where the (xj , yj) denotes the coordinates of agent j. The
main result is as follows; see [18].

Theorem 2.2. Consider a formation F with associated graph G = (V,E), and let
the |E|×2|V | rigidity matrix be formed as just described. Then for generic2 coordinate
values, the formation is rigid if and only if the rigidity matrix has rank 2|V | − 3.

Evidently, a minimally rigid formation necessarily has 2|V | − 3 edges and has a
rigidity matrix with full row rank. Evidently also, the kernel of the rigidity matrix
has a minimum dimension of 3; any 2n vector in the kernel defines both a set of

2For a discussion of “generic” in this context, see [18]. Agents would not be in generic positions
if, for example, they coincided, or were all collinear.
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infinitesimal displacements, which preserve the shape of the formation, and a set
of velocity vectors for the agents such that motion along the vector field preserves
the interagent distances. For a rigid formation, evidently the kernel has dimension
precisely 3. The three independent displacements/motions that it permits correspond
to translation in two directions and rotation.

2.1. Constraint consistence and persistence. A distance between two agents
can be cooperatively maintained by the two agents, in which case the rigidity ideas
can be directly applied. But one can also give the full responsibility for maintain-
ing the constraint to one agent, which has to maintain its distance toward the other
agent constant, this latter agent being unaware of that fact and therefore taking no
specific action to help satisfy the distance constraint. This unilateral character can
be imposed by technical limitations of the autonomous agents or in the interests of
greater implementation efficiency. It is this unilateral distance-maintaining approach
that is covered in this paper.

Accordingly, henceforth we will deal with directed graphs, where a directed out-
going edge exists from agent i to j if agent i is responsible for maintaining its specified
distance from j. The directed edge in this case is denoted by {i, j}, and the directed
graph representing the formation is called the underlying directed graph of the for-
mation. As it turns out, a further development of the concept of rigidity is required
to understand the idea. Rigidity says that if certain interagent distances are main-
tained, all other interagent distances are consequentially maintained. We require an
additional concept, termed constraint consistence, which is equivalent to the require-
ment that it is possible to maintain the nominated interagent distances. We will
require that a formation satisfies both the rigidity and constraint consistence condi-
tions, and if these conditions are satisfied, we will call the formation persistent. The
notions of constraint consistence and persistence are formally defined together with
some other relevant notions below, following [9].

Definition 2.3. Consider a directed graph G = (V,E), a set d̄ of desired dis-
tances dij > 0 for all {i, j} ∈ E, and a representation π of G in �2. We say
that the edge {i, j} ∈ E is active if ‖π(i) − π(j)‖ = dij . We say that the posi-
tion of the vertex i ∈ V is fitting for the distance set d̄ if it is not possible to in-
crease the set of active edges leaving i by modifying the position of i while keeping
the positions of the other vertices unchanged, i.e., if there is no π∗ ∈ �2 for which
{{i, j} ∈ E : ‖π(i)− π(j)‖ = dij} ⊂ {{i, j} ∈ E : ‖π∗ − π(j)‖ = dij}. The realization
π is called a fitting representation of G for d̄ if all the vertices v ∈ V are at fitting
positions for d̄. Note that any realization is a fitting representation for its distance
set.

A representation π is called constraint consistent if there exists ε > 0 such
that any representation π′ fitting for the distance set d̄ induced by π and satisfy-
ing d(π, π′) < ε is a realization of d̄. π is called persistent if it is both constraint
consistent and rigid (according to Definition 2.1, ignoring the edge directions). We
say that G is constraint consistent (or persistent) if almost all its representations
are constraint consistent (or persistent, respectively). A persistent graph G is further
called minimally persistent if it is minimally rigid.

Consider a formation F in �2 with agents in generic positions and with defined
agent pairs having the interagent distances maintained and a nominated agent in each
pair to maintain the corresponding distance, and let G = (V,E) be the underlying
directed graph of F . Then the formation F is called constraint consistent if G is
constraint consistent, persistent if G is persistent, and minimally persistent if G is
minimally persistent.
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(b)

3 
3 

Fig. 3. Constraint consistent and nonconsistent graphs with the same underlying undirected
graph.

An example of a nonconstraint consistent graph with the underlying undirected
graph rigid is shown in Figure 3. If agents 2 and 3 are at their correct distances
from agent 1, which allows them some choice of position, agent 4 may not be able to
simultaneously achieve its three distance constraints; it cannot of course force agent
2 or 3 to move. In two dimensions, a graph in which the out-degree of every vertex
is at most two is automatically constraint consistent, while if the out-degree exceeds
two for one or more vertices, it may or may not be constraint consistent [9]. Below
we state a particular result regarding minimally persistent graphs (and formations).

Theorem 2.3 (see [9]). Consider a directed graph with more than one vertex.
Then it is minimally persistent if and only if the underlying undirected graph is min-
imally rigid and no vertex has more than two outgoing edges.

It is clear from Theorem 2.3 that in a two-dimensional minimally persistent for-
mation, all agents have zero, one, or two distance constraints to fulfill. Those that
have zero distance constraints evidently have two DOFs in which to move, and those
with one distance constraint have one DOF. Those with two distance constraints have
no DOF. A further requirement for a minimally persistent formation is that the sum
of the numbers of DOFs is precisely three, with this in fact corresponding to two
translation motions and one rotation motion; then either there is exactly one vertex
with two DOFs and another one with one DOF, or there are three vertices, each with
one DOF; all other vertices have no DOF.

Nonminimally persistent formations are those where there are extra constraints
that have to be fulfilled. Their presence is unnecessary, but may assist in securing
robustness against communication or control failures, or they may assist in limiting
control magnitudes—just as a linear system with two inputs may be controllable from
either input alone but may be much more robustly controlled from both inputs. Not
surprisingly, any nonminimally persistent formation contains at least one minimally
persistent formation with the same set of vertices and a subset of the edges.

In this paper, we shall confine our attention to the control of minimally persistent
formations. Obviously, understanding their control is a precursor to being able to
control any formation. Our prime interest is in the following problem. Suppose that
all agents in a formation are correctly positioned prior to t = 0. Just before t = 0,
they undergo small displacements from their initial positions. After t = 0, those with
a DOF are not allowed to exercise that DOF; those required to maintain distances
are required to adjust their positions in order to restore any incorrect distances to the
correct value. In so doing, they can use only relative position information between
themselves and the agents from which they are required to maintain their distance.
The whole process has to occur so that the closed loop is stable.
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This is a form of zero-input stability. This stability then underpins the preserva-
tion of a formation shape when those agents with a positive number of DOFs actually
move, so that the whole formation moves while maintaining its shape. In this paper,
we do not work through the details of establishing formation shape stability when
motion occurs. In this connection, one should recognize that unless the motions ex-
ecuted by the agents with a positive DOF are in some way regular, e.g., constant
direction and speed are maintained, one must always expect some distortion of the
formation shape away from the nominally correct shape. The analysis in the paper is
also a small signal analysis, i.e., we postulate the applicability of linearized models.

2.2. Leader-first follower formations. In this subsection, we categorize min-
imally persistent formations by the various possible ways DOFs can be allocated. In
the rest of the paper we will deal with formations that belong to one such category
only, namely, that categorized below as having a leader and first follower structure.

As described in [20], the arrangement of vertices with a positive number of DOFs
of a two-dimensional minimally persistent formation can have two possible structures:
leader-follower and three-coleaders, and within these structures subtypes occur. The
leader-follower structure has two possible subtypes: leader-first follower and leader-
remote follower; also the three coleaders in a three-coleader structure may or may not
be adjacent to each other, thus giving rise to four possible subtypes: cyclic coleaders,
in-line coleaders, one-two coleaders, or distributed coleaders. One can define these
terms in more detail as follows.

Definition 2.4. Leader-follower is a formation structure in which there is an
agent (called the leader) l that has two DOFs, and another agent f with one DOF.
A leader-follower structure is further termed leader-first follower if l is a neighbor of
f (f is then called the first follower) and named leader-remote follower if l is not a
neighbor of f (f is called the remote follower in this case).

Three-coleaders is a formation structure in which there are three agents c1, c2,
c3 (called the coleaders) with one DOF each. A three-coleaders structure is further
named cyclic coleaders if c1, c2, c3 are adjacent to one another, thus creating a cycle
(c1, c2, c3); it is named in-line coleaders if the three agents are neighbors but do not
form a cycle; it is named one-two coleaders if two (say, c1, c2) of the three agents are
neighbors and the remaining one (c3) is not a neighbor of c1 or c2; and it is named
distributed coleaders, if none of c1, c2, c3 are neighbors of one another.

In this paper, the formations we study are of a leader-first follower variety. Figure
4 provides an example of such a formation. Note in particular that 5 is the first
follower and 6 is the leader. All the other agents have exactly two outgoing edges
(thus guaranteeing minimal persistence, as discussed in the previous subsection), and
there is exactly one cycle {1,2,3}. There exists a formation with this same graph, but
the coordinates are chosen such that an intuitively appealing control law presented
later actually will lead to instability, as shown by an example later in section 5.

3. Equations of motion. In this section, we set up the equations related to
the control of a minimally persistent formation in the plane. The formation has a
leader and first follower. To motivate the derivation of the equations, we will first
describe the approach using discrete time ideas. The derivation itself will, however,
use continuous time.

With a leader-first follower structure, there are two vertices with a positive num-
ber of DOFs, and the remainder have no DOFs, having to maintain their distance
from precisely two other vertices.
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3

2

1

6

5

4

Fig. 4. An example of a minimally persistent formation with leader-first follower structure and
a cycle {1, 2, 3}.

A discrete time view of the adjustment process is as follows. Prior to time 0,
all distances are correct. At time 0, all agents are moved a small amount, so that
distances are no longer correct. Between time 0 and 1 all agents determine the position
of the agents from which they are required to maintain a correct distance, and then
determine the point to which they would have to move to correct any distance errors.
The leader itself makes no determination and remains permanently stationary after
its initial move at time 0. Between time 0 and 1, the first follower determines the
point on a straight line joining it to the leader which is at the correct distance from
the leader. There are two possible points to which all other agents could move; each
chooses the point closest to their position just after time 0.

At time 1, all agents then move to the positions they determined between 0 and
1. Between time 1 and 2, all agents review whether their positions are correct by
checking the current distances to their neighbors, and determine the correction that
would be required to re-establish the required distances, assuming their neighbors do
not move. At time 2 the mispositioned agents actually execute a move. This process
can clearly be repeated.

In the case of formations with an acyclic graph, it is clear that after a finite
number of steps, all agents will become stationary. Indeed, after r steps, those agents
with a path of length at most r steps to the first follower and the leader will cease
to move. In the case of a formation with a cyclic graph, the question arises as to
whether the process of adjustment is of infinite duration (it is, in general), and if so,
whether the adjustments get smaller and smaller so that the agent positions converge,
or whether there is continuous oscillation in the position. Our focus is on this case.

3.1. General approaches to control law derivation for formations. As is
common, though not universal [1, 12, 13, 21, 22, 23], we shall adopt a simple kinematic
velocity control model for each agent:

(3.1) ṗi = ui.

Suppose that agent i is tasked with maintaining distances d∗ij and d∗ik from two
other agents j and k. The closed-loop control laws will typically be of the form

(3.2) ui = ui(pj − pi, pk − pi, d∗ij , d∗ik).

There are several key points we need to make about this law. First, the law uses
relative positions of agents j and k, and not just the current distances of agent i from
agents j and k. Thus more needs to be sensed than is controlled, a not uncommon
situation in modern control. Relative positions can be sensed if agent i is equipped
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with distance and direction sensors; alternatively, if agents are able to sense distances
not just of their neighbors in the graph we are using to define the formation, but
of their two-hop neighbors in the same graph, and if they are able to pass those
distances to their neighbors, relative positions can be sensed. Thus if agent j can
sense its distance from agent k and inform agent i, then agent i can determine the
angle between the lines joining it to agents j and k. If agent i has its own coordinate
basis, then knowledge of this angle is equivalent to knowledge of relative positions.

Agent i needs also to know not just the values of d∗ij and d∗ik but also the orien-
tation of the triangle i − j − k when agents are in their correct positions, and it is
assumed that the departures from equilibrium conditions are sufficiently small that
the orientation of this triangle is not disturbed.

Second, the law has to have a rotational invariance property. If Ri is a rotation
matrix, it is clear that we need the property

ui(Ri(pj − pi), Ri(pk − pi), d∗ij , d∗ik) = Riui(pj − pi, pk − pi, d∗ij , d∗ik).

This expresses the fact that if the coordinate system in which positions are measured is
rotated, the same rotation needs to apply to the controls, which determine derivatives
of position. A consequence of this fact is that each agent can compute using its own
local coordinate system, and agents do not need to share a common understanding of
the direction of north. To see this, let qij denote the position of agent j in some local
coordinate system maintained by agent i. Then there exists a rotation matrix Ri and
a translation vector τi such that

qij = Ripj + τi.

If the control is computed using the local coordinate basis, it will be

ui(qij − qii, qik − qii, d∗ij , d∗ik) = ui(Ri(pj − pi), Ri(pk − pi), d∗ij , d∗ik)
= Riui(pj − pi, pk − pi, d∗ij , d∗ik)(3.3)

and in the global coordinate basis, this is the same as (3.2).
Third, the control law is decentralized. Obviously, its implementation just uses

sensed data local to agent i. It could also have been decentralized in a second sense,
specifically if the design of the law for agent i apparently took no account of the
design for other agents. As it turns out, to control a persistent formation, we are able
to propose a law which is decentralized in its operation, but not decentralized in its
design. Put another way, the control law we end up proposing for agent i will depend
on more data defining the desired formation shape (but not the current formation
shape) than just the two distances d∗ij and d∗ik, even though the only data from the
current formation shape are the relative positions of its neighbors. We will in fact
present an approach which fixes the control laws for each agent in sequence, and the
law for any one agent depends on the parameters of the laws for the preceding agents
of the sequence. The sensed data, however, for the law at each agent is unchanged.

As for the determination of the actual law, it is common [1, 2, 3, 4, 5, 6, 7, 12, 21]
when distance constraints are bidirectional to select a type of Lyapunov function,
typically reflecting the distance errors, and to choose the control laws to ensure that
the derivative is nonpositive. (It is generally not possible to ensure that the derivative
is negative). Given that the Lyapunov function converges to a limit, it is a separate
issue to show that this convergence implies correct convergence of the formation shape.
This approach, however, does not really extend easily to the case where the distance
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pj pk
d*ij d*ik

p*idij dik

pi

Fig. 5. Illustration of position adjustment for point agent i at pi with respect to agent j at pj

and agent k at pk. The desired position is at p∗i .

constraints are unidirectional, which is the reason motivating the alternative approach
outlined at the start of the section.

Last, we note that it is common to distinguish between results applicable to
linearized closed-loop models, and results which offer convergence starting from a very
wide range of initial conditions. Very few “almost global” results are actually available
[21, 22, 23], serving as examples of exceptions. In this paper, we set up a nonlinear law
and prove convergence of a linearized version in which adjustable parameters have to
be set at certain values. Of course, if for a nonlinear law, convergence of a linearized
version is proved, it may be that convergence for the nonlinear law will occur for
a wide range of initial conditions, but in general this has to be established with an
investigation of a particular case.

3.2. A nonlinear law. Suppose the agents are numbered from 1 to n, with the
first follower and leader n − 1 and n, respectively. Suppose that the initial (prior to
time 0) position of all vertices is given (in a global coordinate basis) by pi0 = [xi0 yi0]′,
i = 1, 2, . . . , n, with distance constraints all satisfied. Suppose that at time 0, all
agents are displaced from their initial positions. In a moment, we shall impose a
bound on the magnitude of the displacement.

At time t, agent i uses the relative position information of its neighbors (suppose
they are agents j and k) to determine the point p∗i (t) which is at the correct distances
d∗ij and d∗jk from agents j and k, respectively, and (noting that there are two such
points) is the closer of the two possible points to pi. (See Figure 5.) In order to do
this, it is required that the displacements of pj and pk from their initial positions not
be so great as to mean there is no possible point p∗i . If the agents pj and pk were to
remain at their initial predisplacement positions, p∗i would coincide with the initial
predisplacement position pi of agent i. If they were to move so that their separation
exceeded d∗ij + d∗jk, no p∗i could be found. Obviously then, a nonzero upper bound on
the displacements can be found, assuring the existence of p∗i . Observe that we can
write

(3.4) p∗i − pi = f(pj − pi, pk − pi, d∗ij , d∗ik)

for some function f which is independent of i. The control law to be used is one which
moves pi closer to p∗i , but it makes no allowance for the fact that because pj and pk
are likely to be moving, p∗i will also be changing. Thus we suppose that for some Ki,

(3.5) ṗi = Ki(p∗i − pi) = Kif(pj − pi, pk − pi, d∗ij , d∗ik).

If p∗i were to be constant, any Ki with positive real part eigenvalues could be used,
including Ki = I. However, p∗i will not be constant in general, and so a more
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sophisticated way of choosing Ki is needed. It will be shown in section 5 by way
of an example that the choice Ki = I for all i may actually be destabilizing, and
indeed the example displays stabilizing gains for which at least one of the Ki’s does
not even have positive real part eigenvalues. A significant part of the paper from
subsection 3.5 will deal with the basis for choosing Ki. As indicated in the previ-
ous subsection, the law in question will be decentralized in operation, i.e., only local
sensed data are used, but in design, it will not be decentralized; for, as it turns out,
the choice of the 2× 2 gain matrices Ki to assure stability demands this.

Equation (3.5) covers agents 1 through n−2. Agent n, the leader, will be assumed
stationary. The law for agent n − 1, the first follower, is one which requires it to
determine p∗n−1 as the point on the line joining pn−1 to pn which is at the correct
distance for the first follower from pn, and then the first follower moves toward that
point.

Thus we have

(3.6) p∗n−1 − pn−1 =
||pn − pn−1|| − d∗n−1,n

||pn − pn−1||
(pn − pn−1),

and for the control law, with some positive kn−1,

(3.7) ṗn−1 = kn−1(p∗n−1 − pn−1) = kn−1

||pn − pn−1|| − d∗n−1,n

||pn − pn−1||
(pn − pn−1).

Together with

(3.8) ṗn = 0,

(3.5) and (3.7) define the nonlinear closed-loop system. Rather than giving a formal
proof of existence of solutions, later in the paper we shall demonstrate that stability
can be assured for the linearized equations through an appropriate choice of the Ki

and kn−1, which is an indirect proof of solution existence.

3.3. Linearized equations. Let us suppose henceforth that all displacements
are small enough to allow first order approximation, and in particular that we can
represent at all times the position of agent i by pi(t) = δpi(t) + p̄i, where the p̄i
correspond to agent positions for which all desired distance constraints are met, and
δpi(t) is small. Let pi(t) = [xi(t) yi(t)]′, p̄i = [x̄i ȳi]′, and δpi(t) = [δxi(t) δyi(t)]′.
Below, we will indicate more specifically how the p̄i are determined. Note that p∗i (t) �=
p̄i in general. This is because p∗i would denote an equilibrium position for pi only if
pj and pk never moved. In general they will move. We assume also that all quantities
||pi(t) − p∗i (t)|| are small, which can be guaranteed if the initial displacements away
from equilibrium are all small and the subsequent motion is stable.

We consider first agents 1 through n− 2. Refer to Figure 5, and apply the cosine
law to the triangle with corners pi, p∗i , and pj . Because ||pi− p∗i || is small, there holds
(neglecting the square of ||pi − p∗i ||)

(3.9) ||pj − pi||2 − 2[pj − pi]T [p∗i − pi] ≈ ||pj − p∗i ||2,

which may be rewritten as

2[pj − pi]T [p∗i − pi] ≈ d2
ij − d∗2ij .
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Noting that pj − pi = p̄j − p̄i + δpj − δpi, and again neglecting second order terms,
we get the further approximation

(3.10) 2[p̄j − p̄i]T [p∗i − pi] ≈ d2
ij − d∗2ij .

Accordingly, provided agents i, j, and k are not collinear (i.e., that the vector pi − pj
is not parallel to the vector pi − pk), we will have

(3.11) p∗i − pi ≈
1
2

[
x̄j − x̄i ȳj − ȳi
x̄k − x̄i ȳk − ȳi

]−1 [
d2
ij − d∗2ij
d2
ik − d∗2ik

]
.

It is normal in applying rigid graph theory to formations to assume that the
formations are generic; a consequence of this assumption is that colinearities are
excluded, and so the matrix inverse in (3.11) exists.

Next, it is straightforward to check that, again neglecting second order terms,

1
2
[d2
ij − d∗2ij ] =

1
2
[||pj − pi||2 − ||p̄i − p̄j||2]

=
1
2
[||(p̄j − p̄i) + (δpj − δpi)||2 − ||p̄j − p̄i||2]

≈ [p̄i − p̄j]T δpi − [p̄i − p̄j ]T δpj,
1
2
[d2
ik − d∗2ik ] ≈ [p̄i − p̄k]T δpi − [p̄i − p̄k]T δpk.

Putting this together with (3.5), there results

(3.12)
[ ˙δxi

˙δyi

]
= Ki

[
x̄j − x̄i ȳj − ȳi
x̄k − x̄i ȳk − ȳi

]−1

R(ij,ik)

⎡
⎢⎢⎢⎢⎢⎢⎣

δxi
δyi
δxj
δyj
δxk
δyk

⎤
⎥⎥⎥⎥⎥⎥⎦

with R(ij,ik) =
[
x̄i − x̄j ȳi − ȳj −x̄i + x̄j ȳj − ȳi 0 0
x̄i − x̄k ȳi − ȳk 0 0 −x̄i + x̄k −ȳi + ȳk

]
.

Observe for later reference that R(ij,ik) is a submatrix of the rigidity matrix,
with rows corresponding to the edges {i, j} and {i, k} and columns corresponding to
vertices i, j, and k.

We turn now to the equation governing the first follower. Consider first the
motion defined by (3.7), and recall that the first follower moves along the line joining
it to the leader. Further, the leader remains stationary, and it is logical then to take
p̄n as its position so that pn(t) = p̄n. Then the instantaneous target point for the
first follower remains constant, and it is natural to take this point as the desired
equilibrium position, i.e., p∗n−1(t) = p̄n−1.

For the linearized system, there results
(3.13)

[
δ̇xn−1

δ̇yn−1

]
= kn−1I2

[
x̄n − x̄n−1 ȳn − ȳn−1

−(ȳn − ȳn−1) x̄n − x̄n−1

]−1

R((n−1)n,00)

⎡
⎢⎢⎣
δxn−1

δyn−1

δxn
δyn

⎤
⎥⎥⎦
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with

R((n−1)n,00) =
[
x̄n−1 − x̄n ȳn−1 − ȳn −x̄n−1 + x̄n −ȳn−1 + ȳn

0 0 0 0

]
.

Of course, the equations for the leader are

(3.14)
[
δ̇xn
δ̇yn

]
= 0.

In the light of the above discussion, one could arrive at the following theorem
which is the main result of this section.

Theorem 3.1. The linearization of (3.5), (3.7), and (3.8) under the first order
approximation is

(3.15) δ̇p(t) = KR−1
e

[
R
0

]
δp(t),

where K and Re are diagonal block matrices, with each block of size 2× 2. (The last
block of Re for convenience can be taken as the identity).

Of course, K = diag[K1,K2, . . . ,Kn−2, kn−1I2, 0], and the first (n − 2) diagonal
blocks of Re are obtained as 2 × 2 submatrices of the rigidity matrix, selecting rows
corresponding to edges {i, j}, {i, k} and columns corresponding to vertex i.

3.4. Simplified dynamics. Our ultimate goal is to show that through a suitable
choice of gains, the nonlinear system can be stabilized. This will be done by choosing
gains to stabilize the system obtained by linearizing the nonlinear system around the
equilibrium point. However, as is evident from the linearized equation (3.15), there
will necessarily be three modes of the linearized system which are located at the
origin; this apparently makes it much more difficult to establish a stability result for
the nonlinear system than for the linear system. Nevertheless, a modest modification
of the usual approach will work.

For the purpose of the theoretical analysis, without loss of generality let us choose
the global coordinate basis so that the x-axis coincides with the line joining agents
n − 1 and n at the start of the motion.3 Because agent n − 1 moves solely on this
line, it will stay on the x-axis, and so there will hold yn−1(t) = ȳn−1 = ȳn for all t.
Obviously then, for the nonlinear system, δyn−1(t) = yn−1(t)−ȳn−1 will be identically
zero. Because the leader does not move, for the nonlinear system δxn and δyn are
identically zero.

Examination of the linearized equation (3.13) shows also that

(3.16)
[
δ̇xn−1

δ̇yn−1

]
=
[
−kn−1δxn−1

0

]
,

while the equations for the leader remain the same as (3.14). It is straightforward to
check that the second entry of (3.16) is also true for the original nonlinear system.

Let R̂e denote Re with the last three rows and columns discarded; i.e., it is a
(2n− 3)× (2n− 3) submatrix of Re. Correspondingly, we have to use a (2n − 3) ×
(2n− 3) submatrix of K and consider K = diag[K̂, 03], i.e.,

(3.17) K̂ =

(
n−2⊕
i=1

Ki

)⊕
kn−1,

3If the new global basis is obtained from the original one by a rotation and translation, the gains
K will all differ in the two coordinate bases by the same orthogonal similarity transformation.
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where K̂i are each 2× 2 and kn−1 is a scalar.
Recall also that

(3.18)

⎡
⎣ δyn−1

δxn
δyn

⎤
⎦ = 0.

This means that we can replace (3.15) with the simplified equation⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˙δx1

δ̇y1
˙δx2

δ̇y2
...

˙δxn−2

δ̇yn−2
˙δxn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= K̂R̂e
−1
R̂

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δx1

δy1

δx2

δy2
...

δxn−2

δyn−2

δxn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(3.19)

where R̂e and R̂ are obtained by removing the last three columns from Re and R,
respectively.

Notice that (3.18) also holds for the nonlinear system. Equation (3.19) is actually
the linearized version of the nonlinear equations governing the first 2n−3 coordinates.
Accordingly, if K̂ in (3.19) is chosen to ensure that (3.19) is exponentially stable, then
the nonlinear equations governing the first 2n − 3 coordinates will be exponentially
stable for all initial conditions within some domain of attraction, and the motion of
the last three coordinates is trivially defined by (3.18), i.e., there is no motion.

Observe in (3.19) that δ̇pi can depend on only δpi, δpj, and δpk, where agents
j and k are those from which agent i must maintain its distance. This forces K̂ to
have the structure of (3.17), but does not constrain the individual blocks to be, for
example, individually diagonal or multiples of the identity. For this problem, K̂ in
fact serves as the controller. Of course, one could contemplate replacing K̂ by some
dynamics, in which δ̇pi was determined by dynamic processing of δpi, δpj, and δpk,
but this is beyond the scope of the paper.

It should be noted that in (3.19), the matrix R̂−1
e R̂ is defined in terms of the target

positions p̄i, which of course are not known a priori. Consider now, though, the set-
ting where a previously intact formation was deformed by the “small” movements of
multiple agents. Then if under a given K̂, K̂R̂−1

e R̂ is sufficiently Hurwitz, with p̄i in
R̂−1
e R̂ replaced by the positions prior to the deformation, then under sufficiently small

movements that cause the deformation, (3.19) will remain Hurwitz. Thus, in what
follows, which is concerned with designing K̂ to ensure local stability, to avoid nota-
tional complexities we will assume that the matrix R̂−1

e R̂ is formed with the positions
prior to deformation replacing p̄i, subject to the coordinate transformation described
in this section.

3.5. Choosing the block diagonal control multiplier. From the above anal-
ysis of a continuous time version of the formation shape maintenance problem, we have
determined that the underlying dynamic equation is of the form

(3.20) ż = ΛAz.

In this equation, Λ is a diagonal or possibly block diagonal matrix. Its entries cor-
respond to gains associated with the control used by each agent. If each agent were
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to apply the same gain to the two distance constraints, then we would have Λ of the
form λ1I2 ⊕ λ2I2 ⊕ . . . .

For the moment, in this section we will assume that Λ is diagonal and all the
diagonal elements of Λ can be independently chosen. The key result, which will be
established with a constructive procedure, is as follows.

Theorem 3.2. Suppose A is an m × m nonsingular matrix with every leading
principal minor nonzero. Then there exists a diagonal Λ such that the real parts of
the eigenvalues of ΛA are all negative.

Proof. The proof of the theorem will proceed by induction on m. We shall ensure
that m − 1 eigenvalues of ΛA lie very far in the left half plane by selecting the first
m − 1 diagonal entries of Λ, and then show how the mth diagonal entry λm can
be chosen to make the last eigenvalue of ΛA have negative real part. Suppose the
theorem is true for m = 1, 2, . . . , r − 1 (it is trivially true for m = 1). Consider the
case m = r and suppose A has nonzero leading principal minors. Write

A =
[
A11 a12

aT21 a22

]
,

where A11 is (r − 1) × (r − 1) and nonsingular with nonsingular leading principal
minors, a12, a21 ∈ �r−1, a22 ∈ �. Appealing to the induction hypothesis, choose Λ1

diagonal so that Λ1A11 has all eigenvalues with negative real parts. Now recall that
if [

ż1
ż2

]
=
[
ε−1Λ1A11z1 + ε−1Λ1a12z2

λ2a
T
21z1 + λ2a22z2

]

and if the real parts of the eigenvalues of Λ1A11 are all negative, then provided ε is
small enough we can use singular perturbation theory to study stability [24]. The
high order system is asymptotically stable if an associated lower order system is
asymptotically stable. This low order system is obtained by replacing the differential
equation for z1 by the equation

z1 = −(ε−1Λ1A11)−1(ε−1Λ1a12)z2
= −A−1

11 a12z2,

and then the differential equation for z2 becomes

ż2 = −λ2a
T
21A

−1
11 a12z2 + λ2a22z2

= λ2[a22 − aT21A−1
11 a12]z2.

Choosing λ2 so that λ2[a22 − aT21A
−1
11 a12] < 0 ensures stability of z2 and then the

whole of z. Also,

|A| = |A11|(a22 − aT21A−1
11 a12),

so there is no possibility that a22 − aT21A−1
11 a12 = 0.

Remark 3.1. Examining the literature for theorems of this variety, one can see
that if A and Λ are permitted to be complex, then the same leading principal minor
condition guarantees that a Λ can be found to produce any prescribed set of eigenval-
ues; see [25]. However, the method of proof cannot be carried over to the real case.
Further, it is easy to show with a 2×2 counterexample that eigenvalue positionability
in the real case cannot always be guaranteed, even with nonzero principal minors.
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Remark 3.2. In order to apply this theorem to our situation, we will need to show
that the matrix R̂ defined in the previous subsection (which corresponds to A in the
theorem) has all principal minors nonzero. This is not straightforward and will be
done in the next section. Of course, K̂(R̂e)−1 will correspond to Λ, and we achieve a
Λ by choice of K̂ that in turn conforms to (3.17).

Remark 3.3. The condition of the theorem is a sufficiency condition. It would
appear not to be necessary. However, in order that a stabilizing Λ exist, it is certainly
necessary that A be nonsingular. For if A is singular, then so is ΛA and there is
necessarily at least one zero eigenvalue. Also, suppose A is m ×m, and the charac-
teristic polynomial is |sI − A| = Am + α1A

m−1 + · · · + αm; then αi = (−1)i
∑

(all
i × i principal minors of A). Hence if all i × i principal minors of A are zero, then
αi = 0. Also, all i × i principal minors of A are zero if and only if all i× i principal
minors of ΛA (for nonsingular Λ) are zero. Hence if all i× i principal minors of A are
zero, the characteristic polynomial of ΛA will have a zero coefficient. Since for the
characteristic polynomial to be stable, all coefficients must be positive, we see that a
necessary condition for Λ to exist is that for all i, at least one i× i principal minor of
A is nonzero.

Remark 3.4. There is a trivial extension to the theorem: if the rows and columns
of A can be symmetrically reordered so that every leading principal minor is nonzero,
then Λ can be chosen with the desired properties.

4. The principal minor condition. Recall from the previous sections that the
key technical condition required for stabilizability is that a certain matrix have all its
leading principal minors nonzero. This section addresses this issue. In particular,
recall that with V = {1, . . . , n}, the directed graph G = (V,E) has a leader-first
follower structure with n and n−1 being the leader and the first follower, respectively.
In what follows, suppose the rigidity matrix R is such that its last row corresponds to
the only outgoing edge that the first follower has, i.e., the outgoing edge from n− 1
to n.

Recall that R̂ is the (2n− 3)× (2n− 3) submatrix of the rigidity matrix R of G,
obtained by removing the last three columns of R. Further, R̂e is the (2n−3)×(2n−3)
matrix as below:

(4.1)

(
n−2⊕
i=1

Bi

)⊕
(xn − xn−1),

where if node i ∈ V ′ = {1, . . . , n− 2} has outgoing edges to j and k, then

(4.2) Bi = −
[
xi − xj yi − yj
xi − xk yi − yk

]
.

This implicitly enforces the following ordering of the rows and columns of R̂.
Columns 2k − 1 and 2k correspond to node k ∈ V ′. Rows 2k − 1 and 2k correspond
to the two outgoing edges of node k ∈ V ′. The last row of R corresponds to the edge
from n− 1 to n.

Our goal is to prove the following main result of this section.
Theorem 4.1. Consider an n-node minimally persistent formation F with agent

set P = {1, . . . , n} at generic positions, and n and n − 1 the leader and the first
follower, respectively. Suppose R̂ is the (2n− 3)× (2n− 3) submatrix of the rigidity
matrix R of F , obtained by removing the last three columns of R and obeying the row
and column ordering noted above. Then there exists an ordering of the first n − 2
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vertices of F and an ordering of the pair of outgoing edges for each of these vertices
such that the leading principal minors of the associated R̂ are generically nonzero.

In order to prove this theorem, we will first establish several lemmas and another
theorem in this section. The proof is completed at the end of the section. The
significance of this result is as follows. From Theorem 3.2, one can find a diagonal Λ
such that ΛR̂ has all eigenvalues in the open left half plane. Consequently, with

(4.3) K̂ = ΛR̂e

the matrix K̂R̂−1
e R̂ can be made to have all eigenvalues in the open left half plane. For

such a choice the control laws of the previous section stabilize the system. Further,
the the block diagonal nature of R̂e outlined in (4.1) and (4.2) ensures that K̂ has the
right structure, in that it is block diagonal with the first n− 2 diagonal blocks being
2 × 2 matrices and the last diagonal element being scalar. As noted in the previous
section, this ensures that to implement its individual control law each agent need only
sense the relative positions of its neighbor agents.

To proceed with the proof of Theorem 4.1 we first prove that the matrix R̂,
obtained by removing the last three columns of the rigidity matrix R, is generically
nonsingular.

Lemma 4.2. Under the hypothesis of Theorem 4.1, R̂ is generically nonsingular.
Proof. The null space of R has as its basis the following three 2n-vectors:
η1 = [1, 0, 1, 0, 1, 0, . . .]′,
η2 = [0, 1, 0, 1, 0, 1, 0, . . .]′, and
η3 = [y1,−x1, y2,−x2, y3,−x3, . . . , yn−1,−xn−1, yn,−xn]′.

If the (2n − 3) × (2n − 3) matrix R̂ is singular, it must have a (2n − 3)-dimensional
null vector η �= 0. Then

R[η′, 0, 0, 0]′ = 0.

Thus as [η′, 0, 0, 0]′ is in the space spanned by ηi, and η �= 0, the matrix formed by
the last three elements of each of ηi,⎡

⎣ 1 0 −xn−1

0 1 yn
1 0 −xn

⎤
⎦ ,

must be generically singular. This is of course false.
We require further notation. Recall that the set V ′ comprises the follower nodes.

Consider now a subset of the follower nodes: V1 ⊂ V ′. Then we define R(V1) as
the principal submatrix of R̂ obtained by retaining the columns corresponding to the
elements of V1. Call G1 = (V1, E1) the subgraph of G induced by V1 and conforming
to the row and column ordering noted earlier. Note R(V1) is not the rigidity matrix of
the induced subgraph G1, as it may contain edge information regarding certain edges
of G which are not in G1.

First we have the following lemma.
Lemma 4.3. Under the hypothesis of Theorem 4.1, R(V ′) is generically nonsin-

gular.
Proof. This follows by noting that with × a don’t care vector, R̂ can be partitioned

as

R̂ =
[
R(V ′) ×

0 xn−1 − xn

]
.
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Then the result follows from Lemma 4.2.
Next, we prove the following lemma.
Lemma 4.4. Consider a minimally persistent graph with a leader-first follower

structure G = (V,E), and any induced subgraph G1 = (V1, E1), such that V1 contains
neither the leader nor the first follower. Call V2 ⊂ V −V1 the set of vertices in V −V1

that have incoming edges from V1 in G. Suppose |V2| ≥ 2. Define E21 as the set of
outgoing edges of nodes of V1 in G and terminating in V2. Construct a new graph
Ḡ = (V̄ , Ē) with the following properties:

(a) V̄ = V1 ∪ V2.
(b) Let G̃2 = (V2, Ẽ2) be any minimally persistent graph with a leader-first fol-

lower structure, with vertex set V2, and with edge set Ẽ2 that is not required
to be related in any way to the edges in G. Choose Ē = Ẽ2 ∪ E21 ∪ E1.

Then Ḡ is a minimally persistent graph with a leader-first follower structure, and the
leader and first follower belong to V2.

Proof. By construction, while all outgoing edges of nodes in V1 in the original
graph G are in Ē, no incoming edge to V1 from V2 in E also appears in Ē. As
G̃2 is minimally persistent, and hence by Theorem 2.3 minimally rigid, by Laman’s
theorem, |Ẽ2| = 2|V2|−3, and as no node of V1 is either the leader or the first follower
of G, |E21|+ |E1| = 2|V1|. Thus

|Ē| = |Ẽ2|+ |E21|+ |E1| = 2|V2| − 3 + 2|V1| = 2|V̄ | − 3.

Further, again from Theorem 2.3, no vertex in Ḡ has more than two outgoing edges.
Also by construction, Ḡ has a leader-first follower structure, with the leader and first
follower the same as that for G̃2. Thus, in view of Theorem 2.3, to complete the proof
of minimal persistence, we must demonstrate that Ḡ is rigid. Thus we must show that
for any V̂ ⊂ V̄ , the subgraph of Ḡ induced by V̂ has no more than 2|V̂ | − 3 edges.
Choose

V̂ = V̂1 ∪ V̂2 with V̂i ⊂ Vi.

We shall count the edges by counting outgoing edges. Suppose the nodes of V̂1 have
m outgoing edges to the nodes of V̂2. Then observe that the number of edges in the
graph induced by V̂1 is no greater than 2|V̂1|−m. Finally, to count the outgoing edges
associated with V̂2, note that by construction, V2 has no outgoing edges to V1 in Ḡ,
and hence all outgoing edges from V̂2 vertices must be edges of G̃2. Thus, as G̃2 is
minimally persistent from Laman’s theorem, the number of outgoing edges from V̂2

vertices is no greater than 2|V̂2| − 3. Hence the number of edges in the graph induced
by V̂ is no greater than

m+ 2|V̂1| −m+ 2|V̂2| − 3 = 2|V̂ | − 3

and the result holds.
Using this lemma we will prove the following theorem.
Theorem 4.5. Under the hypothesis of Theorem 4.1, R(V1) is generically non-

singular for every V1 ⊂ V ′.
Proof. From Lemma 4.3 the result holds when V1 = V ′. Thus suppose V1 �= V ′.

Then we can argue that there are at least three outgoing edges from V1 to V − V1. If
g1 = (V1, E1) is the induced subgraph, then by Laman’s theorem, |E1| ≤ 2|V1| − 3.
Further, as V1 does not contain either the leader or the first follower, every node in
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V1 has exactly two outgoing edges in G. Thus there must be at least three outgoing
edges from V1 to V − V1.

Adopt now the notation of Lemma 4.4. Clearly |V2| �= 0. Suppose now, to obtain
a contradiction, that |V2| = 1. Then in the subgraph induced by V1 ∪ V2 there are at
least 2|V1| edges, while |V1 ∪ V2| = |V1|+ 1. This violates Laman’s theorem as

2|V1| > 2(|V1|+ 1)− 3.

Thus |V2| ≥ 2 and the conditions of Lemma 4.4 apply.
Using the notation and construction used in Lemma 4.4, call ˆ̄R and R̂2 the ma-

trices obtained by removing from the rigidity matrices of Ḡ and G̃2, respectively, the
two columns corresponding to the common leader and one column corresponding to
the common follower. By Lemma 4.4, both Ḡ and G̃2 are minimally persistent, and
so by Lemma 4.2, ˆ̄R and R̂2 are both generically nonsingular. Then the fact that no
node in V2 has an outgoing edge to the nodes of V1 in Ḡ, and that all the outgoing
edges of V1 in G are retained in Ḡ, ensures that with × a don’t care block,

ˆ̄R =
[
R(V1) ×

0 R̂2

]
.

Thus the result follows.
Remark 4.1. Because of Theorem 4.5, we can only conclude at this point that

every even order principal (rather than every leading principal) minor is nonzero.
We will now show that there is an ordering of vertices possible, and an ordering

of the two outgoing rows associated with each vertex such that after this reordering,
all leading principal minors of R̂ are generically nonzero. We begin with the vertex
reordering. Observe first the following fact, which will deal with the vertex reordering.

Lemma 4.6. Under the hypothesis of Theorem 4.1, there exists a sequence of nodes
i1, . . . , ij , . . . , in−2, all in V ′, that has the following property: for all 1 < j ≤ n − 2,
ij has at most one outgoing edge in the subgraph of G induced by {i1, . . . , ij}.

Proof. Equivalently, one must show that the node ij has at least one edge connect-
ing to {ij+1, ij+2, . . . , in−2, n− 1, n} in the original graph G. Because G is minimally
persistent, by Theorem 2.3, the subgraph induced by V ′ has nodes which in the
original graph G are the beginning vertex for at least three edges going outside the
subgraph. This is because each vertex necessarily has two outgoing edges, meaning
that in total there are three more than the induced subgraph is permitted to contain
by Laman’s theorem. Take node in−2 to be the start node for any one of these edges.

Now consider the subgraph induced by the nodes in V ′ − {in−2}. Note that this
subgraph has nodes which in the original graph G are the beginning vertices for at
least three edges going outside the subgraph. Take node in−3 to be the start node for
any one of these edges. This procedure continues until all but two nodes have been
assigned. Their assignment is trivial.

Proof of Theorem 4.1. Select the ordering of the vertices guaranteed by Lemma
4.6. Now without loss of generality label ik = k. Rows and columns 2j− 1 and 2j are
associated with vertex j. In the ordering of rows of R(V ′) select the penultimate row
of R({1, . . . , j}) to be the outgoing edge of j that is not in the subgraph of G induced
by {1, . . . , j}. Consider now the (2j − 1)th leading principal minor; i.e., under the
relabeling above,

det
([

R({1, . . . , j − 1}) ×
0 xj − xl

])
,
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where × is a don’t care vector and l is the node not in {1, . . . , j − 1} to which j’s
second outgoing edge goes. Then, as by Theorem 4.5 R({1, . . . , j−1}) is nonsingular,
this determinant is nonzero. Thus after the vertex reordering and ordering of outgoing
edges at each vertex, all leading principal minors of R̂ are generically nonzero.

Remark 4.2. We remark that our control law is distributed, but the design of
the control laws of the agents requires a centralized view of the particular minimally
persistent formation in question. There is in fact no agreed standard definition of
decentralization for a multi-agent system. One needs to distinguish a decentralized
(local) controller from a decentralized controller design. The key criterion for the
former is that each agent has to be autonomous and local, such that it makes decisions
entirely based on local sensing and without global knowledge. The latter, however,
requires that the design process of the control laws be decentralized, which is to an
extent counterintuitive. One might argue that, without knowing the desirable shape
of the entire formation and the agent’s role or relative position in this formation, there
is no way that one could assign appropriate control laws to this agent such that it
knows where to be and what to do.

5. Eigenstructure analysis and an example. In this section we explain in
greater depth the need for premultiplication of the update kernel by a block diagonal
matrix, with 2× 2 diagonal blocks. In particular we ask: what happens if one selects
the K̂ in (4.3) as the identity matrix? In this case, stability would require that R̂−1

e R̂
have all eigenvalues in the left half plane. The basic premise of this section is that
while for acyclic graphs, these conditions always hold, for graphs with cycles there
may be node coordinates that result in their violation. We present an example of such
instability and show how a suitably selected K̂ repairs this instability.

In subsection 5.1 we explore the structure of R̂−1
e R̂. In subsection 5.2 we show

that for acyclic graphs, all eigenvalues of R̂−1
e R̂ are −1. Additionally, we provide

certain conditions under which several eigenvalues of R̂−1
e R̂ are −1 even in graphs

with cycles. Subsection 5.3 considers graphs that may have nonoverlapping cycles,
and subsection 5.4 uses the eigenstructure thus established to present the example
noted above.

5.1. Structure of R̂−1
e R̂. Consider any set Vj = {1, . . . , j} ⊂ V ′ = {1, . . . , n−

2}, and recall the definition of R(Vj) and the ordering enforced on the first n−2 rows
of R̂ presented in section 4. With the 2×2 matrices Bi defined in (4.2), further define

(5.1) S(Vj) =

(
j⊕
i=1

Bi

)−1

R(Vj).

Observe that, with × denoting a don’t care block element,

(5.2) R̂−1
e R̂ =

[
S(V ′) ×
0 −1

]
.

Thus we have the following obvious fact.
Fact 1. At least one eigenvalue of R̂−1

e R̂ is −1.
Thus the interesting eigenvalues are those of S(V ′). Further, S(V ′) has the struc-

ture outlined below.
Define e1 = [1, 0]′ and e2 = [0, 1]′. Partition S(Vj) into 2 × 2 blocks; then each

matrix on the block diagonal is −I2. Call Xlr the lrth off diagonal block element of
S(Vj). Then Xlr is nonzero if and only if there is an outgoing edge from l to r in the
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graph induced by Vj . There are thus at most two off diagonal nonzero block elements
in each block row. If l has an outgoing edge to a node r in the subgraph induced by
Vj , then if this edge information were in the (2l− 1)th row of R,

(5.3) Xlr = B−1
l e1e

′
1Bl.

If l has a second outgoing edge to a node s in the subgraph induced by Vj , and as
this edge information must then be in the 2lth row of R, then

(5.4) Xls = I −Xlr = B−1
l e2e

′
2Bl.

We will call Xlr the edge weight of the outgoing edge from l to r. Each edge weight
has the following properties:

(a) It has rank 1.
(b) Its trace is 1.

5.2. Acyclic graphs. In this section we are concerned primarily with acyclic
graphs. We first present a somewhat more general result.

Theorem 5.1. Suppose that q that vertices in the graph induced by V ′ =
{1, 2, 3, . . . , n − 2} defined above have no incoming edges and that m vertices have
only one incoming edge each. Then there are at least 2q + m eigenvalues of S(V ′)
that are −1.

Proof. Equivalently we need to show that S(V ′)+I has at least 2q+m eigenvalues
that are zero. This follows by noting that the first 2q columns of S(V ′) + I are zero
and the next m block columns of size 2(n− 2)× 2 are each of rank 1.

We next turn to graphs that are acyclic.
Theorem 5.2. Suppose the graph induced by V ′ defined above is acyclic. Then

all eigenvalues of S(V ′) are −1.
Proof. Since the graph induced by V ′ is acyclic, there exists a sequence of nodes

i1, . . . , in−2 such that for each j > 1, ij has no outgoing edges to {i1, . . . , ij−1} in the
graph induced by V ′. Consequently under a symmetric permutation of its rows and
columns S(V ′) is upper triangular with diagonal elements all −1. This proves the
result.

Corollary 1. Suppose the graph induced by V ′ defined above is acyclic. Then
all eigenvalues of R̂−1

e R̂ are −1. Therefore, with Ki = I2 and kn−1 = 1, the linearized
system (3.19) is asymptotically stable (and triangularly coupled).

5.3. Graphs with nonoverlapping cycles. In what follows we call a graph
G′′ = (V ′′, E′′) a pure cycle if with V ′′ = {1, . . . , k}, then E′′ = {{1, 2}, {2, 3}, . . . , {k−
1, k}, {k, 1}}, where {i, j} denotes an edge from i to j. If G′′ is actually an induced
subgraph of G, then we define its cycle weight to be the rank-1 matrix

(5.5) X12X23 · · ·Xk−1,kXk1.

Again we recall that in Figure 4, {1, 2, 3} constitutes a pure cycle, and because
it is an induced subgraph, it will also have a cycle weight. We call the graph induced
by V ′ one with nonoverlapping cycles if

V ′ =
r⋃
i=1

V i,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROL OF MINIMALLY PERSISTENT FORMATIONS 227

G(V1)

G(V3)

G(V2)

Fig. 6. An abstracted formation showing a block of edges for a graph with pure cycles. Each
G(V i) is a cycle or acyclic.

where the graph induced by each V i is either acyclic or a pure cycle, at least one such
graph is a pure cycle, and no node of V j has an outgoing edge to any node in

j−1⋃
i=1

V i.

Then it is clear that for a graph with nonoverlapping cycles, such as in Figure 6,
under a symmetric permutation of rows and columns, S(V ′) has a block triangular
structure, with S(V i) the diagonal blocks. Thus the set of eigenvalues of S(V ′) is
simply the union of the set of eigenvalues of these S(V i). In view of the results of
subsection 5.2, we thus can just focus on one such V i for which the induced subgraph
is a pure cycle. Then we have the following result.

Theorem 5.3. Suppose the subgraph induced by V ′′ = {1, . . . , k} ⊂ V ′ is a pure
cycle. Define α to be the trace of the cycle weight. Then k eigenvalues of S(V ′′) are
at −1, and the remaining k are

(5.6) −1 + α1/kej2πl/k, l ∈ {0, . . . , k − 1}.

Proof. Observe

(5.7) F = I + S(V ′′) =

⎡
⎢⎢⎢⎢⎢⎣

0 X12 0 · · · · · · · · · 0
0 0 X23 0 · · · · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · 0 0 Xk−1,k

Xk1 0 · · · · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

As the Xij have rank 1, F has at least k zero eigenvalues. Consequently, S(V ′′) has
k eigenvalues equal to −1. For i ∈ {1, . . . , k − 1} call Xi,i+1 = aib

′
i and Xk1 = akb

′
k,

with ai, bi 2-vectors. Then

(5.8) α = b′ka1

k−1∏
i=1

b′iai+1.

Define

(5.9) γ1 = 1 and γi =
α(i−1)/k∏i−1
j=1 b

′
jaj+1

, i ∈ {2, . . . , k}, Γ =
k⊕
i=1

(γiI2),
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for l ∈ {0, . . . , k − 1},

Wl =
k⊕
i=1

(
ej2πl(i−1)/kI2

)
,

and η = [a′1, . . . , a
′
k]

′. Then we assert that for each l ∈ {0, . . . , k − 1},

(5.10) FWlΓη = α1/kej2πl/kWlΓη.

Indeed, observe from (5.9) that for i ∈ {2, . . . , k}, γib′i−1ai = α1/kγi−1, and from
(5.8) and (5.9) that

γ1b
′
ka1 =

α∏k−1
j=1 b

′
jaj+1

= α1/kγk.

Thus (5.10) follows because

FWlΓη =

⎡
⎢⎢⎢⎢⎢⎣

ej2πl/kγ2(b′1a2)a1

ej4πl/kγ3(b′2a3)a2

...
ej2πl(k−1)/kγk(b′k−1ak)ak−1

γ1(b′ka1)ak

⎤
⎥⎥⎥⎥⎥⎦ = ej2πl/kWl

⎡
⎢⎢⎢⎢⎢⎣

γ2(b′1a2)a1

γ3(b′2a3)a2

...
γk(b′k−1ak)ak−1

γ1(b′ka1)ak

⎤
⎥⎥⎥⎥⎥⎦ .

Consequently, from (5.10) the result follows.
Observe that the theorem characterizes the eigenvectors as well. As a result of

the theorem, the eigenvalues of R̂−1
e R̂ contributed by a k-node nonoverlapping cycle

take the form

−1 + α1/kej2πl/k, l ∈ {0, . . . , k − 1}.

As we show by example in the next subsection, for suitably selected node coordinates
such eigenvalues may have positive real parts.

5.4. An example. Using the results of the previous subsection we provide an
example that, for suitably placed vertex positions, leads to an unstable R̂−1

e R̂, imply-
ing that Ki, kn−1, other than the identity, must be chosen for there to be stability.
Indeed, consider the graph in Figure 4 in subsection 2.2. Note in particular that in
the example the subgraphs induced by {1, 2, 3} and {4, 5, 6} are a pure cycle and
acyclic; respectively, 5 is the first follower and 6 is the leader. Further, none among
{4, 5, 6} has an outgoing edge to any of {1, 2, 3}. Thus indeed this graph is one we
have earlier characterized to be a graph with nonoverlapping cycles. Then R̂−1

e R̂ has
six eigenvalues at −1 and the remaining three are at

(5.11) −1 + α1/3ej2πk/3, k ∈ {0, 1, 2}.

Observe in this case that, the trace of the cycle weight of the cycle {1, 2, 3} is

α =
(x31y14 − x14y31)(x12y25 − x25y12)(x23y36 − x36y23)
(x31y36 − x36y31)(x12y14 − x14y12)(x23y25 − x25y23)

,

where xij = xi − xj and yij = yi − yj , and i, j ∈ {1, 2, 3, 4, 5, 6}.
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Fig. 7. Initial setting before agent 6 is disturbed.

Note that α can be alternatively expressed using angles

(5.12) α =
(

sin∠314

sin∠214

)(
sin∠125

sin∠325

)(
sin∠236

sin∠136

)
,

where ∠ijk is the angle subtended by edges {i, j} and {j, k} at agent j, i, j, k ∈
{1, 2, 3, 4, 5, 6}. In general the cycle weight of a pure cycle is the product of ratios, with
one ratio per node appearing in the cycle. The numerator of the ratio corresponding
to a particular node in the cycle is the sine of the angle subtended by the incoming
edge in the cycle to this node, and the outgoing edge from this node leaving the cycle.
The denominator is the sine of the angle between the two outgoing edges of this node.

This expression provides some geometric clue for the formation stability, since a
sine will be small if the angle approaches 0 or π, which means that a certain set of
three agents is nearly collinear. Yet a large α and hence potential instability may not
occur even if some nodes are near to being collinear. Thus, suppose in Figure 4 that
if nodes 1, 2, and 4 are near collinear but ∠314 < ∠214, then instability may well be
avoided.

For an instantiation of the formation graph given in Figure 4, choose the six
agent positions to be p1 = (0.2902, 0.5409), p2 = (0.8637, 0.2302), p3 = (−0.1388,
0.8117), p4 = (0.2316, 0.5387), p5 = (0.6438, 0.7909), and p6 = (−0.1784, 0.7716). An
instantiation of this graph is shown in Figure 7.

Then α = 1.1407 and (5.11) for k = 0 is real and positive, implying instability.
Note in this particular example that α assumes an intermediate value, and none of
the relevant angles appearing in either the numerator or the denominator of (5.12) is
close to 0 or π. Thus, it is not relevant that agents 1, 2, and 3 are nearly collinear.
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Fig. 8. Initial setting after agent 6 is disturbed.

On the other hand, it is readily checked that with the choice

K̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.4317 −3.0234 0 0 0 0 0 0 0
1.9306 −0.7167 0 0 0 0 0 0 0

0 0 10.2598 −6.9802 0 0 0 0 0
0 0 0.2448 4.0662 0 0 0 0 0
0 0 0 0 −0.4261 0.2535 0 0 0
0 0 0 0 −0.0634 0.1032 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the eigenvalues of K̂R̂−1
e R̂ are {−0.0515 − 0.0473i, −0.0515 + 0.0473i, −0.4298,

−1.0000, −1.0000, −1.0000, −3.2276, −4.7944, −10.1634}. Observe that this K̂ has
the structure imposed by (3.17) and provides a stable solution.

We next perturb the coordinates in the graph of Figure 7 to that in Figure 8.
In the latter figure, agent 6 moves to p6 = (−0.1829, 0.7909). The nonlinear control
law of (3.5), (3.7) is applied, with Ki as in the previous subsection. The simulation
results are shown in Figures 9 and 10 and indicate rapid convergence.

6. Conclusion. This paper has only started on what is likely to be a fairly long
road, developing efficacious control designs for maintaining formation shape. The
methods of this paper do little more than demonstrate stabilizability. The particular
stability theorem we are relying on, involving multiplying a matrix with nonzero
leading principal minors by a diagonal matrix to make it stable, is almost certainly
novel; however, it does not address the achieving of other control objectives apart
from stability. In fact there is a broader list of issues that need to be addressed in the
future, and we record some as follows:

(a) The control laws of this paper should really be regarded as nonlinear laws,
with the rigidity matrix varying in the course of the motion. We have assumed
small motions in order to justify an analysis using a linearized system. An
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Fig. 9. Distance keeping during the shape regulation process.
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Fig. 10. Final setting after shape regulation, i.e., at time t = 150 sec.

immediate task would be to demonstrate stability of the nonlinear algorithm
for a sizeable domain of attraction, and at the same time, or separately,
construct a framework that embraces all minimally persistent formations,
and not just ones of the leader-first follower type.

(b) We could have chosen different variables in which to describe the problem;
for example, in another work [22], the dependent variables in the key dif-
ferential equations were actual edge lengths rather than coordinate values.
From a linearized point of view, it turns out that this makes no difference,
but working with edge lengths may allow for a clearer understanding of the
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nonlinear behavior under big perturbations. Certainly in working with edge
lengths in [22], we were able to obtain results that were almost global in their
applicability.

(c) It may be important to study topologically balanced graphs (and then perhaps
graphs with weights which can balance them) [11, 17] and see whether the
results can be obtained far more easily. This is because for directed graphs
and the consensus (flocking) problem, balanced graphs allow an easy solution
[11], bringing the Laplacian into the picture; there is no guarantee that this
will be so for the shape maintenance problem, which certainly needs to be
viewed as a nonlinear problem, but it might be so. Note, though, that having
a balanced graph precludes having a leader-follower structure, although it
might be possible to separate these two vertices, much as we have done in
this paper. To the extent that we are using weights here, which are the entries
of the diagonal scaling matrix Λ, one might even wonder whether these could
be put into a weighted balancing framework.

(d) Three-dimensional formations will not necessarily be a straightforward gen-
eralization, since the persistence concept is more difficult to generalize than
might at first appear. Further, there is lacking a full graphical characteriza-
tion of rigidity in three dimensions analogous to Laman’s theorem, which we
drew on heavily in this paper. On the other hand, it is reasonable to conjec-
ture that the critical technical requirement, that a certain submatrix of the
rigidity matrix will have all leading principal minors nonzero, will continue
to hold.

(e) There are only limited insights here into which structures are difficult to
control, in the sense that very large control signals will need to be used or
noise will be a great problem. Such insights can be obtained through a more
detailed investigation of formulas such as (5.12).

(f) Next, it is quite evident that it is desirable to include redundancy in forma-
tions to allow for loss of communication links or loss of an agent. This means
we need to be able to handle nonminimally persistent problems, especially
where there is noise in the measurements; for there is not then an obvious
single point toward which a follower agent should aim.

These remarks of course do not exhaust the problems. One could imagine treat-
ing agents with mass, inertia, orientation; other control laws; maintenance of shape
mixed with formation motion objectives, including obstacle avoidance; minimization
of control energy; agents which move asynchronously; or formations with communi-
cations delays. These are all examples of issues which are relevant and have yet to be
addressed.
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COORDINATED PATH-FOLLOWING IN THE PRESENCE OF
COMMUNICATION LOSSES AND TIME DELAYS∗

R. GHABCHELOO† , A. P. AGUIAR† , A. PASCOAL† , C. SILVESTRE† , I. KAMINER‡ ,
AND J. HESPANHA§

Abstract. This paper addresses the problem of steering a group of vehicles along given spa-
tial paths while holding a desired time-varying geometrical formation pattern. The solution to this
problem, henceforth referred to as the coordinated path-following (CPF) problem, unfolds in two
basic steps. First, a path-following (PF) control law is designed to drive each vehicle to its assigned
path, with a nominal speed profile that may be path dependent. This is done by making each vehicle
approach a virtual target that moves along the path according to a conveniently defined dynamic
law. In the second step, the speeds of the virtual targets (also called coordination states) are ad-
justed about their nominal values so as to synchronize their positions and achieve, indirectly, vehicle
coordination. In the problem formulation, it is explicitly considered that each vehicle transmits
its coordination state to a subset of the other vehicles only, as determined by the communications
topology adopted. It is shown that the system that is obtained by putting together the PF and
coordination subsystems can be naturally viewed as either the feedback or the cascade connection
of the latter two. Using this fact and recent results from nonlinear systems and graph theory, con-
ditions are derived under which the PF and the coordination errors are driven to a neighborhood
of zero in the presence of communication losses and time delays. Two different situations are con-
sidered. The first captures the case where the communication graph is alternately connected and
disconnected (brief connectivity losses). The second reflects an operational scenario where the union
of the communication graphs over uniform intervals of time remains connected (uniformly connected
in mean). To better root the paper in a nontrivial design example, a CPF algorithm is derived for
multiple underactuated autonomous underwater vehicles (AUVs). Simulation results are presented
and discussed.

Key words. coordination control, communication losses and time delays, path-following,
autonomous underwater vehicles
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1. Introduction. Increasingly challenging mission scenarios and the advent of
powerful embedded systems, sensors, and communication networks have spawned
widespread interest in the problem of coordinated motion control of multiple autono-
mous vehicles. The types of applications considered are numerous and include aircraft
and spacecraft formation control [6], [23], [29], [36], [39], [49], [50], [60], [30], [4], [64],
coordinated control of land robots [16], [52], [22], [58], control of multiple surface and
underwater vehicles [17], [26], [34], [63], [13], and networked control of robotic systems
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[15], [14], [33], [41], [37], [43], [48]. To meet the requirements imposed by these and
related applications, a new control paradigm is needed that must necessarily depart
from classical centralized control strategies. Centralized controllers deal with systems
in which a single controller possesses all the information required to achieve desired
control objectives, including stability and performance requirements. In many of the
applications envisioned, however, the highly distributed nature of the vehicles’ sensing
and actuation modules and the constraints imposed by the intervehicle communica-
tion network make it impossible to tackle the problems in the framework of centralized
control theory. In part due to these reasons, there has been over the past few years a
flurry of activity in the area of multiagent networks with application to engineering
and science problems. The list of related research topics is vast and includes paral-
lel and distributed computing [7], distributed decision making [61], synchronization
in oscillator networks [46], flocking of mobile autonomous agents [5], [18], [28], [54],
state agreement and consensus problems [20], [38], [51], [40], [44], [42], [11], asyn-
chronous consensus protocols [9], [61], graph theory and graph connectivity [45], [56],
[32], rigidity and persistence in autonomous formations [62], adaptive and distributed
coordination algorithms for mobile sensing networks [12], [11], and concurrent syn-
chronization in dynamic system networks [48]. See also [55] and the references therein
for general expositions on large-scale dynamical systems and decentralized control of
complex systems that bear affinity with the issues addressed in this paper.

In spite of significant progress made in these areas, much work remains to be done
to develop strategies capable of yielding robust performance of a fleet of vehicles in the
presence of complex vehicle dynamics, severe communication constraints, and partial
vehicle failures. These difficulties are especially challenging in the field of marine
robotics for two main reasons: (i) often, the dynamics of marine vehicles cannot be
greatly simplified for control design purposes; and (ii) underwater communications
and positioning rely heavily on acoustic systems, which are plagued with intermittent
failures, latency, and multipath effects.

Inspired by recent theoretical and practical developments in the areas of multiple
vehicle control, we consider the problem of coordinated path-following (CPF) control,
where multiple vehicles are required to follow prespecified paths while keeping a desired,
possibly time-varying, geometric formation pattern. These objectives must be met in
the presence of communication losses and delays. The problem arises, for example, in
the operation of multiple autonomous underwater vehicles (AUVs) for fast acoustic
coverage of the seabed [47]. In this application, two or more vehicles maneuver above
the seabed, at either the same or different depths, along geometrically similar spatial
paths and map the seabed using identical suites of acoustic sensors. By requesting
that the vehicles move along the paths so that the projections of the acoustic beams on
the seabed have a certain degree of overlapping, large areas can be mapped in a short
time. These objectives impose strict constraints on the vehicle formation pattern.

A number of other scenarios can be envisioned that require CPF control of marine
vehicles. Examples include underwater vehicle formation control for 3D vision-based
marine habitat mapping, ship underway replenishment [34], and missions where tem-
poral and spatial path deconfliction are critical [30]. Similar problems arise in the area
of air vehicle control. All of these scenarios share the requirements that a number of
vehicles maneuver along predetermined paths, at nominal speed profiles that may be
path dependent, and keep a possibly time-varying formation pattern. Absolute time
requirements are not part of the problem. As such, they depart considerably from
other related problems such as vehicle rendezvous maneuvers and swarm formation
control. The manner in which the paths and the formation are planned depend on
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the specific problem at hand, for example, using a time optimality criterion when fast
coordinated maneuvering between initial and final positions is required, minimizing
an energy-related criterion when the objective is to scan a certain area or volume
densely and energy is at a premium, or using a combination of criteria that include
geometric constraints when collision avoidance is important. See, for example, [30]
for the case of unmanned air vehicles.

In this paper we formulate and solve the problem of CPF by explicitly taking
into account the vehicle dynamics and the topology of the underlying communication
network, subject to communication losses and delays. The reader is referred to [17],
[21], [22], [35], [58] and the references therein for a historical overview of the topic and a
perspective of the sequence of motion control problem formulations and solutions upon
which the present work builds. See also [19], [57], [47] for an in-depth introductory
exposition to the topic at hand. For the sake of clarity, it is important to point out that
in the scope of the problem at hand, PF and CPF have also been referred to as output
maneuvering and synchronization of multiple maneuvering systems, respectively [58].
A comprehensive survey of related results on consensus in multivehicle cooperative
control can be found in [42], [44], and [51].

The solution to the problem of CPF that we propose unfolds in two basic steps.
First, a PF control law is designed to drive each vehicle to its assigned path, with
a nominal speed profile that may be path dependent. This is done by making each
vehicle approach a virtual target that moves along the path according to a conveniently
defined dynamic law. Each vehicle has access to a set of local measurements only. In
the second step, the speeds of the virtual targets (also called coordination states) are
adjusted about their nominal values so as to synchronize their positions and achieve,
indirectly, vehicle coordination. The vehicles are allowed to exchange only limited
information with their immediate neighbors. Without being too rigorous, it can be
said that the strategy proposed abides by a separation principle whereby the PF and
coordinated motion control designs are almost decoupled. This simplifies the overall
design process. Furthermore, it has the virtue of leaving essentially to each vehicle
the task of dealing with external disturbances acting upon it, directly at the PF level.

The mathematical setup adopted in the paper is well rooted in Lyapunov stability
and graph theory. At the pure PF level, two types of control laws, henceforth referred
to as Type I and Type II, are developed. The difference between them lies in the
types of dynamics chosen for the virtual targets along the paths.

Key concepts from input-to-state stability theory [59] are also used to derive
results on the stability, performance, and robustness of the overall system that results
from putting together the PF and vehicle coordination subsystems. Here, we use the
fact that combination of the above systems takes either a feedback interconnection or a
cascade form, depending on whether the underlying PF laws are of Type I or Type II.
The results are quite general in that they apply to a large class of PF control systems
satisfying a certain input-to-state stable (ISS) property. For the sake of clarity and
completeness, the paper derives a PF strategy for a class of underactuated AUVs that
meets the required ISS property.

The key contribution of the paper is the study of the combined behavior of the
PF and coordination systems in the presence of temporary communication losses
and transmission delays. To deal with communication losses, the paper proposes
two frameworks for studying the effect of communication failures and delays on the
performance of the overall vehicle formation. The first framework, brief connectivity
losses (BCLs), refers to the situation where the communication graph changes in time,
alternating between connected and disconnected graphs. Here, we borrow from and
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expand previous results on systems with brief instabilities, namely, by deriving a new
small-gain theorem that applies to the feedback interconnection of these systems. See
[25] and the references therein for an introduction to systems with brief instabilities
and their application to control systems analysis and design. The second framework,
uniformly connected in mean (UCM), applies to the case where the communication
graph may even fail to be connected at any instant of time; however, we assume there
is a finite time T > 0 such that over any interval of length T the union of the different
graphs is connected. This framework is motivated by the work in [37], [38], [40]. To the
best of our knowledge, this is the first time that the impact of intermittent failures on
coordinated PF is analyzed from a quantitative point of view and estimates on the rate
of decay of all closed-loop error signals are obtained. The impact of communication
delays on the overall system performance is also analyzed for the case of homogeneous
delays and PF systems of Type II. Conditions are derived under which the PF errors
become arbitrarily small and the cooperation errors approach zero exponentially. For
related results on the consensus problems for systems with nonhomogeneous delays,
see [20].

The paper is organized as follows. Section 2 formulates the PF and vehicle co-
ordination problems and describes general stability-related properties that are met
by the PF closed-loop subsystem of each vehicle. Section 3 introduces some basic
notation, summarizes important results on graph theory, and develops the tools that
will be used to study the different types of communication topologies considered in
the paper. Section 4 derives a useful small-gain theorem for the feedback intercon-
nection of systems with brief instabilities. Section 5 studies the CPF problem in the
case where the communications network is subjected to communication losses with no
time delays. Section 6 extends some of the results of section 5 to deal with switching
communication networks and time delays. An illustrative example is presented in sec-
tion 7, where a CPF control algorithm for a general class of underactuated AUVs is
derived. The results of simulations are also described. Finally, section 8 contains the
main conclusions and describes problems that warrant further research. The proofs
of several statements are included in the appendix.

2. Problem statement. This section provides a rigorous formulation of the PF
and coordination problems that are the main subjects of the paper. Consider a group
of n vehicles numbered 1, . . . , n. We let the dynamics of vehicle i be modeled by a
general system of the form

ẋi = fi(xi, ui, wi),
yi = hi(xi, vi),

(2.1)

where xi ∈ R
n is the state, ui ∈ R

m is the control signal, and yi ∈ R
q is the output

that we require to reach and follow a path ydi(γi) : R→ R
q parameterized by γi ∈ R.

Signals wi and vi denote the disturbance inputs and measurement noises, respectively.
Later in section 7, an example will be given where the dynamics of (2.1) are those of
a very general class of AUVs. In that case, the output yi corresponds to the position
of the vehicle with respect to an inertial coordinate frame.

For any continuous, differentiable timing law γi(t), define the PF and speed track-
ing error variables

(2.2) ei(t) := yi(t)− ydi(γi(t))

and

(2.3) ηi(t) := γ̇i(t)− vri(t),
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respectively, where vri(t) ∈ R denotes a desired temporal speed profile to be defined.
Inspired by the work in [3, 22, 57], we start by defining the problem of PF for

each vehicle. In what follows, ‖.‖ denotes both the Euclidean norm of a vector and
the spectral norm of a matrix.

Definition 2.1 (PF problem). Consider a vehicle with dynamics (2.1), together
with a spatial path ydi(γi); γi ∈ R, to be followed and a desired, predetermined temporal
speed profile vri(t) to be tracked. Let the PF error and the speed tracking error be as
in (2.2) and (2.3), respectively. Given ε > 0, design a feedback control law for ui
such that all closed-loop signals are bounded and both ‖ei‖ and |ηi| converge to a
neighborhood of the origin of radius ε.

Stated in simple terms, the problem above amounts to requiring that the output
yi of a vehicle converge to and remain inside a tube centered around the desired path
ydi , while ensuring that its rate of progression γ̇i also converge to and remain inside
a tube centered around the desired speed profile vri(t).

We assume that the PF controllers adopted meet a number of technical conditions
described next. In section 7, as an example, we introduce a PF controller for a general
underactuated vehicle that meets these conditions. The interested reader will find
in [22], [57], and the references therein related material on PF control of nonlinear
systems. See also [3] for an interesting discussion on the possible advantages of PF
versus trajectory tracking control. Namely, the fact that PF control for nonminimum
phase systems removes the performance limitations that are inherent to trajectory
tracking schemes.

In preparation for the development that follows, we set vri(t) = vL(γi(t), t) +
ṽri(t), where vL(γi, t) is a nominal predetermined speed profile and ṽri can be seen
as a perturbation component of vri about vL. Later, it will be shown that vL(., .) is
common to all the vehicles and known in advance and that

(2.4) ṽri(t) := vri(t)− vL(γi(t), t)

(the remaining component of vri(t)) is not known beforehand. We assume that ydi(.)
is sufficiently smooth with respect to its argument. We further assume that vL(., .) is
bounded and globally Lipschitz with respect to the first argument, that is, ∃ vM , l > 0,
such that |vL(γi, t)| ≤ vM and |vL(γi, t)− vL(γj , t)| ≤ l|γi − γj |.

Consider vehicle i and assume a feedback control law ui = ui(xi, ydi , vL) exists
that solves the PF problem of Definition 2.1. Let the corresponding closed-loop PF
system be described by

(2.5) ζ̇i = fci(t, ζi, ṽri , di),

where di subsumes all the exogenous inputs (including disturbances and measurement
noises), ṽri is defined as in (2.4), and state vector ζi includes necessarily ei but may
or may not include ηi. Two types of PF strategies will be considered:

1. Type I. In this strategy, variable ηi plays the role of an auxiliary state for
the PF algorithm and specifies the evolution of γi. In this case ηi is a state
of the closed-loop PF system, that is, ζi includes ηi.

2. Type II. This strategy is equivalent to making ηi = 0. The dynamics of γ̇i
are simply γ̇i = vri . Clearly, in this case ζi does not include ηi.

We now recall the definitions of input-to-state stable (ISS) and input-to-state
practical stable (ISpS) for a dynamical system. See [59] and [31, p. 217] for details
on ISS and ISpS and their relation to Lyapunov theory. System (2.5) is said to be
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ISpS if there exist a class KL function β(., .), class K functions1 ρi(.); i = 1, 2, and a
constant ρ3 > 0 such that for any inputs ṽri and di and any initial condition ζi(t0),
the solution of (2.5) satisfies

‖ζi(t)‖ ≤ β(‖ζi(t0)‖, t−t0)+ρ1

(
sup

t0≤s≤t
‖ṽri(s)‖

)
+ρ2

(
sup

t0≤s≤t
‖di(s)‖

)
+ρ3 ∀t ≥ t0.

System (2.5) is said to be ISS if it satisfies the conditions of ISpS with ρ3 = 0.
Assumption 2.2. We assume there exists a Lyapunov function Wi(t, ζi) for (2.5)

satisfying

α1‖ζi‖2 ≤Wi ≤ ᾱ1‖ζi‖2,(2.6)

Ẇi ≤ −λ1Wi + ρ1|ṽri |2 + ρ2d
2
i ,(2.7)

where λ1, ρ1, ρ2, α1, and ᾱ1 are positive values and Ẇi is computed along the solutions
of (2.5), that is,

Ẇi =
∂Wi

∂t
+
∂Wi

∂ζi
fci .

With this assumption, the closed-loop PF system (2.5) is ISS with input (di, ṽri)
and state ζi. To verify this, integrate (2.7) and use (2.6) to obtain

α1‖ζi(t)‖2 ≤ ᾱ1‖ζi(t0)‖2e−λ1(t−t0) +
ρ1

λ1
sup |ṽri |2 +

ρ2

λ1
sup |di|2,

and therefore

‖ζi(t)‖ ≤ α‖ζi(t0)‖e−0.5λ1(t−t0) + ρv sup |ṽri |+ ρd sup |di|,

with α =
√
ᾱ1/α1, ρv =

√
ρ1/(λ1α1), and ρd = ρ2/(λ1α1).

Assuming a PF controller has been implemented for each vehicle, it now remains
to coordinate (that is, synchronize) the entire group of vehicles so as to achieve a
desired formation pattern compatible with the paths adopted. As will become clear,
this will be achieved by adjusting the desired speeds of the vehicles as functions of
the “along-path” distances among them. To better grasp the key ideas involved in
the computation of these distances, consider as a simple example the case of a fleet
of vehicles that are required to move along parallel straight lines and keep themselves
aligned along a direction perpendicular to the lines. See Figure 1 for the case of two
vehicles.

Let Γi denote the desired path to be followed by vehicle i and assume Γi is simply
parameterized by si, the path length. In other words, γi = si. Because each vehicle
approaches the path as close as required, that is, because yi(t) becomes arbitrarily
close to to ydi(γi), it follows that the vehicles are (asymptotically) synchronized if
γij(t) := γi(t) − γj(t) → 0 ∀i, j ∈ N := {1, . . . , n}. This shows that in the case of
translated straight lines γi,j = si − sj is a good measure of the along-path distances
among the vehicles. Similarly, in the case of vehicles that must be aligned along
the radii of nested circumferences as in Figure 2, an appropriate measure of the
distances among the vehicles is angle γi = si/Ri where si denotes path length and

1A function ρ is of class K if it is strictly increasing and ρ(0) = 0. A function β(r, s) belongs to
class KL if the mapping β(r, s) is of class K for a fixed s, is decreasing with respect to s for a fixed
r, and β(r, s) → 0 as t→ ∞.
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γ1

γ2

γ1,2

Γ1

Γ2

e1

e2

Fig. 1. Along-path distances: straight
lines.

γ1

γ2 γ1,2

Γ1 Γ2

e1

e2

R1R2

Fig. 2. Along-path distances: circumferences.

Ri is the radius of circumference i. Clearly, this corresponds to adopting different
parameterizations for the paths that correspond to normalizing their lengths. In
both cases, we say that the vehicles are coordinated if the corresponding along-path
distance is zero, that is, γi−γj = 0. Coordination is achieved by adjusting the desired
speed of each vehicle i as a function of the along-path distances γij ; j ∈ Ni, where Ni
denotes the set of vehicles with which vehicle i communicates. For arbitrary types of
paths and coordination patterns, an adequate choice of path parameterizations will
allow for the conclusion that the vehicles are coordinated or, in equivalent terms, are
synchronized/have reached agreement, iff γi,j = 0 ∀j, i ∈ N ; see [22], [16]. Since the
objective of the coordination is to coordinate variables γi, we will refer to them as
coordination states.

We will require that the formation as a whole (group of multiple vehicles) travel
at an assigned speed profile vL(γi, t) when coordinated, that is, γ̇i = vL ∀i ∈ N ,
where vL is allowed to be a function of path parameter γ and time t. This follows
from the fact that vL(γi, t) = vL(γj , t) when γi = γj . This issue requires clarification.
Note that the desired speed assignment is given in terms of the time derivatives of
the coordination states γi, not in terms of the inertial speeds (actual time derivative
of the positions) of the vehicles undergoing synchronization. In the limit, as shown
later, the combined PF and coordination algorithms will ensure that the coordination
states will be equal and the vehicle speeds will naturally approach dsi

dt : i ∈ N , so
that dγi

dt = dγi

dsi

dsi

dt = vL. Thus, dsi

dt = vL/
dγi

dsi
which shows clearly how coordination

states speed and inertial speeds depend on the path parameterizations adopted. In
the case of the circumferences above, the latter relationship yields simply dsi

dt = RivL.
Notice how the speed assignment in terms of the coordination states avoids the need
to specify the actual inertial speeds of the vehicles in an inertial reference frame, which
would be quite cumbersome. Instead, all that is required is to specify the speeds of
the coordination states which are equal and degenerate simply into vL.

From (2.3), the evolution of the coordination state γi, i ∈ N , is governed by

(2.8) γ̇i(t) = vri(t) + ηi(t),

where the speed tracking errors ηi are viewed as disturbance-like input signals and
the speed profiles vri are taken as control signals that must be assigned to yield
coordination of the states γi. To achieve this objective, information is exchanged
through an intervehicle communication network. Typically, all-to-all communications
are impossible to achieve. In general, γ̇i will be a function of γi and of the coordi-
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nation states of the so-called neighboring agents defined by set Ni. For simplicity
of presentation, throughout this paper we assume that the communication links are
bidirectional, that is, i ∈ Nj ⇔ j ∈ Ni. Equipped with the above notation, we are
now ready to formulate the CPF problem.

Definition 2.3 (CPF). Consider a set of vehicles Vi; i ∈ N , with dynamics
(2.1), together with a corresponding set of paths ydi(γi) parameterized by γi and a
formation speed assignment vL(γi, t). Assume that for each vehicle there is a feed-
back control law ui(xi, ydi, vL) such that the closed-loop systems (2.5) satisfy Assump-
tion 2.2. Further assume that γi and γj, j ∈ Ni, are available to vehicle i ∈ N . Given
ε > 0 arbitrarily small, derive a control law for vri such that the PF errors ‖ei‖, the
coordination errors γi−γj, and the formation speed tracking errors γ̇i− vL ∀i, j ∈ N ,
converge to a ball of radius ε around zero as t→∞.

3. Preliminaries and basic results. With the setup adopted, graph theory
becomes the tool par excellence for modeling the constraints imposed by the commu-
nication topology among the vehicles, as embodied in the definition of sets Ni, i ∈ N .
We now recall some key concepts from algebraic graph theory [24] and agreement
algorithms and derive some basic tools that will be used in what follows.

3.1. Graph theory. Let G(V , E) (abbreviated G) be the undirected graph in-
duced by the intervehicle communication network, with V denoting the set of n nodes
(each corresponding to a vehicle) and E the set of edges (each representing a data
link). Nodes i and j are said to be adjacent if there is an edge between them. A path
of length r between node i and node j consists of r + 1 consecutive adjacent nodes.
We say that G is connected when there exists a path connecting every two nodes in
the graph. The adjacency matrix of a graph, denoted A, is a square matrix with rows
and columns indexed by the nodes such that the i, j-entry of A is 1 if j ∈ Ni and
zero otherwise. The degree matrix D of a graph G is a diagonal matrix where the
i, i-entry equals |Ni|, the cardinality of Ni. The Laplacian of a graph is defined as
L := D − A. It is well known that L is symmetric and L1 = 0, where 1 := [1]n×1

and 0 := [0]n×1. If G is connected, then L has a simple eigenvalue at zero with an
associated eigenvector 1, and the remaining eigenvalues are all positive.

We will be dealing with situations where the communication links are time-varying
in the sense that links can appear and disappear (switch) due to intermittent failures
and/or communication links scheduling. The mathematical setup required is described
next.

A complete graph is a graph with an edge between each pair of nodes. A complete
graph with n nodes has n̄ = n(n− 1)/2 edges. Let G be a complete graph with edges
numbered 1, . . . , n̄. Consider a communication network among n agents. To model
the underlying switching communication graph, let p = [pi]n̄×1, where each pi(t) :
[0,∞)→ {0, 1} is a piecewise-continuous time-varying binary function which indicates
the existence of edge i in the graph G at time t. Therefore, given a switching signal
p(t), the dynamic communication graph Gp(t) is the pair (V , Ep(t)), where pi(t) = 1
if i ∈ Ep(t) and pi(t) = 0 otherwise. For example, p(t) = [1, 0, . . . , 0]T means that
at time t only link number 1 is active. Denote by Lp the explicit dependence of the
graph Laplacian on p and likewise for the degree matrix Dp and the adjacency matrix
Ap. Further let Ni,p(t) denote the set of the neighbors of agent i at time t.

We discard infinitely fast switchings. Formally, we let Sdwell denote the class
of piecewise constant switching signals such that any consecutive discontinuities are
separated by no less than some fixed positive constant time τD, the dwell time. We
assume that p(t) ∈ Sdwell.
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3.2. Brief connectivity losses (BCL). Consider the situation where the com-
munication network changes in time so as to make the underlying dynamic commu-
nication graph Gp(t) alternately connected and disconnected. To study the impact
of temporary connectivity losses on the performance of the coordination algorithms
developed, we explore the concept of “brief instabilities” developed in [25]. In partic-
ular, this concept will be instrumental in capturing the percentage of time that the
communication graph is not connected.

Recall that the binary value of the element pi in p declares the existence of
edge i in graph Gp. We can thus build 2n̄ graphs indexed by the different possible
occurrence of vector p. Let P denote the set of all possible vectors p, and let Pc and Pdc
denote the partitions of P that give rise to connected graphs and disconnected graphs,
respectively. That is, if p ∈ Pc, then Gp is connected, or otherwise disconnected.
Define the characteristic function of the switching signal p as

(3.1) χ(p) :=
{

0, p ∈ Pc,
1, p ∈ Pdc.

For a given time-varying p(t) ∈ Sdwell, the connectivity loss time Tp(τ, t) over [τ, t] is
defined as

(3.2) Tp(t, τ) :=
∫ t

τ

χ(p(s))ds.

Definition 3.1 (BCL). The communication network is said to have BCL if

(3.3) Tp(t, τ) ≤ α(t − τ) + (1− α)T0 ∀t ≥ τ ≥ 0

for some T0 > 0 and 0 ≤ α ≤ 1. In this case, p(t) ∈ PBCL(α, T0) ⊂ Sdwell, where
PBCL(α, T0) is identified with the set of time-varying graphs for which the connectivity
loss time Tp(τ, t) satisfies (3.3).

In (3.3), α provides an asymptotic upper bound on the ratio Tp(τ, t)/(t − τ) as
t− τ →∞ and is therefore called the asymptotic connectivity loss rate. When p ∈ Pdc
over an interval [τ, t], we have Tp(τ, t) = t− τ , and the above inequality requires that
t − τ ≤ T0. This justifies calling T0 the connectivity loss upper bound. Notice that
α = 1 means that the communications graph is never connected.

We now introduce a special coordination error vector and some preliminary results
that will play an important role in the sections that follow. As will be shown later,
the error state thus introduced will be zero iff the coordination states are equal. To
this effect, start by stacking the coordination states in a vector γ := [γi]n×1. Given a
diagonal matrix K > 0, define β := K−11 and the error vector

(3.4) γ̃ := Lβγ,

where

(3.5) Lβ := I − 1
βT 1

1βT

and I is an identity matrix. The following lemma holds true.
Lemma 3.2. The error vector γ̃, the matrix Lβ, and the graph Laplacian Lp

satisfy the following properties:
1. Lβ has n− 1 eigenvalues at 1 and a single eigenvalue at 0 with right and left

eigenvectors 1 and β, respectively, such that Lβ1 = 0 and βTLβ = 0T .
2. LβKLp = KLp ∀p ∈ Pc ∪ Pdc.
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3. νLT

βK
−1Lβν ≤ νK−1ν ∀ν ∈ R

n.
4. γ̃ = 0⇔ γ ∈ span{1}.
5. βT γ̃ = 0.
6. Lpγ̃ = Lpγ ∀p ∈ Pc ∪ Pdc.
7. If ‖γ̃‖ < ε, then |γi − γj | <

√
2ε and ‖KLpγ‖ < nε‖K‖.

8. Let

λ2,m := min
p∈Pc

1T ν=0
νT ν �=0

νTLpν

νTν
, λm := min

p∈Pc

βT ν=0

νT ν �=0

νTLpν

νT ν
, λ̄m := min

p∈Pc∪Pdc
Lpν �=0

νT ν �=0

νTLpν

νTν
.

Then, λm = (βT 1)2

nβT β λ2,m > 0 and λ̄m > 0.
9. If z = Lp(t)γ, then the ith component of z is zi =

∑
j∈Ni,p(t)

γi − γj.
10. ‖LβvL(γ, t)‖ ≤

√
nmin(2vM ,

√
2 l‖γ̃‖), where vL(γ, t) = [vL(γi, t)]n×1.

Proof. See the appendix.
Property 4 allows for the conclusion that if γ̃ tends to zero, then |γi − γj | → 0

∀i, j ∈ N , as t → ∞ and coordination is achieved. Property 7 gives a bound on the
coordination errors γi− γj given a bound on the error vector γ̃. In the literature, the
connectivity of a graph with Laplacian L is defined as the second smallest eigenvalue
λ2 of L. The term λ2,m defined in property 8 is an extension of the concept of
connectivity in a collective sense, defined as the smallest graph connectivity over all
connected graphs Gp. Given λm, the lower bound estimate γ̃TLpγ̃ ≥ λmγ̃

T γ̃, when
p ∈ Pc, applies. An identical interpretation applies to λ̄m. Notice from property 9
that if the control signal of vehicle i is computed as a function of zi, then the proposed
control law meets the communication constraints embodied in the sets Ni.

3.3. Uniformly connected in mean topology. In the previous situation, we
considered the case where the communication graph changes in time, alternating
between connected and disconnected graphs. We now address a more general case
where the communication graph may even fail to be connected at any instant of
time; however, we assume there is a finite time T > 0 such that over any interval of
length T the union of the different graphs is somehow connected. This statement is
made precise in what follows. We now present some key results for the time-varying
communication graph that borrow from [37], [38], [40].

Let Gi, i = 1, . . . , q, be q graphs defined on n nodes and denote by Li their
corresponding graph Laplacians. Define the union graph G = ∪i Gi as the graph
whose edges are obtained from the union of the edges Ei of Gi, i = 1, . . . , q. If G is
connected, L =

∑
i Li has a single eigenvalue at 0 with eigenvector 1. Notice that L

is not necessarily the Laplacian of G, because for an edge e, if e ∈ Ei and e ∈ Ej for
i �= j, then e is counted twice in L through Li+Lj, while we consider only one link in
G as representative of e. However, L has the same rank properties as the Laplacian of
G. Since p ∈ Sdwell (only a finite number of switchings are allowed over any bounded
time interval), the union graph is defined over time intervals in the obvious manner.
Formally, given two real numbers 0 ≤ t1 ≤ t2, the union graph G([t1, t2)) is the
graph whose edges are obtained from the union of the edges Ep(t) of graph Gp(t) for
t ∈ [t1, t2).

Definition 3.3 (uniformly connected in mean (UCM)). A switching communi-
cation graph Gp(t) is UCM if there exists T > 0 such that for every t ≥ 0 the union
graph G([t, t+ T )) is connected.
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For a given t > 0, let s0 = t and the sequence si, i = 1, . . . , q, be the time instants
at which switching happens over the interval [t, t+T ). If the switching communication
graph is UCM, then the union graph ∪qi=0 Gi is connected and

∑q
i=0 Lp(si) has a single

eigenvalue at origin with eigenvector 1.
Consider the linear time-varying system

(3.6) γ̇ = −KLpγ,

where K is a positive definite diagonal matrix and Lp is the Laplacian matrix of a
dynamic graph Gp. The following theorem holds; see, for example, [38].

Theorem 3.4 (agreement). Coordination (agreement) among the variables γi
with dynamics (3.6) is achieved uniformly exponentially if the switching communica-
tion graph Gp(t) is UCM. That is, under this connectivity condition, all the coordina-
tion errors γij(t) converge to zero and γ̇i → 0 as t→∞.

We now consider the delayed version of (3.6). Let the coordination states γi evolve
according to

(3.7) γ̇(t) = −KDp(t)γ(t) +KAp(t)γ(t− τ),

where Dp(t) and Ap(t) are the degree matrix and the adjacency matrix of Gp(t), re-
spectively. The following theorem can be derived from the results in [40].

Theorem 3.5 (agreement-delayed information). The variables γi with dynamics
(3.7) agree uniformly exponentially for τ ≥ 0 if the switching communication graph
Gp(t) is UCM, that is, under this connectivity condition, all the coordination states
γi(t) converge to the same value and γ̇i → 0 as t→∞.

A version of Definition 3.3 for directed graphs was first introduced in [38], where
the term “uniformly quasi-strongly connected” was used. Here, we adapt this defini-
tion to undirected graphs, thus the term “uniformly connected in mean” seems to be
more adequate. It is interesting to point out that Theorem 3.4 follows naturally from
the work in [38] or from Theorem 3.4 in [37], which recovers some of the results in [38]
for linear systems. Theorem 3.4 can also be derived from Theorem 1 in [40] by using
the fact that p(t) ∈ Sdwell with a dwell time τD > 0. Finally, Theorem 3.5 can be
derived from Theorem 2 in [40] by noticing that −KLp is a matrix with nonnegative
off-diagonal elements (Metzler matrix) with all its row-sums equal to zero.

4. System interconnections. Systems with brief instabilities. This sec-
tion introduces a lemma that will be instrumental in deriving the performance mea-
sure (error decay rate) associated with the coordination algorithm that will be later
derived for multivehicle systems communicating over networks with BCLs (Defini-
tion 3.1). Here, we avail ourselves of some important results on brief instabilities [25].
We start with basic definitions. A switching linear system S : ẋ = Apx + Bpu is a
dynamical system, where Ap and Bp are functions of some time-varying vector func-
tion p(t). The characteristic function of S, denoted χ, is defined as χ(p) = 0 if S is
stable and as χ(p) = 1 otherwise. Let the instability time Tp(t, τ) of S be defined in
a manner similar to (3.2). Then, S is said to have brief instabilities with instability
bound T0 and asymptotic instability rate α if Tp satisfies (3.3).

Lemma 4.1 (system interconnection and brief instabilities). Consider the coupled
system consisting of two subsystems

ż1 = φ1(t, z1, z2, u1),
ż2 = φ2(t, z1, z2, u2),
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denoted System 1 and System 2, respectively, where z1 and z2 denote the state vec-
tors and u1 and u2 the inputs. Assume there exist Lyapunov functions V1(t, z1) and
V2(t, z2) satisfying

α1‖z1‖2 ≤ V1 ≤ ᾱ1‖z1‖2,
α2‖z2‖2 ≤ V2 ≤ ᾱ2‖z2‖2

(4.1)

and

(4.2)

∂V1

∂t
+
∂V1

∂z1
φ1 ≤ −λ1V1 + ρ1‖z2‖2 + u2

1,

∂V2

∂t
+
∂V2

∂z2
φ2 ≤ −λ2(t)V2 + ρ2‖z1‖2 + u2

2,

where αi, ᾱi, ρi, i = 1, 2, and λ1 are positive values. Let system 2 have brief insta-
bilities characterized by

(4.3) χ(p(t)) =
{

0, λ2(p(t)) = λ2,

1, λ2(p(t)) = −λ̃2,

where λ2 > 0, λ̃2 ≥ 0, with asymptotic instability rate α and instability bound T0.
Define

(4.4) λ0 :=
1
2
(λ1 + λ2)−

√
1
4
(λ1 + λ2)2 − λ1λ2 +

ρ1ρ2

α1α2

that satisfies

min(λ1, λ2)−
√
ρ1ρ2

α1α2

≤ λ0 ≤ max(λ1, λ2)−
√
ρ1ρ2

α1α2

.

Assume that α < λ0/(λ2 + λ̃2) and

(4.5) ρ1ρ2 < α1α2λ1λ2.

Then,
1. the interconnected system is ISS with respect to state z = col(z1, z2) and input
u = col(u1, u2).

2. there is a Lyapunov function V (t, z) such that

(4.6)
α‖z‖2 ≤ V ≤ ᾱ‖z‖2,

V (t) ≤ cV (t0)e−λ(t−t0) + g sup[t0,t] u
2,

where c = e(λ2+λ̃2)(1−α)T0 , g = c
λ max(1, α1(λ1 − λ0)/ρ2), and the rate of

convergence λ is given by λ = λ0 − α(λ2 + λ̃2).
In particular, if ρ2 = 0 and ρ1 > 0, then the interconnected system takes a cascade
form and is ISS with input u and state z. Furthermore, the system exhibits convergence
rate λ = min(λ1, (1− α)λ2 − αλ̃2). The conclusions are also valid with α = 0 for the
case where system 2 has no instabilities, that is, λ2(t) = λ2.

Proof. An indication of the proof for the case where ρ1 and ρ2 are nonzero is
given next. See the appendix for the proof in the general case.
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Define V = V1 + aV2 for some a > 0 to be chosen later. Taking the derivative of
V yields

V̇ ≤ −
(
λ1 −

aρ2

α1

)
V1 − a

(
λ2(t)−

ρ1

aα2

)
V2 + g‖d‖2,

where g = max(1, a). Given any constant λ2 > 0, there exists a > 0 such that

(4.7) λ1 −
aρ2

α1

= λ2 −
ρ1

aα2

if (4.5) is satisfied (small-gain condition). Then V̇ ≤ −λ0V + g‖d‖2, where λ0 is
given by (4.4), and the interconnected system is ISS with input d. Furthermore, its
convergence rate is λ = λ0.

Consider now the situation where λ2(t) is time-varying. In this case, V̇ ≤ −λ0V +
a(λ2 − λ2(t))V2 + g‖d‖. Because system 2 has brief instabilities with characteristic
function χ(p), using the relationship aV2 = V − V1 yields

V̇ ≤ −(λ0 − λ3χ(p(t)))V + g‖d‖2,

where λ3 := λ2 + λ̃2. Integrating the above differential inequalities, it can be shown
that

V (t) ≤ V (t0)e−λ0(t−t0)+λ3Tp+ g sup[t0,t] ‖d‖
2
∫ t
t0
e−λ0(t−τ)+λ3Tpdτ.

Using (3.3) concludes the proof.
It is interesting to notice how the lemma invokes two conditions: (i) the small-

gain condition (4.5), which is sufficient to guarantee that the results stated hold true
when system 2 is stable, and (ii) the extra inequality α < λ0/(λ2 + λ̃2), that must
also be satisfied when system 2 has brief instabilities. In this respect, the above
lemma generalizes the results derived in [27] for the case where system 2 has no
brief instabilities. As an example of application of the lemma, assume λ1 = λ2 =
λ̃2 = 1

k

√
ρ1ρ2
α1α2

, where 0 < k < 1. Then the small-gain condition is satisfied and the

interconnected system of the lemma above is ISS if α < 1−k
2 , which is smaller than 0.5

for any admissible k.
Equipped with the results derived so far, the next two sections offer solutions to

the CPF problem formulated in section 2.

5. CPF in the absence of communication delays. Consider the coordina-
tion control problem introduced in section 2 with a switching communication topology
parameterized by p : [0,∞)→ {0, 1} and with no communication delays. Recall that
the coordination states γi are governed by (2.8). Inspired by the work in [28], [61],
we propose the following decentralized feedback law for the reference speeds vri as a
function of the information obtained from the neighboring vehicles:

(5.1) vri = vL − ki
∑

j∈Ni,p(t)

(γi(t)− γj(t)),

where vL(γi, t) is the common, nominal speed assigned to the fleet of vehicles and
ki > 0. Let km := mini ki and kM := maxi ki. Notice that with this choice of control
law, the term ṽri = vri − vL, for which the time derivative is not available, is given by

(5.2) ṽri = −ki
∑

j∈Ni,p(t)

(γi(t)− γj(t)).
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Using (2.8), (5.1), and property 9 of Lemma 3.2, the coordination control closed-
loop system can be written in vector form as

(5.3) γ̇ = −KLp(t)γ + vL(γ, t) + gηη,

where K = diag[ki]. The auxiliary term gη was added for simplicity of exposition:
gη = 1 when the closed-loop PF system is of Type I (η is considered a state), and
gη = 0 when the PF system is of Type II (η = 0); see Assumption 2.2. Using
properties 2 and 6 of Lemma 3.2, the coordination dynamics (5.3) take the form

(5.4) ˙̃γ = −KLpγ̃ + LβvL(γ, t) + gηLβη.

Notice from (5.3) that η can be viewed as a coupling term from the PF to the coor-
dination dynamics.

At this stage, in preparation for the following sections, we state a lemma on an
ISS property that applies to a collection of PF systems.

Lemma 5.1. Consider n PF subsystems, each satisfying Assumption 2.2, and let
ζ = [ζi]n×1. Then there exists a single Lyapunov function V1 satisfying

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2,
V̇1 ≤ −λ1V1 + ρ1n

2k2
M‖γ̃‖2 + u2

1,
(5.5)

where u2
1 :=

∑n
i=1 d

2
i . In addition, the ISS property

(5.6) ‖η(t)‖ ≤ ‖ζ(t)‖ ≤ e−λ̄1(t−t0)‖ζ(t0)‖+ ρ̄1 sup
τ∈[t0,t)

‖γ̃‖+ ρ̄2‖u1‖

holds with λ̄1 = α1
2ᾱ1

λ1, ρ̄1 =
√

ρ1n2k2
M

λ1ᾱ1
, and ρ̄2 = 1√

λ1ᾱ1
.

Proof. See the appendix.
Close inspection of the ISS property (5.6) and the dynamics (5.4) shows that the

PF and coordination systems form a feedback interconnected system.
To deal with switching communication topologies, two approaches are introduced

next: “uniform switching topologies” and “brief connectivity losses,” as defined in sec-
tion 2. We now derive conditions under which the overall closed-loop system consisting
of the PF and coordination subsystems is stable. We also derive some convergence
properties for the complete system.

5.1. UCM topology. This section addresses the case where the communication
network changes but the underlying communication graph is UCM (see Definition 3.3).
Recall in this case that there is T > 0 such that for any t ≥ 0, the union graph
G([t, t+T )) is connected. The section starts with some preliminary results leading to
the statement of Theorem 5.2, a proof of which is included in the appendix.

Consider the unforced coordination closed-loop dynamics derived from (5.4), that
is,

(5.7) ˙̃γ = −KLpγ̃.

First, we will show that if the switching communication graph is UCM (with parameter
T > 0), then ∀t > 0, ∃τ ∈ [t, t + T ), such that Lp(τ)γ̃(τ) �= 0. To this effect, we let
V = 1

2 γ̃
TK−1γ̃ whose time derivative along the solutions of (5.7) is

V̇ = −γ̃TLpγ̃.
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Notice that V̇ is negative semidefinite whether the graph is connected or not. Thus,
γ̃ remains bounded. Consider now the sequence si, i = 1, . . . , q, of switching times in
the interval [t, t + T ), with t < s1 < sq < t + T and si ≤ si+1 − τD, i = 1, . . . , q − 1,
where τD is the dwell time. Let s0 = min(t, s1−τD) and T1 = max(sq+τD, t+T )−s0.
With this construction T ≤ T1 ≤ T + 2τD, s1 − τD ≥ s0, and sq + τD ≤ s0 + T1. We
now show that2 ∃τ ∈ T := [s0, s0 + T1) such that Lp(τ)γ̃(τ) �= 0.

Assume by contradiction that Lpγ̃ = 0 ∀τ ∈ T and discard the trivial solution
γ̃ = 0. Then, from (5.7) it follows that ˙̃γ = 0; that is, γ̃ remains unchanged over T.
Therefore,

0 =
q∑
i=0

Lp(si)γ̃(si) =

(
q∑
i=0

Lp(si)

)
γ̃(s0).

As shown in section 3, since the graph is UCM the matrix
∑q

i=0 Lp(si) has rank n− 1
and its kernel is span{1}. As a consequence, γ̃(s0) ∈ span{1}, which contradicts the
fact that βT γ̃ = 0.

Without loss of generality, assume Lp(s0)γ̃(s0) �= 0 and define TD := [s0, s0 +τD).
Clearly, ∀t̄ ∈ TD the inequality Lp(t̄)γ̃(t̄) �= 0 applies because (5.7) is a linear time
invariant system during the interval considered and its solutions cannot tend to zero
in finite time. It follows that

(5.8) V̇ (t̄) ≤
{
−2kmλ̄mV (t̄), t̄ ∈ TD,
0, t̄ ∈ T\TD,

with λ̄m as defined in property 8 of Lemma 3.2. We can now conclude that system (5.7)
with UCM switching communication graphs has brief instabilities with asymptotic
instability rate ᾱ = 1 − τD/T1 ≤ 1 − τD/(T + 2τD) and instability upper bound
T̄0 = T1 − τD ≤ T + τD. That is, if a characteristic function χ̄ is defined as

χ̄(t) =
{

0, t ∈ TD,
1, t ∈ T\TD,

then V̇ (t) ≤ −2kmλ̄m(1− χ̄(t))V (t). Integrating this differential inequality yields

V (t) ≤ cV (τ)e−2λα(t−τ) ∀t ≥ τ ≥ 0,

with

(5.9) λα = (1− ᾱ)kmλ̄m, c = e2λαT̄0 ,

and where we used the fact that∫ τ

t

χ̄(s)ds ≤ ᾱ(t− τ) + (1 − ᾱ)T̄0 ∀t ≥ τ ≥ 0.

Therefore, ‖γ̃(t)‖ ≤ c1e−λα(t−τ)‖γ̃(τ)‖ and

(5.10) ‖Φp(t, τ)‖ ≤ c1e−λα(t−τ),

where Φp(t, τ) denotes the state transition matrix of (5.7) and c1 =
√

ckM

km
. Notice

that the above inequality is valid for all p(t) ∈ Sdwell such that the graph Gp is UCM.

2Notice that if ∃τ ∈ T such that Lp(τ)γ̃(τ) �= 0, then ∃τ1 ∈ [t, t + T ) such that Lp(τ1)γ̃(τ1) �= 0
because t ≤ s0 + τD and t+ T ≥ s0 + T − τD .
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For a given switching signal p(t), input η(t), and initial state γ(t0), the solution of
(5.4) is given by (see [53, p. 87])

γ̃(t) = Φp(t, t0)γ̃(t0)+
∫ t

t0

Φp(t, τ)LβvL(γ(τ), τ)dτ+gη
∫ t

t0

Φp(t, τ)Lβη(τ)dτ ∀t ≥ t0.

Letting

(5.11) λ̄α = λα − c1
√

2nl = λα − eλαT̄0 l

√
2n
kM
km

and using (5.10) and property 10 of Lemma 3.2, an upper bound for γ̃(t) can be
derived as
(5.12)

‖γ̃(t)‖ ≤ c1e−λα(t−t0)‖γ̃(t0)‖+ c1l
√

2n
∫ t

t0

e−λα(t−τ)‖γ̃(τ)‖dτ + gη
c1
λα

sup
τ∈[t0,t)

‖η(τ)‖

if λ̄α > 0, and

(5.13) ‖γ̃(t)‖ ≤ c1e−λα(t−t0)‖γ̃(t0)‖+
2vMc1

√
n

λα
+ gη

c1
λα

sup
τ∈[t0,t)

‖η(τ)‖

otherwise. It is now straightforward to multiply both sides of (5.12) by eλαt and to
use the Gronwall–Bellman theorem [31, p. 66] to arrive at

(5.14) ‖γ̃(t)‖ ≤ c1e−λ̄α(t−t0)‖γ̃(t0)‖+ gη
c1

λ̄α
sup ‖η(τ)‖

provided that λ̄α > 0. Notice from (5.11) that λ̄α cannot be made arbitrarily large.
It can be shown that there are control gains (km = kM ) that make λ̄α > 0 if the
Lipschitz constant l of vL satisfies

(5.15) l <
1

(T + τD)
√

2ne
.

For each such l, the corresponding maximum value of λ̄α can be easily computed.
Equipped with these introductory results, we now state the main theorem of this

section.
Theorem 5.2 (CPF with UCM). Consider the interconnected system Σ depicted

in Figure 3, consisting of n PF subsystems satisfying Assumption 2.2 together with
the coordination control (CC) subsystem (5.3) supported by a communication network

γ̃

η

u1

ζ

γ

P.F.

C.C.

Fig. 3. Σ: Overall closed-loop system consisting of the PF and CC subsystems.
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that is UCM with parameter T and switching dwell time τD. Then, Σ is input-to-
state practical stable (ISpS) with respect to the states γ̃ and ζ, the input u1, and the
constant 2vMc1

√
n/λα if

(5.16)

{
c1

√
ρ1n2k2

M

λ1ᾱ1
< λ̄0, PF of Type I,

always, PF of Type II,

where λ̄0 = λα as defined in (5.9). If (5.15) holds, the control gains can be chosen
such that λ̄α > 0. In this case, Σ is ISS with respect to the states γ̃ and ζ and input u1

under condition (5.16) with λ̄0 = λ̄α as defined in (5.11). Furthermore, the PF error
vectors ei, the speed tracking errors |γ̇i − vL|, and the coordination errors |γi − γj |
∀i, j ∈ N converge exponentially fast to some ball around zero as t→∞, with rate at
least min(λ̄0, λ̄1).

Proof. A proof of (5.15) is given in the appendix. Using the ISS version of the
small-gain theorem for the interconnection of (5.14) and (5.6) in the case of λ̄α > 0,
and for the interconnection of (5.13) and (5.6) otherwise, leads to the result.

From the above, under the UCM assumption, it follows that the complete CPF
control system is ISS if condition (5.15) is satisfied. In the absence of disturbances
and noise, the origin of the system becomes globally asymptotically stable (in fact,
exponentially stable). In the case when condition (5.15) is not satisfied, all that can
be shown is that the complete system is ISpS.

5.2. BCLs. This section addresses the situation where the communication net-
work has BCLs; see Definition 3.1. In this case the underlying communication graph
switches between connected and disconnected configurations with known asymptotic
connectivity loss rate α and connectivity loss upper bound To.

The following result provides conditions under which the overall closed-loop sys-
tem consisting of the PF and coordination subsystems is ISS.

Theorem 5.3 (CPF with BCLs). Consider the interconnected system Σ de-
picted in Figure 3, consisting of n PF subsystems that satisfy Assumption 2.2 and
the coordination subsystem (5.3) with a communication network subjected to BCLs
characterized by (3.3). Let λ2 := kmλm − kM l

√
2n

km
. Define kg := kmλ

2
2

n2k3
M

and

λ0 = λ̃0 −

√
λ̃2

0 − λ1λ2

(
1− ρ1

kgα1λ1

)
,

where λ̃0 = 1
2 (λ1 + λ2) and λm is defined in Lemma 3.2, property 8. Assume

(5.17)
k2
m

kM
>
l
√

2n
λm

.

Further assume the following conditions hold:
(a) [PF of Type I] The asymptotic connectivity losses rate α satisfies

α <
λ0

2kmλm

and
ρ1

α1λ1
< kg.
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(b) [PF of Type II] α < 1− kM l
√

2n
λmk2

m
.

Then, Σ is ISS with respect to the states γ̃ and ζ and input u1 (see Figure 3). Further-
more, the PF error vectors ei, the speed tracking errors |γ̇i−vL|, and the coordination
errors |γi − γj | ∀i, j ∈ N converge exponentially fast to some ball around zero (de-
pending on the size of u1) as t→∞, with rate at least

λ =
{
λ0 − 2αkmλm, PF of Type I,
min(λ1, λ2 − 2αkmλm), PF of Type II.

Proof. Choose the Lyapunov candidate function

V2 :=
1
2
γ̃TK−1γ̃

whose time derivative along the solutions of (5.4) is

V̇2 = −γ̃TLpγ̃ + γ̃TK−1LβvL(γ, t) + gηγ̃
TK−1Lβη

≤ −γ̃TLpγ̃ +
l
√

2n
km
‖γ̃‖2 + gηθ1γ̃

TK−1γ̃ +
gη
4θ1

ηTLT

βK
−1Lβη,

where we used Young’s inequality and property 10 of Lemma 3.2. Using properties 3
and 8 of Lemma 3.2, the above inequality yields

(5.18) V̇2 ≤
{
−λ2V2 + ρ2‖η‖2, p ∈ Pc,
λ̃2V2 + ρ2‖η‖2, p ∈ Pdc,

with λ̃2 = 2kM l
√

2n
km

+ 2gηθ1, λ2 = 2λmkm − λ̃2, ρ2 = gη

4kmθ1
. In order for λ2 and λ̃2 to

be positive, θ1 must satisfy 0 < θ1 < λmkm − l
√

2nkM

km
. It is straightforward to check

that this condition holds if k2
m

kM
> l

√
2n

λm
.

Close inspection of (5.5) and (5.18) shows that the PF and coordination subsys-
tems form a feedback interconnected system with η and γ̃ as interacting signals, as
shown in Figure 3. We now use Lemma 4.1 and the fact that the coordination subsys-
tem has BCLs as defined in (3.3) to find conditions under which the interconnected
system is ISS from input u1. We consider the cases where the PF algorithms are of
Type I or II.

[PF of Type I] Consider the feedback interconnection of (5.5) and (5.18) for the
case where gη = 1, that is, with ρ2 > 0. Resorting to Lemma 4.1 for interconnected
systems with brief instabilities and applying the small-gain condition (4.5), we obtain

(ρ1n
2k2
M )
(

1
4kmθ1

)
< (α1)

(
1

2kM

)
(λ1)

(
2λmkm − 2

l
√

2nkM
km

− 2θ1

)
,

or equivalently,

ρ1

α1λ1
<

4km
n2k3

M

θ1

(
λmkm −

l
√

2nkM
km

− θ1

)
,

the right-hand side of which is maximized for θ1 = 1
2km

(λmk2
m − l

√
2nkM ). Inserting

the latter value of θ1 in the inequality above, the conditions of the theorem for PF
strategies of Type I follow immediately.
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[PF of Type II] In this case the interconnection of (5.5) and (5.18) takes a cascade
form, that is, gη = 0 and (5.18) simplifies to

V̇2 ≤
{
−λ2V2, p ∈ Pc,
λ̃2V2, p ∈ Pdc,

where λ̃2 = 2 l
√

2nkM

km
and λ2 = 2λmkm − λ̃2. Using Lemma 4.1 with ρ2 = 0 the

conditions of the theorem for PF strategies of Type I are easily obtained.
At this point, it is interesting to work out a simple numerical example to illustrate

some of the results derived. To this effect, consider the CPF problem for three vehicles
(n = 3). In this case, λm = 1. We consider both the case where the speed profile
vL is constant and the case where vL(γi) = 2 + sin(γi), for which l = 0 and l = 1,
respectively. Choose K = 2

√
6I3 to guarantee condition (5.17) for both cases of

vL. Further assume that the ISS property of the PF subsystem is satisfied with
λ1 =

√
6 and α1 =

√
6. It is now straightforward to compute the following parameters

consecutively. For l = 0: λ2 = 2
√

6, kg = 4/36, and λ̃0 = 3/2
√

6. The small-gain
condition (4.5) will require that ρ1 < 4/6. For l = 1: λ2 =

√
6, kg = 1/36, and

λ̃0 =
√

6. The same small-gain condition will yield ρ1 < 1/6 in this case. As expected,
ρ1 (which can be viewed as a stability margin) is reduced when the vL depends on
the path parameter. Let ρ1 = 1/24 to ensure stability for both cases of vL above.
We can now compute λ0 = 0.54

√
6 for l = 0 and λ0 = 0.5

√
6 for l = 1. It follows

from the above that when PF is of Type I the interconnected system will be ISS if
the asymptotic connectivity loss rate is α < 13.5% for l = 0 and α < 12.5% for l = 1.
When PF is of Type II, the bounds are relaxed to α < 100% for l = 0 and α < 50%
for l = 1. Better convergence rates could be guaranteed if one were to aim for ISpS
rather than ISS.

6. CPF: Delayed information. In this section we study the problem of CPF
in the presence of communication delays. We consider the case where all communica-
tion channels have the same delay, τ > 0. We further assume that the PF closed-loop
subsystems are of Type II, that is, η = 0.

Motivated by (5.1), we assume that the control law for the reference speed vri of
each vehicle is given by

(6.1) vri = vL − ki
∑

j∈Ni,p(t)

(γi(t)− γj(t− τ)).

Using (2.8) and (6.1), the closed-loop coordination subsystem can be written as

(6.2) γ̇(t) = vL(γ, t)−KDp(t)γ(t) +KAp(t)γ(t− τ),

where Dp and Ap are the degree matrix and the adjacency matrix of the communi-
cation graph, respectively. We now determine conditions under which coordination
is achieved, that is, under which there exists a signal γ0(t) such that γ = γ0(t)1 is a
solution of (6.2). Should such a solution exist, then substituting it in (6.2) and using
the fact that Ap = Dp − Lp yields

γ̇01 = vL(γ0, t)1−KDpγ0(t)1 +K(Dp − Lp)γ0(t− τ)1,

which simplifies to

(6.3) γ̇01− vL1 = −(γ0(t)− γ0(t− τ))KDp1.
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The equality above is verified iff all elements of the right-hand side vector are equal.
For this to be true, one of the following two conditions must apply:

[C1] γ0(t) is either a constant or a periodic signal with period τ . In this case
γ0(t)− γ0(t− τ) = 0 ∀t and (6.3) holds with γ̇0 = vL. This condition is not
relevant from a practical standpoint.
[C2] ∀t, KDp(t) = kI for some k > 0. This requires that the degrees of
the nodes of the switching communication graph Gp never vanish, that is,
|Ni,p| �= 0 ∀t, so that the degree matrix Dp is always nonsingular and we can
set the control gains to K = kD−1

p . In this case, the control gains become
piecewise constant functions of p.

In view of the above discussion we consider only condition C2. To lift the constraint
|Ni,p| �= 0 and have the CPF algorithm be applicable to more general types of switch-
ing topologies, we will later modify the control law (6.1). In what follows, we assume
vL is constant. We start by studying the convergence properties of only the coordi-
nation dynamics in Lemmas 6.1 and 6.2 below. This is followed by the analysis of the
combined PF and coordination systems in Theorem 6.3.

Lemma 6.1. Consider the coordination system dynamics (2.8) with the control
law (6.1). Assume that |Ni,p(t)| �= 0 ∀ t, and let the control gains be ki(t) = k/|Ni,p(t)|.
Then, the states γi uniformly exponentially agree if the underlying communication
graph Gp is UCM. In this situation, |γi − γj | → 0 and γ̇i → γ̇0 as t → ∞, where γ0

is a solution of the delay differential equation

(6.4) γ̇0 = −k(γ0(t)− γ0(t− τ)) + vL.

Proof. As explained before, with the control law (6.1) the coordination system
takes the form (6.2). Let

(6.5) γ̃(t) = γ(t)− γ0(t)1

and substitute γ from (6.5) in (6.2) to obtain

γ̇0(t)1 + ˙̃γ = −K(t)Dp(t)γ̃(t) +K(t)Ap(t)γ̃(t− τ) +
−K(t)Dp(t)γ0(t)1 +K(t)Ap(t)γ0(t− τ)1 + vL1,

(6.6)

which simplifies to

(6.7) ˙̃γ = −kγ̃(t) + kD−1
p Apγ̃(t− τ)

if γ0(t) is the solution of (6.4) and K(t) = kD−1
p . From Theorem 3.5, states γ̃i in

(6.7) agree uniformly exponentially. In particular, γ̃ → 0 as t→∞. Thus, from (6.5)
γ → γ01, and the results follow.

In general, if vL is not constant the delayed differential equation (6.4) has no
closed form solution. However, for the particular case of vL constant, one solution is
γ0(t) = v∗Lt, where v∗L = vL

1+kτ . Notice that due to the transmission delay τ there is a
finite error in the speed tracking; that is, γ̇i converges to v∗L and not to vL.

Consider now the case where there are instants of t time at which |Ni,p(t)| = 0
for some i ∈ N . Notice that with the setup adopted in this paper, this condition
will necessarily hold over a countable number of disjoint intervals of time, where the
length of each interval is bounded above and below by T0 and τD, respectively.

In this case, (6.2) can be rewritten in terms of γ̃ defined in (6.5) as

(6.8) ˙̃γ = −K(t)Dp(t)γ̃(t) +K(t)Ap(t)γ̃(t− τ) + v∗Lτ(kI −K(t)Dp)1.
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Clearly, when τ = 0 agreement is achieved for any choice of positive definite K due
to Theorem 3.5. However, this is not necessarily the case when τ �= 0. To see this,
assume, for example, that the agreement dynamics (6.8) are at rest, that is, ˙̃γi = 0
∀i ∈ N . Then, if |Ni,p(t)| = 0 for some i and t in a given interval of time, the dynamics
of the ith row of (6.8) become ˙̃γi = vL−v∗L. This problem can be resolved by applying
different desired speeds when vehicle i has no neighbors. The solution is stated next.

Lemma 6.2. Consider the coordination system dynamics with control law

(6.9) vri =
{
vL + k

|Ni,p|
∑

j∈Ni,p
γi(t)− γj(t− τ), Ni,p �= ∅,

v∗L, Ni,p = ∅,

where k > 0. Then, the states γi uniformly exponentially agree if the underlying
communication graph Gp is UCM. In this case, |γi − γj | → 0 and γ̇i → v∗L as t→∞.

Proof. The closed-loop coordination dynamics can be expressed in vector form as

γ̇ = −KDpγ(t) +KApγ(t− τ) +
vL − v∗L

k
KDp1 + v∗L1.

Letting γ(t) = v∗Lt1 + γ̃(t) simplifies the closed-loop dynamics to

˙̃γ = −KDpγ̃(t) +KApγ̃(t− τ).

Theorem 3.5 implies that γ̃ and ˙̃γ will converge to the span{1} and to 0, respectively,
as t→∞. This concludes the proof.

Notice that in order to implement the control law (6.9) the vehicles need to know
the delay τ in order to compute v∗L. This raises the practical issue of how to estimate
τ . This issue is not addressed in this paper. The following theorem concludes this
section.

Theorem 6.3 (CPF with delay). Consider system Σ that is obtained by putting
together the n PF subsystems satisfying Assumption 2.2 and the coordination subsys-
tems studied in Lemma 6.1 or 6.2. Then, the complete system Σ is ISS with input
u1. In particular, PF errors ‖ei‖ tend to some ball around zero, and the coordination
errors |γi − γj | and the speed tracking errors |γi− v∗L| converge to zero exponentially.

Proof. Using Lemma 6.1 or 6.2, we conclude that ṽri = vri − vL = γ̇i − vL
converges to vL − v∗L exponentially. Close examination of (2.7) shows that the PF
and coordination control subsystems form an interconnected cascade system where
ṽri is the output of the coordination control (CC) subsystem and the input to the PF
subsystems. Since that latter is ISS from input ṽri , the results follow.

The exposition in this section was strongly motivated by previous work on agree-
ment problems for systems with delays. Especially relevant are the results available
in [40] and [8], [10] for continuous time and discrete time, respectively. In particular,
the results in [40] address the unforced version of (6.2), that is, with vL(γ, t) = 0.
The results in this section reformulate those in [40] to the case where the agreement
dynamics are forced by vL(γ, t).

7. Illustrative example. This section presents an example that illustrates the
application of the CPF techniques developed for the control of three AUVs.

7.1. CPF of three underactuated AUVs. Consider the problem of CPF
control of three underactuated AUVs. Vehicle 2 is allowed to communicate with
vehicles 1 and 3, but the latter two do not directly communicate between themselves.
To simulate losses in the communications, we considered the situation where both
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links fail 75% of the time, with the failures occurring periodically with a period of
10[sec]. Moreover, the information transmission delay is 5[sec]. Notice that during
failures all the links become deactivated. Since in this scenario the valencies of the
nodes vanish periodically, we apply the results of Lemma 6.2. In the simulations, we
used the control law (6.9) with k = 0.1[sec−1].

7.1.1. AUV model. Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. (See [19] for details on vehicle modeling.) Let
{I} be an inertial coordinate frame and {B} a body-fixed coordinate frame whose
origin is located at the center of mass of the vehicle. The configuration (R,p) of the
vehicle is an element of the special Euclidean group SE(3) := SO(3)×R

3, where R ∈
SO(3) := {R ∈ R

3×3 : RRT = I3, det(R) = +1} is a rotation matrix that describes
the orientation of the vehicle and maps body coordinates into inertial coordinates,
and p ∈ R

3 is the position of the origin of {B} in {I}. Denote by ν ∈ R
3 and

ω ∈ R
3 the linear and angular velocities of the vehicle relative to {I} expressed in

{B}, respectively. The following kinematic relations apply:

ṗ = Rν,(7.1a)

Ṙ = RS(ω),(7.1b)

where

S(x) :=

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ ∀x := (x1, x2, x3)T ∈ R

3.

We consider underactuated vehicles with dynamic equations of motion of the form

Mν̇ = −S(ω)Mν + fν(ν,p, R) +B1u1,(7.2a)
Jω̇ = fω(ν, ω,p, R) +B2u2,(7.2b)

where M ∈ R
3×3 and J ∈ R

3×3 denote constant symmetric positive definite mass and
inertia matrices, respectively. u1 ∈ R and u2 ∈ R

3 denote the control inputs, which
act upon the system through a constant nonzero vector B1 ∈ R

3 and a constant non-
singular matrix B2 ∈ R

3×3, respectively; and fν(·), fω(·) represent all the remaining
forces and torques acting on the body. For the special case of an underwater vehicle,
M and J also include the so-called hydrodynamic added-mass MA and added-inertia
JA matrices, respectively, i.e., M = MRB +MA, J = JRB +JA, where MRB and JRB
are the rigid-body mass and inertia matrices, respectively.

A solution to the PF problem (defined in section 2) of an AUV was given in [1], [2],
where the control laws require that γ̇i and γ̈i be known. Recall that we decomposed
the desired speed profile into two parts as vri = vL+ ṽri in which only the derivatives
of vL can be computed accurately. However, it can be shown that in the control laws
of [1], [2], if the terms γ̇i and γ̈i are replaced with vL and v̇L, respectively, the resulting
PF closed-loop system becomes ISpS from ṽri as an input. This leads to the following
result.

Theorem 7.1 (PF-AUV). Consider an underactuated AUV with the equations of
motion given by (7.1) and (7.2) and a desired path pd(γ) in 3D-space to be followed.
There is a control law for u1 and u2 as functions of the local states pd and vL that
makes the closed-loop system satisfy Assumption 2.2.

Proof. See the appendix.
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Fig. 4. CPF of three AUVs, with communication losses and delay.

Remark 7.2. It is important to notice that the particular PF algorithm that we
derive yields input-to-state practical stability, not input-to-state stability. However,
the key results obtained in the paper hold true, for input-to-state practical stability
can always be viewed as an input-to-state stability condition with an extra constant
input.

7.1.2. Simulations. In the simulations, the AUVs are required to follow three
similar spatial paths shifted along the depth coordinate; that is, the paths are of the
form

pdi(γi) =
[
c1 cos

(
2π
T
γi + φd

)
, c1 sin

(
2π
T
γi + φd

)
, c2γi + z0i

]
,

with c1 = 20 m, c2 = 0.05 m, T = 400, φd = − 3π
4 and z01 = −10 m, z02 = −5 m, z03 =

0 m. The initial conditions are p1 = (5 m,−10 m,−5 m), p2 = (5 m,−15 m, 0 m),
p3 = (5 m,−20 m, 5 m), R1 = R2 = R3 = I, and v1 = v2 = v3 = ω1 = ω2 = ω3 = 0.
The reference speed vL was set to vL = 0.5[sec−1].

The vehicles are also required to keep a formation pattern that consists of having
them aligned along a common vertical line. Figure 4 shows the trajectories of the
AUVs. Figure 5 illustrates the evolution of the coordination and PF errors when
the communication links fail periodically. Clearly, the vehicles adjust their speeds
to meet the formation requirements, and the coordination errors γ12 := γ1 − γ2 and
γ13 := γ1 − γ3 converge to zero.

8. Conclusions. This paper addressed the problem of steering a group of vehi-
cles along given paths while holding a desired intervehicle formation pattern (coordi-
nated path-following), all in the presence of communication losses and time delays.
The solution proposed builds on Lyapunov-based techniques and addresses explicitly
the constraints imposed by the topology of the intervehicle communications network.
The problem of temporary communication failures was addressed under two scenar-
ios: “brief connectivity losses” and “connected in mean” communication graphs. With
the framework adopted, path-following and coordinated control system design become
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Fig. 5. 75% of temporal communication losses; time delay 5[sec].

partially decoupled. As a consequence, the dynamics of each autonomous underwater
vehicle can be dealt with by each vehicle controller locally, at the path-following con-
trol level. Coordination can then be achieved by resorting to a decentralized control
law whereby the exchange of data among the vehicles is kept at a minimum. The
system obtained by putting together the path-following and the vehicle coordination
strategies proposed was shown to be either a feedback interconnection or a cascade
of two input-to-state stable systems. Stability and convergence properties of the re-
sulting interconnected system were studied formally by introducing a new small-gain
theorem for systems with brief instabilities. Simulations illustrated the efficacy of the
solution proposed.

Further work is required to extend the methodology proposed to tackle more
complex coordination control problems, namely, coordinated control in the presence
of stringent communication constraints that arise in the underwater world such as
nonhomogeneous time variable delays, tight energy budgets, and reduced channel
capacity. In particular, the study of coordinated path-following control systems yield-
ing quantifiable measures of performance in the case of unidirectional, event driven
communications, is warranted.

Appendix.
Proof of Lemma 3.2.
1. Since Rank(I − Lβ) = 1, Lβ has n− 1 eigenvalues at 1. Using the definition

of Lβ , it can be easily verified that Lβ1 = 0 and βTLβ = 0T , that is, zero is
an eigenvalue. Therefore, we can conclude that zero is a single eigenvalue.

2. LβKLp = (K − 1
βT 111T )Lp = KLp, since 1TLp = 0T .

3. Straightforward computations show that LT

βK
−1Lβ = K−1− 1

βT 1ββ
T . There-

fore, νTLT

βK
−1Lβν = νTK−1ν − 1

βT 1ν
TββTν ≤ νTK−1ν for any ν ∈ R

n and
the equality holds for βTν = 0, thus proving the result.

4. The result follows from the fact that γ̃ = Lβγ, Lβ1 = 0, and RankLβ = n−1.
5. This follows from the definition of γ̃ in (3.4).
6. This follows from the definition of γ̃ and the fact that Lp1 = 0.
7. From

|γ̃i − γ̃j |2 = γ̃2
i + γ̃2

j − 2γ̃iγ̃j ≤ 2(γ̃2
i + γ̃2

j ) ≤ 2‖γ̃‖2 < 2ε2

and γ̃i − γ̃j = γi − γj it follows that |γi − γj | <
√

2ε. Furthermore, from
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KLpγ = KLpγ̃ it follows that ‖KLpγ‖ ≤ ‖K‖.‖Lp‖.‖γ̃‖ ≤ nε‖K‖, where we
used the fact that ‖Lp‖ ≤ n and equality occurs for a complete graph, that
is, for p = [1, . . . , 1]T .

8. Recall the fact that if a graph is connected (p ∈ Pc), then Lp has a single
eigenvalue at zero associated to the (right and left) eigenvector 1, and the rest
of the eigenvalues are positive. Let L be a representative graph Laplacian of
Lp for p ∈ Pc. Then, there is a unitary matrix U = [u1, . . . , un] with u1 = 1√

n
1

and a diagonal matrix Λ = diag[λ1, λ2, . . . , λn] with 0 = λ1 < λ2 ≤ · · · ≤ λn
such that L = UΛUT . For any ν ∈ R

n,

νTLν =
n∑
i=1

λi(uT

i ν)
2

=
n∑
i=2

λi(uT

i ν)
2

≥ λ2

n∑
i=2

(uT

i ν)
2

= λ2

n∑
i=1

(uT

i ν)
2 − λ2(uT

1ν)
2

= λ2ν
Tν − λ2

1
n (1Tν)2.

To compute λ2,m, simply observe that the second term on the right-hand side
of the inequality above is zero. Therefore, λ2,m is the minimum λ2 over p ∈ Pc.
If β �= 1, a standard minimization of the vector function νT ν− 1

n (1Tν)2 with
constraints βTν = 0 and νTν = 1 yields the results. Similarly, it can be shown
that λ̄m > 0. Simple numerical computations show that λ2,m = λ̄m.

9. Recall that the graph Laplacian is L = D−A. Using the definitions of degree
matrix D and adjacency matrix A, the result follows easily.

10. Because vL(γi, t) is bounded and Lipschitz, |vL(γi, t)− vL(γj , t)| ≤ 2vM and
|vL(γi, t)− vL(γj , t)| ≤ l|γi − γj | = l|γ̃i − γ̃j| ≤

√
2l‖γ̃‖. Then, using

‖LβvL(γ, t)‖2 =
n∑
i=1

⎛
⎝ n∑
j=1

vL(γi, t)− vL(γj , t)
σj

⎞
⎠

2

,

where σj = kj
∑

i
1
ki

, it is easy to show that ‖LβvL(γ, t)‖ ≤
√

2nl‖γ̃‖ and
‖LβvL(γ, t)‖ ≤ 2

√
nvM , and the result follows.

Proof of Lemma 5.1. First we show that

(A.1)
n∑
i=1

|ṽri |2 = γ̃TLpK
2Lpγ̃ ≤ n2k2

M‖γ̃‖2,

where ṽri and γ̃ are as defined in (5.2) and (3.4), respectively. Denote by li,p the ith
column (or row) of Lp. Then ṽri = kil

T

i,pγ and∑
i

|ṽri |2 =
∑
i

k2
i γ

T li,pl
T

i,pγ

= γT
∑
i

k2
i li,pl

T

i,pγ

= γTLpK
2Lpγ

= γ̃TLpK
2Lpγ̃.
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Now, consider n PF subsystems, each satisfying Assumption 2.2, and let ζ = [ζi]n×1

and V1 =
∑
iWi. Using (2.6), (2.7), and (A.1) yields

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2,
V̇1 ≤ −λ1V1 + ρ1n

2k2
M‖γ̃‖2 + u2

1.

Integrating the above differential inequality, the ISS property (5.6) follows.
Proof of Proposition 4.1 (system interconnection). Define V = V1 + aV2 for some

a > 0 to be chosen later. Clearly, V satisfies the first condition of (4.6) for some
α > 0, ᾱ > 0. Next, we will show that the second condition is also satisfied. Taking
the derivative of V yields

V̇ ≤ −
(
λ1 −

aρ2

α1

)
V1 − a

(
λ2 −

ρ1

aα2

)
V2 + g‖d‖2,

where g = max(1, a). At this stage assume ρ1 and ρ2 are nonzero, and let

(A.2) λ0 = λ1 −
aρ2

α1

= λ2 −
ρ1

aα2

.

Consider the case where λ2(t) = λ2 > 0 is constant. If ρ1ρ2 < α1α2λ1λ2, there
exist positive numbers λ0 and a satisfying (A.2). As a consequence, V̇ ≤ −λ0V +
g‖d‖2, the interconnected system is ISS with input d, and the convergence rate is
λ = λ0.

Consider now the case where λ2(t) is not constant and system 2 has brief instabil-
ities characterized by χ(p) and λ2(t) as in (4.3). Using the same Lyapunov function
V = V1 + aV2 and λ0 as in (A.2), compute the derivative of V to obtain

V̇ ≤ −λ0V + a(λ2 − λ2(t))V2 + g‖d‖2

that yields

V̇ ≤
{
−λ0V + g ‖d‖2, χ(p) = 0,
(λ3 − λ0)V + g ‖d‖2, χ(p) = 1,

where λ3 := λ2 + λ̃2. Again, λ0 exists if ρ1ρ2 < α1α2λ1λ2. Rewrite

V̇ ≤ −λ0V + a(λ2 − λ2(t))V2 + g‖d‖

and use aV2 = V − V1 to derive

V̇ ≤ −(λ0 − λ3χ(p))V + g‖d‖2,

where λ3 := λ2 + λ̃2. Integrating the above differential inequalities, it is easy to show
that

V (t) ≤ V (t0)e−λ0(t−t0)+λ3Tp + g sup[t0,t] ‖d‖
2

∫ t

t0

e−λ0(t−τ)+λ3Tpdτ.

This yields

V (t) ≤ V (t0)e−(λ0−αλ3)(t−t0)+λ3Tα +
eλ3Tα

λ0 − αλ3
g sup[t0,t] d

2,
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where Tα = (1−α)T0 if the system has brief instabilities as defined in (3.3). Therefore,
the interconnected system is ISS with d as input if α < λ0/λ3.

Suppose now that ρ2 = 0 and ρ1 > 0. In this case, the interconnected system
takes a cascade configuration and the dynamics of system 2 are reduced to

V̇2 ≤
{
−λ2V2 + d2

2, χ(p) = 0,
λ̃2V2 + d2

2, χ(p) = 1,

whose solution takes the form

V2(t) ≤ V2(t0)e−(λ2−αλ3)(t−t0)+λ3Tα +
eλ3Tα

λ2 − αλ3
sup[t0,t] d

2
2.

Using the above inequality together with (4.1) and (4.2) it is easy to obtain

V1(t) ≤ a1e
−λ1t + a2e

−(λ2−αλ3)t + a3 sup[t0,t] ‖d‖
2

for some ai ≥ 0, i = 1, 2, 3. Therefore, the cascade system is ISS with d as input if
α < λ2/λ3 and the convergence rate will be min(λ1, λ2 − αλ3).

Proof of (5.15). The objective is to make λ̄0 > 0, that is, λα − c1l
√

2n > 0.
Replacing c1 =

√
ckM/km in the above inequality yields

λα − l
√

2neλαT̄0

√
kM
km

> 0.

The left-hand side of the inequality takes its maximum at

λα =
1
T̄0

ln

(
1

l
√

2nT̄0

√
km
kM

)
,

from which it follows that

max λ̄0 =
1
T̄0

ln

(
1

el
√

2nT̄0

√
km
kM

)
.

To make λ̄0 positive it is required that

1
elT̄0

√
km

2nkM
> 1.

Using T̄0 ≤ T + τD gives

l

√
kM
km

<
1

e(T + τD)
√

2n
,

from which the result follows.
Proof of Theorem 7.1. PF of an underactuated AUV. The methodology adopted

for PF control system design is rooted in Lyapunov-based and backstepping tech-
niques. The exposition that follows is based on the work in [2].

Step 1. Define the global diffeomorphic coordinate transformation

e := RT [p− pd(γi)],



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COORDINATED PATH FOLLOWING 261

which expresses the path tracking error p− pd in a body-fixed frame. For simplicity
of presentation, we will for the most part drop the index i in this section. Recall the
definition of speed tracking error η = γ̇i − vr, where vr is a reference speed profile.
Recall also how the reference speed vr is decomposed as vr = vL + ṽr, where the
derivatives of vL are known but those of ṽr are not. The derivative of e yields

ė = −S(ω)e + ν − vLRT pγd − η̃RT pγd ,

where η̃ := η + ṽr (or equivalently γ̇i = vL + η̃) and superscript γ stands for partial
derivative with respect to γ. For example, pγd = ∂pd

∂γ and pγ
2

d = ∂2pd

∂γ2 .
We define the Lyapunov function W1 := 1

2e
T e and compute its time derivative to

obtain

Ẇ1 = eT (ν − vLRT pγd)− η̃e
TRTpγd ,

where we used the fact that eTS(ω)e = 0 ∀e, ω ∈ R
3. We regard ν as a virtual control

signal and introduce the virtual control tracking error variable

z1 := ν − vLRTpγd + keM
−1e.

Then, Ẇ1 can be rewritten as

Ẇ1 = −keeTM−1e + eTz1 + α1η̃,

where α1 := −eTRT pγd . Ideally, in the absence of η̃ one would like to drive z1 to zero
so as to render Ẇ1 negative. This motivates the next step.

Step 2. The time derivative of z1 yields

Mż1 = vLΓω + S(Mz1)ω +B1u1 + η̃h1 + h2,

where

Γ := MS(RTpγd)− S(MRTpγd),

h1 := −vLMRTpγ
2

d − v
γ
LMRTpγd − keR

T pγd ,
h2 := fν + keν + vLh1.

It turns out that due to lack of actuation, it is not always possible to drive z1 to
zero. Instead, we drive z1 to a constant design vector δ ∈ R

3. To this effect, we define
a new error vector φ := z1 − δ and the augmented Lyapunov function

W2 := W1 +
1
2
φTM2,

whose derivative is

Ẇ2 = −keeTM−1e + eT δ + φTM(Bζ +M−1e + h2) + α2η̃,

with α2 := α1 + φTMh1,

B :=
(
B1 S(Mδ) + vLΓ

)
, and ζ :=

(
u1

ω

)
,
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where we used the fact that φTMS(Mz1)ω = φTMS(Mδ)ω. Matrix B can always be
made full rank; see [2] for details. Let

β1 := BT (BBT )−1(−h2 −M−1e− kφφ).

To complete this step, we set u1 to be the first entry of β1, that is, u1 =
(

1 01×3

)
β1,

and introduce the error variable

z2 := ω −Πβ1, Π :=
(

03×1 I3×3

)
that should be driven to zero. It follows that

Ẇ2 = −keeTM−1e + eT δ − kφφTMφ+ φTMBΠTz2 + α2η̃.

Step 3. Let β̇1 := h3 + h4η̃, where h3 collects the terms in β̇1 not containing η̃.
For simplicity we do not expand h3 and h4. Define

W3 := W2 +
1
2
zT

2 Jz2,

whose time derivative, after applying the control law

u2 = B−1
2 (−fω + JΠh3 −ΠBTMφ− kzz2),

yields

(A.3) Ẇ3 = −keeTM−1e + eTδ − kφφTMφ− kzzT

2 z2 + α3η̃,

where α3 = α2 − zT
2 JΠh4. At this point it is important to notice that

(A.4) |α3| ≤ k1‖e‖+ k2‖φ‖+ k3‖z2‖

for some ki > 0, i = 1, 2, 3, that are functions of vL, vγL, M , pγd , and pγ
2

d . The design
phase is concluded at this step for the case where η = 0 simply by making γ̇i = vr.
In this case, η̃ = ṽr and

Ẇ3 ≤ −λW3 + ρ1‖δ‖2 + ρ2|ṽr|

for some λ > 0, ρ1 > 0, and ρ2 > 0. That is, the PF closed-loop system is ISpS with
input ṽr, state x1 = (e, φ, z2)T , and constant ρ1‖δ‖2.

Step 4. This extra step contemplates the situation where η �= 0. To this effect,
augment the Lyapunov function W3 to obtain

W4 := W3 +
1
2
η2 =

1
2
eT e +

1
2
φTM2φ+

1
2
zT

2 Jz2 +
1
2
η2.

Set the feedback law

η̇ = −α3 − kηη

to make

Ẇ4 = −keeTM−1e− kφφTMφ− kzzT

2 z2 − kηη2 + eTδ + α3ṽr,

which can be rewritten as

(A.5) Ẇ4 ≤ −λW4 + ρ1‖δ‖2 + ρ2|ṽr|

for some λ > 0, ρ1 > 0, and ρ2 > 0. Again, this makes the closed-loop system ISpS
with input ṽr , state x1 = (e, φ, z2, η)T , and constant ρ1‖δ‖2.
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ESTIMATION OF SPATIALLY DISTRIBUTED PROCESSES USING
MOBILE SPATIALLY DISTRIBUTED SENSOR NETWORK∗

MICHAEL A. DEMETRIOU† AND ISLAM I. HUSSEIN†

Abstract. The problem of estimating a spatially distributed process described by a partial
differential equation (PDE), whose observations are contaminated by a zero mean Gaussian noise,
is considered in this work. The basic premise of this work is that a set of mobile sensors achieve
better estimation performance than a set of immobile sensors. To enhance the performance of
the state estimator, a network of sensors that are capable of moving within the spatial domain is
utilized. Specifically, such an estimation process is achieved by using a set of spatially distributed
mobile sensors. The objective is to provide mobile sensor control policies that aim to improve
the state estimate. The metric for such an estimate improvement is taken to be the expected
state estimation error. Using different spatial norms, two guidance policies are proposed. The
current approach capitalizes on the efficient filter gain design in order to avoid intense computational
requirements resulting from the solution to filter Riccati equations. Simulation studies implementing
and comparing the two proposed control policies are provided.

Key words. spatially distributed systems, sensor control, mobile sensor network, process esti-
mation, diffusion equation
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1. Introduction and examples. Many applications have emerged in recent
years that rely on the use of networks of dynamic multiagent, limited-range sensors to
collect and process data. Applications include emergency response, aerial mapping,
and multiple satellite imaging systems for high-resolution imaging [71]. These and
other applications often involve tasks in adversarial, highly dynamic environments
that are hazardous to human operators. Hence, there is a pressing need to develop
autonomous multiagent sensor network systems that seek to collect and process dis-
tributed information under constrained resources.

Sensors of interest, such as infrared and vision-based cameras, and sonar, are used
to measure a certain field over some domain D. In many applications this is known as
the coverage problem. In these problems, the field to be measured satisfies a partial
differential equation (PDE). In addition to the task of collecting field measurements,
the sensors may also be asked to relay information to the base station or to process
the information for ensuing decision making. Data processing may be carried out
either in a centralized or decentralized fashion in order to possibly (i) estimate the
state, (ii) identify the process parameters, (iii) detect sources, and, in the event of
an actuation capability, (iv) provide action in order to alter the process response.
Examples include the estimation of the temperature distribution in a wildfire, where
the PDE is given by a reaction-convection-diffusion equation [3, 39, 63]. The present
work attempts to address the basic goal of using a network of dynamic, limited-range
sensors to improve the estimate of the field of interest.
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The theory and application of network control have recently received much atten-
tion, as is evident from the plethora of published works in the last few years. In [59],
the author provides a lucid overview of the theory, operation, and application of
wireless sensor networks. We also refer the reader to [5], where the authors provide a
thorough account of the state of the art and of the current challenges in networked real-
time systems. Within the same special issue of Proceedings of the IEEE, several papers
address various issues such as the current state of the technology of networked control
systems, the foundations of networked real-time systems, and wireless networks.

In general, there are two classes of sensor coverage control problems. The first
class involves spatially fixed sensors. The goal, which has been extensively studied in
the past, is to optimize sensor locations and sensor domains in fixed-sensor networks,
and the problems in this class are considered to be in locational optimization [37, 73].
In such problems, the solution is a Voronoi partition [38], where the optimal sensor
domain is a Voronoi cell in the partition and the optimal sensor location is a centroid
of a Voronoi cell in the partition.

The second class of problems involves a set of mobile sensors. In [14], the au-
thors present a survey of recent activities in the control and design of both static
and dynamic sensor networks. In their design criteria, they consider issues such as
maximum coverage, detection of events, and minimum communication energy expen-
diture. In the paper [65], the authors propose a formal model for a network of robotic
agents and define notions of network, control, and communication law; coordination;
and time and communication complexity. In a subsequent publication, the authors
provide upper and lower bounds on the time complexity of basic coordination algo-
rithms running on synchronous robotic networks for rendezvous and deployment over
a region of interest [66].

The authors in [41] discuss challenges in the modeling of robotic networks, motion
coordination algorithms, sensing and estimation tasks, and complexity of distributed
algorithms. In [67], the authors present recent theoretical tools for modeling, analy-
sis, and design of coordination algorithms for networks of mobile autonomous agents
for problems with distributed information. The authors discuss motion coordination
and the motivation that some recent techniques has received from biological sys-
tems. These problems include deployment over a given region, pattern formation,
rendezvous, or synchronous rigid-body motions.

In [60], the authors consider a probabilistic network model and a density function
to represent the frequency of random events taking place over a mission space. The
authors develop an optimization problem that aims to maximize coverage using sen-
sors with limited ranges, while minimizing communication cost. Starting with initial
sensor positions, the authors develop a gradient algorithm to converge to a (local)
solution to the optimization problem. The sequence of sensor distributions along the
solution is seen as a discrete time trajectory of the mobile sensor network until it
converges to the local minimum. In [19], the authors address the same question, but
instead of converging to a local solution of some optimization problem, the trajectory
converges to the centroid of a cell in a Voronoi partition of the search domain. The
authors propose stable algorithms in both continuous and discrete time. These algo-
rithms are the dynamic version of the Lloyd algorithm [62], which iteratively achieves
the optimal configuration. Voronoi-based approaches, however, require exhaustive
computational effort to compute the Voronoi cells continuously during a real-time
implementation of the controllers.

In [18], the authors present coordination algorithms for groups of mobile agents
performing deployment and coverage tasks under the constraint that each mobile agent
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has a limited sensing or communication radius. Based on the geometry of Voronoi
partitions and proximity graphs, they propose coverage algorithms in continuous and
discrete time that are convergence-guaranteed and are spatially distributed with re-
spect to appropriate proximity graphs. In [40], the authors propose a nonsmooth
gradient algorithm for the problem of maximizing the area of the region visible to an
observer in a simple nonconvex polygon.

In [64], the authors study optimal sensor placement and motion coordination
strategies for mobile sensor networks for target tracking using range sensors. They
propose motion coordination algorithms that achieve optimal deployment. The au-
thors in [84] propose an algorithm for monitoring an environmental boundary with
mobile agents that use only locally sensed information. Their objective is to approxi-
mate the boundary with a polygon. The algorithm proves to be convergent for static
boundaries and is shown to perform well for slowly moving boundaries.

The paper [42] uses a novel discrete-event controller for the coordination of co-
operating heterogeneous wireless sensor networks containing both unattended ground
sensors and mobile sensor robots. Given an environment perception, the discrete-
event controller sequences the most suitable tasks for each agent and assigns sensor
resources. The authors introduce several new tools for discrete-event controller design
and operation. The resulting controller represents a complete dynamical description of
the wireless network system and is experimentally demonstrated on a wireless sensor
network prototyping system.

In [44], the authors use a stochastic approach to find the sensor schedule that
results in the minimum error covariance of a state to be measured. They develop a
stochastic sensor selection strategy that is computationally tractable. Applications of
this work include the sensor selection problem, where multiple sensors cannot operate
simultaneously, as in single frequency band sonar in which sensor trajectory opti-
mization is needed to optimize their trajectories. The algorithm is applied to these
problems and illustrated through simple examples.

In the above works, the authors address the redeployment problem to improve
network performance. More recent research results, such as [50, 51], consider the
following problem. Given a sensor network and a mission domain (the domain to
be sampled) D, develop closed-loop control strategies such that each point in D is
sampled by some agents in the network by an amount of effective coverage equal to
C∗. In the discrete setting, the goal may be understood as the collection of at least C∗

measurements of a physical quantity at each point in D using a group of limited-range
sensors. The goal is to dynamically survey the mission domain while the agents are
moving in the mission space. This problem is known in the robotics literature as the
coverage path planning problem, where a single limited-range sensor agent needs to
visit all points in the environment (see, for example [1, 16], and references therein).

For the coverage path planning problem for networks of multiple sensor-equipped
robots, in [50] a deterministic approach is pursued and a convergent cooperative feed-
back control law is proposed that achieves a satisfactory coverage of D, while avoiding
converging to local minima of a defined coverage error. These results were motivated
by approaches studied in [15, 47] for (optimal and suboptimal) motion planning of
multiple spacecraft interferometric imaging systems (MSIIS). In [51], the authors
also guarantee collision avoidance, and in [52] they further modify the control law to
guarantee collision-free coverage with a flocking behavior.

Regarding collision avoidance, the authors in [51, 52] mainly rely on the use of
barrier-type functions originally developed in [57, 58] for collision avoidance in two-
agent systems. Later these results were generalized for multiagent (more than two)
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systems in noncooperative [83] and cooperative settings [82]. A decentralized scheme
for collision avoidance of multiple independent nonpoint agents was developed in [36]
using a methodology based on navigation functions. In this paper, we do not include
collision avoidance control. However, once cooperative coverage control strategies have
been developed (as in this paper), one can easily append collision avoidance control
components to the coverage control law to achieve safe coverage of the domain.

In the stochastic setting, the authors in [17] develop a Kalman filter-based algo-
rithm that aims to use a mobile sensor network for estimating the state of a single
target (that is, this is not a coverage control problem). The author in [48] uses the
Kalman filter for estimating a spatially decoupled (i.e., it does not satisfy a PDE)
field and uses the prediction step of the filter for guiding the vehicles to move in di-
rections that improve the field estimate. Moreover, the control algorithm is modified
to guarantee satisfactory global coverage of the domain. A similar coverage prob-
lem formulation is addressed in [43], but from an information theoretic perspective
that does not discuss dwelling into local minima of the metric of choice. Motivated
by the employment of sensing devices for the estimation of spatially distributed pro-
cesses (unsteady diffusion-type parabolic PDEs) in [26], the authors in [49] extend
these results to the case where the field of interest satisfies a PDE. The present
paper is an extension of [49], where we presently formalize the mathematical ap-
proach and address some of the mathematical intricacies in the formulation. We also
present the estimation problem in a more general abstract formulation that is impor-
tant to understand. Such an abstract framework is conducive to optimization that
emanates from the subsequent inclusion of communication and decision/actuation
considerations.

A common aspect of all the results mentioned above is the assumption that the
field to be measured is static, especially in the spatial sense. In this paper we consider
the case where the field to be measured satisfies some PDE, i.e. evolves both in time
and space. Applications for both immobile and mobile sensor networks include the
following:

• Aerial wildfire control in inaccessible and rugged country, where the tempera-
ture distribution, satisfying a PDE [3, 39, 63], has to be estimated to identify
critical points that require immediate deposition of fire suppression material.
• Underwater and atmospheric sampling, where the field to be measured (e.g.,

salinity or temperature) satisfies a particular PDE [9, 54, 78, 79].
• Health monitoring of civil infrastructures such as bridges and “smart” build-

ings [13], wherein a network of sensors is used to monitor vital structural
changes due to wear, fire, oxidation, cyclic loading, and earthquakes.
• Oil spill and ground water contamination, where mobile agents with sens-

ing and possible actuating capabilities are used to contain/encircle moving
boundaries of contaminating fluids. For the former, flotillas equipped with
computational, sensing, and limited actuation capabilities attempt to encir-
cle and contain moving boundaries caused by contaminating oil spills, relay
information to a base station, and possibly take limited action by minimizing
the environmental effect of the contaminating substance via an appropriate
dispersion of neutralizing agents.
• Other applications, such as MSIIS, surveillance, and aerial mapping, where

the PDE does not have a diffusion term (since “information” does not dif-
fuse spatially) and the PDE is elliptic. Basically, these are Poisson-like PDEs
which describe the steady-state solutions of unsteady diffusion-advection pro-
cesses. This is a special subclass of PDEs that also fall under the more general
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class of PDEs considered here. When such elliptic PDEs are considered, one
simply embeds them in an unsteady or parabolic process and proceeds with
the guidance scheme proposed in this paper. The embedding of such ellip-
tic PDEs is similar in spirit to the work in [45] for the adaptive parameter
identification in ground water hydrology.

Communications, in particular wireless communication, in networks is a crucial
issue in cooperative networks. Issues include lossy communications, fading channels,
dynamic communication structures, and communication-induced time delays. While
this paper does not address the issue of communications aspects, it deserves much
attention and is the subject of current and future research by the authors. However,
this paper lays down the abstract mathematical framework in which one can naturally
augment communication and actuation aspects via the penalization of an associated
performance measure. For more on communication in networked systems, we refer
the reader to the review paper [5].

In the context of sensor networks, the papers [69, 70] address distributed sensing
and communication under communication constraints and derive tradeoffs between
communication and sensing requirements in a decentralized mobile sensor network,
respectively. We refer the reader to these papers and references therein for more on
constraints imposed by communications (such as channel fading) on sensor network
performance.

In a parallel fashion to the above research efforts on sensor and actuator networks,
there was a considerable amount of research done by the infinite dimensional systems
community, which considered the placement and scheduling of sensing and actuating
devices in systems governed by spatially distributed processes; such examples include
thermal manufacturing, chemical transport processes, and mechanical structures. The
basic idea was to optimally place and schedule such devices within the spatial domain.
The PDE interpretation on “move” or “schedule” or “scan” sensors and actuators to
improve performance of the filter or the controller and to enhance the identifiability
of the parameter estimation scheme translated into studying the well-posedness of
an associated evolution equation. More specifically, the placement and scheduling of
sensing and actuating devices was equivalent to choosing the output and input op-
erators that were parameterized by the spatial position of these devices. An added
dimension to the positioning of sensing and actuating devices in processes described
by PDEs was the issue of locations that resulted in partial or complete loss of observ-
ability and controllability. For a one-dimensional diffusion equation this amounts to
the avoidance of placing pointwise-in-space sensing and actuating devices at the zeros
of the associate spatial operator of the system; this then relates to the definition of
approximate observability and controllability [21]. Such works started to appear, at
least in the open literature, in the late 1970s and throughout the 1980s both in the
West and the former Soviet Union. For the former, works in [7, 20, 55, 68, 56] provided
the seed for viewing the spatial location of sensing and actuating devices as another
level of control and optimization. For the latter, early works by Butkovskǐı [10, 11, 12]
paved the way for the eventual guidance of sensors and actuators in systems governed
by PDEs and whose state is a field over a spatial domain.

The process to be estimated is naturally described by a PDE. A system-theoretic
approach to studying PDEs has received much attention over the years, addressing
various issues such as control and filter design, optimization, and finite dimensional
approximation. Such efforts have been reported, for example, in the texts [21, 61, 74].
Related to the work under consideration is the issue of the placement of sensors at
fixed positions for improved state and parameter estimation, fault tolerance, and
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observer-based closed-loop performance [20, 29, 86]. Closer to the proposed issue
of mobile sensors is the work by Uciński and coworkers [81, 87, 88] and Nehorai
and coworkers [72]. The above works dealt primarily with optimal motion planning
of mobile sensors (robots) for parameter estimation. By utilizing an information
theoretic approach, via the use of the Fisher information matrix, in the optimization of
an objective function along with additional robot motion constraints, an optimal path
planning policy was derived. While similar to the previous works, the current work
considers the motion planning of mobile sensors in distributed systems for improved
state estimation.

The proposed mobile sensor motion planning is based on Lyapunov stability tech-
niques. In addition to the method used to derive the motion planning, the proposed
work considers spatially distributed sensors as opposed to point sensors. Related to
the above is the work in [26], where a network of fixed-position pointwise sensors was
utilized for detection of a moving source (intrusion detection) for a diffusion process
(i.e., the field to be measured was the solution to a diffusion-advection PDE) in a
two-dimensional spatial domain. A sensor management scheme was proposed in or-
der to minimize power consumption by having a subset of the available sensors in
transmit mode and having the remaining sensors in the network in sleep mode. The
detection scheme would activate, over the duration of a given time interval, the rel-
evant sensors within a radius to the moving source and deactivate the sensors that
were outside a ball surrounding the centroid of the moving source. A state estimator
was subsequently incorporated into the moving source detection scheme in [28] for
the same diffusion process, and eventually a containment policy utilizing actuating
devices collocated to the mobile sensors was considered in [27]. Such a containment
policy aimed at providing limited local-in-space control action of the sensors that were
within proximity of the moving source over the duration of a given time interval.

For the sake of exposition, the process under consideration here is governed by
a one-dimensional diffusion-advection process, and the results are extendable to the
two-dimensional case with minor adjustments for the sensor motion. Moreover, such
a multidimensional extension requires attention to some technical issues pertaining
to the existence and uniqueness of solutions to certain evolution equations with non–
simply connected spatial domains, having nonsmooth boundaries, both internal and
external, and the well-posedness of Lyapunov functions and their time derivatives
that are subsequently used for the stability analysis. Additional conditions may also
have to be imposed on the initial condition as well. However, the abstract framework
is the same, as are the sensor navigation policies.

The paper is organized as follows. The diffusion process with its abstract frame-
work formulation, along with the design of a state estimator, are summarized in
section 2. The guidance policies (path planning) for the mobile sensors along with
the requisite stability results are presented in section 3. Numerical studies of a one-
dimensional diffusion-advection process utilizing both proposed guidance policies are
reported in section 4, with conclusions and future research following in section 5.

2. Mathematical formulation and problem statement. All notation in this
paper is standard. For Banach spaces X and Y , L(X,Y ) denotes the space of bounded
linear operators from X into Y . All inner products 〈·, ·〉 are assumed to be linear in
their first argument and to be conjugate linear in the second. Additionally, 〈φ, ψ〉 �
〈φ, ψ〉X,Y denotes the action of the linear functional ψ ∈ Y on the element φ ∈ X,

and 〈ψ, φ〉 � 〈ψ, φ〉Y,X denotes the actions of the conjugate linear functional ψ ∈ Y
on the element φ ∈ X.
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2.1. One-dimensional diffusion process. The diffusion process under consid-
eration is modeled by a parabolic PDE on the bounded interval Ω = [0, �] ⊂ R. The
state of the system is denoted by x(t, ξ), where ξ ∈ Ω denotes the spatial variable and
t ∈ [0,∞[ is the time variable. The PDE is given by

(2.1)
∂x

∂t
(t, ξ) = a1

∂2x

∂ξ2
(t, ξ)− a2

∂x

∂ξ
(t, ξ)− a3x(t, ξ) + b1(ξ)w(t) + b2(ξ)u(t),

where a1, a2, a3 > 0, along with Dirichlet boundary conditions x(t, 0) = x(t, �) = 0 and
initial condition x(0, ξ) = x0(ξ) ∈ L2(Ω). The function b1(ξ) ∈ L2(Ω) denotes the
spatial distribution of the process noise and w(t) denotes its temporal component.
Similarly, the function b2(ξ) ∈ L2(Ω) denotes the spatial distribution of the input
function, while u(t) denotes its temporal component. For the case of spatiotemporally
moving inputs, or mobile controls, one may consider b2(ξ; ξa(t)), where ξa(t) denotes
the time-varying location of the mobile actuating device. Such mobile actuators and
their associated control policies were considered in [12, 23, 24, 25, 27, 30, 31, 32, 33,
34, 35, 53].

Spatially distributed measurements from m sensors are assumed to be available
over the spatial intervals [ξsk −Δξ ≤ ξ ≤ ξsk + Δξ], k = 1, 2, . . . ,m,

y(t, ξ; ξs) =

⎡⎢⎢⎢⎣
c(ξ; ξs1)x(t, ξ) + d(ξ; ξs1)v(t)

c(ξ; ξs2)x(t, ξ) + d(ξ; ξs2)v(t)
...

c(ξ; ξsm)x(t, ξ) + d(ξ; ξsm)v(t)

⎤⎥⎥⎥⎦ ,

where ξsk denotes the kth sensor position within the domain [0, �], ξs = [ξs1, . . . , ξ
s
m] ∈

R
m denotes the vector of sensor locations, Δξ denotes the one-half spatial support

of the sensing device, and c(ξ; ξsk) ∈ L2(0, �), k = 1, 2, . . . ,m, denotes the output
shaping function associated with the kth sensor. The spatial distribution (shaping
function) of the measurement noise is denoted by d(ξ; ξsk) ∈ L2(0, �) and is similarly
defined on the interval [ξsk −Δξ ≤ ξ ≤ ξsk + Δξ]. Its temporal component is denoted
by v(t). Example distributions for the output measurement and output noise shaping
functions are depicted in Figure 2.1. Other distributions may also be considered. Ex-
amples include a Gaussian function or any other polynomial or trigonometric function.
Figure 2.1(a) depicts both the box function and its smoothed approximation. The
smoothed approximation is necessary for both regularity and numerical implemen-
tation requirements. Regarding regularity, smoothing guarantees well-posedness and
certain system-theoretic properties, such as approximate observability, of the infinite
dimensional system described below, to easily follow from already established results.
On the numerical implementation side, smoothing aims to avoid Gibb’s type phenom-
ena in the numerical approximation of nonsmooth functions such as the box function.
In fact, the following polynomial representation is used here for the smoothed approx-
imation of the box function:

c(ξ; ξsk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ξ ∈ [ξsk − 0.6Δξ, ξsk + 0.6Δξ],

1− 3ξ2
lk
− 2ξ3

lk
if ξ ∈ [ξsk −Δξ, ξsk − 0.6Δξ],

1− 3ξ2
rk

+ 2ξ3
rk

if ξ ∈ [ξsk + 0.6Δξ, ξsk + Δξ],

0 otherwise,

where ξrk =
ξ−ξsk−0.6Δξ

0.4Δξ and ξlk =
ξ−ξsk+0.6Δξ

0.4Δξ . A similar cubic polynomial is used to

smooth the spatial distribution of the measurement noise. As shown in Figure 2.1(b),
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Fig. 2.1. Spatial distributions c(ξ; ξs) and d(ξ; ξs) for ξs = �/2.

the value of d(ξ; ξsk) is equal to σmax outside the sensor range [ξsk − Δξ, ξsk + Δξ],
but its contribution to the output measurement is removed by multiplying it by the
box function, thereby eliminating the introduction of noise outside the sensor range,
i.e., excluding noise from the spatial interval [0, �] \ [ξsk − Δξ, ξsk + Δξ]. The noise
effects are smaller at the center of the sensor range and increase as one moves away
from the center. Similarly, the expression for d(ξ; ξs) is

d(ξ; ξsk) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σmax ξ ∈ [ξsk −Δξ, ξsk −Δξ]c,

σmax(1− 3ξ2
rk

+ 2ξ3
rk

) ξ ∈ [ξsk + 0.6Δξ, ξsk + Δξ],

σmax(1− 3ξ2
lk
− 2ξ3

lk
) ξ ∈ [ξsk −Δξ, ξsk − 0.6Δξ],

σmin + 2(σmax − σmin)Ξ2 −(σmax − σmin)Ξ4
k otherwise,

where [ξsk −Δξ, ξsk −Δξ]c = [0, �] \ [ξsk −Δξ, ξsk + Δξ] and Ξk =
ξ−ξsk
Δξ .

When mobile sensors are considered, then one has

(2.2) y(t; ξs) =

⎡⎢⎢⎢⎣
c(ξ; ξs1(t))x(t, ξ) + d(ξ; ξs1(t))v1(t)

c(ξ; ξs2(t))x(t, ξ) + d(ξ; ξs2(t))v2(t)
...

c(ξ; ξsm(t))x(t, ξ) + d(ξ; ξsm(t))vm(t).

⎤⎥⎥⎥⎦ ,

which explicitly models the sensor position motion via the time-variation of the second
argument of the output measurement shaping function c(ξ; ξsi (t)) and noise measure-
ment shaping function d(ξ; ξsi (t)) for the ith sensing device.

2.2. Abstract formulation. For well-posedness and stability of the proposed
estimation scheme, the above PDE given in (2.1), (2.2) will be viewed in an abstract
framework. Such an abstract framework includes a larger class of PDEs, and hence
the results can be easily applied to any member of this class of systems.

We let X be a Hilbert space with inner product 〈·, ·〉 and corresponding induced
norm |·|. Let V be a reflexive Banach space with norm denoted by ‖·‖, and assume that
V is embedded densely and continuously in X [77, 90]. Let V∗ denote the conjugate
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dual of V (in other words, the space of continuous conjugate linear functionals on V)
and ‖ · ‖∗ denote the usual uniform operator norm on V∗. It follows that

(2.3) V ↪→ X ↪→ V∗,

with both embeddings dense and continuous [22, 80]. Specifically, we assume that

(2.4) |φ| ≤ c‖φ‖, φ ∈ V,

for some positive constant c. The notation 〈·, ·〉 will also be used to denote the duality
pairing between V∗ and V induced by the continuous and dense embeddings given in
(2.3); that is, for φ ∈ V∗ and ψ ∈ V, 〈φ, ψ〉 denotes the action of the bounded linear
functional φ on the vector ψ. This quantity simply reduces to 〈φ, ψ〉 if φ ∈ X ; i.e., the
value of φ acting on ψ is equal to the X inner product of φ and ψ.

We consider a linear operator A : V → V∗ satisfying the following assumptions:
(A1) V → V∗-boundedness: There exists α > 0 such that

|〈Aφ, ψ〉| ≤ α‖φ‖ ‖ψ‖ for φ, ψ ∈ V.

(A2) V-coercivity : the operator −A is coercive, i.e.,

Re 〈−Aφ, φ〉 ≥ β‖φ‖2 for some positive β and φ ∈ V.

Additionally, we may impose the following symmetry condition which, while it sim-
plifies the stability analysis, nonetheless restricts the class of systems (i.e., diffusion
processes) to which the proposed sensor navigation and state estimation policy is
applicable.

(A3) Symmetry : the operator A is symmetric:

〈Aφ, ψ〉 = 〈Aφ, ψ〉 for all φ, ψ ∈ V.

For ease of exposition, we have assumed that the operator A is time invariant. How-
ever, it is relatively straightforward to extend all of the results in this paper to the
case of a time-dependent operator A(t), t ≥ 0. One need only make some standard
assumptions on the regularity of the map t → A(t), t ≥ 0, for the present results to
remain valid [8, 61, 76, 85].

We consider the disturbance operator B1 : R → V∗ and the input operator
B2 : R → V∗. When the control and disturbance signals are assumed to be square
integrable, i.e., yielding B1w+B2u ∈ L2(0, t,V∗), and x(0) = x0 ∈ X , then the initial
value problem (IVP)

(2.5)
d

dt
x(t) = Ax(t) + B1w(t) + B2u(t), x0 ∈ X ,

is well-posed. By a solution to the above (IVP), we mean a weak solution [76]; this
means a function x ∈ L2(0, t;V) with d

dtx ∈ L2(0, t;V∗) for all t > 0 that satisfies
(2.5) [76, 90].

Following [21], the PDE in (2.1) may be expressed in the abstract form (2.5). The
state space in this case is X = L2(0, �), where x(t, ·) = {x(t, ξ), 0 ≤ ξ ≤ �} denotes the
state. The space V is identified by the Sobolev space V = H1

0 (0, �). In the remainder
of the paper we will, with a slight abuse of notation, use x(t) as the solution to the
evolution equation (2.5) and use x(t, ξ) as the solution to the PDE (2.1). Under the
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above representation, the system’s second order (strongly) elliptic operator A and its
domains are given by [22]:

Aφ = a1
d2φ
dξ2 − a2

dφ
dξ − a3φ, φ ∈ Dom (A),

Dom (A) = H2(0, �) ∩H1
0 (0, �)

= {ψ ∈ L2(0, �) |ψ,ψ
′
abs. continuous and ψ(0) = 0 = ψ(�)}.

We now verify the boundedness and coercivity assumptions (A1) and (A2) for the
above system:

|〈Aφ, ψ〉| =

∣∣∣∣∣
∫ �

0

(
a1

d2φ(ξ)

dξ2
− a2

dφ(ξ)

dξ
− a3φ(ξ)

)
ψ(ξ) dξ

∣∣∣∣∣
≤ a1

∣∣∣∣∣
∫ �

0

d2φ(ξ)

dξ2
ψ(ξ) dξ

∣∣∣∣∣+ a2

∣∣∣∣∣
∫ �

0

dφ(ξ)

dξ
ψ(ξ) dξ

∣∣∣∣∣+ a3

∣∣∣∣∣
∫ �

0

φ(ξ)ψ(ξ) dξ

∣∣∣∣∣
≤ a1

√∫ �

0

(
dφ(ξ)

dξ

)2

dξ

√∫ �

0

(
dψ(ξ)

dξ

)2

dξ

+a2

√∫ �

0

(
dφ(ξ)

dξ

)2

dξ

√∫ �

0

ψ2(ξ) dξ + a3

√∫ �

0

φ2(ξ) dξ

√∫ �

0

ψ2(ξ) dξ

= a1‖φ‖ ‖ψ‖+ a2‖φ‖ |ψ|+ a3|φ| |ψ|
≤ a1‖φ‖ ‖ψ‖+ a2‖φ‖c‖ψ‖+ a3c

2‖φ‖ ‖ψ‖ =
(
a1 + a2c + a3c

2
)
‖φ‖ ‖ψ‖,

where we used the triangle inequality in the first step and used the fact that the space
V is embedded in X . This proves boundedness. To show coercivity, note that

〈−Aφ, φ〉 =

∫ �

0

−
(
a1

d2φ(ξ)

dξ2
− a2

dφ(ξ)

dξ
− a3φ(ξ)

)
φ(ξ) dξ

= −a1

∫ �

0

d2φ(ξ)

dξ2
φ(ξ) dξ + a2

∫ �

0

dφ(ξ)

dξ
φ(ξ) dξ + a3

∫ �

0

φ(ξ)φ(ξ) dξ

≥ a1

∫ �

0

(
dφ(ξ)

dξ

)2

dξ + a2

∫ �

0

d

dξ
φ2(ξ) dξ + a3

∫ �

0

φ2(ξ) dξ

= a1‖φ‖2 + a2|φ
′ |2 + a3|φ|2 ≥ a1‖φ‖2.

It should be noted, however, that due to the presence of a nonzero coefficient a2, the
operator is not symmetric.

The input operator is given by

B2u(t) = b2(ξ)u(t), B2 ∈ L(R,X ).

The disturbance (process noise) operator B1 is given similarly by

B1w(t) = b1(ξ)w(t), B1 ∈ L(R,X ).

Similarly, the output equation (2.2) may be written as

(2.6) y(t; ξs) = C(ξs(t))x(t) +D(ξs(t))v(t),
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where the output measurement and noise operators are parameterized by the sensor
location vector ξs. These operators are given via C(·) : V → V∗ × V∗ × · · · × V∗︸ ︷︷ ︸

m

by

〈C(ξs(t))φ, ψ〉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ �

0

c(ξ; ξs1(t))φ(ξ)ψ(ξ) dξ∫ �

0

c(ξ; ξs2(t))φ(ξ)ψ(ξ) dξ

...∫ �

0

c(ξ; ξsm(t))φ(ξ)ψ(ξ) dξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and via D(·) : R
m → V∗ × V∗ × · · · × V∗︸ ︷︷ ︸

m

by

〈D(ξs(t))ν, ψ〉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ �

0

d(ξ; ξs1(t))ψ(ξ) dξ ν1∫ �

0

d(ξ; ξs2(t))ψ(ξ) dξ ν2

...∫ �

0

d(ξ; ξsm(t))ψ(ξ) dξ νm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.3. Problem statement. The problem at hand is to propose a state estimator
for the evolution system (2.5), with measurements given by (2.2), and to provide a
motion planning strategy of the mobile sensors in (2.2) in order to yield a more efficient
state estimator.

2.4. State estimation process with time-varying output operator. For
an arbitrary but fixed sensor location ξs, one may consider the associated state esti-
mator in X ,

˙̂x(t) = Ax̂(t) + B2u(t) + L(ξs)
(
y(t)− C(ξs)x̂(t)

)
,(2.7)

where x̂(0) = x̂0 ∈ X with x̂(0) �= x(0), and L(ξs) : V∗ × V∗ × · · · × V∗︸ ︷︷ ︸
m

→ V is

the associated ξs-parameterized observer gain derived from either a Kalman or a
Luenberger filter design.

The state estimation error e(t) � x(t)− x̂(t) for (2.5) is governed by the following
evolution equation:
(2.8)
ė(t) = Ae(t)− L(ξs) (y(t)− C(ξs)x̂(t)) + B1w(t),

= (A− L(ξs)C(ξs)) e(t) + B1w(t)− L(ξs)D(ξs)v(t),
e(0) = x(0)− x̂(0) ∈ X .

The associated distributed output estimation error ε(t; ξs) corresponding to m sensor
locations represented by the vector ξs is given by

(2.9) ε(t; ξs) � y(t; ξs)− C(ξs)x̂(t).

Next, this output error will be used to generate the navigation policies for the mobile
sensors.
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3. Navigation of spatially mobile sensors. The sensor locations ξs consid-
ered above are now allowed to vary with time, and thus the above observation and
measurement noise operators are time dependent. The associated state estimator is
now given by (cf. (2.7))

(3.1) ˙̂x(t) =
(
A− L(ξs(t))C(ξs(t))

)
x̂(t) + B2u(t) + L(ξs(t))y(t),

which results in the estimation error equation (cf. (2.8))

(3.2)
ė(t) =

(
A− L(ξs(t))C(ξs(t))

)
e(t) + B1w(t)− L(ξs(t))D(ξs(t))v(t),

e(0) = x(0)− x̂(0) ∈ X .

Similarly, the output estimation error (cf. (2.9)) is given by

(3.3) ε(t; ξs(t)) = C(ξs(t))e(t) +D(ξs(t))v(t).

One may consider an optimal sensor scheduling, as was developed in [7], to derive the
position of the mobile sensors. While the resulting sensor guidance will be optimal,
it would nonetheless result in computationally intensive implementation requiring
the solution to differential Riccati operator equations. Motivated by computational
considerations, we consider sensor guidance schemes that may forsake optimality for
ease of implementation and reduction of the computational load. Additionally, we do
not necessarily consider a finite horizon problem, and thus one may have to address
the issue of observability. Thus, we assume that the sensor guidance scheme navigates
the mobile sensors only in the spatial locations that render the system approximately
observable [21]. To avoid such locations, we define the set of admissible locations as

(3.4) Θadm =
{
ξsi ∈ Ω : (C(ξs),A) is approximately observable

}
.

Any sensor scheduling will then be constrained to the set Θadm. While we will not
explicitly impose this condition, one may incorporate such an admissibility condition
into a collision avoidance navigation scheme, whereby both undesirable locations and
locations that render the system unobservable will be avoided.

The above error provides distributed information of the estimation error through-
out the support of a given sensing device, i.e., over [ξsi − Δξ, ξsi + Δξ]. Using only
this spatially distributed error, we propose two guidance policies. The first guidance
policy moves the center of the ith sensing device so as to minimize its spatial L∞
norm within the spatial interval [ξsi −Δξ, ξsi + Δξ]. Such a guidance policy renders
the resulting infinite dimensional system a switched system whereby the position of
the m sensors changes at discrete time instances. The second guidance policy con-
siders the global distributed error associated with the nominal noise-free process, and
by embedding the sensor position in the process dynamics, a guidance law is derived
using Lyapunov stability arguments.

3.1. Case 1: Guidance using localized measurement error. Assuming
that a given sensor can only move a maximum distance of ±Δξ from its current
position ξsi (tk), i.e., move anywhere within [ξsi (tk)−Δξ, ξsi (tk)+Δξ], and taking into
account velocity constraints which translate into restrictions on the frequency of the
switching positions, we consider the time instances t0 + kΔt, k = 0, 1, 2, . . . . The
proposed sensor position switching is given by

(3.5) ξsi (tk+1) = arg max
ξsi (tk)−Δξ≤ξ≤ξsi (tk)+Δξ

|ε(tk, ξ; ξsi (tk))|
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Fig. 3.1. Guidance of moving sensor from position ξs(tk) (lower dot) to position ξs(tk+1)
(upper dot) using localized measurement error ε(t, ξ; ξs

i (tk)).

for i = 1, 2, . . . ,m, and which basically finds the maximum of the spatially distributed
measurement error over the domain of definition [ξsi (tk) − Δξ, ξsi (tk) + Δξ] of the
current sensor position ξsi (tk), and moves the ith sensor to that maximum. Figure 3.1
depicts a scenario with the current ξs(tk) and subsequent sensor position ξs(tk+1).

Remark 3.1. Note that if ε(t, ξ; ξsi (tk)) = 0 inside the ith sensor domain, then
sensor i will not move. If ε(t, ξ; ξsi (tk)) = 0 for all sensors i, then none of the sensors
will move, even if the error is nonzero outside the sensor domains. In the spatially
decoupled case (i.e., no PDE is satisfied), this is problematic since the error outside all
sensor domains is not “transmitted” to the error within the sensor domains. In this
case, the sensors are immobile with a nonzero global error. This situation was called
Condition C1 in [51]. To resolve this issue, the authors in [51] propose perturbation
control laws that transfer sensors with zero error within the domain to a neighborhood
of a point (outside the sensor domain) with nonzero error. Once there, the control
law is switched back to (3.5). It was shown in [51] that such a switching policy causes
the coverage error to converge to zero and that infinite switching is impossible if the
domain D is compact.

For the spatially coupled case, under the assumption that the PDE system is
approximately observable, which is guaranteed by restricting the sensor motion to the
set Θadm, one has that the error inside the sensor domains is zero if and only if the
global error is zero. Hence Condition C1 (that error inside the sensor domain is
zero with nonzero global error) described above will never occur and switching is not
required.

For the specific case of the observer operator gain L(ξs(t)) = C∗(ξs(t)), the above
state error (2.8) reduces to the switched infinite dimensional system

(3.6)
ė(t) =

(
A− C∗(ξs(t))C(ξs(t))

)
e(t) + B1w(t)− C∗(ξs(t))D(ξs(t))v(t),

e(0) = x(0)− x̂(0) = e0 ∈ X .

We examine the stability of the above switched system (3.5), (3.6) within the context
of switched infinite dimensional systems. We use the notation Ξk to denote the sensor
position throughout the time interval [tk, tk + Δt); i.e., the sensors will maintain the
same position ξs(t) for the duration of the time interval [tk, tk + Δt),

ξs(t) = Ξs, t ∈ [tk, tk + Δt).
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We define the operators Ai = A − C∗(Ξi)C(Ξi) for Ξi ∈ Θadm. In view of the
above, we consider the family of infinitesimal generators A = {Ai, i ∈ I} on X
parameterized by some index set I. We let σ : [0,∞) → I be a piecewise constant
function of time, termed the switching signal. Additionally, we define the operators
Bi : U = R⊕ R

m → X and Ci : X ⊕ R
m → Y,

Biυ(t) = B1w(t)− C∗(ξsi )D(ξsi )v(t), υ ∈ U ,
Ciχ(t) = C(ξsi )e(t) +D(ξsi )v(t), χ ∈ X ⊕ R

m.

Let (Sp)p∈I , for some index set I, be a family of linear continuous time systems which,
for each fixed p ∈ I, is given by a state linear system (Ap,Bp,Cp),

(3.7) (Sp) :

{
ė(t) = Ape(t) + Bpυ(t),

ε(t) = Cpχ(t),

where the operator Ap = A− C∗(Ξp)C(Ξp) is the infinitesimal generator of an expo-
nentially stable semigroup Tp(t) on the Hilbert space X for all Ξp ∈ Θadm. For each
p ∈ I, the operators Bp and Cp are bounded linear operators from a Hilbert space U
to X and from X ⊕R

m to a Hilbert space Y, respectively. To the family (Sp)p∈I , we
associate the set

Σ = {σ | σ : [t0,∞)→ I piecewise constant}

of all possible switches between the given systems. The family of switched systems
((Sp)p∈I ,Σ) taken under consideration are the hybrid dynamical systems consisting
of the family of continuous time systems (Sp)p∈I together with all switching rules
σ ∈ Σ, all initial states e(0) = e0 ∈ X , and all inputs υ ∈ L2([t0,∞);U). For each
given switching function σ, denote the finite set of switching time instants associated
to σ by t0 < t1 < t2 < · · · , where k(σ) ∈ N \ {0}. Here, k(σ) − 1 denotes the
number of discontinuities for the piecewise continuous function σ. For k(σ) = 1, the
no-switching case is obtained. Therefore we impose k(σ) ≥ 2 as a necessary condition
for the nontriviality of the problem; i.e., there exists at least one switch.

By a solution, we mean that given a switching function σ, an initial condition

e0 and an input υ, then, on each interval {[ti, ti+1]}k(σ)−1
i=0 , the state eσ(t) of the

switched system ((Sp)p∈P , σ) is the mild solution of the Cauchy problem (3.7) [21],
i.e. for ti ≤ t ≤ ti+1,

(3.8)
eiσ(t) = Tσ(t)eσ(ti) +

∫ t

ti

Tσ(ti)(t− s)Bσ(ti)υ(s)ds,

εiσ(t) = Cσ(ti)e
i
σ(t) +Dσ(ti)ν(t).

We make the assumption that the resulting hybrid system is not a jump system.
Assumption 3.1. The initial conditions for the error state at the beginning of

each interval {[ti, ti+1]}k(σ)−1
i=1 are given by {eσ(ti)}k(σ)−1

i=1 , and they are considered to
be the end values of the solution on the preceding time interval, i.e.,

initial value at [ti+1,ti+2]︷ ︸︸ ︷
ei+1
σ (ti+1) =

final value at [ti,ti+1]︷ ︸︸ ︷
eiσ(ti+1) .

Based on the above assumptions, the following then leads to the existence of
solutions of the error system (3.6). We state only the result since the proof follows in
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a similar fashion to the one presented in [53] for scheduled actuators. As a consequence
of the well-posedness, which along with the square integrability of the input signals
and the exponential stability of the semigroups associated with each sensor position
within Θadm, one also has convergence of the state estimation error e to zero.

Theorem 3.1. Assume that the operator A satisfies the coercivity and bounded-
ness conditions (A1) and (A2). Furthermore, assume that for each ξs ∈ Θadm, the
operator A− C∗(ξs)C(ξs) generates an exponentially stable semigroup on X and that
the control input u, along with the process and measurement noise, is square integrable,
in the sense of B1w + B2u ∈ L2(0,∞;X ) and B1w − C∗(ξs)D(ξs)ν ∈ L2(0,∞;X ).
Then the state error system (3.6), along with the switching policy (3.5), is well posed.
As a consequence of that, the state estimator (3.1), with the switching policy (3.5), is
also well posed.

Remark 3.2. It should be noted that the fact that the operator in the evolution
equation (3.7) is the infinitesimal generator of an exponentially stable semigroup (uni-
formly for each Ξp ∈ Θadm), along with the fact that the forcing term Bpυ is square
integrable, immediately yields exponential stability of (3.7) for the nonswitched case.
For the switched case with the guidance policy given by the switching rule for the sensor
location in (3.5) and excluding jump systems using Assumption 3.1, one can similarly
show convergence of the state estimation error to zero using similar arguments that
were used in the stability of diffusion systems with scheduled actuators in [53].

3.2. Case 2: Guidance using global estimation error. Since the estimation
error is available only at the spatial support of the sensors, we consider the idealized
process, given by

(3.9)
ẋ(t) = Ax(t) + B2u(t),

y(t) = C(ξs(t))x(t),

and define the nominal estimation error e(t) � x(t)− x̂(t) governed by

(3.10)
ė(t) =

(
A− L(ξs(t))C(ξs(t))

)
e(t) + L(ξs(t)) (y − y)

= Ao(ξ
s(t))e(t) + L(ξs(t))

(
C(ξs(t)) (x− x)−D(ξs(t))v(t)

)
,

with e ∈ X , and where Ao(ξ
s(t)) � A−L(ξs(t))C(ξs(t)). The above error is generated

online and simulates the idealized process (2.5), (2.6) in the absence of process and
measurement noise and possibly exogenous/disturbance inputs. In a similar fashion
as in the case of the process operator A, we make similar boundedness and coercivity
assumptions for Ao in (3.10) with the constants α, β now replaced by αo, βo.

We consider the weighted L2(0, �) inner product

(3.11) 〈e, e〉g � 〈e(t), ge(t)〉,

where the normalized weighting function g(ξ) > 0 for all ξ ∈ Ω, g ∈ L∞(Ω), is also
known as the distribution density function. This function may be used to emphasize
the need to cover some intervals in Ω more than others. Similar to the notation for
the boundedness and coercivity constants, when the weighted inner product is used,
those constants will include g as a second subscript. For the specific PDE under
consideration, the weighted inner product becomes

〈e, e〉g = 〈e(t), e(t)〉L2,g =

∫ �

0

e2(t, ξ)g(ξ)dξ,
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To obtain the sensor guidance using Lyapunov stability–based arguments, we
consider the following Lyapunov-like functional:

(3.12)

V (t; e, ξs(t)) = −1

2

(
〈e(t),Ao(ξ

s)e(t)〉g + 〈Ao(ξ
s)e(t), e(t)〉g

)
= −

〈
e(t),

(
Ao(ξ

s) +A∗
o(ξ

s)

2

)
e(t)

〉
g

.

This function is a modified version of that used in [49] and has the following explana-
tion. The function V represents the negative of the derivative of the weighted error
norm (3.11) along the trajectories of the nominal estimation error (3.10). The reason
we chose − d

dt‖e‖2 instead of ‖e‖2 itself for the Lyapunov-like function is that if the

latter is chosen, the expression for V̇ will not involve the control variable ξ̇s.
For brevity, we suppress the dependence of the operator Ao(ξ

s) on the sensor
position and we simply write Ao. Since Ao is assumed coercive, then we see that
the function V is positive for all nonzero ē and is zero if and only if ē is zero. The
derivative of V along the trajectories of the nominal estimation error (3.10) is then
given by

d

dt
V = −

{
〈ė,Aoe〉L2,g + 〈e,Aoė〉L2,g +

〈
e, ξ̇s

∂Ao

∂ξs
e

〉
L2,g

+〈Aoė, e〉L2,g +

〈
ξ̇s

∂Ao

∂ξs
e, e

〉
L2,g

+ 〈Aoe, ė〉L2,g

}
= −

{
〈Aoe,Aoe〉L2,g + 〈e,Ao(Aoe)〉L2,g

+

〈
e, ξ̇s

∂(A− L(ξs)C(ξs))
∂ξs

e

〉
L2,g

+ 〈Ao(Aoe), e〉L2,g

+

〈
ξ̇s

∂(A− L(ξs)C(ξs))
∂ξs

e, e

〉
L2,g

+ 〈Aoe,Aoe〉L2,g

+〈L(ξs) (C(ξs)(x− x)−Dv) ,Aoe〉L2,g

+〈e,AoL(ξs) (C(ξs)(x− x)−Dv)〉L2,g

+〈AoL(ξs) (C(ξs)(x− x)−Dv) , e〉L2,g

+〈Aoe,L(ξs) (C(ξs)(x− x)−Dv)〉L2,g

}

= −
{
‖Aoe‖2L2,g + 〈e,Ao(Aoe)〉L2,g −

〈
e, ξ̇s

∂(L(ξs)C(ξs))
∂ξs

e

〉
L2,g

+〈Ao(Aoe), e〉L2,g −
〈
ξ̇s

∂(L(ξs)C(ξs))
∂ξs

e, e

〉
L2,g

+ ‖Aoe‖2L2,g

+〈L(ξs) (C(ξs)(x− x)−Dv) ,Aoe〉L2,g

+〈e,AoL(ξs) (C(ξs)(x− x)−Dv)〉L2,g

+〈AoL(ξs) (C(ξs)(x− x)−Dv) , e〉L2,g

+〈Aoe,L(ξs) (C(ξs)(x− x)−Dv)〉L2,g

}
.

We will examine each of the terms above separately: the second and fourth terms
which, due to the symmetry of the weighted inner product, are identical and are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

282 MICHAEL A. DEMETRIOU AND ISLAM I. HUSSEIN

given by

〈e,Ao(Aoe)〉L2,g + 〈Ao(Aoe), e〉L2,g = 2〈e,A2
oe〉L2,g.

Using the Sobolev embedding theorem [2] (or equivalently the definition of the domain
of the operator and integration by parts along with Friedrich’s inequality [4]), one may
show that

2〈e,A2
oe〉L2,g ≥ 2c1‖e‖2L2,g ≥ 0

for some positive c1 which is related to the embedding constant c in (2.4). The third
and fifth terms are

−
〈
e, ξ̇s

∂(L(ξs)C(ξs))
∂ξs

e

〉
L2,g

−
〈
ξ̇s

∂(L(ξs)C(ξs))
∂ξs

e, e

〉
L2,g

= −2

〈
e, ξ̇s

∂(L(ξs)C(ξs))
∂ξs

e

〉
L2,g

,

and, for γ any positive gain, can be made positive by the choice

(3.13) ξ̇si = −γ
〈
∂(Li(ξ

s
i )Ci(ξsi ))
∂ξsi

e, e

〉
L2,g

, i = 1, 2, . . . ,m.

Finally, we examine the last four terms in the expression for V̇ . Using similar
arguments as made above, we have

(3.14)

〈L(ξs) (C(ξs)(x− x)−Dv) ,Aoe〉L2,g + 〈e,AoL(ξs) (C(ξs)(x− x)−Dv)〉L2,g

+〈AoL(ξs) (C(ξs)(x− x)−Dv) , e〉L2,g + 〈Aoe,L(ξs) (C(ξs)(x− x)−Dv)〉L2,g

= 2
(
〈L(ξs) (C(ξs)(x− x)−Dv) ,Aoe〉L2,g + 〈e,AoL(ξs) (C(ξs)(x− x)−Dv)〉L2,g

)
= 2〈(Ao +A∗

o) e,L(ξs) (C(ξs)(x− x)−Dv)〉L2,g

= 2
(
〈(Ao +A∗

o) e,L(ξs)C(ξs)(x− x)〉L2,g − 〈(Ao +A∗
o) e,L(ξs)Dv〉L2,g

)
.

In the noise-free setting (v(t) = 0 and w(t) = 0 for all t ≥ 0), we would have
x = x and, hence, e = e. The last four terms are all zero. In this case, we have

V̇ ≤ −2

{
(1 + c1)‖e‖2L2,g + γ

(〈
∂(L(ξs)C(ξs))

∂ξs e, e
〉
L2,g

)2}
≤ −2(1 + c1)‖e‖2L2,g ≤ −c2V,

where c2 > 0 is a constant. The last inequality follows from the application of the
V → V∗-boundedness property (A1). Hence, we see that the time derivative of V is
negative definite. Under the control law (3.13), the error e is guaranteed to converge
to zero. Within the set of all possible choices of L (say through a Luenberger or a
Kalman filter design) that render the observer dynamics stable, we can further dictate
the motion in an attempt to improve the state estimate. The control law (3.13) is
essentially a gradient-type control law that seeks to improve the state estimate beyond
the capability of a static set of sensors.
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Let us now consider the case where we have nonzero process and measurement
noise signals. First, consider the dynamics of the error between the idealized process
and the actual process. A simple computation gives

(3.15)
d

dt
(x− x) = A(x− x) + B1w.

Using the fact that the operator A is the infinitesimal generator of an exponen-
tially stable C0 semigroup and the L2-boundedness of B1w (made in Theorem 3.1),
well-posedness of (3.15) immediately follows [75]. In fact, we have asymptotic con-
vergence of x− x with respect to the X norm. Given the well-posedness of the above
equation, we apply the triangle inequality to obtain V̇ ≤ −c9V + c5 + c7 ‖v‖2. In
the above, all constants are positive and are found by successive application of the
V → V∗-boundedness of the operator Ao. This shows that V converges to the residual
set bounded by

c5 + c7 ‖v‖2

c9
.

Since v is bounded, we readily see that V is bounded. While this does not mean
(norm) convergence of the error e to zero, in the noisy case, the control law (3.13)
drives the error to a neighborhood of zero, which furnishes stability in the sense of
Lyapunov.

However, we are interested in the true error e. To show that e converges to a
neighborhood of zero, we note that

‖x̂(t)−x(t)‖L2,g = ‖x̂(t)−x(t)+x(t)−x(t)‖L2,g ≤ ‖x̂(t)−x(t)‖L2,g+‖x(t)−x(t)‖L2,g.

We have already argued that x−x converges asymptotically to zero, and that e = x̂−x
converges to a neighborhood of zero. Hence, the state estimate x̂ converges to a
neighborhood of the true state x. This neighborhood is a function of the bounds on
the noise. This gives the following theorem.

Theorem 3.2. The control law (3.13) with L(ξs) = C∗(ξs) drives the state
estimation error e governed by (3.6) to a neighborhood of zero as time goes to infinity.
In the noise-free case, the state estimation error converges to zero asymptotically.

Remark 3.3. The benefits of the choice L(ξs) = C∗(ξs) are twofold: (i) It
simplifies the observer gain design by avoiding the solution to either Lyapunov or
Riccati operator equations, and (ii) it minimizes the computational complexity due to
the gradient of both L(ξs) and C(ξs) in (3.13). With the above choice only the gradient
of C(ξs) with respect to ξs is required. In this case, the control law is simply written as

(3.16) ξ̇si = −2γ

〈
∂Ci(ξsi )
∂ξsi

e, Ci(ξsi )e
〉

L2,g

, i = 1, 2, . . . ,m.

4. Numerical results. We simulated the PDE in (2.1) with Dirichlet boundary

conditions, having initial conditions x(0, ξ) = sin(πξ� )e−7ξ2

and x̂(0, ξ) = 0 as depicted
in Figure 4.1. It should be noted that for this initial condition, the “bulk” of the initial
state error is in the interval [0, 0.6�] and one expects that the sensors be moving in
this region as they will be collecting more useful information.

For the specific PDE, the embedding constant is chosen as c = π−1 [4]. The
parameters in the elliptic operator are taken to be a1 = 5 × 10−3, a2 = 1.5 × 10−1,
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Fig. 4.1. Distribution of the initial condition x(0, ξ) considered in the simulation studies.

a3 = 3 × 10−3, and the length of the spatial domain was taken to be � = 1. The
spatial support of the sensing devices was chosen as Δξ = �/10.

We approximate (2.1) using linear B-splines [46]. For n = 1, 2, . . ., let {ϕn
i }ni=0 be

the standard B-splines on the interval [0, �], defined with respect to the uniform mesh
{0, �

n , . . . , �},

ϕn
i (ξ) =

⎧⎨⎩ 1−
∣∣∣nξ� − i

∣∣∣ , ξ ∈
[

(i−1)�
n , (i+1)�

n

]
,

0, ξ ∈ [0, �] \
[

(i−1)�
n , (i+1)�

n

]
.

We consider a sequence of finite dimensional spaces Xn = span {ϕn
i }n−1

i=1 and, for each
n = 1, 2 . . . , let Pn be the orthogonal projection of V = H1

0 (0, �) into Xn. We let
Xn(t) ∈ R

n−1 be the coordinate vector for xn(t) with respect to the basis {ϕn
i }n−1

i=1 ,

xn(t) = Pnx(t) =

n−1∑
i=1

Xn
i (t)ϕn

i (ξ).

Let x̂n(t) ∈ R
n−1 be the coordinate vector for the finite dimensional approximation

of x̂(t), with x̂n(t) =
∑n−1

j=1 X̂j(t)ϕ
n
j (ξ). We denote by Mn the Gram matrix corre-

sponding to {ϕn
i }n−1

i=1 , and thus we obtain

Mn = [Mn
ij ] =

[∫ �

0

ϕn
i (ξ)ϕn

j (ξ) dξ

]
.

Additionally, we let Kn, Ln be the (n− 1)× (n− 1) matrices

Kn = [Kn
ij ] =

[∫ �

0

dϕn
i (ξ)dϕn

j (ξ) dξ

]
, Ln = [Ln

ij ] =

[∫ �

0

dϕn
i (ξ)ϕn

j (ξ) dξ

]
.

The matrix representations of (2.1) and (3.1) then become

MnẊn(t) = (−a1K
n − a2L

n − a3M
n)Xn(t) + Bn

1 (t)w(t) + Bn
2 u(t),

Mn ˙̂
Xn(t) = (−a1K

n − a2L
n − a3M

n) X̂n(t)

+ Bn
2 u(t) + Ln(ξs)

(
yn(t; ξs)− Cn(ξs)X̂n(t)

)
.
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Fig. 4.2. Evolution of state error norms.
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Fig. 4.3. Spatial distributions of the error e(t, ξ) at different time instances.

In both cases, the filter gain L(ξs) was taken to be equal to C∗(ξs). We simulated
the N -dimensional system with 80 basis elements [46] that preserve exponential de-
tectability [6]. The computations were carried out via codes written in MATLAB
run on a dual processor DELL workstation (Xeon 2.8GHz, 2 × 2GB). The resulting
finite dimensional system of ordinary differential equations (ODEs) was integrated
using the stiff ODE solver from the MATLAB ODE library, routine ode23s based on
a 4th Runge–Kutta scheme. All spatial integrals were computed numerically via a
composite two point Gauss–Legendre quadrature rule [4].

The evolution of the state error norm for the mobile and fixed-sensor cases is
presented in Figure 4.2. It is observed that when the sensor is allowed to move within
the spatial domain, the estimation error converges to zero faster. This is true for both
proposed guidance policies: localized measurement error and global estimation error.
The spatial distribution of the state error at different time instances is depicted in
Figure 4.3, where one can once again observe the ability of a mobile sensor to estimate
the state faster. In both the case of one and two mobile sensors, Case 2 (based on the
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Fig. 4.4. Case 1. Sensor trajectory: moving (dashed lines), fixed (solid lines).
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Fig. 4.5. Case 2. Sensor trajectory: moving (dotted lines), fixed (solid lines).

global estimation error) tends to give better results than Case 1 (based on the localized
measurement error). The sensor trajectories for both cases are presented in Figures
4.4 and 4.5. The initial position for the single sensor case was chosen as ξs1(0) = 0.5�,
and initial conditions for the two-sensor case were chosen as ξs1(0) = 0.475� and
ξs1(0) = 0.525�. By examination of the initial condition, and hence the initial condition
of the estimation error, it is observed that the guidance policies send the sensor(s) to
the region of largest spatial error.

These results clearly validate the basic premise of this paper. Namely, a set of
mobile sensors moving according to either one of two guidance policies proposed in this
paper will perform better than a set of static sensors located at the initial locations
of the mobile sensors.

5. Summary and concluding remarks. In this paper we have considered
the problem of controlling a network of fully connected, sensor-equipped vehicles to
estimate a spatially distributed process described by a linear PDE. The process was
assumed to be driven by a zero mean Gaussian noise and the goal was to improve
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state estimation via the use of spatially distributed mobile sensors. By utilizing the
resulting state estimation error, two guidance policies for the mobile sensors were
proposed. The first guidance policy seeks to have each agent minimize the infinity
norm of the state estimation error over the sensory domain of the associated sensor.
Implicitly imbedded into the sensor guidance policy was a velocity requirement in the
sense of moving a given sensor to the spatial location within the domain that had the
largest deviation of the estimation error. Such a guidance policy rendered the error
system a hybrid one having system operators that generate an exponentially stable
C0 semigroup and forcing terms that satisfied an L2 bound.

The second guidance policy seeks to have each agent minimize the L2 norm of the
global estimation error over the entire domain D. A Lyapunov-based argument was
used to show that the L2 state estimation error associated with the nominal process
monotonically decreases until the error is zero within the ranges of all sensors in the
network. Simulation studies implementing and comparing the two proposed control
policies were provided. The simulations show that moving the sensors according to
the proposed control laws is advantageous to not moving the sensors at all. While
both the static and mobile cases eventually achieve zero estimation error, the mobile
sensors converge faster than the static network.

Both methods required that the filter gain be equal to the adjoint of the mea-
surement operator. Such a choice significantly simplifies the observer gain design
and, more importantly, minimizes the computational requirements required when one
solves an optimal filter problem via the solution to associated filter differential Riccati
equations.

While the current goal was to estimate the process state efficiently, the more
interesting case of utilizing mobile sensors would be to detect spatiotemporally vary-
ing disturbances and moving sources that may represent contamination or intrusion.
Preliminary work on such a case that utilizes the above methods within the abstract
theory of infinite dimensional systems has recently been considered in [26] for simple
detection of a moving source within a two-dimensional spatial domain and in [27, 28]
for the integrated state estimation, intrusion detection, and containment. While the
proposed framework easily allows for two- and three-dimensional diffusion-advection
processes governed by elliptic operators, a major challenge results in the numerical
implementation as the dimension of the finite dimensional representation of the pro-
cess increases polynomially. However, in this case efficient model-reduction schemes
that are based on Karhunen–Loève expansions may be incorporated in order to al-
low for real-time feasibility. Such a task is currently being undertaken by the first
author.

In the current work, vehicle cooperation is in the sense that spatial information
is shared between full-connected (communicationwise) vehicles. This sharing of in-
formation allows for the coordination of the motion in order to achieve satisfactory
estimates of the field over a given domain. There are two open questions that remain
to be addressed regarding increased vehicle cooperation. The first involves relaxing
the communication full-connectedness assumption. Methods recently developed by
the second author (see [89]) that guarantee satisfactory domain coverage under ar-
bitrary intermittent communication structures, with decentralized decision making,
can be applied to the two strategies developed in this paper, especially the second
strategy. Other communication considerations, such as time delays, fading channels,
partially connected and dynamic communication structures, will also be the focus of
future work by the authors, as well as distributed processes governed by nonlinear
dynamics. However for the abstract framework considered here, collision avoidance
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takes additional importance as one must restrict the motion of the mobile sensors
within the set of admissible sensor locations in order to guarantee observability.

REFERENCES

[1] E. U. Acar and H. Choset, Sensor-based coverage of unknown environments: Incremental
construction of Morse decompositions, Internat. J. Robotics Res., 21 (2002), pp. 345–366.

[2] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[3] M. I. Asensio and L. Ferragut, On a wildland fire model with radiation, Internat. J. Numer.

Methods Engrg, 54 (2002), pp. 137–157.
[4] O. Axelsson and V. A. Barker, Finite Element Solutions of Boundary Value Problems,

Academic Press, Orlando, FL, 1984.
[5] J. Baillieul and P. J. Antsaklis, Control and communication challenges in networked real-

time systems, Proceedings IEEE, 95 (2007), pp. 9–28.
[6] H. T. Banks, R. C. Smith, and Y. Wang, Smart Material Structures: Modeling, Estimation

and Control, Wiley-Masson, New York, 1996.
[7] J. S. Baras and A. Bensoussan, Optimal sensor scheduling in nonlinear filtering of diffusion

processes, SIAM J. Control Optim., 27 (1989), pp. 786–813.
[8] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Space, Noordhoff,

Leyden, The Netherlands, 1976.
[9] A. F. Bennett, Inverse Modeling of the Ocean and Atmosphere, Cambridge University Press,

Cambridge, UK, 2002.
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A GEOMETRIC OPTIMIZATION APPROACH TO DETECTING
AND INTERCEPTING DYNAMIC TARGETS USING A MOBILE

SENSOR NETWORK∗
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Abstract. A methodology is developed to deploy a mobile sensor network for the purpose of
detecting and capturing mobile targets in the plane. The sensing-pursuit problem considered in
this paper is analogous to the Marco Polo game, in which a pursuer Marco must capture multiple
mobile targets that are sensed intermittently, and with very limited information. The competing
objectives exhibited by this problem arise in a number of surveillance and monitoring applications.
In this paper, the mobile sensor network consists of a set of robotic sensors that must track and
capture mobile targets based on the information obtained through cooperative detections. When
these detections form a satisfactory target track, a mobile sensor is switched to pursuit mode and
deployed to capture the target in minimum time. Since the sensors are installed on robotic platforms
and have limited range, the geometry of the platforms and of the sensors’ fields-of-view play a key
role in obstacle avoidance and target detection. A new cell-decomposition approach is presented
to determine the probability of detection and the cost of operating the sensors from the geometric
properties of the network and its workspace. The correctness and complexity of the algorithm are
analyzed, proving that the termination time is a function of the network parameters and of the
number of required detections.

Key words. mobile sensor networks, pursuit-evasion games, coverage, tracking, detection
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1. Introduction. The proliferation of reliable low-cost sensors and autonomous
vehicles is producing advanced surveillance systems comprised of robotic sensors with
a high degree of functionality and reconfigurability. These mobile sensor networks
can play a critical role in several application domains, such as landmine detection
and identification [37, 14]; monitoring of endangered species [25]; monitoring of urban
environments, manufacturing plants, and civil infrastructure; high-confidence medi-
cal devices; and intruder and target detection systems. These networks are expected
to operate cooperatively and reliably in cluttered dynamic environments with lit-
tle human intervention. Coordinating such large heterogeneous sensor networks is
challenging and requires the development of novel methods of communication, mo-
tion control and planning, computation, proactive estimation and sensing, and power
management.
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One paradigm common to many sensing applications consists of one or more
sensors installed on robotic platforms that must move through an environment to
obtain measurements from multiple targets. Most of the research relating sensor
measurements to robot motion planning has focused on the effects that the uncertainty
in the geometric models of the environment has on the motion strategies of the robot
[27, 42, 41, 35, 33]. Hence, considerable progress has been made toward integrating
sensor measurements in topological maps [46], and on planning strategies based on
only partial or nondeterministic knowledge of the workspace [30, 32]. Coordination of
robotic networks and sensor planning approaches have received considerable attention
in recent years [51, 11, 3]. One line of research has investigated the extension of motion
planning techniques to the problem of sensor placement for achieving coverage of
unstructured environments [1, 9] or of a desired visibility space [30, 22]. Obstacle-
avoidance motion planners have been effectively modified in [40, 8] to plan the path of
mobile sensors for the detection and classification of stationary targets in an obstacle-
populated environment. Probabilistic pursuit-evasion strategies to detect and capture
intelligent evaders in obstacle-populated environments are described in [48]. In [24]
the authors show that a pursuer can detect an arbitrarily fast evader in a polygonal
environment using a randomized strategy. It is shown that one evader is guaranteed
to be captured by two pursuers in finite time, by solving a lion and man problem and
assuming that at least one pursuer is as fast as the evader [24].

In this paper, we develop a cell-decomposition methodology to optimize the prob-
ability of detection of a mobile sensor network, based on the geometry of the workspace
and of the robotic sensors. Cell-decomposition algorithms have previously been em-
ployed to represent the obstacle-free configuration of a robot for the purpose of obsta-
cle avoidance [29]. We present a framework for obtaining a decomposition in which
observation cells are used to represent sensor configurations that intersect the targets
while avoiding polygonal obstacles. The simple philosophy behind this approach is
that while the geometry of the robot must not intersect that of an obstacle to avoid
collision, the geometry of the sensor’s field-of-view (or visibility region) must intersect
that of a target to enable a detection. Then, the tracking information is used to
determine the probability of detection in the observation cells.

At any given time, the pursuers must also detect new targets, for which there is
no available track information. The monitoring of a workspace by means of multiple
sensors is typically referred to as coverage. Coverage control for mobile sensors has
been treated in [11] using Voronoi diagrams to achieve uniform sensing performance
over an area-of-interest. Another well-known coverage problem is the art-gallery or
line-of-sight visibility problem, in which multiple sensors are placed such that the
targets are in the line-of-sight of at least one sensor in the network [36, 45, 47]. In
this paper, we consider a track-coverage formulation in which multiple sensors are
deployed to cooperatively detect moving targets traversing the area-of-interest [17].
By this formulation, the probability of detection of undetected targets is obtained for
every cell in the decomposition. Then, the control policies that optimize a trade-off of
multiple sensing objectives are obtained by searching the robot configuration graph
and by performing inner-loop trajectory generation and tracking. The path obtained
from the configuration graph is one that maximizes the overall probability of detection
and minimizes the distance traveled by the pursuer to detect or capture the targets.

The remainder of the paper is organized as follows. The sensing-pursuit problem
is formulated in section 2. The geometric approach used to control the network of
robotic sensors to detect and pursue moving targets is presented in section 3. The
correctness and performance analysis of the algorithm is presented in section 4. The
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simulation results obtained are described in section 5.

2. Problem statement and assumptions. We consider a pursuit-evasion game
in which N pursuers comprised of robotic sensors attempt to detect and pursue M
moving targets. The game takes place in a square area-of-interest S ⊂ R

2, with
boundary ∂S and dimensions L× L. S is populated by n fixed and convex obstacles
{O1, . . . ,On} ⊂ S. The geometry of the ith pursuer is assumed to be a convex poly-
gon denoted by Ai, with a configuration qi that specifies its position and orientation
with respect to a fixed Cartesian frame FS .

The dynamics of the pursuers can be approximated using the nonholonomic uni-
cycle model,

ẋip = vip cos θip,

ẏip = vip sin θip,(2.1)

θ̇ip = ωip,

where qi = (xip, yip, θip) ∈ SE(2) and pi = [xip yip]T ∈ R
2 is the position vector of

pursuer i (referred to as its centroid). The input to pursuer i is uip = [vip ωip]T , and
up ∈ U ⊂ R

2. The set of all pursuers is denoted by P , and IP is the index set of P .
The set of all targets in S is denoted by T , where IT is the index set of T . The model
of the targets is given by

ẋjτ = cjxτ
,

ẏjτ = cjyτ
,(2.2)

where τj = [xjτ yjτ ]
T ∈ R

2 is the position vector of target j and cjxτ
and cjyτ

are
constants. In other words, targets are assumed to move along straight lines

(2.3) yjτ (t) =
cjyτ

cjxτ

xjτ (t) + yjτ (0)−
cjyτ

cjxτ

xjτ (0),

where τj(0) = (xjτ (0), yjτ (0)) ∈ ∂S, and they remain in S at all t > 0. Exceptions
to this rule are maneuvers used to avoid an obstacle or another target. The heading
angle of a target j is denoted by θjτ ; thus θjτ := arctan(cjyτ

, cjxτ
). The maximum

translational speed Vp,τmax of all sensors and targets is known, and Vpmax > Vτmax [24].
While sensors can move with any speed in [0, Vpmax ], it is assumed that the speed of
every target is uniformly distributed in [Vτmin , Vτmax ], with Vτmin > 0.

In the sensing problem, the paths of the targets are represented by rays or half-
lines, denoted by Rjθ, that are unknown a priori. The sensors installed on the robotic
platforms are assumed to be isotropic or omnidirectional, and therefore their field-
of-view is represented by a disk Di = D(pi, ri) ∈ S with radius ri and centered
at pi. The sensor i installed on the robot Ai has the ability to detect the jth
target when Di ∩ Rjθ �= ∅. The measurements obtained from each detection can
be associated with a particular target using a data-association algorithm (such as
[39, 12, 21]), but they may be subject to errors and false alarms. At any time t, the
set of detections associated with a target j is denoted by Ztj , which symbolizes all
measurements of the target positions τj obtained since the onset of the game t0; e.g.,
Ztj = {zj(t1), zj(t2), . . . , zj(tl)}. Since the sensors produce few individual observations
for each moving target (e.g., due to their limited range) and are subject to frequent
false alarms, the approach known as track-before-detect [50] is used, in which a set
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of k spatially distributed sensor detections are used to estimate the target track, Rjθ,
from Ztj , before declaring a positive detection. Every track may be updated every
time a new measurement becomes available from the target. Once a target track has
been formed from at least k sensor detections that are obtained at different moments
in time, an upper-level controller declares the target positively detected and deploys
a pursuer to capture it. The inputs to the pursuers take into account the information
available from all targets, Zt = {Ztj | j ∈ IT }, in order to optimize their sensing and
pursuit performance.

Let eji be the Euclidean distance from the jth target position, τj , to the closest
pursuer; i.e., eji = min d(τj , pi) ∀i ∈ IP . Then the pursuer i is said to capture the
target j when eji < ε. The threshold value ε is called the capture threshold for an
interval Δc called the capture timeframe. We are interested in applications where
the sensor’s field-of-view is much larger than the robot geometry, and hence a robot
can sense a target without necessarily being close enough to capture it. Once a
target is captured, it becomes inactive and is removed from the set T ; thus the game
terminates when T = ∅. In this game, no communication between targets and sensors
takes place, but the sensors may obtain position information about the targets when
they enter their fields-of-view. Based on the previous discussion, the sensing-pursuit
problem can be stated as follows.

Problem 2.1. Given a set P of N pursuers and a set T of M targets moving
within a specified game area S, find a set of policies uip = ci(qi, Zt) ∈ U ∀i ∈ IP which
maximizes the total sensing reward and minimizes the total time required to capture
targets in T that have been positively detected.

To complete the formulation of Problem 2.1, we define the sensing reward in
terms of the probability of detection, as explained in section 3. Also, sensors and
targets are modeled as hybrid systems consisting of continuous dynamics along with
several discrete states [19]. Figure 2.1 shows a hierarchical state diagram for the
various modes of operation. Sensors operate in one of two modes, detection or pursuit,
depending on whether their primary objective is to detect targets or to capture them.
Also, we assume that sensors have sufficient processing capabilities to determine the
time and position of a detection event from their raw measurements.

In this problem, target tracks are classified based on the following definitions.
Definition 2.2. An unobserved track is the path of a target j for which there

are no detections at the present time, t; thus Ztj = ∅.
Definition 2.3. A partially observed track is the path of a target that is estimated

from 1 < l < k individual sensor detections obtained up to the present time, t; i.e.,
Ztj = {zj(t1), . . . , zj(tl)}.

Definition 2.4. A fully observed track is the path of a target that is estimated
from at least k > 2 individual sensor detections obtained up to the present time, t;
i.e., Ztj = {zj(t1), . . . , zj(tm)}, where m ≥ k.

The parameter k is chosen by the user based on the reliability of the sensor
detections and on the cost associated with deploying a pursuer to capture the target.
For instance, in [50] it was found that, from a geometric point of view, k = 3 is a
convenient number of detections for estimating a track in the absence of false alarms.
However, in certain surveillance applications the cost associated with capturing a
target is very high, and therefore a higher number of detections may be required.
Only after a track is fully observed is the target considered to be positively detected.
Then, the estimated track is used by an upper-level controller to decide which pursuer
to deploy and switch to pursuit mode, and to compute a pursuit strategy online (as
described in section 3.3) that takes into account the kinematic constraints of the
mobile sensors. The time that elapses between sensor i becoming a pursuer and
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Fig. 2.1. A finite state diagram which models the sensor (pursuer) and target as hierarchical
hybrid systems with various discrete states of operation.

intercepting target j is called the capture time and is denoted by tcj
i
.

The objectives of the sensors in detection mode are to (i) avoid obstacles, (ii) max-
imize the probability of cooperatively detecting unobserved tracks, and (iii) maximize
the probability of detecting p partially observed tracks {R1

θ, . . . ,R
p
θ}. The objectives

of a sensor i in pursuit mode are to (1) avoid obstacles and (2) minimize the time tcj
i

required to capture a positively detected target j, based on its fully observed trackRjθ
and the pursuer’s position at the time of deployment. Since in practice robotic sen-
sors are subject to kinematic (e.g., nonholonomic), dynamic, and input constraints,
we have designed and implemented a simple yet effective pursuit strategy that consid-
ers the nonholonomic constraints of the mobile sensor agents used in the simulations
reported in section 5.

The following section describes a methodology for planning the motions of the
pursuers, in order to meet all of the above objectives.

3. Methodology. The methodology described in this section computes policies
for pursuers in detection or pursuit mode that must meet multiple sensing and motion
objectives. At the onset of the game, all N pursuers are placed simultaneously into
S in detection mode. A new game round is initiated when a new partially observed
or fully observed track is obtained from the latest measurement set Zt. At every
new round of the game, one pursuer in P is deployed and, possibly, switched to
either detection or pursuit mode. Since the pursuers can perform measurements only
within their fields-of-view and are installed on robotic platforms, the problems of
planning the sensor measurements and the platform paths are inevitably coupled.
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The primary purpose for planning the motion of the pursuers in detection mode is
to obtain measurements from the targets. However, since the target tracks may be
unknown (unobserved) or uncertain (partially observed), the pursuers’ motion cannot
be planned using classical motion planning objectives, such as minimizing distance
and reaching a final configuration [29]. In fact, the positions and fields-of-view of
all pursuers must be taken into account to plan the motion of a robotic sensor in a
cooperative network. Thus, at every round, a pursuer’s trajectory is computed based
on cooperative sensing or pursuit objectives and, subsequently, implemented by a
trajectory tracking controller that is designed based on the unicycle model (2.1).

The sensor trajectory is obtained by modifying the classical motion planning
approach known as cell decomposition [29]. Let Cfree denote the robotic sensors’
configuration space that is free of obstacles. A cell is defined as a closed and bounded
subset of Cfree within which a robotic sensor path can be easily generated, and is
classified based on the following properties.

Definition 3.1. A void cell is a convex polygon κ ⊂ Cfree with the property that
for every configuration qi ∈ κ the sensor i has zero probability of detecting a partially
observed target.

In order to account for the geometries and dynamics of the pursuers and the
targets, we also introduce the following definition.

Definition 3.2. An observation cell is a convex polygon κ ⊂ Cfree with the
property that for every configuration qi ∈ κ the sensor i has a nonzero probability of
detecting a partially observed target.

Void and observation cells are determined such that an obstacle-free pursuer path
can be easily computed between any two configurations inside each cell. Furthermore,
two cells are said to be adjacent if they share a common boundary and, therefore,
the pursuer can move between them without colliding with the obstacles. Typically,
all cells are computed such that they do not overlap. In section 3.2, a method for
obtaining these cells for the system in Problem 2.1 is presented. Subsequently, they
are used to obtain the following graph.

Definition 3.3. A connectivity graph, G, is an undirected graph where the nodes
represent either an observation cell or a void cell, and two nodes in G are connected
by an arc if and only if the corresponding cells are adjacent.

The purpose of deploying pursuers in detection mode is to detect unobserved
and partially observed target tracks. Thus, the sensing objectives are expressed in
terms of a reward function that represents the improvement in the overall probability
of detection that would be obtained by moving from a configuration qi ∈ κl to a
configuration in an adjacent cell, qi ∈ κı,

(3.1) R(κl, κı) = PR(κı) + ΔP kS (κl, κı),

where ΔP kS is the gain in the probability of cooperatively detecting unobserved tracks
and PR is the probability of detecting a target with a partially observed track. These
probability density functions are obtained using the methodology described in sections
3.1 and 3.2, respectively.

At the onset of the game, Z0 = ∅, and all targets are unobserved, with PR = 0
for any cell in G. Thus, all N pursuers in P are placed simultaneously in S by
maximizing their probability of cooperatively detecting unobserved tracks at least
twice, i.e., k = 2, such that they may be declared partially observed. Since the
sensors are omnidirectional, the orientation does not influence the region covered by
each field-of-view, and the pursuers are placed by determining their initial positions
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X0 = {p1(t0), . . . , pN (t0)} from the following optimization problem:

(3.2) X ∗
0 = argmax

X
P2
S(X )

with 0 ≤ xip ≤ L and 0 ≤ yip ≤ L ∀i ∈ IP . The above optimization amounts to
a nonlinear program that can be solved by sequential quadratic programming [7, 5].
After all sensors are placed atX ∗

0 , with some orientation θip, their initial configurations,
q1(t0), . . . , qN (t0), are known and the game begins. At every game round, a pursuer is
deployed in detection or pursuit mode, depending on whether the new track is partially
or fully observed, respectively. If the pursuer is switched to and deployed in pursuit
mode, then its obstacle-free trajectory is computed by the method in section 3.3. If
the pursuer is deployed in detection mode, its obstacle-free trajectory is computed
from the sequence of cells, or channel, that maximizes its total reward, i.e.,

(3.3) μ∗ ≡ {κ0, . . . , κf}∗ = arg max
μ

∑
(κl,κı)∈μ

R(κl, κı),

where κf is chosen as the observation cell with the highest cumulative probability in
G, i.e., κf = argmaxκi

(PR(κi) +P kS (κi)). In order to efficiently compute the optimal
channel, μ∗, the value of the reward function (3.1) is attached to every arc in G. Since
the detection probabilities may vary slightly within each cell, they are computed in
reference to the geometric centroid q̄i of every cell κi. Then, the optimal channel μ∗

is computed from G using the A∗ graph searching algorithm [29], and it is mapped
into a set of waypoints that are used by a trajectory generator and trajectory tracking
controller to determine the pursuer policy uip = ci(qi, Zt).

If all sensors have the same geometry, the same connectivity-graph structure
(i.e., the nodes and arcs of G) can be utilized for all sensors. Otherwise, a different
connectivity graph Gi may be employed for each geometry Ai. At every round, the arc
labels and the initial and final cells, κ0 and κf , vary based on the latest measurements
and on the sensor that is being deployed. Therefore, the A∗ algorithm must be run
at every round of the game (section 4). In the following subsections, the probabilities
of detection of unobserved and partially observed tracks that are used to define the
reward function (3.1) are derived using a geometric approach.

3.1. Probability of detection for unobserved tracks. As shown in the pre-
vious section, the observation cells in the connectivity graph represent subsets of
configurations that enable measurements from partially observed tracks. Also, at any
given time, the network of pursuers must detect unobserved tracks of targets that
have just entered the search area in S that have been previously missed. Since the
targets are always in motion, maximizing area coverage or other coverage formulations
may not lead to effective cooperative detections. It was recently shown in [4, 49] that
the quality of service of an omnidirectional sensor network performing cooperative
detections of moving targets, referred to as track coverage, can be assessed without
any prior knowledge of the target tracks, and depends only on the geometry of the
sensors and of the search area.

In this section, track coverage is formulated using geometric transversal theory
(see [23] for a comprehensive review).

Definition 3.4. A family of k convex sets in R
c is said to have a d-transversal

if it is intersected by a common d-dimensional flat (or translate of a linear subspace).
When d = 1 and c = 2, the transversal is said to be a line stabber of the family

of convex sets. Therefore, a track detected by k sensors is a stabber of their fields-
of-view, e.g., of a family {D1, . . . ,Dk} in R

2. It can be shown [17] that the family of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 299

stabbers with y-intercept by of a disk Di(pi, ri) in R
2 can be represented by the cone

generated by the unit vectors

(3.4) ĥi(by) =
[

cosαi − sinαi
sinαi cosαi

]
vi
‖vi‖

= Q+
i v̂i

and

(3.5) l̂i(by) =
[

cosαi sinαi
− sinαi cosαi

]
vi
‖vi‖

= Q−
i v̂i,

where vi ≡ pi − [0 by]T . This cone, denoted by K(Di, by) = cone(l̂i, ĥi), is referred
to as the coverage cone of Di, with origin by. For notational simplicity, we omit the
dependency on by and write the above unit vectors as l̂i = l̂i(by) and ĥi = ĥi(by).
The angle αi denotes half the opening angle of K(Di, by), and its sine function can
be computed from the sensor position pi:

(3.6) sinαi =
ri
‖vi‖

=
ri√

(xip)2 + (yip − by)2
.

The above unit vectors are also used to determine the line stabbers of families
of k nontranslate disks. We order all unit vectors in R

2 based on the orientation of
the frame FS (i.e., counterclockwise). Two vectors ui, uj ∈ R

2 are said to be ordered
according to the orientation of a reference frame FS as ui ≺ uj if, when these vectors
are translated such that their origins coincide and ui is rotated through the smallest
possible angle to meet uj , this orientation is in the same direction as the orientation
of FS [15]. Then, the family of stabbers with y-intercept by can be obtained for a
family of disks, as shown by the following result.

Proposition 3.5. The set of all stabbers of a family of disks Dk = {D1, . . . ,Dk},
through by, is contained by the finitely generated cone

(3.7) Kk(Dk, by) = cone(l̂∗, ĥ∗),

where

(3.8) (l̂∗, ĥ∗) = (l̂ı, ĥj), where l̂ı  l̂i, ĥj � ĥj , l̂ı ≺ ĥj, ∀i, j ∈ IDk

and IDk
denotes the index set of Dk. If l̂ı  ĥj, then Kk(Dk, by) = ∅.

A proof is provided in Appendix A. Since Kk(Dk, by) represents the set of tracks
detected by a family of k sensors, it is referred to as the k-coverage cone. The opening
angle of this k-coverage cone obtained by the cross product,

(3.9) ψ = sin−1 ||l̂∗ × ĥ∗|| = H(det[l̂∗ ĥ∗]T ) sin−1(det[l̂∗ ĥ∗]T ),

is a Lebesgue measure over the set of line stabbers ofD and is used below to obtain the
probability of detection of unobserved tracks. The Heaviside function H(·) guarantees
that if l̂∗ � ĥ∗, the opening angle of the coverage cone is equal to zero.

We restrict our attention to tracks that traverse S and thus intersect two of its
sides. Place FS along two sides of S, and a second reference frame, F ′

S , along the
remaining sides, as shown in Figure 3.1. Since both frames have the same orientation,
Proposition 3.5 can be applied to stabbers with any intercept, namely by, bx, by′ , and
bx′ (see Figure 3.1). The opening angles of the corresponding k-coverage cones are
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Fig. 3.1. Coverage cone definition illustrated for two sensors with fields-of-view centered at p1
and p2, and a rectangular area-of-interest S, with perimeter ∂S shown in bold.

denoted by ψ, ζ, ϕ, and ρ, respectively, and are illustrated in Figure 3.1 for a family
of N = 2 sensors and k = 2 required detections. We assume that prior to obtaining
detections in S, the probability that a target enters S through any intercept b ∈ ∂S
and with a heading θτ ∈ (−π/2, + π/2) is uniformly distributed over all of their
possible values. The set of tracks traversing S and intersecting at least k disks is
approximated by the union of the k-coverage cones over a set of intercept values that
are obtained by discretizing ∂S using a constant interval δb. Then, the following
result can be obtained for a family of N disks representing the fields-of-view of the
sensor network.

Theorem 3.6. The probability of detection of unobserved tracks for a set P of
N pursuers with fields-of-view D1, . . . ,DN , in a square game area S of dimensions
L × L, is a multivariate probability density function of the sensors’ positions X =
{p1, . . . , pN} given by a Lebesgue measure on this union,

P kS (X ) =
δb

4πL

L/δb∑
�=1

m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m
[ψ(D i1,j

p , b�y) + ϕ(D i1,j
p , b�y′)]

+
δb

4πL

(L/δb−1)∑
�=0

m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m
[ζ(D i1,j

p , b�x) + ρ(D i1,j
p , b�x′)]

with m =
N !

(N − k)!k! , D i1,j
p ≡ {Di1

k ∪ · · · ∪D
ij
k },(3.10)

where the summation
∑

1≤i1<···<ij≤m is a sum over all the [m!/(m − j)! j!] distinct
integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < · · · < ij ≤ m, Dil

k denotes the ilth
k-subset of D, and D i1,j

p is a p-subset of D, with k ≤ p ≤ n.
A proof of this theorem is provided in Appendix B.
By letting δb → 0, the Lebesgue measure (3.10) approaches the measure over
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ri

Partially-observed track Rθ
j

Fig. 3.2. C-target grown isotropically from a partially observed track Rj
θ, based on the ith

sensor range ri.

the entire set of tracks that traverse S [4]. In practice, the value δb is chosen by
the user based on a trade-off between accuracy and computation time. Also, if a
sensor moves to a cell κl, the new network configuration is approximated by Xl =
{p1, . . . , pi ⊂ q̄l, . . . , pN}, letting the center of the sensors’ field-of-view, pi, coincide
with the centroid q̄l of κl. Thus, the gain in probability of detection for unobserved
tracks that is associated with moving between two nodes κl → κı in G is

(3.11) ΔP kS (κl, κı) ≡ P kS (Xı)− P kS (Xl).

The gain ΔP kS is negative when the above change in configuration leads to a decreased
probability of detection of unobserved tracks. However, since sensors in detection
mode are moved according to (3.3) and both PR and P kS pertain to the same set of
targets T , the overall probability of detection (3.1) increases at every round of the
game.

3.2. Probability of detection for partially observed tracks. The partially
observed tracks are viewed as an opportunity for obtaining additional measurements
before investing in the costly resources needed to capture a target. In order to account
for the geometry of the sensor field-of-view Di, the platform Ai, and the target track
Rjθ, we present an approach motivated by cell-decomposition algorithms [29]. The
simple philosophy behind this approach is that, in sensor planning problems, targets
can be viewed as the dual of obstacles in classic robot motion planning. While in
classic robot motion planning the geometry of the robot must avoid intersecting that
of any obstacle, in sensor planning the geometry of the sensor’s field-of-view must
intersect that of the targets in order to enable sensor measurements.

Let FAi denote a moving Cartesian frame embedded in Ai. The configuration qi
specifies the position and orientation of FAi with respect to the inertial frame FS . If
we assume that Di and Ai are both rigid, then qi also specifies the position of every
point in Di (or Ai) relative to FS . Using the latest estimate of a partially observed
track, it is possible to identify the subset of S in which the sensors may obtain target
measurements.

Definition 3.7 (C-target). The target track Rjθ in S maps in the ith sensor
configuration space C to the C-target region CRj = {qi ∈ C | Di ∩ Rj �= ∅, i ∈
IP , j ∈ IT }.

The boundary of a C-target is the curve followed by the origin of FAi when
Di slides in contact with the boundary of Rjθ. With the assumed robot and sensor
geometries, the C-target boundaries are obtained by growing Rjθ isotropically by the
radius ri within S, and they have the pill shape shown in Figure 3.2. C-obstacles are
similarly defined [29] and are used together with the C-targets introduced above to
obtain the connectivity graph G at every round.

Let COk denote the C-obstacle obtained from the kth obstacle in the game area,
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Ok ⊂ S. In obstacle-avoidance algorithms, the obstacle-free configuration space,

(3.12) Cifree = C \
n⋃
k=1

COk =

{
qi ∈ C | Ai(qi) ∩

(
n⋃
k=1

Ok

)
= ∅

}
,

is decomposed into a finite set of cells, {κ1, . . . , κf}, within which a path free of
obstacles can be easily generated. In order to obtain a decomposition that includes
observation cells (Definition 3.2), we present the following method:

(I) Decompose the configuration space that is void of any C-obstacles or C-targets
and is defined as

(3.13)

Civoid = C \

⎧⎨
⎩

n⋃
j=1

COk ∩
p⋃
i=1

CRj

⎫⎬
⎭

=

⎧⎨
⎩qi ∈ C | Ai(qi) ∩

(
n⋃
k=1

Ok

)
= ∅, Di(qi) ∩

⎛
⎝ p⋃
j=1

Rj

⎞
⎠ = ∅

⎫⎬
⎭ .

(II) Decompose each obstacle-free C-target,

(3.14) CRj \
n⋃
j=1

COk, j = 1, . . . , p,

thereby obtaining the set of observation cells.
(III) Construct a connectivity graph G using the void and observation cells ob-

tained in (I) and (II), respectively.
When the C-targets are grown isotropically by a disk (Figure 3.2), the decomposi-
tion may involve generalized polygons [29]. A sweeping-line algorithm can be used to
decompose a nonconvex generalized polygon with ν vertices into O(ν) convex general-
ized polygons in O(ν log ν) time (see section 5.1 in [29]). Alternatively, the pill-shaped
C-targets can be approximated by a convex polygon, obtaining the running time pre-
sented in section 4. An illustrative example of workspace and corresponding cell
decomposition is shown in Figure 3.3. The connectivity graph constructed using this
cell decomposition is illustrated in Figure 3.4, where the observation cells are shown
in grey and the void cells are white. Each node in the connectivity graph corresponds
to one polygonal cell in Figure 3.3, where the cells are numbered from left to right
and from top to bottom.

The probability density function PR, used to compute the reward (3.1), is ob-
tained as follows. Suppose that κl is one of the observation cells that are obtained
from the decomposition of the jth C-target: κl ⊂ CRj . Then, the sensing benefit of
visiting the lth cell in G is the probability of detecting the target j,

(3.15) PR(κl ⊂ CRj) = Pr{Dji = 1 | eji ≤ ri},
where Dji represents the event that the ith sensor reports a detection when the jth
target comes within its detection range. In this paper, PR is assumed to be uniform
over CRj for simplicity, and when a cell is void PR(κl) = 0 since the sensor field-of-
view will not intersect any of the p partially observed tracks. In general, PR can be
estimated from knowledge of the measurement process and can be made dependent
on time and on the distance from the target [18].

The next section presents an effective control methodology by which sensors in
pursuit mode capture and intercept targets whose tracks have been fully observed and
thus have been declared positively detected.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERCEPTING TARGETS USING A MOBILE SENSOR NETWORK 303

 

Partially-observed track  
Rθ  

A 

D 

S 

y 

x 

CO k 

CR  

r 

Target 

r 

∂S 

Fig. 3.3. Example of cell decomposition (dashed lines) for a workspace with four C-obstacles
(darkly shaded polygons) and one C-target CR (lightly shaded region) corresponding to 2 < k detec-
tions. One sensor with range r and field-of-view D is installed on a robot with a square platform
geometry A.
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Fig. 3.4. Connectivity graph obtained from the cell decomposition in Figure 3.3, where the cells
in the decomposition are numbered from left to right and from top to bottom, and the observation
cells are shown in grey.

3.3. Pursuit strategy. Once a new target is positively detected, a sensor is
switched to pursuit mode and deployed to capture it. A geometric approach motivated
by the behavior of the potential field controller, described in [10], is used to drive the
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Y

X

rt

δ

Rθ

τj(t0)

pi(t0) := p0

θτ

φ

p1

c

α

θp

β γ

Fig. 3.5. Control strategy to capture a target.

nonholonomic robot sensor in pursuit mode to a goal waypoint, δ ∈ R
2, calculating

both the point and time at which a pursuer will intercept a target moving in a known
straight line, Rjθ, with constant velocity, Vτ . This strategy, depicted in Figure 3.5, is
based upon the geometry of the problem and takes into account the kinetic constraints
of the pursuer but not the presence of the obstacles. Therefore, here it is combined
with the cell-decomposition methodology presented in section 3.2.

First, the interception point δ is calculated by determining the time required by
both the pursuer and target to reach δ. The pursuit initial time t0 can be assumed
to be the time at which the last detection zj(tk) became available from target j, and
pi(t0) and τj(t0) denote the initial positions of the pursuer i and target j, respectively.
The interception point δ and the time to interception tcj

i
are defined as

(3.16) δ =

[
xjτ (t0) + tcj

i
Vτ cos θjτ

yjτ (t0) + tcj
i
Vτ sin θjτ

]
, tcj

i
=
rtφ+ ‖c− δ‖ cosα

Vpmax

,

where the distance traveled by the pursuer is the distance along the arc p0p1 plus the
straight line distance between p1 and δ. The arc radius is the same as the turn radius
of the pursuer and is defined as rt = Vpmax

ωp
, where Vpmax and ωp are the maximum

speed and angular velocity, respectively, of the pursuer. There are two possible circles
corresponding to a right or a left turn of the pursuer. The center points, cR and cL,
of the circles defined by the turn radius are calculated as

cR =
[
p0x + rt cos(θp − π

2 )
p0y + rt sin(θp − π

2 )

]
, cL =

[
p0x + rt cos(θp + π

2 )
p0y + rt sin(θp + π

2 )

]
.

The center point lying closest to the interception point is chosen as

c =
{
cR if ‖cR − δ‖ ≤ ‖cL − δ‖,
cL if ‖cR − δ‖ > ‖cL − δ‖.
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The other parameters for calculating the interception time are calculated as

α = arcsin
(

rt
‖c− δ‖

)
, γ = arctan [cy − δy, cx − δx] ,

β =
{
γ − α if c = cR,
γ + α if c = cL,

p1 =
[
δx + ‖c− δ‖ cosα cosβ
δy + ‖c− δ‖ cosα sinβ

]
,

φ = |arctan(p1y − cy, p1x − cx)− arctan(p0y − cy, p0x − cx)| ,

where δ = [δx δy]T . The time to interception tcj
i

and the interception point δ in (3.16)
are computed numerically by Newton’s method [34].

In order to find an obstacle-free shortest path between pi(t0) and δ, the connec-
tivity graph G obtained in section 3.2 is modified by changing the arc labels to reflect
the Euclidean distance between any two nodes κl → κı in G:

(3.17) d(κl, κı) ≡ max ||A(q̄ı)−A(q̄l)||.

The channel μ∗
p of shortest overall distance between κ0 � qi(t0) and κf � δ (assuming

a zero heading at δ) can be determined by the graph searching algorithm A∗ [29].
Subsequently, μ∗

p is mapped into a set of waypoints in R
2
+ that are used by an inner-

loop trajectory generator and trajectory tracking controller designed for the unicycle
model (2.1).

4. Performance and complexity analysis. Previous work on the correctness
and complexity of pursuit-evasion games has focused on graphs, in which one or more
pursuers attempt to capture one target by moving between adjacent nodes in a graph
(see [24, 2, 28, 38] for a comprehensive review). In these problem formulations, the
sensing ability and fields-of-view of the pursuers are not taken into account, and the
pursuit strategies consist of randomized searches on the graph, because the pursuers
cannot see the evader until the latter is caught. Also, only one evader who may be
restricted or unrestricted to the graph is considered during each game. By computing
the connectivity graph by the methodology in section 3.2, these results could poten-
tially be extended to the pursuit-evasion game in Problem 2.1. For example, if the
strategy in [2] is implemented for one pursuer and one evader (N = M = 1), then the
pursuer captures the evader on an n-node cycle with probability at least Ω(1/ log(nG)),
and the game ends in O(nG log(diam(G))) time, where nG is the number of nodes in
G and diam(G) is the diameter of the graph. However, by not taking into account
the sensing ability of the pursuers and the knowledge of fully observed tracks (i.e.,
the presence of observation cells), these strategies are not very effective at capturing
multiple evaders in large game areas. In these applications, nG and diam(G) are very
large. Therefore, the probability of capturing the evaders can be very small and the
game end time O(MnG log(diam(G)) can be very large.

The correctness and game end time for the strategy presented in section 3 are
analyzed by assuming that the time required to maneuver around obstacles or to turn
(φ/ωp) are negligibly small compared to the duration of the game. Let (̄·) denote the
expected value (or mean), and �·� denote the floor function. Then, the performance
of the sensor network depends on the dimension of the game area (L), the number of
sensors (N), the number of required detections (k > 2), and the field-of-view radius
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(ri), which here is assumed constant (ri = r ∀i) for simplicity, as summarized by the
following result.

Theorem 4.1. The pursuit-evasion game in Problem 2.1 is guaranteed to termi-
nate, provided that

(4.1) N ≥ Nmin =
1
2

[⌊
2L
r

⌋
+ k − 1 +

∣∣∣∣
⌊

2L
r

⌋
− k + 3

∣∣∣∣
]
,

and requires a time

tf ≤ Tu =
(
√

2L− 2r)
Vτmin

+
[⌊

(k − 2)M
N

⌋
+ 1

]
(
√

2L− r)
V̄p

(4.2)

+
r

(V 2
pmax
− V̄ 2

τ )
+

⌊
M

N

⌋ (
V̄τ +

√
2V 2

pmax
− V̄ 2

τ

)
(V 2
pmax
− V̄ 2

τ )2
L(4.3)

to capture all M targets in T . If the network contains at least

(4.4) N� =
1
2

[
�

⌊
2L
r

⌋
− 4�(�− 1) + (k − 2)M +

∣∣∣∣�
⌊

2L
r

⌋
− 4�(�− 1)− (k − 2)M

∣∣∣∣
]

sensors, with � = 1, . . . , �L/4r�, then all targets in T can be captured in a time

tf ≤ T� =
1

Vτmin

{√
2

2
L− 2

√
2r(�− 1) +

∣∣∣∣∣2r[1 +
√

2(�− 1)]−
√

2
2
L

∣∣∣∣∣
}

+
(
√

2L− r)
V̄p

+
r

(Vpmax − V̄τ )
,(4.5)

and the game terminates in tf ≤ T� ≤ Tu, where T� = Tu when � = 1 and k = 3.
A proof is provided in Appendix C. Based on the above result, Nmin is the

minimum number of sensors needed to guarantee that the game will end in less than
Tu time. But, if more sensors can be utilized, then N can be increased according to
(4.4) to decrease the maximum time required to end the game, as shown by (4.5).
The performance of the algorithm also depends on the choice of reward function (3.1)
through the parameter k, which, together with the parameters N , L, and r, specifies
the definition of the probability density function (3.10).

In Problem 2.1, a round is defined as the deployment of one sensor in either detec-
tion or pursuit mode, and it is initiated based on the measurement set Zt when a new
target track becomes either partially observed or fully observed. Thus, the computa-
tional complexity of the algorithm in section 3 is assessed based on the calculations
required by each round. Let neO denote the number of edges required to describe all
n obstacles in S, and neR = 2p denote the number of edges required to describe all p
tracks that have been partially observed up to the present time. Then, if nκ and nGa

are the number of observation cells and the number of arcs in G, respectively, and
nδ ≡ L/δb, the following result is obtained.

Theorem 4.2. In every round of the pursuit-evasion game in Problem 2.1, the
running time required to deploy a sensor in detection mode is

(4.6)
Γd = O((neO + neR) log(neO + neR) + neRneO logneO ) +O(nκnδm(k + logm))

+ O(n2
G + nGa),
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where m =
(
N
k

)
is given by the binomial coefficient and the running time required to

deploy a sensor in pursuit mode is

(4.7) Γp = O((nG + nGa) log2 nG).

A proof is provided in Appendix D. Clearly, depending on the characteristics
of the robotic sensors and of the workspace, S, only one of the three terms in (4.6)
will dominate over the others, providing the overall running time complexity of the
detection round. As an example, when the leading time complexity is that of the
reward function (3.1), the deployment of a sensor in detection mode in a problem
with N = 50, k = 3, r = 5 km, and L = 100 km took 0.797 sec on a Pentium 4
CPU 3.06 GHz computer. On the same computer, when the leading time complexity
is that of A∗, the deployment of a sensor in pursuit mode took between 0.078 and
0.2350 sec in a connectivity graph with nG = 340 and nGa = 338, and between 1.672
and 60.125 sec in a graph with nG = 9,590 and nGa = 32,687.

5. Simulation results. In order to validate the methodology developed in sec-
tion 3, a MATLAB simulator has been developed. We integrate the information-driven
sensor planning and pursuit strategies described in previous sections into several sim-
ulation scenarios.

5.1. Scenario 1: Multiple static sensors and one pursuer. In many surveil-
lance applications static sensor networks can be used with a few motion-enabled sen-
sors. Static sensors are placed to optimally cover a given area [17]. If a target (evader)
is detected, then a mobile sensor can be sent to investigate or capture the target. This
scenario is a special case of the pursuit-evasion problem addressed in this work. The
simulation results are depicted in Figure 5.1. This scenario includes obstacles and the
use of the reward function (3.1).

5.2. Scenario 2: Multiple mobile sensors and targets. This simulation
scenario extends the first by considering the same environment but with multiple
targets. Before the simulation scenario begins, five sensors with platforms measuring
0.25 m square are placed in the 10m-by-10m environment to maximize the probability
of detecting tracks with k = 2, since we require this number of detections to form a
partially observed track. Obstacle and coverage maps are generated for each sensor
corresponding to the placement in each cell. Figure 5.2 shows the initial environment
and the five sensors—one with sensing radius 1.5 m, one with sensing radius 1.25 m,
and three with sensing radii of 1 m. Initially, all sensors are in detection mode, and
each is a candidate to switch to the pursuit mode when target tracks become fully
observed.

In this scenario, two targets enter the environment at different locations and
headings and with different velocities. As they move along their trajectories, they are
detected by the sensors (Figure 5.3). The sensors remain motionless since each target
has been detected only once. After the second detection of a target, the network
hypothesizes the target track based on previous detections and deploys the sensor
which receives the highest reward (or lowest cost) as obtained by the A* graph search
algorithm to move to obtain an additional detection of the target (Figure 5.4). When
the second target becomes partially detected, the same track hypothesis and sensor
deployment occurs. At the point that the first target’s track becomes fully observed
(see Figure 5.5), the network again evaluates the reward (distance) and deploys the
best sensor to pursue the target. The same pursuit is performed when the second
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Initial location of 
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path
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track
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Fig. 5.1. Static multiple detectors and one pursuer.

Fig. 5.2. Initial sensor placement.
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Fig. 5.3. Two targets each detected once.

target is fully observed, as shown in Figure 5.6. The state of the network following
capture of all known targets is depicted in Figure 5.7. The network is rearranged
to maximize area coverage at the next recalculation interval. Table 5.1 summarizes
the chronology of the main events which occur during the simulation. Algorithm 1
illustrates how the simulation scenario has been implemented.
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Fig. 5.4. Target 1 is partially observed with
its hypothesized track, and Sensor 1 is deployed
to obtain additional observations.

Fig. 5.5. Target 1 is fully observed and
Sensor 3 is deployed to pursue it while Target
2 becomes partially observed, and Sensor 1 is de-
ployed to obtain an additional observation.

Fig. 5.6. Target 1 has been captured. Target
2 is fully observed and is pursued by Sensor 1.
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Fig. 5.7. Final sensor arrangement after
both targets are captured.

Table 5.1

Simulation events of Scenario 2.

Event Time (s) Position (m) Sensor Target
Detect 0.40 (3.46,9.78) 1 2
Detect 1.70 (0.49,6.99) 4 1
Detect 5.45 (1.56,8.06) 3 1
Deploy 5.45 (1.75,8.25) 1 1
Detect 6.30 (1.80,8.30) 1 1
Pursue 6.30 - 3 1
Detect 6.35 (2.94,6.85) 4 2
Deploy 6.35 (2.75,5.25) 2 2
Capture 6.60 (1.76,8.57) 3 1
Detect 8.55 (2.75,5.77) 2 2
Pursue 8.55 - 2 2
Capture 9.40 (2.75,5.55) 2 2
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Algorithm 1. Scenario 2 Algorithm.
1: Perform initial optimal sensor placement
2: Decompose environment into Cfree and Cobstacle cells
3: for all Sensors do
4: Calculate obstacle map
5: Calculate coverage map
6: end for
7: while Game not over do
8: for all Sensors in pursuit do
9: if Pursued target beneath capture threshold then

10: Remove target
11: End pursuit
12: end if
13: end for
14: if Detection then
15: if Target detections = 2 then
16: Hypothesize target track
17: Calculate observation cells
18: for all Sensors that have not detected this target do
19: Calculate path and reward to investigate target
20: end for
21: Deploy the sensor with the greatest reward
22: else if Target detections = 3 then
23: for all Sensors not in pursuit do
24: Calculate path and reward to pursue target
25: end for
26: Deploy the sensor with the greatest reward
27: end if
28: end if
29: if Sensor update interval then
30: for all Sensors do
31: Calculate coverage map
32: end for
33: Deploy next sensor to maximize coverage
34: end if
35: end while

6. Conclusions. This paper presents a novel framework for developing sensor
control policies in systems involving multiple robotic platforms that seek to detect
and intercept multiple mobile targets. Multiple objectives, such as the probability of
detecting unobserved tracks, for which little or no information is available a priori, ob-
stacle avoidance, and the probability of detection associated with partially observed
targets are approached using a geometric approach. The path leading to the opti-
mal trade-off between these objectives is obtained through the A* graph searching
algorithm and is passed to a control strategy that accounts for the actual pursuers’
dynamics. By adopting a track-before-detect approach, a target is declared positively
detected once a satisfactory number of detections k may be used to form a consistent
track. Subsequently, a heuristic rule switches one of the mobile sensors from detection
mode to pursuit mode, and the track is readily available to compute an optimal pursuit
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strategy. By maximizing the same reward function, the remaining sensors in detection
mode are reconfigured such that the probability of detecting the remaining targets is
again optimized. The progressive simulation scenarios presented validate the devel-
oped methodology. The future work of this approach will include fully implementing
the methodology on a multivehicle testbed [13]. Additionally, the approach will be
extended to reflect a more general pursuit-evasion game by considering intermittent
communication among pursuers and targets, intermittent estimation, and intelligent
evaders that are not restricted to moving in straight lines.

Appendix A. Proof of Proposition 3.5. This proof considers a family of
k = 3 nontranslates Dk = {Di,Dj,Dl} with index set IDk

= {i, j, l}. The results can
be extended to higher k by induction. The coverage cone K(D�, by) contains the set
of all rays that intersect D� in R

2
+, where � ∈ IDk

. Then, the set of tracks intersecting
all circles in the family Dk is given by the following intersection:

(A.1) Kk(Dk, by) =
⋂

�∈IDk

K(D�, by) = K(Di, by) ∩K(Dj , by) ∩K(Dl, by).

From the properties of cones [6, p. 70], the intersection of a collection of cones is also
a cone, and thus Kk(Dk, by) is a cone. A vector z representing a ray Rθ with the
same slope and origin lies in a cone K if and only if Rθ lies in K, since any point on
Rθ can be written as cz, with c > 0.

Consider a ray Rθ ∈ K(D�, by), where K(D�, by) = cone(l̂�, ĥ�) and thus can
be represented by a vector z� = c1 l̂� + c2ĥ� with constants c1, c2 > 0. Then, z� ∈
K(D�, by) and, by the properties of vector sum, l̂� ≺ z� ≺ ĥ�. Next, consider a cone
K∗ = cone(l̂∗, ĥ∗) that is finitely generated by two unit vectors ĥ∗ = ĥj and l̂∗ = l̂ı
with j, ı ∈ IDk

, and assume l̂ı ≺ ĥj. By the properties of finitely generated cones [6],
any vector z∗ = b1 l̂

∗ + b2ĥ
∗ with constants b1, b2 > 0 must lie in K∗. It follows that

a ray R∗
θ with the same slope and origin as z∗ must also lie in K∗, since any point on

R∗
θ can be written as cz∗, with c > 0. Since z∗ is a positive combination of l̂∗ and ĥ∗,

it also follows that l̂∗ ≺ z∗ ≺ ĥ∗.
According to Proposition 3.5, choose ĥ∗ = ĥj � ĥ� and l̂∗ = l̂ı  l̂� ∀� ∈ IDk

.
Suppose that the unit vectors of Dk can be ordered as ĥl ≺ ĥj ≺ ĥi and l̂i ≺ l̂l ≺ l̂j .
Then, the unit vectors and z∗ can be ordered as follows:

(A.2) l̂� � l̂j = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥl � ĥ� ∀� ∈ {i, j, l} = IDk

or, more explicitly,

(A.3) l̂i ≺ l̂l ≺ l̂j = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥl ≺ ĥj ≺ ĥi.

Since the above order also implies l̂� ≺ z∗ ≺ ĥ� ∀� ∈ IDk
, then z∗,R∗

θ ∈ K(D�, by)
∀� ∈ IDk

. Thus, from (A.1), z∗,R∗
θ ∈ Kk(Dk, by) = K∗ = cone(l̂∗, ĥ∗), provided that

ĥ∗ and l̂∗ are chosen subject to (A.2).
So far it has been assumed that l̂ı ≺ ĥj. If the unit vectors of Dk are such that

l̂ı � ĥj, then there are no vectors that can satisfy the order l̂ı = l̂∗ ≺ z∗ ≺ ĥ∗ = ĥj,
and Kk(Dk, by) = K∗ = ∅.

Appendix B. Proof of Theorem 3.6. The set of all tracks through a y-
intercept by that are detected by at least k sensors in D = {D1, . . . ,DN} is the union
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of the k-coverage cones of all k-subsets of D,

(B.1) Kk(D, by) =
m⋃
j=1

Kk(D
j
k, by), m =

(
N
k

)
.

Dj
k denotes the jth k-subset of D, and the number m of possible k-subsets is given by

the binomial coefficient N choose k. Since Kk(D, by) is a union of possibly disjoint
cones, it may not be a cone [6]. Nevertheless, the same Lebesgue measure defined for
a cone, μ on [0, π], can be applied to it using the principle of inclusion-exclusion [43]

μ(Kk(D, by)) = μ

⎛
⎝ m⋃
j=1

Kk(D
j
k, by)

⎞
⎠(B.2)

=
m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m
μ(Kk(Di1

k , by) ∩ · · · ∩Kk(D
ij
k , by)),

where m =
(
N
k

)
= N !

(N−k)! k! and
∑

1≤i1<···<ij≤m is a sum over all the [m!/(m− j)! j!]
distinct integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < · · · < ij ≤ m. Also, μ(·)
denotes a measure on the set. Since the right-hand side of (B.2) is an intersection of
cones, it also is a cone on which we can impose μ. Moreover, it represents the set of
tracks through by that intersect all sensors in D

i1,j
p = {Di1

k ∪ · · · ∪ D
ij
k }. Based on

the properties of k-subsets, Di1,j
p must contain k ≤ p ≤ n elements of D and, thus, is

a p-subset of D. Based on the properties of k-coverage cones (Proposition 3.5), the
set of line transversals of Di1,j

p through by can be represented by the p-coverage cone
Kp(D

i1,j
p , by). Thus, (B.2) can be written as

μ(Kk(D, by)) =
m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m
μ(Kp(Di1,j

p , by))

=
m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m
ψ(Di1,j

p , by),(B.3)

by Proposition 3.5, where p is the number of elements in the union of j k-subsets of
D, and the opening angles ψ(Di1,j

p , by) in the above summation are given by (3.9).
Now, letRθ(by) denote a ray with y-intercept by and heading angle θτ ∈ (−π/2, +

π/2). Suppose μ(Kk(D, by)) = π; then Rθ(by) will be detected by k pursuers with
probability one. Assuming that all headings are equally likely, if 0 ≤ μ(Kk(D, by)) ≤
π, then Rθ(by) will be detected by k pursuers with probability μ(Kk(D, by))/π. Let
P (by) denote the prior probability that a target enters S at by. Assuming that all
y-intercepts are equally likely, P (by) = δb/(L+ δb). Since the two events are indepen-
dent, the probability that an unobserved track is Rjθ(by) and is detected by k pursuers
is given by the product of the individual probabilities

(B.4) Pr{Djk = 1,Rjθ(by)} =
δb

(L+ δb)
μ(Kk(D, by))

π
,

where Djk denotes the event that the jth target traversing S along an unobserved
track is detected by at least k pursuers. Since the k-coverage cones with different
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 ∂S 

S 

Im 

bℓ 

K(Di, b
ℓ) 

Di 

Fig. B.1. Examples of total coverage configuration for k = 2 (sensors on ∂S), sensors packed
by the triangular number (grey disks), and coverage cone K2 < π when N < 2L/r.

y-intercepts are disjoint, the probability that a target’s point of entry in S is the �th
intercept b�y ∈ ∂S and that it is detected by k pursuers is
(B.5)

Pr{Djk = 1,Rjθ(b�y ∈ ∂S)} =
L/δb∑
�=0

δb

π(L + δb)

m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤m
ψ(Di1,j

p , b�y).

The probability that Djk = 1 and that the target’s point of entry is on one of
the other axes can be obtained by the same approach, using the opening angles of
the corresponding coverage cones. The set of tracks that traverse S and are detected
by at least k pursuers is given by the probability of the union of intersecting sets
Kk(D, by), Kk(D, bx), Kk(D, by′), and Kk(D, bx′) that are obtained by applying (B.1)
to intercepts on the y, x, y′, and x′ axes, respectively. The final probability density
function P kS (X ) in (3.10) is obtained by observing that every track in this union
intersects two sides of S, and that the indices in the second summation must be
shifted in order to consider intercepts at the corners only once.

Consider now the case of a total coverage configuration, denoted by X ktot, that
detects all tracks in S at least k times. We want to show that for X ktot the probability
density P kS in (3.10) is equal to one (its upper bound). In large sensor networks total
coverage may be obtained by concentric configurations placed on and around ∂S, as
shown by the example in Figure B.1 with k = 2. The Lebesgue measure (or opening
angle) of a finitely generated cone K(Di, b�) ∈ R

2
+, with origin b�, is bounded between

0 and π, and it is equal to π only when b� ∈ Di. The Lebesgue measure on a union of
cones, μ(Kk(D, b�)), attains its upper bound π when all tracks through b� intersect k
disks in D, and it is independent of k and N because all k-coverage cones are finitely
generated. Then, the probability of detection for X ktot is obtained from (3.10) by
letting μ(Kk(D, b�y)) = μ(Kk(D, b�x)) = μ(Kk(D, b�y′)) = μ(Kk(D, b�x′)) = π ∀�; i.e.,
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P kS (X ktot) =
δb

4πL

L/δb∑
�=1

(π + π) +
δb

4πL

(L/δb−1)∑
�=0

(π + π)

=
δb

4πL

[
L

δb
2π +

L

δb
2π

]
= 1.

Appendix C. Performance analysis. Since every target remains in S and
maintains Rjθ for the duration of the game and Vpmax > Vτmax , every target j ∈ T can
be captured by a pursuer j ∈ P in time tcj

i
, using the pursuit strategy in section 3.3,

provided that Rjθ is fully observed. If N ≥ �2L/r�, an initial network configuration
X ∗

0 , defined in (3.2), with P2
S(X ∗

0 ) = 1 can be obtained by solving a nonlinear program
in which (3.10) is maximized with respect to X , subject to 0 ≤ xip ≤ L and 0 ≤ yip ≤ L
∀i ∈ IP [4]. As shown in Appendix B, in this total coverage configuration the network
obtains at least two detections per target with probability one. After two detections
are obtained, Rjθ is estimated and declared partially observed. Then, during every
subsequent round, one sensor is moved from a cell κl to a cell κı (κl → κı), only if the
overall probability of detection of the network, (PR(κı) + ΔP kS (κl, κı)), is increased
by the change in configuration (Xl → Xı). Since the probability density functions PR
and P kS are defined over the same set of targets T and the same search area S, the
probability of obtaining the M(k−2) additional sensor detections required to declare
all M target tracks fully observed increases at every round, provided that there are
at least (k − 2) sensors in the network to obtain at least (k − 2) distinct detections
per target. After a track Rjθ is fully observed, target j can always be captured by any
sensor in the network, because Vpmax > Vτmax . Since, in the worst case, one sensor
can be used to pursue every target sequentially, the game is guaranteed to terminate
if N ≥ Nmin, where
(C.1)

Nmin = max
{⌊

2L
r

⌋
+ 1, k − 2, 1

}
=

1
2

[⌊
2L
r

⌋
+ 1 + k − 2 +

∣∣∣∣
⌊

2L
r

⌋
+ 1− k + 2

∣∣∣∣
]
,

which simplifies to (4.1).
If N < Nmin, it can be shown by contradiction that the game cannot be guaran-

teed to terminate because there is a subset of tracks that may never be fully observed.
From (C.1), there are two possible cases, namely, Nmin = �2L/r�+1 or Nmin = k−2,
depending on the problem’s parameters. In the first case, from the properties of
the floor function, if N < �2L/r� + 1, then �N� < �2L/r + 1�, and it follows that
N < 2L/r, because N is an integer and 2L/r is a rational number (with the no-
table exception that if 2L/r is an integer, then Nmin should be decreased by one). It
also follows that 2Nr < 4L, and thus for any X ∗

0 there exists at least one interval
Im = {b | b ∈ ∂S, b ∩ Di = ∅ ∀i ∈ ID}, as illustrated in Figure B.1, where if the
dotted disk is removed, N < 2L/r. From Appendices A and B, the Lebesgue measure
(or opening angle) μ of a coverage cone K(Di, b) attains the upper bound π if and
only if b ∈ Di. From (A.1), any (k = 2)-coverage cone K2(D

j
2, b) is the intersection

of two coverage cones, e.g., K(Di, b) and K(Dl, b), where Dj
2 = {Di,Dl} ⊂ D, and

thus μ(K2(D
j
2, b)) ≤ min{μ(K(Di, b)), μ(K(Dl, b))}. It follows that for any intercept

value b� ∈ Im, μ(K(Di, b�)) < π ∀i ∈ ID, and thus μ(K2(D
j
2, b

�)) < π ∀j, where K2

is the (k = 2)-coverage cone for any 2-subset of D, as defined in (D.1). Thus, by
Proposition 3.5, the set of tracks in the complement set Km(b�) = S \ K2(D

j
2, b

�),
comprised of a union of cones, is detected by at most one sensor in X ∗

0 (Figure B.1).
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Now, let M = 1 and assume that the target has a track Rmθ (b�) ∈ Km(b�), through
an intercept b� ∈ Im (Figure B.1). Then, the target can be detected by at most one
sensor in X ∗

0 and remains unobserved by definition. Since there are no other targets
in S, at every subsequent round in the game all sensors remain in detection mode,
and all nodes in G remain void cells such that PR(κι) = 0 ∀κι ∈ G. From (3.2), X ∗

0 is
the configuration with the maximum value of P 2

S . Thus, by its choice of κf for sensors
in detection mode (section 3), the algorithm holds the sensors stationary at X ∗

0 at
every round, and the game never terminates, because for this configuration Rmθ (b�)
always is unobserved. In the second case, Nmin = k − 2 > �2L/r� + 1. Therefore,
when N < Nmin, there may be a sufficient number of sensors in the network to obtain
at least two detections per target and partially observe all tracks. However, after
the tracks have been partially observed, there are not enough sensors to obtain the
additional k − 2 independent detections required to declare any track fully observed.
Thus, all sensors remain in detection mode, and the game never terminates because
the targets are never captured. It can be concluded that if N < Nmin, the game
cannot be guaranteed to terminate.

Based on the problem formulation in section 2, the time required to terminate
the game T depends on the time required to obtain two detections per unobserved
track, ΔTd; the time required to obtain 1 < l < k additional detections per partially
observed track, ΔTo; and the time required to pursue every target after its track has
been fully observed, ΔTc. Although the method in section 3 allows different targets
to be simultaneously detected and pursued, the worst-case scenario is one where there
is no overlap between these time periods, i.e., T = ΔTd + ΔTo + ΔTc.

After all targets are in S, the maximum time required by a network with Nmin

sensors, positioned at X ∗
0 , to obtain at least two detections per target is the time

required by the slowest target to travel the longest distance in S between two disks
Di and Dj with pi and pj at opposite corners, i.e., ΔTd(Nmin) = (

√
2L − 2r)/Vτmin .

Consider now a network with N ≥ Nmin sensors. Before obtaining any detections,
it can be easily shown that the configuration that maximizes the distance between
any two sensors is one where they are packed concentrically in S (e.g., the grey disks
in Figure B.1). By the definition of a triangular number, this configuration can be
achieved by increasing the number of sensors according to

(C.2) N = �

⌊
2L
r

⌋
− 8T(�−1) = �

⌊
2L
r

⌋
− 4�(�− 1), � = 1, . . . ,

⌊
L

4r

⌋
,

where � is an integer and �L/4r� is the maximum value of � that allows one to pack
N sensors in S. Tn denotes the triangular number of n and is used to represent the
decrease in the number of sensors that can be placed at the corners as N increases
(see Figure B.1). Then, the maximum time required to obtain two distinct detections
is the time required by the slowest target to travel the maximum distance between
any two sensors, that is,

ΔTd(N) =
1

Vτmin

max
{

2r,
√

2L− 2r[2
√

2(�− 1) + 1]
}

=
1

Vτmin

1
2

{
2r +

√
2L− 2r[2

√
2(�− 1) + 1]−

∣∣∣2r −√2L+ 2r[2
√

2(�− 1) + 1]
∣∣∣}

=
1

Vτmin

{√
2

2
L− 2

√
2r(�− 1) +

∣∣∣∣∣2r[1 +
√

2(�− 1)]−
√

2
2
L

∣∣∣∣∣
}
.

(C.3)
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After all targets have been partially observed, (k − 2) additional detections per
target are required to declare them fully observed (where it is assumed that k > 2). If
there are Nmin sensors in the network, this can always be accomplished by repeatedly
moving the sensors until all M target tracks are fully observed. Since the maximum
distance that must be traveled by any of the sensors to obtain an additional detection
is (
√

2L− r), the time required to fully observe all M target tracks is

(C.4) ΔTo(Nmin) =
[⌊

(k − 2)M
Nmin

⌋
+ 1

]
(
√

2L− r)
V̄p

.

However, if at least (k − 2)M sensors are available, they can all be moved at once
to each obtain one additional detection, and, assuming that the running time to
reconfigure them is negligibly small, all M target tracks are fully observed after a
time (

√
2L− r)/V̄p.

Suppose that there are �2L/r� ≤ N ≥ M sensors available to pursue the targets
after they have been fully observed. Then, the maximum distance that must be
traveled to capture target j by switching the nearest sensor to pursuit mode is the
distance between the sensor that has obtained the last kth detection from j and the
interception point δ. For the purpose of analysis, one can place an inertial frame of
reference at τj(tk) and align it with the target track such that xjτ (tk) = yjτ (tk) = θjτ =
0. Then, at time tk the sensor must be within a distance r from the target position,
with a heading θp. From (3.16), assuming that the turn time is negligibly small, the
capture time tc must satisfy the equality

(Vpmaxtc)
2 = r2 cos2 θp + (V̄τ tc)2 − 2tcrV̄τ cos θp + r2 sin2 θp

= (V̄τ tc)2 − 2tcrV̄τ cos θp + r2(C.5)

for any θp, since the sensors are assumed to travel at their maximum speed when in
pursuit mode (section 3.3). Differentiating (C.5) with respect to θp and setting the
result equal to zero, it can be shown that the heading with maximum capture time
is θ∗p = π with respect to the target track. Thus, the maximum capture time can be
obtained from

(C.6) t∗c =
1

Vpmax

∥∥∥∥ (r cos θ∗p − t∗c V̄τ )
r sin θ∗p

∥∥∥∥
by letting θ∗p = π and solving for t∗c = r/(Vpmax − V̄τ ). Since all of the M sensors that
obtained the last kth detection from the M targets can be deployed simultaneously to
pursue them, the maximum time required to capture them is ΔTc(N) = r/(Vpmax −
V̄τ ).

If there are onlyNmin sensors in the network, they need to be deployed (�M/Nmin�+
1) times in order to capture all M targets that have been fully observed. The first
time, the Nmin sensors that obtained the last kth detection from Nmin targets are
deployed in r/(Vpmax − V̄τ ) maximum time, as shown in the previous paragraph.
However, when the sensors are subsequently redeployed, they could be anywhere
in S, since they reenter the game after having captured other targets. It can be
shown by solving a simple constrained-optimization problem (omitted here for brevity)
that for a sensor and a target located anywhere in S the maximum capture time is
L[V̄τ + (2V 2

pmax
− V̄ 2

τ )1/2]/(V 2
pmax
− V̄ 2

τ ). Thus, it follows that the maximum capture
time with Nmin sensors is

(C.7) ΔTc(Nmin) =
r

(V 2
pmax
− V̄ 2

τ )
+

⌊
M

Nmin

⌋ (
V̄τ +

√
2V 2

pmax
− V̄ 2

τ

)
(V 2
pmax
− V̄ 2

τ )2
L.
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From the above analysis, the minimum number of sensors Nmin, obtained by the
maximum of all minima in (4.1), is required to terminate the game in a maximum
time Tu in (4.2). Also, the maximum time required to end the game can be reduced
to T�, in (4.5), by increasing the number of sensors to the maximum of all maxima,

(C.8) N� = max
{
�

⌊
2L
r

⌋
− 4�(�− 1), (k − 2)M,M

}
, � = 1, . . . ,

⌊
L

4r

⌋
,

which simplifies to (4.4), since k > 2.

Appendix D. Complexity analysis. During every detection round, the main
computations required by the methodology in section 3 are the cell-decomposition
procedure to obtain G, the computation of the sensing reward (3.1) for every obser-
vation cell in G, and the search for the optimal channel (3.3), by the A∗ algorithm.
Therefore, we first analyze the complexity of the cell-decomposition procedure. Since
the sensor field-of-view Di is a disk, the decomposition may involve generalized poly-
gons. To avoid this case, Di can be approximated by a regular octagon D̂i tightly
contained in Di. For simplicity, θip is assumed fixed. The obstacle-free configura-
tion space Cifree for the ith pursuer Ai can be decomposed via the method in section
3.2. The position pi = (xip, y

i
p) of Ai is abbreviated here by (x, y), and C denotes

the robot configuration space, which can be assumed to be a rectangle or a union
of rectangles. Let κ = [xκ, x′κ] × [yκ, y′κ] denote a rectangle in R

2. From the prob-
lem formulation, Ai, D̂i, and Ok, k = 1, . . . , n, are assumed to be convex polygons,
and targets Rj , j = 1, . . . , l, are rays in the workspace S; then it follows that COk,
k = 1, . . . , n, and thus CRj , j = 1, . . . , l, all are convex [29]. Let neA denote the num-
ber of edges describing Ai, which is assumed to be a fixed constant. The number of
edges defining sensor D̂i is eight. The running time to compute the two-dimensional
C-obstacle COk, for all k = 1, . . . , n , in S is O(neO ). The running time to compute
CRj , for all j = 1, . . . , l, in S is O(neR) [29, 31]. The decomposition of the com-
plement of COk, k = 1, . . . , n, and CRj , j = 1, . . . , l, into convex cells is a vertical
decomposition in two dimensions [29, 31]. Thus, the complexity of the decomposition
of Civoid, in step (I), is O((neO + neR) log(neO + neR)). In step (II), the decomposi-
tion of CRj \

⋃n
j=1 COk, for each j = 1, . . . , p, can be also implemented via vertical

decomposition in two dimensions [29, 31] with complexity O(neO logneO ). Thus, the
complexity of step (II) is O(neRneO logneO ). Therefore, the overall complexity of the
cell-decomposition method is O((neO + neR) log(neO + neR)) +O(neRneO logneO ) =
O((neO +neR) log(neO+neR)+neRneO logneO ), whereas the complexity of a decompo-
sition involving only obstacles is O(neO log(neO )) [29, 31]. By using the approximate-
and-decompose method in [52], the cell decomposition in section 3.2 can be run in
O((neO + neR)2) [8].

Next, we analyze the complexity of the probability of cooperative detections
(3.10), which is clearly the most expensive computation in the sensing reward (3.1).
Let by = � · δb, where � = 0, . . . , L/δb. Consider the complexity of computing (B.5)
and denote it by Γky . Then, the time complexity of computing (3.10) is O(4Γky). All
tracks Rα(by) detected by a set of k sensors, Dk, are contained by the k-coverage
cone of Dk, and those detected by at least k sensors in a set of n sensors, D, are
given by the union in (B.1). By computing the geometric union of the convex cones
Kk(D

j
k, by), j = 1, . . . ,m, Kk can equivalently be expressed as a union of ℘ disjoint
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convex cones,

(D.1) Kk(D, by) =
℘⋃
j=1

cone(l̂∗j , ĥ
∗
j ),

where cone(l̂∗j , ĥ∗j )
⋂
cone(l̂∗ı , ĥ∗ı ) = ∅ ∀j �= ı, where ı, j = 1, . . . , ℘, and l̂∗j ≺ l̂∗j ≺

l̂∗ı ∀j < ı. Clearly, ℘ ≤ m, and l̂∗j ∈ {l̂∗j |j = 1, . . . ,m} and ĥ∗j ∈ {ĥ∗j |j = 1, . . . ,m}, j =
1, . . . , ℘. Therefore, (B.5) can be obtained by two steps: (i) obtain Kk(D, by) in (D.1),
and (ii) obtain (B.5) from the following equations:

Pr{Djk = 1,Rjθ(b�y ∈ ∂S)} =
(L/δb−1)∑
�=0

℘∑
j=1

sin−1 ||l̂∗j × ĥ∗j ||.(D.2)

The computation of the inner summation above can be performed in two steps. First,
for every Dj

k, j = 1, . . . ,m, ∀i ∈ IDj
k
, compute sinαi in (3.6) and cosαi = (1 −

sinαi2)1/2 , then compute ĥi in (3.4) and l̂i in (3.5); choose optimal l̂∗j and ĥ∗j so that
l̂∗j = sup{l̂i|i ∈ IDj

k
} and ĥ∗j = inf{ĥj| j ∈ IDj

k
}. Then, Kk(D, by) is obtained in the

form of (D.1); then compute the measure in (D.2).
Assume that the running time to compute the elementary function sinαi in (3.6)

is a constant. The complexity of its inverse sin−1 αi is also a constant, since all el-
ementary functions are analytic and hence invertible by means of Newton’s method.
The time to compute all sinαi and cosαi, i ∈ IDj

k
, is O(k) +O(k), i.e., O(k). Then,

ĥi and l̂i can be obtained by simple multiplication and addition operations. Since
there is no need to order {l̂i|i ∈ IDj

k
} and {ĥj | j ∈ IDj

k
}, l̂∗j and ĥ∗j can be ob-

tained in linear running time O(k). The complexity to generate m convex cones
cone(l̂∗j , ĥ

∗
j) ∀j = 1, . . . ,m is O(mk). The computation of the unions of finite con-

vex cones is exactly similar to the computation of the union of finite closed intervals
in R

1. This class of problems is well known as Klee’s measure problem [26]. In
1977, Klee considered the following problem: given a collection of m intervals in the
real line, compute the length of their union; he then presented an algorithm [26] to
solve this problem with computational complexity (or “running time”) O(m logm).
Fredman and Weide showed that Klee’s algorithm, based on sorting the intervals,
was optimal [20]. Therefore, the complexity of the second step is O(m logm), and
Γky = nδ(O(mk) +O(m logm)) = O(nδm(k + logm)), where nδ = L/δb and m is the
binomial coefficient N choose k. Finally, the time complexity of (3.10) is 4 · Γky for
every observation cell, and thus the required to compute (3.1) for all nκ observation
cells in G is O(nκnδm(k + logm)).

Finally, G is searched for the optimal channel (3.3) using the A∗ algorithm. The
time complexity of A∗ depends on the heuristic function and, therefore, on the cost
or reward function attached to the arcs of G. For the reward (3.1), the easiest choice
of heuristic function is h(x) = 0 ∀x. Then, the A∗ reduces to Dijkstra’s algorithm
[16], for which the running time is O(n2

G + nGa). Therefore, the time complexity
of a detection round is given by the leading term in (4.6), which depends on the
characteristics of the workspace, robotic sensors, and targets. When the game round
consists of deploying a sensor in pursuit mode, the optimal channel μ∗

p is computed
by first determining the interception point and time, δ and tcj

i
, and then using the

A∗ algorithm to find the shortest path from pi(t0) to δ in G. δ and tcj
i

are computed
by solving four nonlinear equations in four variables, using Newton’s method [34].
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Since the gradient evaluation equals 42 component function evaluations, the time
complexity of one Newton’s method iteration is O(43). Although the number of
iterations required is unknown, Newton’s method is known to converge locally in
linear, or even superlinear, time. Therefore, the time complexity for computing the
pursuit strategy is that of the A∗. Since, in this case, the cost attached to the arcs of
G is the Euclidean distance (3.17), the heuristic function h(x) can be chosen as the
straight-line distance, and the complexity can be reduced to O((nGa + nG) log2 nG)
[44].
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SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS∗

J. FANG† , M. CAO‡ , A. S. MORSE† , AND B. D. O. ANDERSON§

Abstract. The sensor network localization problem with distance information is to determine
the positions of all sensors in a network, given the positions of some of the sensors and the distances
between some pairs of sensors. A definition is given for a sensor network in the plane to be “se-
quentially localizable.” It is shown that the graph of a sequentially localizable network must have
a “bilateration ordering,” and a polynomial time algorithm is given for deciding whether or not a
network’s graph has such an ordering. A provably correct algorithm is given which consists of solving
a sequence of quadratic equations, and it is shown that the algorithm can localize any localizable
network in the plane whose graph has a bilateration ordering.

Key words. sensor networks, localization, graph theory, rigidity
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1. Introduction. Determining the positions of sensors is essential in many net-
work applications such as geographic routing, coverage and creating formations.
Equipping each sensor in a network with GPS is not feasible in many cases because of
the large number of sensors and the cost associated with a GPS unit. Hence, we attack
this problem by exploiting the connectivity of a sensor network and some common
capabilities of sensors. More specifically, we assume a sensor can measure its distances
to and communicate with certain other sensors in the network. The sensor network
localization problem with distance information is to determine the positions of all sen-
sors in a network given the positions of some sensors and the distances between some
pairs of sensors. A sensor whose position is given is called an anchor. A network in R

d

is said to be localizable if there exists exactly one position in R
d corresponding to each

nonanchor sensor such that the given intersensor distances are satisfied. The authors
of [5] use rigidity theory to give the necessary and sufficient conditions for a network
to be localizable. However, the process of localizing a network has been shown to be
NP-hard even when the network is known to be localizable [2]. This leaves us with
the more refined questions of how we should go about localizing networks, and what
kinds of networks can we “efficiently” localize.

The characterization of networks which can be “easily” or “efficiently” localized
is not complete, even for the ideal case where the given distance measurements are
exact. In [14], global nonlinear optimization techniques combined with heuristics are

∗Received by the editors January 3, 2007; accepted for publication (in revised form) September 2,
2008; published electronically February 11, 2009. The work of Fang, Cao, and Morse was supported
in part by grants from the U.S. Army Research Office and the U.S. National Science Foundation
and by a gift from the Xerox Corporation. The work of Anderson was supported by the Research
School of Information Sciences and Engineering and National ICT Australia which is funded by
the Australian Government’s Department of Communications, Information Technology and the Arts
and the Australian Research Council through the Backing Australia’s Ability initiative and the ICT
Center of Excellence Program.

http://www.siam.org/journals/sicon/48-1/67914.html
†Department of Electrical Engineering, Yale University, New Haven, CT 06520 (jia.fang@yale.edu,

as.morse@yale.edu).
‡Faculty of Mathematics and Natural Sciences, ITM, University of Groningen, Groningen, The

Netherlands (m.cao@rug.nl).
§Australian National University and National ICT Australia Ltd., 216 Northbourne Ave., Can-

berra ACT 2601 Australia (Brian.Anderson@nicta.com.au).

321



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

used to estimate sensor information. In [13], a “fold-free” layout of the network is first
estimated, and then force-based relaxation methods are used to refine the estimated
sensor positions. In [16, 15], the distance between each pair of sensors is estimated
from the given intersensor distances using a shortest path algorithm, and classical
multidimensional scaling techniques are used to assign positions to each sensor to
approximate the given distance information. In [3], a semidefinite programming–based
algorithm is given for a class of dense networks when a sufficiently large number of
intersensor distances are known. In this work, we are interested in provably correct
localization algorithms and the kinds of networks that can be “efficiently” localized by
them. We assume the given intersensor distances are exact distance measurements.

The characterization of efficiently localizable networks has been investigated in [1]
and we extend the results of that paper. We present a localization algorithm called
“Sweeps” which consists of solving a sequence of a finite number of quadratic equa-
tions, where the solution of each equation is easily obtainable by the well-known
quadratic formula. We give a simple graphical characterization of all networks which
can be localized by Sweeps, and we use graph rigidity theory to give some graphical
characterizations of networks that can be efficiently localized by Sweeps. We also
introduce the concept of “sequential” localization algorithms, and we say a network
is sequentially localizable if it can be localized by some sequential localization algo-
rithm. We show that Sweeps is a sequential localization algorithm which can localize
all sequentially localizable networks. The Sweeps algorithm we present in this work
is limited because we assume that the given intersensor distance measurements are
exact. We refer the interested reader to [6] in which we adapt the Sweeps algorithm
for the case of inaccurate distance measurements.

In section 2, we review the theoretical background of the localization problem
from graph rigidity theory, and we give the terms and definitions to be used in the
exposition that follows. In section 3, we introduce the notions of “bilateration or-
derings” and “sequentially localizable” networks. In section 4 we present the Re-
stricted Sweeps algorithm on which the Sweeps algorithm is based, and in section 5
we present the Sweeps algorithm. In section 6 we characterize the class of networks
localizable by Sweeps, and we show that all sequentially localizable networks are lo-
calizable by Sweeps. In section 7, we characterize some classes of networks which can
be “efficiently” localized by either Sweeps or Restricted Sweeps, and in section 8 we
characterize some classes of networks which are localizable by Restricted Sweeps. We
conclude with future work and research problems in section 9.

2. Background. A multipoint p = {p1, . . . , pn} in d-dimensional space is a set
of n points in R

d labeled p1, . . . , pn. Because we are concerned only with networks
in the plane, we will henceforth restrict our attention to the case of d = 2. Two
multipoints p = {p1, . . . , pn} and q = {q1, . . . , qn} of n points in R

2 are congruent
if for all i, j ∈ {1, . . . , n}, the distance between pi and pj is equal to the distance
between qi and qj . A graph with vertex set V and edge set E is denoted (V , E). A
simple graph is a graph for which there is at most one edge between any two distinct
vertices, and no edge between a vertex and itself. A point formation of n points at a
multipoint p = {p1, . . . , pn} consists of p and a simple undirected graph G with vertex
set V = {1, . . . , n}, and is denoted by (G, p). If (i, j) is an edge in G, then the length
of edge (i, j) in the point formation (G, p) is the distance between pi and pj . Two
point formations with the same graph have the same edge lengths in the case when
the length of each edge in the graph is the same in both point formations.

For t ∈ R
2, let ‖t‖ denote the Euclidean norm on R

2. For any multipoint p =
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{p1, . . . , pn} in R
2 and ε > 0, let Bp(ε) denote the set of all multipoints q = {q1, . . . , qn}

in R
2, where ‖pi−qi‖ < ε for all i ∈ {1, . . . , n}. A point formation (G, p) is rigid in R

2

if there exists ε > 0 such that for all q ∈ Bp(ε), p and q are congruent whenever (G, p)
and (G, q) have the same edge lengths. Roughly speaking, a rigid point formation is
one that cannot be continuously deformed without causing an edge length to change.
A graph G is said to be rigid in R

2 if there exists a multipoint p in R
2 and ε > 0

such that (G, q) is rigid in R
2 for all q ∈ Bp(ε). A set consisting of a finite number

of elements from R is said to be algebraically independent over the rationals if its
elements do not satisfy any nonzero multivariable polynomial equation with rational
coefficients. A multipoint is said to be generic if the set consisting of the coordinates
of its points is algebraically independent over the rationals. It is known that if a
multipoint p is generic, then a point formation (G, p) is rigid if and only if G is rigid.

A point formation (G, p) in R
2 is globally rigid in R

2 if multipoints p and q are
congruent whenever (G, p) and (G, q) have the same edge lengths. In other words,
edge lengths of a globally rigid point formation uniquely determine all intervertex
distances. A graph G is said to be globally rigid in R

2 if there exist multipoint p in
R

2 and ε > 0 such that (G, q) is globally rigid in R
2 for all q ∈ Bp(ε). It is known that

if a multipoint p in R
2 is generic, then the point formation (G, p) is globally rigid in

R
2 if and only if G is globally rigid in R

2. For any integer k > 1, a graph is said to be
k connected if there does not exist a set of k − 1 vertices whose removal disconnects
the graph. It is known that a graph with four or more vertices is globally rigid in R

2 if
and only if the graph is three connected and there does not exist an edge of the graph
whose removal results in a graph which is not rigid in R

2 [10, 9, 4]. There are a number
of polynomial time algorithms such as Pebble Game for determining if a graph is rigid
in R

2 [11]. Since the k connectedness of a graph can also be efficiently determined, it
follows that the global rigidity of a graph in R

2 can be efficiently determined.
A network with n sensors is modeled by a point formation (G, p), where each sen-

sor corresponds to exactly one vertex of G, and vice versa, with (i, j) being an edge of
G if either i and j are both anchors or the distance between the corresponding sensors
is known and p = {p1, . . . , pn}, where pi is the position of the sensor corresponding
to vertex i. We say that G is the graph of the network and p is the multipoint of
the network. In this work we will be concerned only with networks in the plane.
It is known that if the multipoint of a network in R

2 is generic, then the network
is localizable if and only if it has at least 3 noncollinear anchors and the graph of
the network is globally rigid in R

2 [5]. Since almost all multipoints are generic, we
will, without loss of generality, restrict our attention to those networks with generic
multipoints [4]. In particular, for networks in the plane, this implies no two sensors
occupy the same point and no three sensors are collinear in the networks we consider.
For such networks, the localizability of the network depends only on the number of its
anchors and its graph. Because we are concerned only with networks in the plane, we
will refer to graphs that are globally rigid, or rigid, in R

2 as simply globally rigid, or
rigid. To avoid trivial and degenerate cases, we will restrict our attention to networks
containing four or more sensors.

In the following, let N be a localizable network of n > 3 sensors in the plane
labeled 1 through n, and suppose the multipoint of the point formation modeling N

is generic. Let G = (V , E) be the graph of N. Since the multipoint of N is assumed
to be generic, we have that N is localizable if and only if G is globally rigid in R

2

and N has at least three anchors. As noted previously, there are a number of efficient
algorithms for determining if a graph is globally rigid in R

2 [11, 9, 10]. Hence, it
follows that the localizability of N can also be efficiently determined just by analyzing
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the graph of N and counting its anchors. Without loss of generality, suppose that for
each i ∈ {1, 2, . . . , n}, vertex i of G corresponds to sensor i and vice versa. For each
v ∈ V , let N (v) denote the set consisting of all vertices u where (u, v) ∈ E , and for
each u ∈ N (v) write duv for the distance between sensors u and v.

3. Sequentially localizable networks. Suppose A is a set of at least three
sensors of N and the vertices corresponding to the sensors in A induce a complete
graph in G, i.e., the distances among all pairs of sensors in A are known. Suppose a
position π(a) is assigned to each sensor a ∈ A such that all known distances among
the sensors of A are satisfied. Since N is localizable, it is straightforward to show that
the positions assigned to the sensors in A determine a unique position for each of the
sensors not in A. In other words, there corresponds exactly one position π(v) to each
of the sensors v ∈ V − A such that all known intersensor distances are satisfied, i.e.,
‖π(v) − π(u)‖ = duv for all (u, v) ∈ E . We call π(v), v ∈ V , the position of sensor v
relative to A, and we call A the set of proxy anchors of N. It is easy to show that if
sensors labeled a1, a2, a3 are three anchors whose positions are given either by GPS
or manual configuration, then the given anchor positions and π(a1), π(a2), π(a3) can
be used to compute a Euclidean transformation which maps each π(v), v ∈ V , to the
actual position of sensor v.

Let A denote a set of at least three proxy anchors of N, i.e., A is any set of three
sensors for which all distances among the sensors are given, and each sensor in A has
been assigned a position so that the given distances among them are satisfied. Let
π(u), u ∈ A, denote the position assigned to sensor u, and let π(v), v ∈ V , denote
the position of sensor v relative to A. For each sensor v and a set S of points in
the plane, we say that S is a candidate positions set of sensor v if π(v) ∈ S. If a
candidate positions set consists of a finite number of points, then the set is said to be
finite. By a sweep of N is meant any sequence v1, . . . , vn obtained by relabeling the n
sensors in any way. By a predecessor of a sensor in a sweep is meant any other sensor
preceding it in the sweep such that the distance between the two sensors is known. The
concatenation of a finite number of sweeps in a specific order is a multiple sweep. By a
sequential localization algorithm is meant any localization algorithm which processes
the sensors in a network, one by one, in a predetermined sequence in such a way
so that the sequence is a multiple sweep and the data for each successive sensor
v ∈ V −A in the sequence are either the empty set or a finite candidate positions set
for v computed using only the known distances between v and its predecessors, and
previously determined data for v and the predecessors of v. The data for sensor a ∈ A
is assumed to be the singleton candidate positions set consisting of just its assigned
position. Clearly, the position of sensor v relative to A is computed if a candidate
positions set consisting of just one element is computed for v. Suppose a singleton
candidate positions set has been computed for each sensor of N. If N has three
anchors, then the given positions of the anchors and their computed positions relative
to A can be used to obtain a Euclidean transformation which maps the computed
position of each sensor v to the actual position of sensor v. Since N is localizable, it
must have at least three anchors, so N can be localized by a sequential localization
algorithm followed by a Euclidean transformation. For any localizable network, we say
the network is sequentially localizable if it can be localized by a sequential localization
algorithm followed by a Euclidean transformation. Furthermore, we say the network is
sequentially localizable in k sweeps if the sequence in which the sensors are processed
is a multiple sweep, which is the concatenation of k sweeps.

A graph has a bilateration ordering if its vertices can be ordered as v1, . . . , vn
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so that the subgraph induced by v1, v2, and v3 is complete, and each vi, i > 3, is
adjacent to at least two distinct vertices vj , j < i. As noted previously, to avoid
degenerate cases, all networks considered below will be assumed to contain at least
four sensors. The following is an easily shown property of the graphs of sequentially
localizable networks.

Lemma 1. A network is sequentially localizable only if its graph has a bilateration
ordering.

All proofs, unless otherwise stated, are given in the appendix.
A simple and well-known example of a sequential localization algorithm is based

on the trilateration operation, where the position of each sensor is determined using
its distances to three sensors whose positions have already been determined. Trilater-
ation can be applied to any localizable network in the plane possessing a special type
of sweep called a “trilateration ordering,” which means an ordering v1, . . . , vn of the
vertices of the network’s graph so that the subgraph induced by v1, v2, v3 is complete
and each vi with i > 3 is adjacent to at least three distinct vertices vj , j < i [1].
Clearly, a trilateration ordering of a graph is also a bilateration ordering, while a
bilateration ordering is not necessarily a trilateration ordering. Graphs with trilater-
ation orderings are known to be globally rigid in R

2 [1]. Suppose G has a trilateration
ordering v1, . . . , vn. Assign positions pv1 , pv2 , pv3 to sensors v1, v2, v3, respectively, so
that their intersensor distances are satisfied, and let v1, v2, v3 be the proxy anchors of
N. As noted previously, the multipoint of N is assumed to be generic, which implies
no three sensor positions are collinear. Hence, beginning with v4, trilateration can
be used to determine a unique position pvi for each sensor vi, i > 3, using the given
distances between vi and its predecessors in the ordering, and the computed positions
of its predecessors. It is easy to show that the computed position of each sensor is
the position of the sensor relative to the proxy anchors. Moreover, the actual sensor
positions can be obtained from the computed positions pv, v ∈ V , via a Euclidean
transformation. Hence, the network can be localized by a sequence of trilateration
operations followed by a Euclidean transformation and is therefore sequentially lo-
calizable in one sweep. Furthermore, it is straightforward to show that a network’s
graph must have a trilateration ordering if the network is sequentially localizable in
one sweep.

Lemma 2. A localizable network is sequentially localizable in one sweep if and
only if its graph has a trilateration ordering.

From Lemma 2, we have that localizable networks whose graphs have trilateration
orderings are sequentially localizable; however, as we will show below, the converse
need not be true. The central aims of this paper are to explicitly characterize the class
of sequentially localizable networks and to present a sequential localization algorithm,
called Sweeps, which can localize all sequentially localizable networks. The main result
of this paper is the following.

Theorem 1. A localizable network is sequentially localizable if and only if the
graph of the network has a bilateration ordering. All sequentially localizable networks
are localizable by Sweeps.

The proof of Theorem 1 is given in section 6. Given a network whose multipoint
is generic, it is known that the network is localizable if and only if it has three
anchors and its graph is globally rigid in R

2 [5]. From Theorem 1, it follows that
if a network has three anchors and its graph is globally rigid and has a bilateration
ordering, then the network is sequentially localizable and can be localized by Sweeps.
In section 3.1, we give a polynomial time algorithm for determining if a graph has a
bilateration ordering, and for identifying a bilateration ordering of the graph when
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the graph has at least one such ordering. As noted previously, there are polynomial
time algorithms for determining if a graph is globally rigid in R

2. Hence, it can be
efficiently determined if a network is sequentially localizable, and therefore localizable
by Sweeps, just by analyzing the graph of the network.

The graph H as shown in Figure 1(a) can be easily verified to be three connected
since there do not exist two vertices whose removal disconnects the graph. Further-
more, it can be shown using the Pebble Game, for example, that there does not exist
an edge of H whose removal results in a graph which is not rigid in R

2 [11]. Hence,
H is globally rigid in R

2 [9, 10]. It follows then that any network with three anchors
and a generic multipoint and whose graph is H must be localizable [5]. Furthermore,
H has a bilateration ordering but no trilateration ordering. Hence, if H is the graph
of a network with three anchors, then it follows from Theorem 1 that the network is
sequentially localizable and can be localized by Sweeps. However, since H does not
have a trilateration ordering, the network cannot be localized by only a sequence of
trilateration operations followed by a Euclidean transformation. We note that not
all localizable networks are sequentially localizable. For example, the graph in Fig-
ure 1(b) does not have a bilateration ordering since any bilateration ordering must
begin with three vertices, all of which are in either {1, 2, 3, 4, 5} or {6, 7, 8, 9, 10}, and
no vertex in {1, 2, 3, 4, 5} is adjacent to at least two vertices in {6, 7, 8, 9, 10}, and
vice versa. Furthermore, it can be checked that the graph is also globally rigid in R

2

[11, 9, 10]. So if the graph in Figure 1(b) is the graph of a network with three anchors,
then the network is localizable but not sequentially localizable.
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c b
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Fig. 1. (a) A globally rigid graph with a bilateration ordering, i.e., a,d,f,e,c,b, but no trilatera-
tion ordering. (b) A globally rigid graph without a bilateration ordering. (c), (d) Sensors a, b, and
c are anchors.

3.1. Bilateration orderings. As noted in [1] a graph with a trilateration or-
dering must also be globally rigid in R

2. It is easy to show by example that a graph
with a bilateration ordering is not necessarily globally rigid in R

2. However, a graph
with a bilateration ordering is necessarily rigid in R

2. More specifically, given any
graph which is rigid in R

2, it is known that if a new vertex x is added to the graph by
making x adjacent to two or more vertices of the graph, then the resulting graph is
again rigid in R

2 [17]. Suppose G has a bilateration ordering, and let v1, v2, v3, . . . , vn
be any bilateration ordering of G. Let Gi, i ∈ {3, 4, . . . , n}, denote the graph induced
in G by all vertices vj where j ≤ i. Since the complete graph on three vertices is rigid,
it follows that G3 must be rigid. Now suppose Gi is rigid for some i ∈ {3, . . . , n− 1}.
Since Gi+1 can be obtained from Gi by making vi+1 adjacent to two or more vertices
of Gi, it follows that Gi+1 must also be rigid. By induction then, Gn, and therefore
G, must be rigid in R

2. It is known that if a graph is rigid in R
2, then the graph must

also be two connected. Therefore, any graph with a bilateration ordering is rigid in
R

2 and two connected.
A graph may have zero, one, or multiple bilateration orderings. If there is no



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 327

set of three vertices of G which induce a complete subgraph in G, then G cannot
have a bilateration ordering. Suppose G has at least one set of three vertices which
induce a complete subgraph. In the following we give a polynomial time algorithm
for determining if G has a bilateration ordering, and for identifying a bilateration
ordering of G if there is at least one such ordering. Let x, y, z be any set of three
vertices which induce a complete subgraph in G, and let W1 = {x}, W2 = {y},
W3 = {z}. Suppose Wi for some i ≥ 3 has been defined. If there exists a vertex u in
V −

⋃
j≤iWj such that u is adjacent to at least two vertices in

⋃
j≤iWj , then define

Wi+1 = {u}. Otherwise, set Wi+1 = ∅ and stop the algorithm. Let W1, . . . ,Wh be
the nonempty sets generated by this procedure. Clearly, h = n if and only if there is
a bilateration ordering of the graph beginning with x, y, z. If h = n, then the ordering
obtained by labeling the vertex in Wi, i ∈ {1, . . . , n}, as vi is a bilateration ordering
of G. For each i ∈ {1, . . . , h}, we have that |V −

⋃
j≤iWj | = n − i, and it takes

a number of operations that are linear in n to check if a vertex in V −
⋃
j≤iWj is

adjacent to two vertices in
⋃
j≤iWj . Hence, it takes a number of operations that are

polynomial in n to determine each of the sets W1, . . . ,Wh, where h is at most n. The
vertex labeling to obtain a bilateration ordering is clearly a linear time procedure.
Furthermore, there are at most

(
n
3

)
possible choices for the first three vertices of a

bilateration ordering, which implies it can be determined in polynomial time if a graph
has a bilateration ordering, and to identify a bilateration ordering if it exists. Since
the global rigidity of a graph in R

2 can also be efficiently determined, we conclude
that it can be determined in polynomial time if a network is sequentially localizable
just by analyzing the graph of the network.

In the following, we describe a class of graphs for which a bilateration ordering
can be obtained beginning with any two adjacent vertices. A graph is called a cycle
if its vertices can be relabeled as c1, . . . , cm, m ≥ 2, such that ci is adjacent to cj if
and only if |i− j| = 1 or |i− j| = m− 1. The length of a cycle is the number of edges
in the cycle. Let H be any graph, and let C be any subgraph of H such that C is a
cycle. If vertices u and v are adjacent in H, and u and v are nonadjacent vertices in
C, then the edge (u, v) is called a chord of C. A graph H is said to be chordal if for
each subgraph which is also a cycle of length at least four, H contains at least one
chord of the cycle. A chordal graph is not necessarily rigid.

Lemma 3. Let H be a rigid and chordal graph with at least four vertices. Then
H has a bilateration ordering, and moreover, for each edge (u, v) in H, there exists a
bilateration ordering of H that begins with vertices u and v.

Hence, if a graph is rigid and chordal, then the graph has a bilateration ordering,
and furthermore, it is particularly easy to determine a bilateration ordering of the
graph since any two adjacent vertices must be the first two vertices of some bilateration
ordering. An additional simple consequence of Lemma 3 is that any rigid graph which
is also chordal must contain a “triangle,” i.e., a cycle of length three.

4. The Restricted Sweeps algorithm. In what follows we present a restricted
version of the Sweeps algorithm, called Restricted Sweeps, for the class of networks
whose graphs have bilateration orderings. The Sweeps algorithm is an extension of
this and will be given in section 5.

We begin with an informal description of Restricted Sweeps. A bilateration or-
dering of the network’s graph is first determined, assuming such an ordering exists,
and the sensors corresponding to the first three vertices of the ordering are designated
the proxy anchors. Positions are assigned to the proxy anchors so that the known dis-
tances among them are satisfied. For notational convenience, we assume each vertex of
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the network’s graph has the same label as that of the sensor to which it corresponds.
Roughly speaking, the algorithm “sweeps” through the network by processing the
sensors sequentially according to the chosen bilateration ordering, beginning with the
first sensor in the ordering which is not a proxy anchor. For each sensor which is not
a proxy anchor, a finite candidate positions set of the sensor is computed using the
known distances from the sensor to its predecessors in the ordering, and the candidate
positions sets, or assigned positions, of its predecessors. Recall that a predecessor of a
sensor in an ordering is simply any other sensor preceding it in the ordering such that
the distance between the two sensors is known. Once the last sensor in the ordering
is processed, a candidate positions set will have been computed for each sensor. We
call this first “sweep” a finite candidate positions set generating sweep. If not every
candidate positions set generated by the first sweep is a singleton, then subsequent
“refining” sweeps are performed to remove, if possible, elements from each candidate
positions set so as to obtain a candidate positions set of fewer elements. To perform a
refining sweep, an ordering distinct from the one used to perform the previous sweep
is determined, and the sensors are again processed sequentially according to the new
ordering. In section 8, we will give a polynomial time algorithm for determining order-
ings so as to localize the network in as few sweeps as possible by analyzing the graph
of the network. At the very least, the new ordering should be such that at least one
sensor with a nonsingleton candidate positions set has a predecessor in the ordering.
For each sensor v which is not a proxy anchor and whose candidate positions set is not
a singleton, the candidate positions sets of v’s predecessors in the new ordering, and
the known distances between v and its predecessors, are used to identify, if possible,
those points in v’s candidate positions set which cannot be sensor v’s position relative
to the proxy anchors. The identified points are removed from the candidate positions
set of sensor v to obtain a candidate positions set of fewer elements. We call each
sweep after the first sweep a refining sweep since the goal of each subsequent sweep
is to obtain smaller candidate positions sets.

To illustrate the general idea of a sweep, we use Restricted Sweeps to localize
a simple network whose graph is shown in Figure 1(c). For each pair of adjacent
vertices i, j, let dij denote the known distance between sensors labeled i and j. We
assume the multipoint of the network is generic, which implies in particular that no
three sensor positions are collinear. Vertices a, b, c correspond to the anchors, and
vertices u, v correspond to sensors whose positions are to be determined. Let pa, pb,
and pc denote the positions of anchors a, b, and c, respectively. It can be efficiently
determined that the graph in Figure 1(c) is globally rigid in R

2 [9, 11, 10]. Since the
network has three anchors and a generic multipoint, it follows that the network must
be localizable.

For the sake of notational convenience, we choose for the first sweep the ordering
a, b, c, u, v, in which case the proxy anchors correspond to the actual anchors. The
algorithm begins by letting the candidate positions set of each anchor be the singleton
set consisting of the anchor’s position. Hence, the positions of sensors u and v relative
to the anchors a, b, c are simply their actual positions. For a point p ∈ R

2 and a
positive real number r, let C(p, r) denote the circle with center p and radius r. Since
u is the first nonanchor sensor in the chosen ordering, the algorithm proceeds in
the first sweep by computing a finite candidate positions set for sensor u, which is
just the set of points where the two circles C(pa, dau) and C(pb, dbu) intersect. Since
no three sensor positions are collinear, it follows that C(pa, dau) and C(pb, dbu) must
intersect at exactly two points. For instance, if C(pa, dau) and C(pb, dbu) are as shown
in Figure 1(d), then the two points of intersection comprise the candidate positions
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set of sensor u. Let S(u, 1) denote the candidate positions set computed for sensor
u. Once a finite candidate positions set has been computed for sensor u, Restricted
Sweeps proceeds in the first sweep by determining a finite candidate positions set
for sensor v as follows. For each point p ∈ S(u, 1) which is distinct from both pa
and pc, let I(p) denote the points in the common intersection of the three circles
C(pa, dav), C(pc, dcv), and C(p, duv). The candidate positions set computed for sensor
v, denoted S(v, 1), is the union of all I(p), p ∈ S(u, 1) where p �= pa and p �= pc.
Now we show that S(v, 1) must be a singleton. Let pv be any point in S(v, 1).
Clearly, the distance from pv to anchors a and c must be dav and dcv, respectively.
Furthermore, since pv is in the intersection of C(pa, dav), C(pc, dcv), and C(pu, duv) for
some pu ∈ S(u, 1), we have that the distance between pu and pv must be duv. Note
that since pu ∈ S(u, 1), it follows that the distance between pu and anchors a and b
must be dua and dub, respectively. In other words, for each point pv ∈ S(v, 1), there
exists a point pu ∈ S(u, 1) such that all known intersensor distances are satisfied when
sensors v and u are assigned positions pv and pu, respectively, and the anchors are
simply assigned their given positions. Since the network is localizable, we have that
there exists exactly one point corresponding to each nonanchor sensor such that all
known intersensor distances are satisfied. Hence, it must be the case that S(v, 1) is a
singleton. By definition, the point in S(v, 1) must be the position of sensor v, so the
first sweep not only computes a finite candidate positions set for sensor v, but also
localizes sensor v since the computed candidate positions set is a singleton.

After the first sweep, a finite candidate positions set will have been determined
for both u and v. Since the candidate positions set of sensor u, i.e., S(u, 1), is not
a singleton, a second ordering is determined in order to perform a refining sweep.
Let the second ordering be a, b, c, v, u. Notice that the ordering has a sensor with a
nonsingleton candidate positions set, namely u, that also has at least one predecessor
in the ordering. More specifically, the predecessors of sensor u in the second ordering
are sensors a, b, and v. The second sweep begins by considering the first vertex in the
chosen ordering which has a nonsingleton candidate positions set, which in this case
would be sensor u. The Restricted Sweeps algorithm identifies, and removes, points
in S(u, 1) which cannot be the position of sensor u as follows. The key observation is
that if a point p ∈ S(u, 1) is the position of sensor u, then for each of u’s predecessors,
there must exist a point in the candidate positions set of the predecessor such that
p’s distance to that point is the known distance between u and the predecessor. If
this is not the case, then the point p can be removed from S(u, 1) to obtain a new
candidate positions set of fewer points.

Now we show that the second sweep will remove all but the actual position of
sensor u from S(u, 1). First, note that the distances between the actual position of
sensor u and the points in the singleton candidate positions sets of a, b, and v must be
dua, dub, and duv, respectively. So the actual position of sensor u will not be removed
from S(u, 1). Suppose there is a point q ∈ S(u, 1) such that q is not removed by
the second sweep; i.e., the distances between point q and the points in the singleton
candidate positions sets of a, b, and v are dua, dub, and duv, respectively. Clearly,
if sensor u is assigned point q as its position, and sensors a, b, c, v are assigned their
actual positions, then all known intersensor distances are satisfied. Since the network
is localizable, we have that there exists exactly one position corresponding to each
nonanchor sensor such that all known intersensor distances are satisfied. This implies
point q must be the actual position of sensor u, and all other points in S(u, 1) will have
been removed from S(u, 1) by the second sweep. Hence, the second sweep localizes
sensor u since the candidate positions set of u is a singleton after the second sweep.
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Also, since the candidate positions set of each sensor is a singleton after the second
sweep, it follows that Restricted Sweeps can localize the network in two sweeps.

4.1. Restricted Sweeps. Suppose the network N is localizable and the graph of
N, i.e., G, has at least one bilateration ordering. We first give the terms and definitions
to be used in describing the Restricted Sweeps algorithm. Let 2R

2
be the power set of

R
2 and write R+ for the set of positive real numbers. Let f : 2R

2 ×R+ → 2R
2

denote
the function (S, d) 	−→ S′, where S′ is the set of p ∈ R

2 such that ‖p − t‖ = d for
some t ∈ S. If S ∈ 2R

2
is not empty, then geometrically f(S, d) is the union of all

points in the plane which lie on circles with the same radius d centered at the points
in S. Of course if S is empty, then so is f(S, d) and conversely. We will be especially
interested in the case when S is a nonempty “finite set” and d > 0, where by finite
set we mean a set with a finite number of points in R

2. In this case f(S, d) is simply
the union of a finite number of circles in the plane which all have radius d.

Let S denote the set of all nonempty subsets of R
2 with finitely many elements.

Let q be a positive integer no smaller than 2 and write S
q for the q-fold Carte-

sian product of S with itself. Similarly, let (R+)q denote the q-fold Cartesian prod-
uct of R+ with itself. Our goal is to define a function gq : S

q × (R+)q → 2R
2

in
such a way so that for each {S1,S2, . . . ,Sq} ∈ S

q and {d1, d2, . . . , dq} ∈ (R+)q,
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite set. Furthermore, we shall re-
quire the definition of gq to be such that whenever there are distinct points ui ∈ Si,
i ∈ {1, 2, . . . , q}, if v ∈ R

2 satisfies ‖v − ui‖ = di, i ∈ {1, 2, . . . , q}, then v must be a
point in gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq). Defining gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) in
the most obvious way as the intersection of the sets f(Si, di), i ∈ {1, 2, . . . , q}, will
not be adequate, for it may be the case that the resulting intersection is a continuous
circle of points in the plane rather than a finite set. However, a necessary condition
for this to occur is that

⋂q
j=1 Sj �= ∅. Hence, let I =

⋂q
j=1 Sj and let X be the

intersection of the sets f(S1\I, d1) and f(Si, di), i ∈ {2, . . . , q}, which is clearly finite.
For each point p in I, let Y(p) denote the intersection of f({p}, d1) and f(Si\{p}, di),
i ∈ {2, . . . , q}, which is again finite. By letting gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) be the
union of X and Y(p), p ∈ I, it is easy to see that gq satisfies all the aforementioned
requirements.

More formally, for S1, . . . ,Sq ∈ S, let I =
⋂q
j=1 Sj . Let k denote the number of

elements in I. If I is not the empty set, i.e., k > 0, then let p1, p2, . . . , pk denote
the elements of I. For any set S ∈ S, and any subset T ⊆ S, let S\T denote the
complement of T in S. Define the function gq : S

q × (R+)q → 2R
2

as follows:

gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) =
(
f(S1\I, d1) ∩ f(S2, d2) ∩ · · · ∩ f(Sq, dq)

)
⋃(

k⋃
i=1

f({pi}, d1) ∩ f(S2\{pi}, d2) ∩ . . . . . . ∩ f(Sq\{pi}, dq)
)
.(1)

For q ≥ 2, it is easy to show that gq is defined such that for each {S1,S2, . . . ,Sq} ∈
S
q and {d1, d2, . . . , dq} ∈ (R+)q, gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is at most a finite

set. Furthermore, whenever there are distinct points ui ∈ Si, i ∈ {1, 2, . . . , q},
if v ∈ R

2 satisfies ‖v − ui‖ = di, i ∈ {1, 2, . . . , q}, then v must be a point in
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq).

Let [v] = v1, v2, v3, . . . , vn be a bilateration ordering of G. We begin by assign-
ing a point π(i) in R

2 to each vi, i ∈ {1, 2, 3}, so that the given distances among
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the sensors corresponding to vi, i ∈ {1, 2, 3}, are satisfied. Let the proxy anchors
of N be v1, v2, v3. For each vi, i > 3, let π(vi) denote the position of sensor vi
relative to the proxy anchors. In the following, we will describe an iterative pro-
cedure for computing a sequence of candidate positions sets for each v ∈ V , i.e.,
S(v, 1),S(v, 2), . . . ,S(v, i), . . . .

For i ∈ {4, . . . , n}, let M(vi) = N (vi) ∩ {v1, v2, . . . , vi−1}. We denote the cardi-
nality of M(vi) by qi and the elements of M(vi) by ui1, ui2, . . . , uiqi . Clearly qi ≥ 2
for all i ∈ {4, . . . , n} since [v] is a bilateration ordering. We define the sets S(vi, 1),
i ∈ {1, 2, . . . , n}, as follows. For i ∈ {1, 2, 3}, let

(2) S(vi, 1) = {π(i)},

and for i ∈ {4, 5, . . . , n}, let

(3) S(vi, 1) = gqi(S(ui1, 1),S(ui2, 1), . . . ,S(uiqi , 1), dui1vi , dui2vi , . . . , duiqi
vi).

Suppose S(v, k), v ∈ V , have been computed. The sets S(v, k + 1), v ∈ V ,
are computed as follows. Let [x] = x1, x2, . . . , xn be an ordering of V , and for i ∈
{1, . . . , n} let M(xi) = N (xi) ∩ {x1, x2, . . . , xi−1}. Note that [x] need not be a
bilateration ordering. For i ∈ {1, 2, 3, . . . , n}, ifM(xi) = ∅ or |S(xi, k)| = 1, then let

(4) S(xi, k + 1) = S(xi, k).

Otherwise, let

(5) S(xi, k + 1) = S(xi, k)
⋂( ⋂

w∈M(xi)

f(S(w, k + 1), dwxi)

)
.

4.2. Properties of the Restricted Sweeps algorithm. In the following, we
will show that for all v ∈ V , each S(v, i) is a finite candidate positions set for v, i.e.,
π(v) ∈ S(v, i), and S(v, j) ⊆ S(v, i) if i < j.

Since [v] is assumed to be a bilateration ordering, eachM(vi), i > 3, has at least
two elements and so qi ≥ 2. Hence, for i ∈ {4, . . . , n}, gqi is defined, and (3) implies
that S(vi, 1) is a finite set because the image of gqi consists of only finite sets. Since
S(vi, 1), i ∈ {1, 2, 3}, are also finite sets because of (2), we have that S(v, 1) is a
finite set for each v ∈ V . Note also that π(vi) ∈ S(vi, 1), vi ∈ V . This is clearly
true for i ∈ {1, 2, 3} because of (2). For any vertex v ∈ V , an easily verified property
of the function f is that if u ∈ N (v), and S(u) is a set for which π(u) ∈ S(u),
then π(v) ∈ f(S(u), duv). We call this the position keeping property of f . The fact
that π(v), v ∈ V , are distinct, together with the definition of gqi and the position
keeping property of f , implies that π(vi) ∈ S(vi, 1) for i ∈ {4, . . . , n}. So each S(v, 1),
v ∈ V , is a finite candidate positions set for sensor v, and we call the computation
of S(v, 1), v ∈ V , a finite position generating sweep of N. Suppose for some k ≥ 1
that S(v, k), v ∈ V , is a finite candidate positions set for v, i.e., π(v) ∈ S(v, k).
For each xi, (5) and (4) imply that S(xi, k + 1) must be a finite set since S(xi, k)
is a finite set. The fact that π(xi) ∈ S(xi, k) and the position keeping property
of f imply π(xi) ∈ S(xi, k + 1) for each xi. So for each v ∈ V , S(v, k + 1) is a
finite candidate positions set for v; furthermore, it is obvious from (5) and (4) that
S(v, k + 1) ⊆ S(v, k) for all v ∈ V . It follows from (2), (3), (5), and (4) that each
S(v, i), v ∈ V , i ∈ {1, . . . , k + 1}, is computed using S(u, i), where u is a predecessor



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

332 J. FANG, M. CAO, A. S. MORSE, AND B. D. O. ANDERSON

of v in the ordering chosen for the ith sweep, and S(v, i−1) when i > 1. By definition
then, the Restricted Sweeps algorithm is a sequential localization algorithm.

The preceding shows that if we sweep through the network a finite number of
times beginning with a finite position generating sweep, we can generate a sequence
of finite candidate positions sets for each v ∈ V , i.e., S(v, 1),S(v, 2), . . . ,S(v, i), . . . ,
such that S(v, 1) ⊇ S(v, 2) ⊇ · · · ⊇ S(v, i) ⊇ · · · . As we will show in section 4.3,
each S(v, 1), v ∈ V , is obtained by solving a sequence of a finite number of quadratic
equations, and each S(v, i), v ∈ V , i > 1, is obtained by computing the distance
between a finite number of specified pairs of points. Thus if we can sweep through
the network a finite number of times, say k, such that for all v ∈ V , each S(v, k) will
contain just one element, then that element must be π(v). Since N is localizable, N

must have at least three anchors, so the sensor positions can be obtained from π(v),
v ∈ V , via a Euclidean transformation computed from the anchors. In this case, we say
the network is localizable by the Restricted Sweeps algorithm in k sweeps followed
by a Euclidean transformation. In section 8, we will give the graph properties of
networks for which we can choose sweep orderings so that the first sweep is a finite
position generating sweep and the network is localized in as few sweeps as possible.
We will also describe the procedure by which we can efficiently determine the sweep
orderings by analyzing the network’s graph.

4.3. Quadratic equations. The localization of N can be formulated mathe-
matically as a system of |E| simultaneous quadratic equations in |V| variables:

(6) (xi − xj)2 + (yi − yj)2 = d2
ij ∀ (i, j) ∈ E ,

where (xi, yi) denotes the unknown position of sensor i. In the following we show that
the Restricted Sweeps algorithm is equivalent to solving a sequence of a finite number
of quadratic equations, where each equation has just one unknown, the solution of
which is easily obtained by the well-known quadratic formula, and computing the
distance between a finite number of specified pairs of points.

We first consider the computation of S(v, 1), v ∈ V . Each S(v, 1) is defined using
the function gq defined in (1). Since the ordering used for the first sweep must be
a bilateration ordering, it must be the case that q is at least 2 in (3). Computing
gq(S1,S2, . . . ,Sq, d1, d2, . . . , dq) is equivalent to solving the following system of equa-
tions in variables x and y for each collection of q points (ai, bi), i ∈ {1, . . . , q}, where
each (ai, bi) ∈ Si and not all q points are identical:

(7) (x− ai)2 + (y − bi)2 = d2
i , i ∈ {1, . . . , q}.

First, consider the case where q = 2. The equations in (7) become

(x− a1)2 + (y − b1)2 = d2
1,(8)

(x− a2)2 + (y − b2)2 = d2
2.(9)

Equations (8) and (9) are satisfied by the coordinates of the points of intersection,
if any, of the two circles with radii d1 and d2, and centered at (a1, b1) and (a2, b2),
respectively. Since (a1, b1) and (a2, b2) are assumed to be nonidentical, the coordinates
of at most two points in the plane can satisfy (8) and (9). See Figure 2 for the
three cases where the two circles intersect at two, one, and zero points respectively.
Equations (8) and (9) can be rewritten as one quadratic equation in one variable in
the obvious way. Since (ai, bi), i ∈ {1, . . . , q}, are assumed to be distinct, it must be
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(a1,b1)

d1

d2

(a2,b2)

(a1,b1)

d1

d2

(a2,b2)

(a1,b1)

d1

d2

(a2,b2)

(a)                 (b) (c)

Fig. 2. (a) Two intersection points. (b) One intersection point. (c) Zero intersection points.

the case that either a1 − a2 �= 0 or b1 − b2 �= 0. Without loss of generality, suppose
the latter is true. By subtracting (9) from (8), the quadratic terms cancel, and we get

(10) y =
d2
1 − d2

2 − (b21 − b22 + a2
1 − a2

2)− (−2a1 + 2a2)x
−2b1 + 2b2

.

Hence, (8) can be rewritten as a quadratic equation of just the variable x:

(11) (x− a1)2 +
(
d2
1 − d2

2 − (b21 − b22 + a2
1 − a2

2)− (−2a1 + 2a2)x
−2b1 + 2b2

− b1
)2

= d2
1.

Obviously, if (x, y) satisfies (8) and (9), then x must satisfy (11). On the other hand,
suppose x satisfies (11) and y satisfies (10); then x and y must also satisfy (8). So, if
we let P1(x, y) = (x− a1)2 + (y− b1)2 − d2

1, P2(x, y) = (x− a2)2 + (y− b2)2 − d2
2, and

P3(x, y) = P1(x, y) − P2(x, y), then x, y satisfy P1(x, y) = 0 and P3(x, y) = 0. Since
P3(x, y) = P1(x, y)−P2(x, y), this implies P2(x, y) = 0, which implies that (9) is also
satisfied by x and y. Therefore, x and y satisfy (8) and (9) if and only if they also
satisfy (11) and (10). Hence, for the case where q = 2, solving for x, y which satisfy
(8) and (9) reduces to solving a quadratic equation in x and then solving for y via
substitution. Since we are interested only in points in the real plane whose coordinates
satisfy (8) and (9), any complex solutions to (8) and (9) are discarded. Clearly, when
q > 2, solving for x, y which satisfy (7) can be similarly reduced to solving a quadratic
equation in x and then solving for y via substitution. Furthermore, it is not difficult
to show that when q > 2 the solution to (7) can be obtained by just solving a linear
system of equations. Since each Sj , j ∈ {1, . . . , q}, is a finite set, it follows that
computing S(v, 1), v ∈ V , in Restricted Sweeps is equivalent to solving a sequence of
a finite number of polynomial equations, each in one variable and each with degree
at most two, the solution of which is easily obtained by the quadratic formula.

Now consider the computation of S(v, k), v ∈ V , for k > 1. LetM(v) denote the
vertices adjacent to v which also precede v in the ordering chosen for the kth sweep.
If M(v) = ∅, then S(v, k) = S(v, k − 1), so suppose M(v) is nonempty, and let
u1, . . . , um, m ≥ 1, denote the elements of M(v). When M(v) is nonempty, S(v, k)
is computed using (5). It follows from (5) that S(v, k) is obtained by removing all
points p from S(v, k−1) for which there does not exist points p1 ∈ S(u1, k), . . . , pm ∈
S(um, k) such that ‖p − pi‖ = duiv for each i ∈ {1, . . . ,m}. Hence, (5) consists
of computing the distances between pairs of points in S(v, k − 1) and S(ui, k), i ∈
{1, . . . ,m}. From this, we conclude that Restricted Sweeps is equivalent to solving a
sequence of a finite number of quadratic equations, where the solution of each equation
is easily obtained by the well-known quadratic formula, and computing the distance
between a finite number of specified pairs of points.

5. The Sweeps algorithm. An extension to the Restricted Sweeps algorithm
was proposed in [7]. The Sweeps algorithm to be presented in what follows is based
upon the extension to the Restricted Sweeps algorithm which we now describe.
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Like the Restricted Sweeps algorithm, Sweeps is a localization algorithm for the
class of networks whose graphs have bilateration orderings. As in Restricted Sweeps,
the Sweeps algorithm “sweeps” through the network according to a predetermined
bilateration ordering of the sensors and computes a finite candidate positions set for
each sensor using the candidate positions sets of its predecessors and known distances.
The key difference in Sweeps is that a “subassignment” function is associated with each
point in the candidate positions set computed for a sensor. We illustrate this using a
simple example. We first define an assignment of N to be any function α : V → R

2. By
a subassignment of N is meant any function that is the restriction of an assignment to
a nonempty subset of V . Suppose u, v, w, x is a subsequence of the ordering chosen for
the first sweep, i.e., the finite candidate positions set generating sweep, and suppose v
and w are each adjacent to both u and x, as shown in Figure 3(a). Let S(u, 1), S(v, 1),
and S(w, 1) denote the candidate positions sets of u, v, w, respectively, computed in
the first sweep by Restricted Sweeps. Since u is a predecessor of both v and w
in the ordering, S(u, 1) is used in the computations of both S(v, 1) and S(w, 1).
More specifically, suppose v has predecessors u and u′. From (3), we have that each
point pv ∈ S(v, 1) is obtained by computing the intersection of circles centered at
distinct points pu and pu′ for some pu ∈ S(u, 1) and pu′ ∈ S(u′, 1). Hence, pv can be
considered a candidate position of sensor v under the assumption that sensors u and
u′ are positioned at pu and pu′ , respectively. A graphical illustration of this is shown
in Figure 3(b).

pv

pu

pu’

u

v
w

x

2(u2)2(u2)

p

dvu2dvu2

dvu1dvu1 1(u1)1(u1)

(a) (b)                       (c)

Fig. 3.

In the Restricted Sweeps algorithm, the candidate positions set of sensor v con-
tains no “record” of the fact that pv was computed assuming u is positioned at pu and
u′ is positioned at pu′ . The Sweeps algorithm extends Restricted Sweeps by using a
subassignment to keep track of the fact that pv was computed assuming sensors u and
u′ are positioned at pu and pu′ , respectively. So a subassignment β is associated with
pv, where the domain of β contains v, u, u′ and β(v) = pv, β(u) = pu, and β(u′) = pu′ .
More generally, for each sensor v and each point p in the candidate positions set of v,
the assumed position of each sensor whose candidate positions set was either directly
or indirectly used in computing p is kept track of via a subassignment function. In
reference to Figure 3(a), suppose pv ∈ S(v, 1) is computed assuming sensor u is po-
sitioned at pu, and qw ∈ S(w, 1) is computed assuming sensor u is positioned at qu,
where qu �= pu. Since both v and w are predecessors of x, we have that the candidate
positions sets of both v and w are used in computing the candidate positions set of
x. For the sake of this example, suppose that the only predecessors of x are v and w.
In Restricted Sweeps, pv and qw would be used in computing the candidate positions
set of x. More specifically, if the circle centered at pv with radius dvx and the circle
centered at qw with radius dwx intersect at one or more points, then each of those
points would be an element in the candidate positions set of x. In Sweeps, however,
pv and qw would not be used in computing the candidate positions set of sensor x
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because the two points were computed assuming different positions for sensor u. For
certain networks, the candidate positions sets generated by Sweeps contain signifi-
cantly fewer elements than those generated by Restricted Sweeps. And as we will
see in section 7, the computational complexity of localizing a network by Sweeps, or
Restricted Sweeps, is entirely dependent on the number of elements in the generated
candidate positions sets.

5.1. Sweeps. Suppose the network N is localizable and the graph of N, i.e.,
G, has at least one bilateration ordering. We first give the terms and definitions
to be used in describing the Sweeps algorithm. An assignment α is consistent if
‖α(u)−α(v)‖ = duv for all (u, v) ∈ E . Let D(α) denote the domain of a subassignment
α. Two subassignments α and β are said to be consistent with each other, and we write
α ∼ β, if there does not exist u ∈ D(α)∩D(β) such that α(u) �= β(u). For p ∈ R

2 and
a positive real number r, let C(p, r) denote the circle of radius r centered at p. Let
α1, . . . , αk be a collection of k ≥ 1 pairwise consistent subassignments, i.e., αi ∼ αj
for all i, j ∈ {1, . . . , k}, and define uk(α1, . . . , αk) as the subassignment with domain⋃
i∈{1,...,k}D(αi) whose restriction to D(αi) is equal to αi for each i ∈ {1, . . . , k}.

Consider a collection of k ≥ 2 pairwise consistent subassignments α1, . . . , αk.
Suppose there are vertices v ∈ V and ui ∈ D(αi), i ∈ {1, . . . , k}, such that (v, ui) ∈ E
for all i ∈ {1, . . . , k}, and v is not an element of the domain of any αi. If there is a point
p whose distance to each αi(ui), i ∈ {1, . . . , k}, is dvui , then roughly speaking, p is a
candidate position for sensor v assuming each sensor ui, i ∈ {1, . . . , k}, is positioned at
αi(ui). More generally, p can be viewed as a candidate position for sensor v assuming
each sensor u ∈

⋃
i∈{1,...,k}D(αi) is positioned at α(u), where α = uk(α1, . . . , αk). We

aim to define a set M(α1, . . . , αk, v, u1, . . . , uk) with the goal of keeping track of the
candidate positions of sensor v assuming sensors ui, i ∈ {1, . . . , k}, are positioned at
αi(ui), i ∈ {1, . . . , k}, respectively. Since sensor positions are assumed to be distinct,
we shall be interested only in the case where αi(ui), i ∈ {1, . . . , k}, are distinct. See
Figure 3(c) for an illustration of the case when k = 2. To keep track of the fact
that p is a candidate position for sensor v assuming each sensor ui, i ∈ {1, . . . , k}, is
positioned at αi(ui), define the subassignment βp with domain {v}∪

⋃
i∈{1,...,k}D(αi)

such that βp(v) = p and βp(ui) = αi(ui) for each i ∈ {1, . . . , k}:

(12) βp(v) = p, βp(u) = ζ(u) ∀ u ∈
⋃

i∈{1,...,k}
D(αi),

where ζ = uk(α1, . . . , αk). Let M(α1, . . . , αk, v, u1, . . . , uk) denote the set of all such
βp. More formally, if

⋂
j∈{1,...,k} C(αj(uj), dvuj ) = ∅, or αi(ui) = αj(uj) for some

i, j ∈ {1, . . . , k}, i �= j, then let M(α1, . . . , αk, v, u1, . . . , uk) = ∅. Otherwise, since
k ≥ 2, it is easy to see that

⋂
j∈{1,...,k} C(αj(uj), dvuj ) is a set consisting of at most q

points in R
2, where q is at most 2. Let the points be denoted by p1, . . . , pq, and let

(13) M(α1, . . . , αk, v, u1, . . . , uk) = {βp1 , . . . , βpq}.

In the Sweeps algorithm, a sequence of finite sets of subassignments S(v, 1), . . . ,
S(v, j) is computed for each v ∈ V , where for each i ∈ {1, . . . , j}, v is in the domain of
each subassignment in S(v, i), and {β(v) | β ∈ S(v, i)} is a finite candidate positions
set for v.

Let [v] = v1, v2, v3, . . . , vn be a bilateration ordering of G. We begin by assigning
a point π(vi) in R

2 to each vi, i ∈ {1, 2, 3}, so that the known distances among the
sensors corresponding to vi, i ∈ {1, 2, 3}, are satisfied. Let the proxy anchors of N be
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v1, v2, v3. For each vi, i > 3, let π(vi) denote the position of sensor vi relative to the
proxy anchors. For vi, i ∈ {1, 2, 3}, let αi be the subassignment with domain {vi},
where αi(vi) = π(vi). For i ∈ {1, 2, 3}, let S(vi, 1) be defined as

(14) S(vi, 1) = {αi}, i ∈ {1, 2, 3}.

The sets S(vi, 1), i > 3, are computed iteratively as follows. For vi, i > 3, letM(vi) =
N (vi) ∩ {v1, . . . , vi−1}. Since [v] is a bilateration ordering, each M(vi), i > 3, must
be a set of at least two elements. Let u1, . . . , um be the elements of M(vi). In order
to compute S(vi, 1), we consider each collection of pairwise consistent subassignments
αj ∈ S(uj , 1), j ∈ {1, . . . ,m}. SupposeM(α1, α2, . . . , αm, vi, u1, u2, . . . , um) �= ∅, and
let β ∈ M(α1, α2, . . . , αm, vi, u1, u2, . . . , um). From (12), we have that vi, u1, . . . , um ∈
D(β), β(uj) = αj(uj) for all j ∈ {1, . . . ,m}, and β(vi) is a candidate position of sensor
vi assuming that each sensor u ∈ D(β) is positioned at β(u), and more specifically, that
each sensor uj , j ∈ {1, . . . ,m}, is positioned at αj(uj). The set S(vi, 1) is intended to
be the set of all such subassignments β, where β ∈ M(α1, α2, . . . , αm, vi, u1, u2, . . . , um)
and αj ∈ S(uj , 1), j ∈ {1, . . . ,m} is a collection of pairwise consistent subassignments.
Hence, S(vi, 1) is defined as

(15)
S(vi, 1) =

⋃
αj∈S(uj ,1) ∀ j∈{1,...,m} and αj∼αk ∀ j,k∈{1,...,m}

M(α1, . . . , αm, vi, u1, . . . , um).

Note that since |M(vi)| ≥ 2 for each vi, where i > 3, it follows that each S(v, 1)
consists of a finite number of elements.

Suppose for some k ≥ 1 that S(u, k), u ∈ V , have been computed, and that each
S(u, k) consists of a finite number of elements. Let u1, . . . , un, denoted [u], be any
ordering of the vertices such that the first three vertices of [u] coincide with the proxy
anchors: u1 = v1, u2 = v2, u3 = v3. Note that [u] is not required to be a bilateration
ordering. Once the ordering [u] is selected, the sets S(u, k + 1), u ∈ V , are computed
iteratively as follows. For i ∈ {1, 2, 3}, let S(ui, k + 1) = S(ui, k). For i ∈ {4, . . . , n},
let M(ui) = N (ui) ∩ {u1, . . . , ui−1}, and let S(ui, k + 1) = S(ui, k) if M(ui) = ∅. If
M(ui) is nonempty, then let w1, . . . , wm be the elements of M(ui). For notational
convenience, let w0 denote ui. Suppose α0 is a subassignment in S(ui, k) for which
there exists a collection of subassignments αj ∈ S(wj , k + 1), j ∈ {1, . . . ,m}, such
that α0, α1, . . . , αm are pairwise consistent and ‖α0(ui)− αj(wj)‖ = duiwj for all wj ,
j ∈ {1, . . . ,m}. In this case, α0(ui) can be considered a candidate position for sensor
ui assuming that each wj , j ∈ {1, . . . ,m}, is positioned at αj(wj), and more generally,
that each w ∈ D(αj), j ∈ {1, . . . ,m}, is positioned at αj(w). Hence, if α0 is “aug-
mented” to a subassignment α, where α = um+1(α0, α1, . . . , αm), then α(ui) = α0(ui)
and α(wj) = αj(wj) for all j ∈ {1, . . . ,m}, and α(w) = αj(w) for each w ∈ D(αj),
j ∈ {1, . . . ,m}. Roughly speaking, S(ui, k + 1) is the set of subassignments obtained
from S(ui, k) by “augmenting” each such subassignment α0 to um+1(α0, α1, . . . , αm).
Now suppose β is a subassignment in S(ui, k) for which there does not exist some
collection of subassignments βj ∈ S(wj , k+1), j ∈ {1, . . . ,m}, such that β, β1, . . . , βm
are pairwise consistent and ‖β(ui) − βj(wj)‖ = duiwj for all wj , j ∈ {1, . . . ,m}. It
is straightforward to show that β(ui) cannot be the position of sensor ui relative to
the proxy anchors, and so β is not used to define any subassignment in S(ui, k + 1).
Roughly speaking, β(ui) is removed from consideration as a candidate position for
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sensor ui. More formally, S(ui, k + 1) is defined as

S(ui, k + 1) =

{
um+1(α0, α1, . . . , αm) | α0 ∈ S(ui, k),(16)

αj ∈ S(wj , k + 1) ∀ j ∈ {1, . . . ,m},
αh ∼ αj , αh(wh) �= αj(wj) ∀ h, j ∈ {0, 1, . . . ,m},

α0(ui) ∈
⋂

j∈{1,...,m}
C(αj(wj), duiwj )

}
.(17)

Since each S(v, k), v ∈ V , consists of a finite number of elements, it follows from (17)
that S(v, k + 1) must also consist of a finite number of elements.

By the same argument as that used in section 4.3, it follows that Sweeps is
equivalent to solving a sequence of a finite number of quadratic equations, where
each equation has just one unknown, the solution of which is easily obtained by the
well-known quadratic formula, and computing the distance between a finite number
of specified pairs of points.

5.2. Properties of Sweeps. As noted previously, each of the sets computed by
the Sweeps algorithm consists of a finite number of subassignments. In the following,
we give some additional properties of these sets.

Lemma 4. Let w be any vertex of G. If vertices u, v are adjacent in G, and
u, v ∈ D(β) for some β ∈ S(w, 1), then ‖β(u)− β(v)‖ = duv.

From (17), we have that each subassignment α ∈ S(v, 2), v ∈ V , is a subassign-
ment “augmented” from some subassignment α̂ ∈ S(v, 1), i.e., α = um+1(α̂, α1, . . . , αm).
From this and Lemma 4 we can show the following.

Lemma 5. Let w be any vertex of G. If vertices u, v are adjacent in G, and
u, v ∈ D(β) for some β ∈ S(w, 2), then ‖β(u)− β(v)‖ = duv.

Recall that v1, . . . , vn was the ordering used to compute S(v, 1), v ∈ V , and
v1, v2, v3 are the proxy anchors of N whose assigned positions are π(v1), π(v2), and
π(v3), respectively. Since N is localizable, there exists exactly one consistent assign-
ment ᾱ of N, where ᾱ(vi) = π(vi) for each i ∈ {1, 2, 3}. Furthermore, for each
v ∈ V , ᾱ(v) is the position of sensor v relative to the proxy anchors. Suppose
S(v, 1),S(v, 2), . . . ,S(v, k) are computed for each v ∈ V .

Lemma 6. For each v ∈ V and i ∈ {1, . . . , k}, there is a β ∈ S(v, i) which is the
restriction of ᾱ to the domain of β and v ∈ D(β).

Each S(vi, k), k ≥ 1, is computed using sets S(vj , k), where vj is a predeces-
sor of vi in the kth chosen ordering, and S(vi, k − 1) when k > 1. Recall that
the sensors of N are labeled 1, . . . , n and V = {1, . . . , n}. Each subassignment
β may be represented as a sequence of n points, where the ith point in the se-
quence is β(i) if i ∈ D(β) and is ∅ otherwise. Hence, if β1, . . . , βm are m subassign-
ments, where subassignment βi is represented by the sequence pi1, . . . , pin, then the
set consisting of subassignments β1, . . . , βm can be represented by the set of points
{p11, . . . , p1n, p21, . . . , p2n, . . . , pm1, . . . , pmn}. From Lemma 6 we have that for each
sensor v and each computed ith sweep, the set {β(v) | β ∈ S(v, i)} is a finite candidate
positions set for v. By definition then, Sweeps is a sequential localization algorithm.

6. Graphical properties of networks localizable by Sweeps. In the follow-
ing, we show that the necessary condition for a localizable network to be sequentially
localizable is also a sufficient condition for the network to be localizable by the Sweeps
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algorithm. More specifically, we show that all localizable networks whose graphs have
bilateration orderings can be localized by computing S(v, k), v ∈ V , where k ≤ 2,
with the Sweeps algorithm, and we give an efficient algorithm for determining the
sensor ordering of each sweep.

Let A denote any set of three vertices in G which induce a complete graph in G.
Let H1,H2, . . . ,Hc denote the maximally connected components of the subgraph of G

induced by vertices in V −A. The following is a consequence of the assumption that
N is localizable.

Lemma 7. For each i ∈ {1, . . . , c}, the graph induced in G by A and the vertices
of Hi is globally rigid in R

2.
Let H be Hi for any i ∈ {1, . . . , c}, and let u be any vertex of H. In the following

we construct a partition of the vertex set of H. Let N0(u) = {u}, and let N1(u)
denote the set of vertices in V − A adjacent to u. Suppose for some integer i ≥ 1,
Nj(u), j ∈ {0, 1, . . . , i}, have been determined. Let Ni+1(u) denote the set of vertices
w ∈ V −A, where w /∈

⋃
j∈{0,...,i}Nj(u) and w is adjacent to a vertex in Ni(u). Since

there are a finite number of vertices, there can be only a finite number of sets generated
this way. Suppose we have h+1 sets generated this way: N0(u),N1(u), . . . ,Nh(u). It
is straightforward to show that the sets Ni(u), i ∈ {0, 1, . . . , h}, make up a partition
of the vertices of H. We call Ni(u), i ∈ {0, 1, . . . , h}, a vertex partition of H. Let n′

denote the number of vertices in H. Select any n′ elements of {|A| + 1, . . . , n}, and
order them as i1, i2, . . . , in′ so that i1 < i2 < · · · < in′ . Assign indices 1 to |A| to
vertices in A in any manner, and assign index in′ to vertex u. Assign the remaining
indices ij , j ∈ {1, 2, . . . , n′−1}, to vertices in N1, . . . ,Nh beginning with N1 and n′−1;
i.e., assign indices in′−1 to in′−|N1(u)| to the vertices in N1(u) in any manner, assign
indices in′−|N1(u)|−1 to in′−|N1(u)|−|N2(u)| to the vertices in N2(u) in any manner, and
so on. We call this ordering a complete ordering of the vertices of H with respect to
u and A, or just a complete ordering of the vertices of H with respect to A.

For each i ∈ {1, . . . , c}, let ui be any vertex in Hi. Since the vertex sets of
Hi, i ∈ {1, . . . , c}, are pairwise disjoint, we can construct an ordering of V that is a
complete ordering of Hi with respect to ui and A for all i ∈ {1, . . . , c}. We call this a
complete ordering of G with respect to u1, . . . , uc and A, or just a complete ordering
of G with respect to A.

Let v1, v2, v3, . . . , vn be any bilateration ordering of G, and suppose S(v, 1), v ∈ V ,
are computed using this ordering. This implies that sensors corresponding to v1, v2, v3
make up the set of proxy anchors, and v1, v2, v3 induce a complete subgraph in G.
Let A = {v1, v2, v3}, and let π(v1), π(v2), and π(v3) be the positions assigned to
the proxy anchors v1, v2, v3, respectively. Since N is localizable, there is exactly one
consistent assignment ᾱ of N such that ᾱ(vi) = π(vi), i ∈ {1, 2, 3}. As noted previ-
ously, the actual sensor positions can be obtained from ᾱ(v), v ∈ V , via a Euclidean
transformation computed using anchor positions. For i ∈ {1, . . . , c}, let ui be any
vertex in Hi.

Lemma 8. Suppose the ordering used to compute the second sweep, i.e., S(v, 2),
v ∈ V, is a complete ordering of G with respect to u1, . . . , uc and {v1, v2, v3}. For
each i ∈ {1, . . . , c}, and all α ∈ S(ui, 2), D(α) is the union of {v1, v2, v3} and the
vertex set of Hi.

The following is a consequence of Lemmas 5, 6, 7, and 8.
Lemma 9. Suppose the ordering used to compute the second sweep, i.e., S(v, 2),

v ∈ V, is a complete ordering of G with respect to u1, . . . , uc and {v1, v2, v3}. For
each i ∈ {1, . . . , c}, S(ui, 2) is a singleton, and the subassignment in S(ui, 2) is the
restriction of ᾱ to the union of {v1, v2, v3} and the vertex set of Hi.
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If the ordering used to compute the second sweep, i.e., S(v, 2), v ∈ V , is a complete
ordering of G with respect to u1, . . . , uc and {v1, v2, v3}, then Lemma 9 implies that
each S(ui, 2), i ∈ {1, . . . , c}, consists of exactly one subassignment αi, which is the
restriction of ᾱ to the union of A and the vertex set of Hi. Each sensor v which is not
a proxy anchor must correspond to a vertex in exactly one of the Hi, i ∈ {1, . . . , c}.
If sensor v corresponds to a vertex in Hi, then the position of sensor v relative to the
proxy anchors, i.e., ᾱ(v), is given by αi(v).1 We have just shown the following.

Lemma 10. If N is localizable and its graph has a bilateration ordering, then
N can be localized by computing two sweeps of the Sweeps algorithm followed by a
Euclidean transformation. The ordering of the first sweep is any bilateration ordering
v1, v2, v3, . . . , vn, and the ordering of the second sweep is a complete ordering of G

with respect to {v1, v2, v3}.
Now we give the proof for Theorem 1. From Lemma 1, we have that a localiz-

able network is sequentially localizable only if its graph has a bilateration ordering.
Lemma 10 implies that Sweeps can localize all sequentially localizable networks since
a sequentially localizable network’s graph must have a bilateration ordering. Further-
more, since Sweeps is a sequential localization algorithm, Lemma 10 implies that a
localizable network is sequentially localizable if its graph has a bilateration ordering.
Hence, Lemmas 10 and 1 imply a localizable network is sequentially localizable if and
only if its graph has a bilateration ordering.

In [7], it was shown via extensive simulations that Sweeps is practically feasible
on uniformly random networks of 250 sensors with connectivity modeled by unit disk
graphs despite having a worst case computational complexity that is exponential in
the number of sensors. In section 7, we give the graph properties of some networks
which can be efficiently localized using Sweeps.

7. Efficiently localizable networks. Consider a class of networks such that
for each positive integer i, there is a network in the class with at least i sensors.
We say that the class of networks is efficiently localizable by Sweeps (or Restricted
Sweeps) if there is a constant c such that each network in the class can be localized
by Sweeps (or Restricted Sweeps) in a number of operations that is at most nc, where
n is the number of the network’s sensors. The computational complexity of local-
izing N by Sweeps, or Restricted Sweeps, is entirely dependent upon the number of
elements in the sets S(v, 1), v ∈ V . More specifically, let M(v) denote the vertices
preceding v and also adjacent to v in the ordering chosen for the first sweep. In both
the Sweeps and Restricted Sweeps algorithm, the number of operations necessary to
compute S(v, 1), v ∈ V , is equal to C

∏
u∈M(v) |S(u, 1)|, where C is a constant that

is independent of the number of sensors in N. In the following, we give a graphical
characterization for when a network is efficiently localizable by Sweeps and Restricted
Sweeps. We emphasize that this is not a complete characterization of all such effi-
ciently localizable networks. However, the general techniques used here can be used
to determine additional efficiently localizable networks.

Suppose the graph of N, namely G, has a trilateration ordering, and that the
ordering chosen for the first sweep is a trilateration ordering v1, . . . , vn. It is easy
to see that S(v, 1) is a singleton and

∏
u∈M(v) |S(u, 1)| = 1 for all v ∈ V . Hence,

the class of networks whose graphs have trilateration orderings is obviously efficiently
localizable by Sweeps. The key property of the trilateration ordering which makes N

efficiently localizable by Sweeps is that for all i ∈ {4, . . . , n}, the graph induced in G

1By a slight modification to the Sweeps algorithm, a singleton candidate positions set can be
obtained for each sensor; however, we omit this step since it is unnecessary.
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by vertex vi, and all the vertices vj , where j < i, is globally rigid. We now “relax”
this property to define a “superbilateration” ordering. A graph with n ≥ 4 vertices
has a superbilateration ordering v1, v2, v3, . . . , vn if the graph contains a subgraph
with the same vertex set which can be constructed inductively as follows beginning
with the complete graph on three vertices labeled v1, v2, v3. Suppose the graph being
constructed already contains vertices v1, . . . , vi, i ≥ 3. If i + 1 is even, then vi+1

is added to the graph by making vi+1 adjacent to at least three vertices vj where
j < i+ 1. Otherwise, if i + 1 is odd, then vi+1 can be added to the graph in one
of two ways, the first of which is to make vi+1 adjacent to at least three vertices vj
where j < i+ 1. Or, vi+1 can be added to the graph by making vi+1 adjacent to
distinct vertices vi, vk, vj , where vk is adjacent to vi, and removing the edge between
vi and vk.

A 1-extension on a graph is the operation whereby two adjacent vertices of the
graph are first selected, say vertices u and v, and a new vertex w is added to the
graph by making w adjacent to vertices u, v, and x, where x is distinct from both
u and v, and removing the edge between u and v [8]. An edge-addition on a graph
is the operation whereby two nonadjacent vertices are made adjacent by insertion of
a new edge. In [10], it was shown that the graph resulting from an edge-addition or
1-extension operation on any globally rigid graph of four or more vertices is again
globally rigid. From this, it follows that any graph with a superbilateration ordering
v1, . . . , vn is necessarily globally rigid. Furthermore, for each i > 3, where either i
is equal to n or i is odd, the graph induced by all vertices vj , j ≤ i, is globally
rigid. Clearly, a trilateration ordering is automatically a superbilateration ordering.
It is easy to show by example that the converse need not be true. Suppose G has a
superbilateration ordering v1, . . . , vn. Let v1, v2, v3 be the proxy anchors of N. For
i > 3, and where i is either odd or equal to n, let Ni denote the subnetwork consisting
of all sensors corresponding to vertices vj , j ≤ i. Each subnetwork Ni can be efficiently
localized, relative to the proxy anchors, by Sweeps assuming the positions of all sensors
in Ni which are also in some Nj , j < i, are known. Hence, the entire network can
be localized in a number of operations polynomial in the number of sensors by using
Sweeps to localize each of the subnetworks in sequence beginning with N5. Generally
speaking, suppose a localizable network contains subnetworks N1, . . . ,Nm so that each
subnetwork Ni is efficiently localizable by Sweeps (or Restricted Sweeps) assuming the
position of each sensor in Ni which is also in some Nj , j < i, is known. Then the
entire network is efficiently localizable by localizing the subnetworks N1, . . . ,Nm in
sequence, provided each sensor of N is in some Ni, i ∈ {1, . . . ,m}.

8. Graphical properties of networks localizable by Restricted Sweeps.
In this section, we will give sufficient conditions on the graphs of localizable networks
for which we can choose sweep orderings so that the network is localized in as few
sweeps as possible by the Restricted Sweeps algorithm. First, consider the case where
N’s graph G has a trilateration ordering v1, . . . , vn, and suppose this is the ordering
chosen for the first sweep. Since we assume that the multipoints of the networks
we consider are generic, it follows that no three sensor positions of N are collinear.
Hence, each S(v, 1), v ∈ V , as computed by the first sweep of the Restricted Sweeps
algorithm, is a singleton. This and Lemma 2 imply that a network with three or more
anchors can be localized by Restricted Sweeps in one sweep followed by a Euclidean
transformation if and only if its graph has a trilateration ordering.

8.1. Networks with partially acyclic graphs. In the following, we show that
if G is “partially acyclic,” then G must have a bilateration ordering and N is localizable
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by Restricted Sweeps in two sweeps plus a Euclidean transformation. For any subset
W of V , let G(W) denote the graph induced in G by vertices inW . For any nonempty
subset W of V , we say that G is partially acyclic with respect to W , or just partially
acyclic, if G(W) is a complete graph and G(V −W) is acyclic. Suppose G is partially
acyclic with respect to W , and that each vertex in V −W has degree at least three in
G. In the following, we will construct a bilateration ordering of G. We first note that
a necessary condition for a graph with four or more vertices to be globally rigid in R

2

is that each of its vertices must have degree at least three [9]. Since N is localizable
and contains at least four sensors, it follows that each vertex of G must have degree
at least three. The graph in Figure 1(a) is globally rigid and partially acyclic with
respect to any three mutually adjacent vertices of the graph. Additional globally rigid
graphs which are also partially acyclic can be constructed using the edge-addition and
1-extension operations beginning with the complete graph on four vertices [10].

Let H denote a maximally connected component of G(V −W), and let r denote
any vertex of H. Let [r] denote any complete ordering of the vertex set of H with
respect to r and W , and let N0(r),N1(r), . . . ,Nh(r) denote the vertex partition used
to construct the ordering [r]. We now show that [r] is a bilateration ordering of the
graph induced in G by the vertices of H and the vertices in W . Let v be any vertex
of H and suppose v ∈ Ni(r) for some i ∈ {0, 1, . . . , h}. First suppose i = 0, in which
case v must equal r. Suppose r is adjacent to c < 2 vertices of W . Since H is a
maximally connected component of G(V −W), and r has degree at least three in G,
we have that r must be adjacent to at least 3 − c > 0 vertices in H, which implies
r must be adjacent to at least three vertices preceding it in the ordering [r]. Now
suppose i > 0. This implies v is adjacent to at least one vertex in Ni−1(r). Moreover,
v is adjacent to exactly one vertex in Ni−1(r), for if v is adjacent to two vertices in
Ni−1(r), then H is not acyclic, which implies G(V −W) is not acyclic. Similarly, if v
is adjacent to a vertex in Ni(r), then that would again imply H is not acyclic. Since
v has degree three in G, v must be adjacent to at least two vertices in Ni+1(r) ∪W .
Since the vertices in Ni+1(r) ∪ W all precede v in [r], it follows that v is adjacent
to at least two vertices preceding it in the ordering [r]. Now we show that the first
three vertices of [r] induce a complete graph. Let x be any vertex in Nh(r). Since H

is acyclic, x can be adjacent to exactly one vertex in H. Also, since x has degree at
least three in G, it follows that x must be adjacent to at least two vertices in W and
so |W| ≥ 2. Furthermore, since the vertices in Nh(r) precede all other vertices in H

in the ordering [r], it follows that v3 ∈ W ∪ Nh(r). Hence, the first three vertices of
[r] induce a complete graph, and [r] must therefore be a bilateration ordering. Let
V(H) denote the vertex set of H. We have just shown the following.

Lemma 11. If G is partially acyclic with respect to some W ⊆ V, and each vertex
in V −W has degree at least three in G, then any complete ordering of a maximally
connected component H of G(V−W) with respect to W is also a bilateration ordering
of the graph G(V(H) ∪W).

Let H1, . . . ,Hc denote the maximally connected components of G(V −W). For
each Hi, let vi1, vi2, vi3, . . . , vik be any complete ordering of Hi with respect toW . This
implies that the first |W| vertices of each of the orderings must be the vertices of W ,
i.e., {vi1, . . . , vi|W|} = W for all i ∈ {1, . . . , c}. Let w1, . . . , w|W| denote the vertices
of W . From Lemma 11, we have that each of the orderings vi1, vi2, vi3, . . . , vik is a
bilateration ordering. Therefore, the ordering obtained by concatenating w1, . . . , w|W|
and vi(|W|+1), . . . , vik for all i ∈ {1, . . . , c}, i.e., w1, . . . , w|W|, v1(|W|+1), . . . , v1k, . . . ,
vi(|W|+1), . . . , vik, . . . , vc(|W|+1), . . . , vck must be a bilateration ordering, and it is a
complete ordering of G with respect to W . We have just shown the following.
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Lemma 12. If G is partially acyclic with respect to some W ⊆ V, and each
vertex in V −W has degree at least three in G, then G has a bilateration ordering,
and any complete ordering of G with respect to W is a bilateration ordering.

Remark 1. It is known that a necessary condition for a graph with at least four
vertices to be globally rigid in R

2 is that the graph must be three connected, i.e.,
G(V −V ′) is connected if |V ′| ≤ 2. Hence, if G is partially acyclic with respect to W ,
and G(V −W) has more than one connected component, then |W| ≥ 3. Since G is
globally rigid, Lemma 7 can be used to show that for each i ∈ {1, . . . , c}, the graph
G(W ∪ Vi), where Vi is the vertex set of Hi, must also be globally rigid.

Our main result for networks with partially acyclic graphs is the following.
Theorem 2. A localizable network with graph G is localizable by Restricted

Sweeps in two sweeps plus a Euclidean transformation if G is partially acyclic with
respect to some W ⊆ V. The ordering of the finite position generating sweep is
[v] = v1, v2, v3, . . . , vn, where [v] is a complete ordering of G with respect to W, and
the ordering of the second sweep is v1, v2, v3, vn, vn−1, . . . , v4.

A globally rigid graph in R
2 is said to be minimally globally rigid in R

2 if no edge
can be removed from the graph without causing the graph to no longer be globally
rigid in R

2. A number of globally rigid graphs in R
2 that are partially acyclic with

respect to some W ⊆ V , where |W| ≥ 3, are also minimally globally rigid in R
2.

Hence, Theorem 2 implies that Restricted Sweeps can localize certain networks with
just enough edges in their graphs to ensure localizability. For any i > 3, let Wi denote
the graph whose vertices can be labeled as w0, w1, . . . , wi such that w0 is adjacent to
all other vertices, and vertices w1, . . . , wi induce a cycle in the graph. Any such Wi,
i > 3, is called a wheel graph. It is known that wheel graphs are minimally globally
rigid, and it is straightforward to show that any wheel graph is partially acyclic with
respect to any three vertices which are mutually adjacent. Hence, any network with
three or more anchors and whose graph is a wheel graph is localizable by Restricted
Sweeps in two sweeps plus a Euclidean transformation. One can show by example
that globally rigid graphs which are also partially acyclic are not limited to just wheel
graphs.

Let NT denote the class of networks whose graphs have a trilateration ordering,
and let NP denote the class of networks whose graphs are globally rigid in R

2 and
partially acyclic. It is not difficult to show that NT and NP are not disjoint, NT � NP
and NP � NT . For example, networks with wheel graphs are in NP but not NT , and
any network whose graph has a trilateration ordering v1, . . . , vn, where n > 5 and
each vi, i > 3, is adjacent to vertices vi−1, vi−2, and vi−3, is in NT but not NP .

8.2. Networks with ring squared graphs. Many practical networks are such
that the distance between two sensors is known if the sensors are within a prescribed
sensing radius of each other. Suppose N̄ is such a network and has at least three
anchors, and let Ḡ be its graph. Define a ring graph with ordering v1, . . . , vn as a
graph whose vertices can be labeled as v1, . . . , vn so that each vertex vi, 1 < i < n, is
adjacent to vertices vi−1 and vi+1, and vertex v1 is adjacent to vertex vn.

Lemma 13. If Ḡ is a ring graph with ordering v1, . . . , vn, then N̄ is localizable in
two sweeps plus a Euclidean transformation after doubling the sensing radius of each
sensor. The ordering of the first sweep is v1, . . . , vn, and the ordering of the second
sweep is v1, v2, v3, vn, vn−1, . . . , v4.

Let V̄ and Ē denote the vertex set and edge set of Ḡ, respectively. The second
power of Ḡ, written Ḡ

2, is the graph with vertex set V̄ and edge set Ē ∪ Ē2, where
(i, j) ∈ Ē2 in the case when i, j ∈ V̄ and there exists k ∈ V̄ such that (i, k), (k, j) ∈ Ē .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEQUENTIAL LOCALIZATION OF SENSOR NETWORKS 343

A graph is edge 2-connected if there exists two paths with no edge in common between
each pair of vertices. It is known that the second power of an edge 2-connected graph
is globally rigid in R

2 [1]. An important consequence of this and Theorem 13 is that
if the graph of a network is edge 2-connected with at least three anchor vertices, and
the network is such that the distance between two sensors is known if the sensors are
within sensing radius, then the network is sequentially localizable after doubling the
sensing radius of all the sensors [1].

9. Conclusion. In this work, we presented Sweeps, a sequential localization
algorithm which consists of solving a sequence of a finite number of quadratic equa-
tions, and determining the distances between specified pairs of points. We identified
the graph properties of all networks which can be localized by Sweeps, as well as the
graph properties of some networks which can be efficiently localized by Sweeps. The
worst case computational complexity of Sweeps is exponential. However, extensive
experimental evaluations on uniformly random networks modeled by unit disk graphs
indicate that Sweeps is practically much more efficient [7]. Part of our future work will
be to analyze the average case computational complexity of Sweeps. Additionally, the
necessary and sufficient condition for a localizable network to be localizable by Sweeps
is that the graph of the network has a bilateration ordering. Extensive simulations
on uniformly random networks modeled by unit disk graphs suggest that the gap
between localizable and sequentially localizable networks is not large [7]. A question
that is of interest is if there exists a threshold such that a graph is globally rigid and
has a bilateration ordering when the average degree of the graph passes the threshold.
In [12], a trilateration-based localization algorithm was proposed for networks with
inaccurate distance measurements in which sensors are assigned an estimated position
only when the estimated position can be provably bounded to be within some known
range of the actual sensor position. A similar concept was employed in adapting the
Sweeps algorithm for the case of inaccurate distance measurements [6] in that each
estimated sensor position can be guaranteed to be within a known distance of the
actual sensor position. As part of future research, we aim to fine tune and improve
the Sweeps algorithm adapted for inaccurate distance measurements.

A key aspect of wireless sensor networks is that each sensor can interact with
only a subset of the sensors in the network. Hence, Sweeps and Restricted Sweeps are
proposed on the assumption that the distances between each sensor and only some
of the sensors in a network are known. Although the computations in Sweeps and
Restricted Sweeps are currently envisioned as being carried out on a central computer,
we note that this does not necessarily contradict the distributed nature of a wireless
sensor network. For example, in a sensor network deployed for environment monitor-
ing, quantities measured by a sensor, i.e., chemical emissions, and transmitted to a
base station, make sense only in the context of the sensor’s position. The distance
measurements taken by each sensor to, say, nearby sensors can be transmitted to the
base station along with whatever quantities the sensor was deployed to monitor. The
base station can then run a localization algorithm using the intersensor distance mea-
surements, and thus associate a position with each measured quantity. An important
part of our future research will be to design a fully distributed version of Sweeps.

10. Appendix.
Proof of Lemma 1. Suppose N is sequentially localizable. For each sensor v, let

k(v) denote the sweep in which a finite candidate positions set was computed. Order
the sensors as v1, . . . , vn so that vi precedes vj , i.e., i < j, if either k(vi) < k(vj)
or k(vi) = k(vj) and vi is a predecessor of vj in the k(vi)th sweep. Consider any vi
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which is not a proxy anchor. First, suppose no distance is known between vi and any
sensor vj , where j < i. This implies that when sensor vi is processed, there is no
known distance between vi and a sensor whose candidate positions set has already
been determined. Hence, there is no data with which to compute a finite candidate
positions set for vi. Now suppose the distance between vi and exactly one other
sensor vj , j < i, is known. This implies that when vi is processed, its distance to
exactly one sensor with a finite candidate positions set is known. By definition of a
sequential localization algorithm, a sensor for which a finite candidate positions set
has not been computed does not have any position information associated with it.
Hence, since sensor positions are distinct, a finite candidate positions set of vi cannot
be determined when just its distance to a single sensor with an already computed
candidate positions set is known. We have just shown that if vi is not a proxy anchor,
then vi must be adjacent to at least two vj , where j < i. This implies that v1 and v2
must be proxy anchors, and so v1, . . . , vn is a bilateration ordering.

Proof of Lemma 2. The “if” direction has already been shown in section 3. The
“only if” direction is a straightforward consequence of the following. Given a sensor v,
and its distances to k sensors u1, . . . , uk with known positions where no three sensors
in {v, u1, . . . , uk} are collinear, there exists exactly one position for sensor v such that
its distances to all k sensors are satisfied if and only if k ≥ 3.

Proof of Lemma 3. Let V denote the vertex set of G, and let u be any vertex in
V . Note that u must be adjacent to at least one other vertex in G since G is rigid
and therefore connected. Let v be any vertex adjacent to u. Let u1, u2, . . . , um be
any ordering of m ≤ |V| vertices such that u1 = u, u2 = v, and each ui, i ≥ 3, is
adjacent to at least two vertices uk, k < i. Moreover, suppose there does not exist
any vertex w ∈ V − {u1, u2, . . . , um} which is adjacent to two or more vertices in
{u1, u2, . . . , um}. Let B denote the graph induced in G by {u1 = u, u2 = v, . . . , um}.
Note that B contains at least two vertices, namely, u and v. In the following we will
show that V − {u1, u2, . . . , um} �= ∅ is a contradiction to the assumption that G is
chordal. So, suppose V − {u1, u2, . . . , um} �= ∅. Let F denote a maximally connected
component of the graph induced by vertices not in B, i.e., V −{u1, u2, . . . , um}. Note
that F has at least one vertex since V −{u1, u2, . . . , um} �= ∅. For an edge incident on
vertices a and b, we say that the edge is from B to F if a is in B and b is in F. Since
G is rigid, and F contains at least one vertex, there must be at least two edges e1 and
e2 from B to F. Let e1, e2, . . . , ec, c ≥ 2, denote all the edges from B to F.

A vertex in F can be incident on at most one edge from B to F. For if a vertex w
in F is incident on two edges from B to F, then obviously, w ∈ V − {u1, u2, . . . , um}
and w is adjacent to two or more vertices in {u1, u2, . . . , um}, which contradicts our
assumption that there does not exist any vertex w ∈ V − {u1, u2, . . . , um} which is
adjacent to two or more vertices in {u1, u2, . . . , um}. Suppose e1 is incident on vertex
z in B, and that all the edges from B to F are incident on z. By removing z from
G, G is disconnected since this removes all edges from B to F, and F is a maximally
connected component of the graph induced by vertices not in B. But G is rigid, which
means it is at least two connected, and therefore it requires the removal of at least
two vertices to disconnect G. Hence, there must exist at least one edge from B to F

which is not incident on z. So there must exist two edges from B to F such that the
edges are incident on distinct vertices in B. Let ei and ej denote two such edges. Also
from the above, we have that ei and ej are incident on distinct vertices in F. Hence,
there exist distinct vertices b, b′ ∈ B and f, f ′ ∈ F such that b is adjacent to f and
b′ is adjacent to f ′. Since B is connected, there is a path in B from b to b′. Let this
path be denoted b0 = b, b1, b2, . . . , bB = b′. Since F is connected, there is a path in F
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from f to f ′. Let this path be denoted f0 = f, f1, f2, . . . , fF = f ′.
Let L be the smallest positive integer in {1, 2, . . . , F} such that fL is adjacent

to some vertex in {b1, b2, . . . , bB}. Note that such an L must exist since f ′ = fF
is adjacent to b′ = bB. Let L̄ be such that bL̄ is the vertex in {b1, b2, . . . , bB} to
which fL is adjacent. Note that L̄ > 0 and L > 0. Let T be the largest integer
less than L such that fT is adjacent to some vertex in {b0, b1, . . . , bL̄−1}. Such a
T must exist since f = f0 is adjacent to b = b0, and as noted above, L, L̄ > 0.
Let T̄ be such that bT̄ is the vertex to which fT is adjacent in {b0, b1, . . . , bL̄−1}.
By construction, the subgraph of G with vertices fT , fT+1, . . . , fL, bL̄, bL̄−1, . . . , bT̄
and edges (fT , fT+1), . . . , (fL−1, fL), (fL, bL̄), (bL̄−1, bL̄−2), . . . , (bT̄−1, bT̄ ), (bT̄ , fT ) is
a cycle. Let this cycle be denoted C. Note that C contains at least four vertices and
so is a cycle of length at least four. Since G is chordal, there must exist an edge in
G that is also a chord of C. Since fT and fL can each be incident upon only one
edge from B to F, we have that any chord of C that is also an edge from B to F must
be incident upon fM , where T < M < L. Suppose there is such a vertex fM . Since
L is the smallest positive integer in {1, 2, . . . , F} such that fL is adjacent to some
vertex in {b1, b2, . . . , bB}, it follows that fM must be adjacent to b0 since M < L.
But this is a contradiction since M > T and T is the largest integer less than L such
that fT is adjacent to some vertex in {b0, b1, . . . , bL̄−1}. Hence, any chord of C can
only contain vertices which are either both in B or both in F. Since C contains at
least four vertices, two of which are in B and two of which are in F, and C contains
no chord from B to F, it follows that there is a chordless cycle in G of at least four
vertices. This contradicts the fact that G is chordal. Hence, it cannot be the case
that V − {u1, u2, . . . , um} �= ∅. So, B contains all the vertices in V , which implies G

has a bilateration ordering. Recall that vertices u and v of B, which are the first two
vertices of the bilateration ordering on all the vertices of B, may be any two vertices
of G. As shown above, B must contain all the vertices of G. Hence, it must be the
case that for all edges (u, v) in G, there exists a bilateration ordering of G that begins
with vertices u and v.

Proof of Lemma 4. If w is a proxy anchor, then the lemma holds trivially, so
suppose w is not a proxy anchor. It is also easy to show that the lemma holds
when u and v are both proxy anchors, so suppose at least one of u or v is not a
proxy anchor. Let the ordering of the first sweep be x1, . . . , xn, which we denote
by [x]. Let w = xk. Without loss of generality, suppose u precedes v in [x], i.e.,
u = xi and v = xj for some i, j where i < j. It is easy to see that if w precedes
v in the ordering [x], then it cannot be the case that v is in the domain of any
subassignment in S(w, 1). Therefore, it must be the case that k ≥ j. We will prove
the lemma by induction on k − j. First, consider the case where k = j. In this case,
w = v. From (13), it is clear that u ∈ D(β) for all β ∈ S(v, 1), and ‖β(u)− β(v)‖ =
duv. Now suppose k − j = 1. Let M(w) = N (w) ∩ {x1, . . . , xk−1}. If xk = w
is not adjacent to xj = v, then it is easy to see that v cannot be in the domain
of any subassignment in S(w, 1). Hence, suppose w is adjacent to v, which implies
v ∈ M(w). Let the elements of M(w) be denoted u1, . . . , um, and without loss
of generality, let v = u1. Let β be any subassignment of S(w, 1). From (15), we
have that β ∈M(α1, . . . , αm, w, u1, . . . , um) for some collection of pairwise consistent
subassignments α1, . . . , αm where αi ∈ S(ui, 1), i ∈ {1, . . . ,m}. This implies D(α1) ⊂
D(β). As we have just shown, u ∈ D(δ) and ‖δ(u) − δ(v)‖ = duv for all δ ∈ S(v, 1).
Hence, u, v ∈ D(α1) and ‖α1(u)−α1(v)‖ = duv. From (13), we have that the domain
of each subassignment in M(α1, . . . , αm, w, u1, . . . , um) contains D(α1) and must be
identical to α1 when restricted to the domain of α1. Therefore, u, v ∈ D(β) and
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β(u) = α1(u), β(v) = α1(v). Clearly, this implies ‖β(u)− β(v)‖ = duv. Hence, for all
γ ∈ S(w, 1) we have that u, v ∈ D(γ) and ‖γ(u)− γ(v)‖ = duv.

Suppose the lemma holds for all w = xk where k − j ≤ L for some L. Now
consider w, where w = xk, where k − j = L + 1. Again, let u1, . . . , um denote
the elements of M(w). Let β be any subassignment of S(w, 1) where u, v ∈ D(β).
From (15), we have that β ∈ M(α1, . . . , αm, w, u1, . . . , um) for some collection of
pairwise consistent subassignments α1, . . . , αm where αi ∈ S(ui, 1), i ∈ {1, . . . ,m}.
By definition, the domain of β is equal to the union of {w} and the union of the
domains of αz , z ∈ {1, . . . ,m}. Hence, it must be the case that v ∈ D(αz) for some
z ∈ {1, . . . ,m}. As noted previously, u is in the domain of all subassignments in
S(v, 1). It is straightforward to show then that u, v ∈ D(αz). By definition of M
in (13), we have that β must equal αz when restricted to the domain of αz. This
implies β(u) = αz(u) and β(v) = αz(v). By the inductive hypothesis, we have that
‖αz(u) − αz(v)‖ = duv, which implies ‖β(u) − β(v)‖ = duv. The lemma follows by
induction.

Proof of Lemma 5. It is easy to show that the lemma holds when u and v are
both proxy anchors, so suppose at least of of u or v is not a proxy anchor. Let
y1, . . . , yn denote the ordering chosen for the second sweep, and for any vertex yi,
let M(yi) = N (yi) ∩ {y1, . . . , yi−1}. Suppose w = yi. We will prove the lemma
by induction on i ∈ {1, . . . , n}. The lemma is trivially true if w is a proxy anchor,
i.e., w = yi, i ∈ {1, 2, 3}. Now suppose the lemma holds for all w = yj , where
j < i for some i ∈ {4, . . . , n}. Consider w = yi. If M(w) = ∅, then S(w, 2) =
S(w, 1), in which case Lemma 5 follows from Lemma 4. So suppose M(w) �= ∅. Let
u1, . . . , um denote the elements of M(w). Let β be any subassignment of S(w, 2)
such that u, v ∈ D(β). From (17), we have that β = um+1(α0, α1, . . . , αm) for some
collection of pairwise consistent subassignments α0 ∈ S(w, 1) and αj ∈ S(uj , 2),
j ∈ {1, . . . ,m}. Without loss of generality, suppose that u preceded v in the ordering
chosen for the first sweep. By definition of um+1, the domain of β is the union of the
domains of αj , j ∈ {0, 1, . . . ,m}. Hence, since u, v ∈ D(β), it follows that v ∈ D(αz)
for some z ∈ {0, 1, . . . ,m}. It is straightforward to show from (17) that u must
also be in D(αz), so u, v ∈ D(αz). From Lemma 4 and the inductive hypothesis,
it follows that ‖αz(u) − αz(v)‖ = duv. Since αj , j ∈ {0, 1, . . . ,m}, are pairwise
consistent, it follows from the definition of um+1 that β(u) = αz(u) and β(v) = αz(v),
so ‖β(u)− β(v)‖ = duv.

Proof of Lemma 6. We first show that the lemma holds for the first sweep, i.e., for
each v ∈ V , there is a β ∈ S(v, 1) which is the restriction of ᾱ to D(β), and v ∈ D(β).
Let v1, . . . , vn be the ordering used to compute S(v, 1), v ∈ V . Let v be any vertex of
G. If v is a proxy anchor, i.e., v = vi for some i ∈ {1, 2, 3}, then from (14), we have
that S(v, 1) = {α}, where D(α) = {v} and α(v) = π(v). Hence, the lemma holds
for vi, i ∈ {1, 2, 3}. Now suppose v = vi, i > 3. From (13) and (15), we have that
vi ∈ D(β) for all β ∈ S(v, 1), so it just remains to show that there is a β ∈ S(v, 1)
which is the restriction of ᾱ to D(β). We show this by induction on vi, i ∈ {1, 2, . . . , n}.
We have already shown the lemma to be true for S(vi, 1), i ∈ {1, 2, 3}. Now suppose
the lemma holds for all S(vj , 1), where j < i for some i ∈ {4, . . . , n}. For each vj ,
j < i, let β̄vj denote the subassignment in S(vj , 1) which is the restriction of ᾱ to
D(β̄vj ). Now consider vi. Let the elements of N (vi) ∩ {v1, . . . , vi−1} be denoted
u1, . . . , um. Clearly, β̄uj , j ∈ {1, . . . ,m}, are pairwise consistent, i.e., β̄uj ∼ β̄u′

j

for all j, j′ ∈ {1, . . . ,m}. Consider M(β̄u1 , . . . , β̄um , vi, u1, . . . , um). Clearly, π(vi) ∈⋂
j∈{1,...,m} C(β̄uj (uj), dviuj ). From (13), it follows that there is β ∈ S(vi, 1) such
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that β = β̄uj when restricted to the domain of β̄uj for each j ∈ {1, . . . ,m}, and
β(vi) = π(vi). Since each β̄uj is a restriction of ᾱ, it follows that β must then be a
restriction of ᾱ as well. By induction then, we have that the lemma is true for all
S(v, 1), v ∈ V .

We have just shown that the lemma holds for the first sweep. Now we will show
the lemma holds for all sweeps by induction, so suppose the lemma holds for the kth
sweep, where k ≥ 1. Let u1, . . . , un be the ordering chosen for the (k + 1)th sweep.
Clearly, S(ui, k + 1) = S(ui, k) for i ∈ {1, 2, 3}, and since the lemma holds for the
kth sweep, we have that the lemma holds for S(ui, k + 1), i ∈ {1, 2, 3}. Suppose the
lemma holds for all S(uj , k + 1), where j < i for some i ∈ {4, . . . , n}. For each uj ,
j < i, let β̄uj denote the subassignment in S(uj , k + 1) which is a restriction of ᾱ
with uj in its domain. Consider ui. Clearly, if N (ui) ∩ {u1, . . . , ui−1} is the empty
set, then S(ui, k+ 1) = S(ui, k), in which case the lemma holds for S(ui, k+ 1) since
the lemma is true for the kth sweep. So suppose N (ui) ∩ {u1, . . . , ui−1} �= ∅, and let
w1, . . . , wm denote its elements. By the inductive hypothesis, we have subassignments
β̄ui ∈ S(ui, k) and β̄wj ∈ S(wj , k+ 1), j ∈ {1, . . . ,m}, where each subassignment is a
restriction of ᾱ and ui ∈ D(β̄ui), wj ∈ D(β̄wj ), j ∈ {1, . . . ,m}. From (17), it is easy
to see that um+1(β̄ui , β̄w1 , . . . , β̄wm) is in S(ui, k + 1) and is also a restriction of ᾱ
with ui in its domain. By induction, the lemma holds for the (k + 1)th sweep.

Proof of Lemma 7. Let H
′
i denote the graph induced in G by the vertices of Hi

and the vertices of A. Suppose H
′
i is not globally rigid. Consider the subnetwork of N

containing just the sensors corresponding to vertices in H
′
i, and denote the subnetwork

by Ni. Clearly, the point formation modeling Ni is (H′
i, p

′), where p′ contains the
positions of those sensors of Ni. Since the multipoint of N is generic, it follows that
the multipoint of Ni, i.e., p′, must also be generic. Hence, that H

′
i is not globally

rigid implies Ni cannot be localizable. In other words, there exists multipoint q′ such
that the point formations (H′

i, q
′) and (H′

i, p
′) have the same edge lengths but are not

congruent. Furthermore, it is easy to see that by applying a Euclidean transformation
to the points of (H′

i, q
′), we can obtain a point formation (H′

i, q
′′), which is congruent

to (H′
i, q

′), and such that the points in q′′ corresponding to the vertices in A are
identical to the points in p′ corresponding to the vertices in A. Hence, (H′

i, q
′′) has

the same edge lengths as (H′
i, p

′), and the points corresponding to vertices in A are
the same in both (H′

i, q
′′) and (H′

i, p
′), but (H′

i, q
′′) and (H′

i, p
′) are not congruent. Let

(G, p) be the point formation modeling N. Since N is localizable, it follows that (G, p)
is globally rigid. Consider the point formation (G, p′′) defined as follows. The point in
(G, p′′) corresponding to a vertex j not in Hi is the same as the point corresponding
to vertex j in (G, p), and the point in (G, p′′) corresponding to a vertex j in Hi is the
same as the point corresponding to vertex j in (H′

i, q
′′). It is easy to see that (G, p′′)

has the same edge lengths as (G, p) but (G, p′′) and (G, p) are not congruent. This
contradicts the fact that (G, p) is globally rigid, and therefore H

′
i must be globally

rigid.
Proof of Lemma 8. In the following, we will show that the lemma holds for the

case where c = 1; i.e., the graph induced in G by vertices not in A is connected. The
case for c > 1 follows easily. Let H denote the graph induced in G by vertices not in
A. Let the ordering for the second sweep be [x] = x1, . . . , xn, and suppose [x] is a
complete ordering of H with respect to v of H and A. This implies v = xn, and [x] is
also a complete ordering of G with respect to A and xn.

Let xi be any vertex such that there is a path from xi to xn in G which is a
subsequence of [x] beginning with a vertex which is not a proxy anchor. In other
words, there exists i < i1 < i2 < · · · < ip < n such that i1 > 3 and (xi, xi1), (xi1 , xi2 ),
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. . . , (xip , xn) ∈ E . We will show by induction that xi ∈ D(β) for all β ∈ S(xn, 2). For
notational convenience, let ip+1 = n. For any xj , letM(xj) = N (xj)∩{x1, . . . , xj−1}.
Clearly, xi ∈M(xi1 ). From (17), it follows that xi ∈ D(β) for all β ∈ S(xi1 , 2). Now
suppose xi ∈ D(β) for all β ∈ S(xij , 2), where j ≤ I for some I < p+ 1, and consider
S(xij+1 , 2). Since xij ∈ M(xij+1 ), it follows from (17) that for all β ∈ S(xij+1 , 2), it
must be the case that D(β′) ⊆ D(β), where β′ is some subassignment of S(xij , 2). But
since xi ∈ D(β′) for all β′ ∈ S(xij , 2), it follows that xi ∈ D(β) for all β ∈ S(xij+1 , 2).
By induction then, we have that xi ∈ D(β) for all β ∈ S(xn, 2).

Let N0(xn), . . . ,Nh(xn) be the vertex partition of H used to construct the com-
plete ordering [x]. Consider any xi, i > 3, and suppose xi ∈ Nj(xn). Now we show
that there is a path from xi to xn in G which is a subsequence of [x]; i.e., there exists
i < i1 < i2 < · · · < ip < n such that (xi, xi1), (xi1 , xi2 ), . . . , (xip , xn) ∈ E . Since
xi ∈ Nj(xn), it must be true that xi is adjacent to some vertex in Nj′(xn), where
j′ < j. But since all the vertices in sets Nj′ , j′ < j, are assigned larger indices than
vertices in Nj , it follows that xi must be adjacent to some vertex xi1 where i < i1. If
xi1 ∈ N0, then it must be the case that xn = xi1 . Otherwise, xi1 ∈ Nb where b > 0,
and so xi1 must be adjacent to some vertex xi2 in Na where a < b. By construction
of a complete ordering, we have that i1 < i2 since xi2 ∈ Na and a < b. Hence, there
must exist a sequence of vertices xi1 , . . . , xip = xn such that xi is adjacent to xi1 ,
each xij is adjacent to xij+1 , and i < i1 < i2 < · · · < ip = n.

From the above, we can conclude that each xi, i > 3, must be in D(β) for all
β ∈ S(xn, 2). Now consider the proxy anchors, i.e., xi, i ∈ {1, 2, 3}. Suppose some xi,
i ∈ {1, 2, 3}, is not adjacent to any xj , j > 3. This implies xi has degree two in G, and
therefore G cannot be globally rigid in R

2, and N is not localizable. This is clearly
a contradiction. Hence, each xi, i ∈ {1, 2, 3}, must be adjacent to some xj , j > 3,
which implies there exist indices i1, . . . , ip, where i < i1 < i2 < · · · < ip < n, i1 > 3,
and (xi, xi1), (xi1 , xi2 ), . . . , (xip , xn) ∈ E . Hence, each xi, i ∈ {1, 2, 3}, must also be
in D(β) for all β ∈ S(xn, 2), and it follows that D(β) = V for all β ∈ S(xn, 2).

Proof of Lemma 9. First, suppose c = 1 so the graph H induced in G by vertices
which do not correspond to the proxy anchors is connected. Suppose the ordering
used to compute the second sweep is a complete ordering of G with respect to A and
vertex u of H. From Lemma 6, we have that S(u, 2) is not empty. From Lemma 8,
we have that for each α ∈ S(u, 2), the domain of α is equal to V . From Lemma 5 we
have that ‖α(u) − α(v)‖ = duv for all (u, v) ∈ E . Clearly, α(a) = π(a) for all proxy
anchors a. Hence, α is a consistent assignment of N, where α(a) = ᾱ(a) for all proxy
anchors a. But as noted previously, there can be at most one such assignment, which
implies that α must equal ᾱ. Now we consider the case for c > 1. It follows from
Lemma 7 that each subnetwork Ni containing sensors corresponding to vertices in A
and Hi is itself localizable. The argument for the case c = 1 can be applied to each
Ni to show that each subassignment in S(ui, 2) must be the restriction of ᾱ to the
vertices corresponding to the proxy anchors and the sensors in Ni.

Proof of Theorem 2. We prove the lemma for the case where c = 1; i.e., the graph
G(V −W) is connected. The lemma for the case where c > 1 is a direct consequence.

Since v1, . . . , vn is the ordering chosen for the first sweep, without loss of generality
we can suppose v1, v2, v3 are the proxy anchors and let W = {v1, v2, v3}. Since G is
partially acyclic and c = 1, it follows that G(V −W) is acyclic and connected. Hence,
for each v ∈ V − W, we can define l(v), where l(v) is the length of the path from
v to vn in G(V −W). Clearly l(vn) = 0. Let L = maxv∈V−W l(v). For each vi, let
M(vi) = N (vi) ∩ {v1, . . . , vi−1}. Let [v] denote the ordering v1, . . . , vn. Let p be any
point in S(vn, 1). In the following we will assign point p(v) to each sensor v ∈ V−W so
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that all known intersensor distances are satisfied and the point assigned to v is p, i.e.,
p(vn) = p. We do this inductively on l(v) beginning with v where l(v) = 0. Obviously
vn is the only vertex such that l(vn) = 0, and we let p(vn) = p. Now we consider
v where l(v) = 1. As noted previously, M(vn) − W = N1(vn), and by definition
N1(vn) is the set of vertices v where l(v) = 1. Let u1, . . . , um denote the vertices in
M(vn) − W . From (2), there are points pi ∈ S(ui, 1) such that ‖p − pi‖ = dvnui .
For each ui, i ∈ {1, . . . ,m}, let p(ui) = pi. Now suppose p(v) has been defined for
all vertices v where l(v) ≤ k for some k < L. Now we define p(v) for each vertex
v ∈ V − W where l(v) = k + 1. Since [v] is a complete ordering and G(V − W) is
acyclic, we have that if vertex v is such that l(v) = k+1, then there must exist exactly
one vertex v′ ∈ V −W such that (v, v′) ∈ E , and l(v′) ≤ k. Since l(v′) = k, it follows
that p(v′) has already been defined. Furthermore, from (2), we have that there must
exist point pv ∈ S(v, 1) such that ‖p(v′)− pv‖ = dvv′ . Let p(v) = pv.

Let u, v be any two vertices in V −W which are adjacent in G. Since G(V −W)
is acyclic, it follows that either l(u) = l(v) + 1 or l(v) = l(u) + 1, which implies
‖p(u)−p(v)‖ = duv. Now let w be any vertex ofW , and let u be any vertex of V−W .
Since all the sensors in W are proxy anchors, each w ∈ W is assigned some position
π(w) by the first sweep of the Restricted Sweeps algorithm. Again from (2), we have
that for all pu ∈ S(u, 1), it must be the case that ‖p(u)− π(w)‖ = duw. Hence, if we
define p(w) = π(w) for all w ∈ W , and assigned position p(v) to each sensor v ∈ V ,
then all known intersensor distances must be satisfied. We have just shown that for
each p ∈ S(vn, 1), there correspond points p(v), v ∈ V , such that p(vn) = p and
p(w) = π(w) for all w ∈ W , and all known intersensor distances are satisfied. Since
N is localizable, we have that for all assignments of points q(v) to sensors v ∈ V −W
such that all known intersensor distances are satisfied, assuming each sensor w ∈ W
is positioned at π(w), it must be the case that q(v) = p(v) for all v ∈ V −W. This
implies S(vn, 1) can contain only one element. Let π(vn) denote the point in S(vn, 1).
Clearly, π(vn) is the position of sensor vn relative to the positions assigned to the
proxy anchors. Let p(v), v ∈ V , be as defined above. Now we show that S(v, 2),
v ∈ V , must all be singletons. This is trivially true for v ∈ W ∪ {vn}, so consider
v /∈ W ∪ {vn}. Since G(V −W) is acyclic, it follows that v is adjacent to exactly one
v′ in G(V −W) such that l(v′) < l(v). By definition, ‖p(v) − p(v′)‖ = dvv′ , and the
only criterion used for choosing p(v) from S(v, 1) was that ‖p(v)−p(v′)‖ = dvv′ . This
implies that if there is q ∈ S(v, 1) where q �= p(v) and ‖q − p(v′)‖ = dvv′ , then there
exists an assignment of points q(x), x ∈ V , such that q(v) = q, q(w) = π(w) for all
w ∈ W , and all known intersensor distances are satisfied. But this clearly contradicts
the assumption that N is localizable. Hence, there can exist only one point p ∈ S(v, 1),
namely p(v), such that ‖p − p(v′)‖ = dvv′ . From (3) and the ordering specified for
the second sweep, it follows that S(v, 2) must be a singleton consisting of only p(v).
Hence, S(v, 2) must be a singleton for all v ∈ V .

Proof of Lemma 13. Without loss of generality, we assume that v1, v2, and v3 are
anchors. Note that the coordinates computed accordingly for the remaining sensors
can be transformed into their real locations by Euclidean transformations since there
are three anchors in the network. Now consider the first sweep with the ordering
v1, v2, . . . , vn in Ḡ

2. Since v4 is adjacent to both v2 and v3, we have that S(v4, 1)
contains two elements. Since v5 is adjacent to both v4 and v3, we have that S(v5, 1)
contains four elements. Similarly, S(vi, 1), 4 ≤ i ≤ n contains finite elements by
using the edges (vi, vi−1) and (vi, vi−2) in Ḡ

2. Then consider the second sweep with
the ordering v1, v2, v3, vn, vn−1, . . . , v4. From Lemma 2.1 in [14] we know that Ḡ

2

is generically globally rigid, which implies that generically there is one element in
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S(vn, 1) which satisfies simultaneously ||pvn − pv1 || = dvnv1 and ||pvn − pv2 || = dvnv2 .
Hence, S(vn, 2) contains exactly one element. Using the same reasoning, we know
that S(vn−1, 2) contains one element by using the edges (vn−1, vn) and (vn−1, v1) in
Ḡ

2. Similarly, we know that S(vi, 2), 4 ≤ i ≤ n− 2 by using the edges (vi, vn+1) and
(vi, vi+2) in Ḡ

2.
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NONUNIFORM COVERAGE AND CARTOGRAMS∗

FRANCOIS LEKIEN† AND NAOMI EHRICH LEONARD‡

Abstract. In this paper, we investigate nonuniform coverage of a planar region by a network
of autonomous, mobile agents. We derive centralized nonuniform coverage control laws from uni-
form coverage algorithms using cartograms, transformations that map nonuniform metrics to a near
Euclidean metric. We also investigate time-varying coverage metrics and the design of control algo-
rithms to cover regions with slowly varying, nonuniform metrics. Our results are applicable to the
design of mobile sensor networks, notably when the coverage metric varies as data is collected such
as in the case of an information metric. The results apply also to the study of animal groups foraging
for food that is nonuniformly distributed and possibly changing.
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1. Introduction. Sensor networks in space, in the air, on land, and in the ocean
provide the opportunity for unprecedented observational capability. An important
problem in this context is to determine how best to distribute sensors over a given
area in which the observational field is distributed so that the likelihood of detecting
an event of interest is maximized. If the probability distribution of the event is uniform
over the area, then the optimal solution is uniform coverage, i.e., uniform distribution
of sensors. On the other hand, if this probability distribution is nonuniform, then the
sensors should be more (less) densely distributed in subregions with higher (lower)
event probability. Further, if the probability distribution changes with time, then the
nonuniform distribution should likewise change with time.

A related coverage problem derives from the classic objective analysis (OA) map-
ping error in problems of sampling (possibly time-varying) scalar fields, e.g., tem-
perature in the ocean [3]. OA is linear statistical estimation based on specified field
statistics, and the mapping error provides a measure of statistical uncertainty of the
model as a function of where and when the data is taken. Since reduced uncertainty,
equivalent to increased entropic information, implies better measurement coverage,
OA mapping error can be used as a coverage metric [3, 15]. If the a priori error corre-
lation between any two points in the plane is homogeneous and isotropic, then uniform
coverage will be optimal initially. However, the optimal coverage solution will not be
static (unless the scalar field of interest changes very quickly), since, once a particular
location has been sampled, it should not be sampled again until the measurement
value has decayed sufficiently.

Robotic vehicles carrying sensors in space, in the air, on land, and in the ocean
make possible mobile sensor networks that can adapt to changing coverage require-
ments. Given a coverage metric that is independent of time and of the history of
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samples taken, the goal is to design coordinated control dynamics for the vehicles
that yield convergence to the maximum coverage configuration from arbitrary initial
conditions. A second objective is to extend these coordinated control dynamics to the
case in which the coverage metric definition changes in time or, as in the case of the
OA error metric, as a function of past measurement locations and times.

Coverage problems have a compelling analogy in possible models of social forag-
ing by animal groups. Backed by observations of animal behavior across a number of
species, biologists model distribution of animals over patchy resource environments
according to a measure of patch suitability that depends on factors such as resource
richness or conditions for survival [7, 2, 20]. Suitability varies with animal density;
a typical assumption is that suitability decreases with increasing animal population.
For example, suitability declines when more animals converge on a given patch since
resources (e.g., prey) may be limited, and thus average consumption rates go down
with more hungry consumers. Since animals prefer patches with higher suitability,
nonuniformity in the distribution of resources (i.e., the suitability) reflects nonunifor-
mity in the distribution of the animal group. As in the case of the OA mapping error
metric that changes as samples are taken, suitability decreases in time as animals
consume (and animals will abandon patches where suitability has declined). By this
analogy, coverage studies of changing, nonuniform environments may prove useful in
helping to explain how animal groups move and redistribute.

Several contributions have been made to the design of coverage algorithms for
a group of dynamic agents, including [4, 18, 17, 5] and the references therein. In
[4], uniform coverage algorithms are derived using Voronoi cells and gradient laws for
distributed dynamical systems. Uniform constrained coverage control is addressed in
[18], where the constraint is a minimum limit on node degree. Node degree refers to
the number of neighbors for each agent, where a neighbor is any other agent that is
sufficiently close by. Virtual potentials enable repulsion between agents to maximize
coverage and attraction between agents to enforce the constraint. In [17], gradient
control laws are proposed to move sensors to a configuration that maximizes expected
event detection frequency. Local rules are enforced by defining a sensing radius for
each agent, which also makes computations simpler. The approach is demonstrated
for a nonuniform but symmetric density field with and without communication con-
straints. Further results for distributed coverage control are presented in [5] for a
coverage metric defined in terms of the Euclidean metric with a weighting factor that
allows for nonuniformity. As in [4], the methodology makes use of Voronoi cells and
Lloyd descent algorithms.

In this paper we concentrate exclusively on two-dimensional planar regions, and
we propose an approach to coverage control that makes use of existing algorithms
designed for uniform coverage and extends these to nonuniform metrics. We are
particularly interested in metrics defined in terms of non-Euclidean distance functions
that effectively stretch and shrink space in lower and higher density regions of a given
space. This yields optimal configurations where the resource or information is evenly
distributed among the agents. Non-Euclidean distance metrics present challenges
to existing techniques. For example, in the case of [4, 5], computing Voronoi cells
with non-Euclidean metrics is computationally complex. For each point on a dense
grid, one needs to compute the (non-Euclidean) distance to each agent and find the
minimum. Computing Voronoi cells for a non-Euclidean metric is therefore much
more demanding than the corresponding problem with an Euclidean metric where
the polygonal boundaries of the Voronoi cells can be computed directly.

The first step in our method is to compute a nonuniform change of coordinates
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on the original compact set with a non-Euclidean metric that maps to a new compact
set with a near Euclidean metric. Such a map is called a cartogram. Inspired by the
work of Gastner and Newman [9], we compute the cartogram from a diffusion equa-
tion. Gastner and Newman used cartograms in several applications, including the
representation of election results [11] and the optimal design of spatial distribution
networks [10]. For these problems, it is sufficient to compute single cartograms, while
we are interested in computing a series of cartograms for feedback control. Accord-
ingly, we propose a method to compute cartograms that vary smoothly as a function
of the density distribution.

A uniform control law can be used in the cartogram space since the metric in
this space is almost Euclidean. The preimage of the control law yields convergent
dynamics in the original space. We prove under certain conditions that these conver-
gent dynamics optimize the nonuniform coverage metric. We show how to extend the
approach to the case of a time-varying metric.

A limitation of our approach is the centralized computation of the cartogram.
However, we note that the density function does not need to be known a priori; it
can be measured or computed by the agents in real time. For example, the changing
OA metric can be computed only on the fly since it is a function of where and when
samples have been taken.

In section 2 we review, as an example, the uniform coverage control of [4]. We
describe the nonuniform coverage problem in section 3. Cartograms are defined in
section 4. Gastner and Newman’s method for computing cartograms using the dif-
fusion equation is reviewed, and our new approach to computing smooth cartograms
is presented. In section 5 we describe and prove our approach to nonuniform cov-
erage control that makes use of cartograms. Section 6 provides error estimates for
the examples studied, and the case of time-varying metrics is addressed in section 7.
Conclusions and future directions are given in section 8.

2. Uniform coverage. A number of different metrics and different coordinated
control strategies have been developed for uniform coverage, as described above. In
this section, as a motivating and useful example, we review the uniform coverage
approach and result of Cortés and Bullo, who devised a robust and efficient control
scheme to optimize the configuration of a group of robotic vehicles carrying sensors [4].
They consider a group of n vehicles moving in a region D, with a polygonal boundary
∂D. The vehicles obey first-order dynamics:

(2.1) ẋi = ui(x1, . . . ,xn),

where xi is the position of the ith vehicle and ui is the control input to the ith vehicle.
The goal is to bring the robots, from their initial positions, to a (static) configu-

ration that maximizes coverage of the domain. To define maximum coverage, Cortés
and Bullo consider multicenter metric functions such as

(2.2) Φ(x1,x2, . . . ,xn) = max
x∈D

{
min
i=1···n

d(x,xi)
}
,

where d(x,xi) = ‖x− xi‖ is the Euclidean distance. Given the position of the n
vehicles, computing the metric requires computing the distance from any point x ∈ D
to the closest vehicle. The metric Φ is equal to the largest of these distances. As
a result, the maximum distance between any point of the domain and the closest
vehicle is always smaller than or equal to Φ. Intuitively, a smaller Φ implies that the
corresponding array of vehicles xi achieves a better coverage of the domain D.
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Assuming that all of the vehicles have the same constant speed, Φ is proportional
to the maximum time it takes for a vehicle to reach an arbitrary point of the domain.
For this reason, Cortés and Bullo define optimal coverage as the minimum of the cost
function Φ.

One of the main results of [4] is the development of a stable procedure to bring the
vehicles into a configuration that minimizes the metric Φ. To this end, the Voronoi
cell of each vehicle is computed repeatedly. The Voronoi cell for the ith vehicle is a
polygonal subset of the domain D that contains all of the points that are closer to
the ith vehicle than any other vehicle. Each vehicle is then directed to move toward
the circumcenter of its Voronoi cell (see Figure 1). Once all the vehicles reach the
circumcenter of their Voronoi cell, the coverage metric Φ is minimum (see the last
panel of Figure 1). Cortés and Bullo show that, from any initial position where the
vehicles are not exactly on top of each other, their algorithm converges toward the
optimal configuration.

Fig. 1. Convergence to static uniform coverage. Thick dots: Position of the four agents.
Shaded polygons: Voronoi cell for each agent. Large circles: Circumcircle of each Voronoi cell.
Diamonds: Centers of each circumcircle (i.e., circumcenters). Arrows: Velocity of the vehicles
(oriented along the segment joining the agents to the circumcenter of their Voronoi cell).

3. Nonuniform coverage. In the present paper we develop an approach that
extends optimal coverage strategies to more general metrics, notably to nonuniform
and time-varying metrics. Nonuniform metrics are motivated by coverage problems in
environments with nonuniformly distributed information or resources. The objective
is to produce distributions of agents that match the inhomogeneities in the information
or resource field. We are particularly interested in metrics defined in terms of a
(possibly time-varying) distance function that is non-Euclidean. A non-Euclidean
distance function stretches high density areas and shrinks low density areas. With a
coverage metric that depends on such a distance function, individual agents can be
organized so that information or resources are equally distributed among them. In
other words, each agent has a “dominance region” (e.g., Voronoi cell) and, irrespective
of the size of these regions, we want the amount of information or the resource to be
equal in each agent’s cell.

Notice that this objective is slightly different from the approach of Cortés and
Bullo. In [4], the region of dominance of an agent is flexible and might include points
that can be reached more easily by other agents. In this paper, we consider the
dominance region of an agent xi as a defined region containing all of the points that
are closer to xi than any other agent in the sense of the non-Euclidean metric, i.e.,
that can be reached more easily by agent xi than by any other agent, where ease in
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reaching a point depends on density. In other words, the dominance region is still a
Voronoi cell, and the nonuniform density is introduced through the distance function
used to compute the Voronoi cells. The nonuniform distance shrinks along paths
where resources are sparse and increases along paths where resources are plentiful.

Recall that the Euclidean distance between two points is also the length of the
shortest path between the two points, or

‖x− xi‖ = min
Cxi
x

{∫
Cxi
x

dl
}
,

where Cxi
x is an arbitrary path from x to xi. If the density of information ρ : D → R

+
0

is not uniform, then we can define a non-Euclidean distance:

dρ(x,xi) = min
Cxi
x

{∫
Cxi
x

√
ρ dl

}
.

The distance between two points in a low-density area is less than the Euclidean
distance. The shortest path between two points might be curved in order to avoid
peaks of ρ. High density implies that the distances are stretched; hence more vehicles
are needed in the area. The region of dominance of each agent is still its Voronoi cell,
but the nonuniform distance changes the shape of the cell. As an example see the
bottom right panel of Figure 6, which shows four vehicles distributed optimally with
respect to a non-Euclidean metric; in this example, the peak density is in the lower
right corner of the region.

Note that we use the square root of the function ρ and not the function ρ itself
to weight the distance integral. The reason for this choice is the fact that, in two
dimensions, multiplying the distances in each direction by

√
ρ implies a net volume

(or density) change of ρ. It is also worth noting that weighting the distance integral
by a negative function is not acceptable, as some distances would become negative.

In this paper we assume that the coverage metric Φ is a functional of a distance
function dρ, which depends on the positions of the agents xi and the domain D,
denoted

(3.1) Φ = (Φ[dρ]) (xi, . . . ,xn;D).

Clearly, one can use any metric Φ that involves only the Euclidean distance, such as
the multicenter function (2.2), and make it inhomogeneous by replacing the Euclidean
distance d with the weighted distance dρ. If ρ represents the density distribution
for information or resources, then optimal coverage solutions correspond to evenly
distributed information or resources to each agent’s “dominance region.”

In [5], Cortés et al. design coverage control algorithms for a density-dependent
metric defined, as a function of a given array of agents x1,x2, . . . ,xn, by

Φ(x1,x2, . . . ,xn) =
∫
D
min
i

{
f(d(x,xi)) ρ(x)

}
dx,

where f is a nondecreasing function and ρ is the distribution density function. Because
the metric depends on the Euclidean distance function, the cost function can be
rewritten as

Φ(x1,x2, . . . ,xn) =
n∑
i=1

∫
Vi

f(d(x,xi)) ρ(x) dx,
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where the Voronoi cells Vi are defined also by the Euclidean distance function as

Vi =
{
x ∈ D

∣∣∣ d(x,xi) ≤ d(x,xj) ∀j �= i
}
.

As shown in [5], this means that the cost function can be seen as the contribution of
n dominance regions Vi, each of which is the Voronoi cell of an agent. Although this
metric yields coverage solutions that are nonuniform, the information or resource will
nonetheless not be equally distributed among corresponding dominance regions.

In this paper, we are interested in cost functions of the form (3.1). Indeed, a metric
based on a nonuniform distance dρ is more closely related to information gathering
and sensing array optimization.

One such problem is the detection of acoustic signals. In this case,
√
ρ represents

the nonuniform refractive index of the environment. The objective is to place the
sensors in such a way that they can detect sources anywhere. In other words, one
needs to minimize the weighted distance dρ between any point in the domain and the
agents.

Another typical problem consists in increasing the ability of the array on an
uneven terrain. This situation is typical for mine hunting arrays in a standby mode;
the optimal configuration minimizes the time that it would take to send one of the
agents to a newly detected mine. In this case, the square root of ρ(x) represents
the roughness of the terrain, the infinitesimal time it takes to cross an infinitesimal
path located in x. The goal is to position the agents in such a way that any point
of the domain can be reached by one of the agents in minimum time. The optimal
solution corresponds to the minimum of the cost function in (3.1), where dρ(x,y) is
the minimum travel time between points x and y.

A variant of the algorithm of [4, 5] could be used to optimize the coverage with a
nonuniform metric defined in terms of a non-Euclidean distance function. Indeed, one
can define Voronoi cells based on the non-Euclidean distance function. The boundaries
of such Voronoi cells are, however, not polygonal, and their computation is complex
and time-consuming. To compute the distance between two points a and b, one needs
to consider any path between a and b and to find the minimum of

∫
Cb
a

√
ρ dl. Our

approach, which involves computing cartograms, is, as will be illustrated below, a
much simpler and faster operation.

In this paper, we assume that a particular cost function of the form (3.1) has been
selected and that there exists a stable algorithm that brings a group of vehicles to
the minimum of Φ for the Euclidean distance. We provide a methodology to modify
this algorithm when the non-Euclidean distance (e.g., terrain roughness, acoustic
refraction) is used.

4. Cartograms. Our approach to deriving coverage control strategies for nonuni-
form and time-varying metrics is to find a standard method to modify a control law
defined for the Euclidean metric in such a way that it remains stable and converges
to the minimum of the nonuniform metric.

The method that we develop is based on a nonuniform change of coordinates
that transforms the domain D with the non-Euclidean distance into another compact
set D′ where the distance is Euclidean or near Euclidean. Such transformations are
commonly referred to as “cartograms” in computer graphics.

To motivate the notion of cartogram, consider how poorly census and election
results are represented using standard geographical projections; such data are better
plotted on maps in which the sizes of geographic regions such as countries or provinces
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appear in proportion to their population (as opposed to the geographical area). Such
maps, which are cartograms, transform the physical space D into a fictitious space D′

where the area element A is proportional to a nonuniform density ρ : D → R
+
0 .

Definition 4.1 (cartogram). Given a compact domain D ⊂ R
2 and a density

function ρ : D → R
+
0 , a cartogram is a C1 (continuous everywhere and with continuous

derivatives almost everywhere) mapping φ : D → D′ : x→ φ(x) such that

det
(
∂φ

∂x

)
= ρ.

It is standard in the literature to define a cartogram as a change of coordinates
as above but such that det

(
∂φ
∂x (x)

)
= kρ(x) > 0; i.e., the transformation multiplies

the area element by the density function ρ and an arbitrary constant k > 0. Without
loss of generality, we assume that k = 1. If that is not the case, then one can multiply
φ by k−1.

As an example, Figure 2 shows the linguistic distribution in Belgium. The left
panel of Figure 2 shows the five Flemish-speaking provinces and the five French-
speaking provinces on an equal-area projection (Belgian conic conformal Lambert
projection). The center panel gives the level sets of the population density and re-
veals that, while geographically smaller than its French counterpart, the Flemish
region is much more densely populated and accounts for the majority of the country’s
population.

The right panel of Figure 2 is the cartogram of the country based on population
density. In this projection, areas are proportional to the density of population. Such a
cartogram is more adequate for plotting census and election results since the national
outcome of the election or referendum is based on the principle of “one vote per
citizen” and not “one vote per unit of area.” Our method for computing cartograms,
inspired by the approach of Gastner and Newman [9], is presented in this section.

0 250 500 750 1000 1250 1500

Population density (people / km2)

Fig. 2. Linguistic distribution and population density in Belgium. Left panel: Equal-area (Bel-
gian Lambert) projection. Light gray represents Flemish provinces. Dark gray stands for French-
speaking provinces and the Brussels-Capital area. Center panel: Density of population binned on
5km × 5km cells (source: Columbia University’s Center for International Earth Science Informa-
tion Network). Right panel: Cartogram of the country based on population density. Areas in this
projection are proportional to population density and correctly depict the linguistic distribution.

Given a domain D and a density function ρ, there are infinitely many possible
cartograms. As stated in [9], the objective is to minimize the distortion of the original
figure. A perfect cartogram would not introduce any deformation and would satisfy

∂φ

∂x
=
√
ρ I,
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where I is the identity matrix. Clearly, such a cartogram does not exist for most
density functions ρ. Nevertheless, we seek to reduce the distortion and to minimize∥∥∂φ
∂x −

√
ρ I
∥∥, where ‖ · ‖ is any norm on the space of 2× 2 matrices. Accordingly, we

make the following definitions.
Definition 4.2 (perfect cartogram). For a given density function ρ, a perfect

cartogram, if it exists, is a cartogram such that
∥∥∂φ
∂x −

√
ρ I
∥∥ = 0.

Definition 4.3 (ideal cartogram). For a given density function ρ, an ideal
cartogram is given by

Argmin
φ

∥∥∥∥∂φ∂x −√ρ I

∥∥∥∥ .
4.1. Cartograms with fixed boundaries. Recently, Gastner and Newman [9]

showed how to construct a cartogram using a diffusion equation. Although perfect
cartograms usually do not exist and there is no guarantee that a cartogram obtained
using diffusion is an ideal cartogram, the work of Gastner and Newman has shown
that, among all known methods to compute cartograms, the diffusion method in-
troduces very little distortion and produces maps that are the closest to the perfect
diagonal form

√
ρ I.

To describe the method of [9], we first address the case in which, for a given ρ, the
normal component of ∇ρ along the boundary ∂D vanishes. In this case, there exists
a cartogram φ : D → D′, where D′ = D. To show the existence of the cartogram and
to determine a method to compute it, we imagine that the domain D is filled with a
fluid whose initial density is given by ρ. As time evolves, the gradient of the density
creates motion and the density of the fluid tends to homogenize. Let us consider the
density c(x, t) at point x and time t. It satisfies the diffusion equation

∂c

∂t
= νΔc ,

where the initial condition is c(x, 0) = ρ(x), the boundary condition is ∂c
∂n = 0, and

ν > 0 is arbitrary. For t → +∞, the density c tends to a constant distribution c∞
and, at any time t and at any position x, we have c(x, t) > 0. As a result, we can
define a velocity field:

v(x, t) = −ν ∇c
c

(x, t).

Given the initial position x0 at which a particle is released at time t = 0, the velocity
field above determines the position at any later time t. The flow (i.e., the trajectories)
of the velocity field is a function of time and of the initial position. We denote by
x(t;x0) the unique trajectory that satisfies

{
ẋ = v (x(t;x0), t) ,
x(0;x0) = x0.

The domain D is compact; hence the trajectories x are at least C1 on any finite
interval of time [0, t] (see, e.g., [12]). In this case, however, c is the solution of the
diffusion equation and the magnitude of its gradient decays exponentially with time
while c approaches its average, c∞. As a result, the velocity field v also decays
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exponentially in time. This is a sufficient condition for the trajectories x(t,x) to be
C1 on the infinite interval t ∈ [0,+∞[. We define

φ(x0) = lim
t→+∞x(t,x0).

The limit exists, is unique, and is a C1 function of its argument x0. To check that
this transformation is indeed a cartogram, recall that Liouville’s theorem determines
how area elements A change along trajectories:

(4.1)
d
dt

lnA
∣∣∣∣
x(t;x0),t

= div (v(x, t)) .

Direct computation shows that

div (v) = −ν
c
Δc+

1
ν
v2.

Note that

d
dt

ln c =
1
c

∂c

∂t
+

v · ∇c
c

= −div (v) .

As a result, Liouville’s equation (4.1) simplifies to

A(t) = A(0) e−
∫

t
0

d
dt ln c dt = A(0)

c(x0, 0)
c(x, t)

= A(0)
ρ(x0)
c(x, t)

.

For t→ +∞, the density c becomes constant in space and we have

det
(
∂φ

∂x0
(x0)

)
= lim
t→+∞

A(t)
A(0)

=
ρ(x0)
c∞

.

Hence, the transformation φ(x0) is a cartogram since it changes area elements propor-
tionally to ρ(x0). Starting from an equal-area map (i.e., A(0) = 1), we can multiply
φ(x0) by the constant c∞ and the equality becomes

det
(
∂φ

∂x0
(x0)

)
= ρ(x0).

By changing the name of the variable from x0 to x, we obtain the desired form

det
(
∂φ

∂x
(x)
)

= ρ(x).

4.2. Cartograms with moving boundaries. The conclusions reached for car-
tograms with constant boundaries do not translate immediately to cases where ∂ρ

∂n �= 0
on the boundary of the domain. In this case, we cannot apply the method described
in the previous section, and theorems about existence and smoothness of the diffusion
problem, as well as about the advection of the velocity field, are not applicable either.
Gastner and Newman [9] suggest extending the density to a larger domain where
Neumann boundary conditions are enforced. Given a function ρ : D → R

+
0 , one can

select a larger domain D0 ⊃ D and pick an arbitrary function ρ̂ : D0 → R
+
0 such that

ρ̂ is identical to ρ in D. Typically, D0 has an area of 4 or 9 times the initial domain D.
The goal is to design ρ̂ in such a way that ∂ρ̂

∂n = 0 at the edges of the larger domain D0
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D

D0\D ∂D

∂D0

∂ρ̂
∂n =0

ρ̂ = ρ

Fig. 3. Proposed approach: when computing a cartogram for a domain D that has an arbitrary
shape or for which the normal derivative of the density function ρ does not vanish at the boundary,
a large rectangle D0 ⊃ D is selected. The density ρ is extended outside D by enforcing Neumann
boundary conditions at the boundary of the large rectangle, requiring continuity of ρ̂ at the edge with
D, and setting the Laplacian of ρ̂ to a constant value outside D. This defines a unique extension ρ̂
which is continuous and has continuous derivatives almost everywhere.

(see Figure 3). This permits the computation of the diffusion cartogram for the large
domain D0 with fixed boundaries, followed by a restriction of the transformation to
D to obtain the cartogram for the initial domain. This procedure is dependent on the
choice of the embedding domain D0. Given D0, it also depends on how the extended
density function ρ̂ is constructed in D0 \ D.

Gastner and Newman showed the importance of applying a “neutral buoyancy”
condition, which keeps the total area under consideration constant. To construct ρ̂,
they first computed the average density in D. In D0 \D, they filled ρ̂ with a constant
equal to the mean density in D. They experimented with other choices of parameters,
e.g., setting ρ̂ = 0 in D0 \ D, but this resulted in inappropriate diffusion of density
out of D. The authors also experimented with different sizes for the domain D0 and
observed only little visual difference, provided that D0 was sufficiently large.

From the point of view of our control design problem, the method above has an
important flaw: ρ̂, the initial condition for the diffusion problem, is not continuous at
the boundary of D. As a result, existence, uniqueness, and smoothness of the solution
of the diffusion problem are not guaranteed. This is not necessarily a problem when
producing only one cartogram. Our objective, however, is to produce continuous
sequences of maps. Indeed, we will need the cartogram to vary smoothly when the
density function is changed. For example, transferring Lyapunov functions from the
cartogram space to the physical plane requires the existence of continuous derivatives.

As an alternative to Gastner and Newman’s method, we propose the following
variant. Given ρ in the domain of interest D, we compute ∂ρ

∂n at the boundary of D
and the total flux across ∂D. We define the extended density ρ̂ as follows:

• Inside D, ρ̂(x) = ρ(x).
• Outside D, ρ̂ is the solution of⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δρ̂ =
−1

Area(D0 \ D)

∫
D
Δρ(x) dx =

−1
Area(D0 \ D)

∮
∂D

∂ρ

∂n
dl,

∂ρ̂

∂n

∣∣∣∣
∂D0

= 0,

ρ̂|∂D = ρ|∂D.
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The equations above define ρ̂ inside D0 \ D as the solution of a linear problem with
inhomogeneous Neumann boundary conditions. The Laplacian of ρ̂ is constant in
D0 \D, and its value is set so it compensates exactly the flux through the inside hole
D. Indeed, Green’s equality requires∫

D0

Δρ̂ dx =
∮
∂D0

∂ρ̂

∂n
dl = 0.

Since this problem is compatible, standard results in functional analysis [1, 6] guaran-
tee that the solution is unique and belongs to the Sobolev space H1, which contains
the functions on D0 that are continuous everywhere and for which the derivatives
are continuous almost everywhere.1 This guarantees also that the resulting extended
density, ρ̂, can be used as the initial condition of the diffusion problem and provides a
C1 solution c. The resulting transformation φ(x) is unique and varies smoothly (i.e.,
in a C1 fashion) when the input density ρ is changed.

The only possible inconvenience is the fact that the solution ρ̂ may become nega-
tive in the embedding rectangle. In this case the solution φ(x) might not be continuous
due to the factor ∇c/c in the equation giving the velocity field. Nevertheless, the dif-
fusion equation shows that if the initial density c(x, 0) = ρ̂(x) is positive, then the
density at later times remains positive. In other words, the density remain positive for
all of the points that initially had a positive density. While the cartogram might not
be well defined for points which were initially located in regions where ρ̂ was negative,
it is always well defined for points of D where the initial density is the input function
ρ > 0.

4.3. Numerical methods. Gastner and Newman showed how the diffusion
problem on a rectangle can be efficiently solved using the Fourier transform of c(x, t).
This transforms the problem into an ordinary differential equation where the variables
are the Fourier coefficients [9]. The only difference between our procedure and that of
Gastner and Newman is how the density ρ is extended from the domain of interest D
to the larger square D0. The problem giving ρ̂ is linear; hence we can mesh D0\D and
use a Galerkin approximation of ρ̂ (see [1, 6]). Figure 4 illustrates the computation of
ρ̂ in D0 \D for the domain in Figure 2. To compute the cartogram in the right panel
of Figure 2, the extended density ρ̂ in Figure 4 was used to first derive a map of the
large rectangle. This is a necessary step, as we do not expect the normal derivative
of the population density (input) to vanish at the border of a country.

Note that the partial differential equation that we suggest to solve for determin-
ing the extended density ρ̂ is linear. The time needed to solve the linear problem
is therefore negligible with respect to the time that it would take to compute the
nonlinear boundaries of the Voronoi cells for the non-Euclidean metric. Another ad-
vantage of the procedure used here is that there already exist many optimized linear
algebra packages that can be used to compute directly the solution of the discretized
differential equation.

5. Nonuniform coverage control.

5.1. Method. Cartograms can be used to extend any algorithm that minimizes
the uniform coverage metric, based on the Euclidean distance, to an algorithm that
minimizes a nonuniform coverage metric dependent on an arbitrary “weighted” dis-
tance dρ. Indeed, starting from a non-Euclidean distance dρ, a perfect cartogram

1By “almost everywhere” we mean that the derivatives are continuous everywhere, except, pos-
sibly, on sets of measure zero.
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Fig. 4. Continuous extension of the Belgian population density to a large rectangle with homo-
geneous Neumann boundary conditions. The extended density in the large rectangle is diffused to
obtain the cartogram in the right panel of Figure 2.

gives a transformation y = φ(x) such that the distance function is Euclidean for y.
As a result, one can apply the uniform coverage algorithm to the y coordinates and
prove convergence in the transformed space. In Theorem 5.1 (see section 5.3), we
prove conditions under which convergence to the minimum of the uniform metric in
the transformed space implies convergence to the minimum of the nonuniform metric
in the original domain D. The control law in the physical space for a system of agents
with dynamics given by (2.1) can then be recovered from the chain rule as

u = ẋ =
∂φ−1

∂y

∣∣∣∣
φ(x)

ẏ.

5.2. Example. As an example, we let D be the unit square that was uniformly
covered in Figure 1 using Cortés and Bullo’s algorithm [4]. This time, however,
we consider the multicenter coverage metric (2.2), where we replace the Euclidean
distance d with a non-Euclidean distance dρ:

(5.1) Φ[dρ](x1,x2, . . . ,xn) = max
x∈D

{
min
i=1···n

dρ(x,xi)
}
.

For this example, we set the density function ρ : D → R
+
0 to

ρ(x, y) =
3
40

+ e
− (x− 3

4 )
2
+(y− 1

4 )
2

( 1
10 )

2

,

which represents our nonuniform interest in the features contained inside the unit
square, or the nonuniform roughness of the terrain. The density ρ is plotted in the
left panel of Figure 5. In this example, the lower right quadrant of the unit square has
a much higher density and must be covered more densely than the rest of the square.
In the analogy with a group of animals, the peak at

(
3
4 ,

1
4

)
represents a region with

larger food supply and the population concentrates more in the lower right quadrant.
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Fig. 5. Cartogram of the unit square in preparation for nonuniform sampling. Left panel: Phys-

ical domain D with level sets of the density function ρ(x, y) = 0.075 + exp
(− (x−0.75)2+(y−0.25)2

0.12

)
.

Right panel: Cartogram D′ and image of a Cartesian mesh.

In the analogy with a mine hunting array, the peak is a region where the robots move
more slowly. To be able to respond anywhere in a minimum time, the vehicles must
be closer to each other in the lower right quadrant.

To derive coverage control laws for n = 4 vehicles with dynamics given by (2.1),
we first perform a cartogram of the area (see the right panel of Figure 5). The area
near the peak of the Gaussian source is stretched by the transformation and represents
about 30% of the mapped domain D′, while it does not account for more than 10%
of the physical domain D.

To continue the example we apply the uniform coverage control law of [4] in the
transformed plane D′ which guarantees convergence to the optimal configuration in
D′. Figure 6 shows several snapshots of the motion of the particles in both D and
D′. Notice that the optimal configuration segments D′ into four Voronoi cells of equal
area, but, in the physical space, this corresponds to four (nonpolygonal) regions of
unequal area; i.e., coverage is increased in the lower right quadrant.

Remark 1. Since the control is applied in a fictitious space, the norm of ẏ does
not represent the actual speed of the vehicle. If unit speed control is desired (as in
the simulation shown in Figure 6), then the velocity vector ẏ must be mapped back
into the physical plane and normalized there.

Remark 2. The velocity in the cartogram is oriented along the segment between
the vehicle and the circumcenter of its Voronoi cell. The preimage of this segment
by the transformation is no longer a straight path. As a result, when the velocity
vector is mapped back into physical coordinates by φ−1, it is not necessarily oriented
from the vehicle to the preimage of the circumcenter. Nevertheless, when the vehicle
is infinitesimally close to the circumcenter, the two directions are aligned. At the
equilibrium, the vehicles in the physical space are located exactly on the preimage of
the circumcenter in the cartogram.

5.3. Proof of convergence. In this section, we prove that, given a feedback
control law converging to a unique minimum of a cost function for the Euclidean
metric, a perfect (or near perfect) cartogram provides a feedback control law that
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Fig. 6. Convergence to static nonuniform coverage. Thick dots: Position of the four vehicles.
Shaded polygons: Voronoi cell for each vehicle (computed in the cartogram space). Large circles:
Circumcircle for each Voronoi cell of the cartogram. Diamonds: Centers of each circumcircle (i.e.,
circumcenters). Arrows: Instantaneous velocity of the vehicles (oriented along the segment joining
the vehicle to the circumcenter of its Voronoi cell). The first row depicts the computation in the
cartogram space. The second row gives the resulting positions of the vehicles in the physical space.

converges to the unique minimum of the cost function for a non-Euclidean distance
dρ defined by a density function ρ > 0.

Assume that a feedback control law has been designed and converges to the unique
minimum of a cost function based on the Euclidean distance. We consider a nonuni-
form distance dρ and investigate how the control law for the Euclidean distance be-
haves in a near perfect cartogram of ρ. We show that, for C1, strictly positive ρ,
the non-Euclidean cost function has a unique minimum. Furthermore, the cartogram
inverse-mapped feedback control converges toward this minimum.

Theorem 5.1 (nonuniform coverage by cartograms). Consider a C1 cost func-
tion (Φ[dρ]) (xi, . . . ,xn;D) that depends only on the distance dρ(a,b) = minCb

a

∫
Cb
a

√
ρ dl

between n agent positions and points in the domain D. We assume that Φ has a
unique, nondegenerate minimum for the Euclidean distance d1(a,b) = ‖a− b‖. We
also assume that there exists a feedback control law ẋi = vi(x1, . . . ,xn) that brings
the vehicles to the minimum for the Euclidean distance d1.

Given a density function ρ : D → R
+
0 , consider a cartogram φ : D → φ(D). We

consider applying the control law for the Euclidean distance in the cartogram space;
hence

ẏi = vi(y1, . . . ,yn),
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where yi = φ(xi). The corresponding dynamics in the physical space D

ẋi = ui =
∂φ−1

∂y

∣∣∣∣
φ(x)

ẏi

yield a convergent sequence. In the neighborhood of a perfect cartogram, we have the
following:

1. There is a unique minimum of (Φ[dρ]) (xi, . . . ,xn,D) on D.
2. The agents converge to an equilibrium that tends continuously to the unique

minimum as ε =
∥∥∂φ
∂x −

√
ρ I
∥∥→ 0.

Proof. By definition, a cartogram is a C1 mapping

φ : D → φ(D) : x → y = φ(x),

such that

det
(
∂φ

∂x

)
= ρ.

This does not guarantee that the distance dρ between two points in the physical
plane is equivalent to the Euclidean distance between the image of the two points in
the cartogram. Nevertheless, the objective in computing the cartogram is to avoid
unnecessary deformations, and, in the limit of a perfect cartogram, the equality of
the distances is satisfied.

Consider a cartogram φ. The perfect cartogram is such that ∂φ
∂x =

√
ρ I, where I

is the identity matrix. In section 6, we will show that the diffusion method described
in this paper and in that of Gastner and Newman [9] provides a cartogram close to
the ideal case for the examples that we studied. Developing the transformation about
the perfect case, we get

∂φ

∂x
(x) =

√
ρ I + εM(x),

where ‖M‖ = 1 and ε =
∥∥∂φ
∂x −

√
ρ I
∥∥ is kept as small as possible to avoid distortions.

For a perfect cartogram, we have ε→ 0.
To investigate the relationship between distances in the physical space and in the

cartogram, let us consider two points x1, x2 ∈ D and their images yi = φ(xi). We
have

d1(y1,y2) = min
Cy2
y1

∫
Cy2
y1

dl,

where Cy2
y1

is an arbitrary path between points y1 and y2. Indeed, the Euclidean
distance between two points y1 and y2 is the minimum length of the paths between the
two points. Let us now apply the change of coordinates y = φ(x). The infinitesimal
arclength dl in the cartogram space becomes, in the physical space,

√
1�
l

∂φ

∂x

� ∂φ
∂x

1l dl′,
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where 1l is the unit vector tangent to the path followed. As a result, we have

d1(y1,y2) = min
Cy2
y1

∫
Cy2
y1

dl = min
Cx2
x1

∫
Cx2
x1

√
1�
l

∂φ

∂x

� ∂φ
∂x

1l dl′(5.2)

= min
Cx2
x1

∫
Cx2
x1

√
ρ+ ε

√
ρ1�

l (M� +M)1l +O(ε2) dl′(5.3)

= min
Cx2
x1

∫
Cx2
x1

[
√
ρ+

ε

2
√
ρ

1�
l (M� +M)1l +O(ε2)

]
dl′(5.4)

= dρ(x1,x2) + ε g(x1,x2) +O(ε2),(5.5)

where
√
ρ1�

l (M�+M)1l is continuous almost everywhere since φ is C1 almost every-
where by definition. Notice that this also implies that g(x1,x2) = ε

2
√
ρ

∫
Cx2
x1

1�
l (M� +

M)1l dl is C1 almost everywhere in its two arguments x1 and x2. As a result, the
equation above states that the distance dρ between two points x1 and x2 in the phys-
ical space is equal to the Euclidean distance between the image of these two points
in the cartogram φ(x1) and φ(x2), plus a correction ε g that vanishes continuously as
ε→ 0.

Since the cost function depends only on the distance between pairs of agents,
between pairs of points in the domain D, and between an agent and points of D, we
also have

(Φ[dρ]) (x1, . . . ,xn;D) = (Φ[d1]) (φ(x1), . . . , φ(xn), φ(D))

+ ε h(x1, . . . ,xn) +O(ε2).(5.6)

Since g is a C1 function of its arguments, h is also C1 almost everywhere. In other
words, when ε → 0, the cost function for a configuration in physical space with a
nonuniform metric tends in a C1 fashion to the cost function for the mapped config-
uration in the cartogram but with the Euclidean distance.

Let us consider the (unique) minimum of the cost function with the Euclidean
distance:

∇y (Φ[d1]) (y∗
1, . . . ,y

∗
n;φ(D)) = 0.

Recall that, by hypothesis, this minimum is unique and nondegenerate, i.e.,

det

(
∂2Φ
∂y2

∣∣∣∣
y∗

)
�= 0.

Furthermore, the hypotheses guarantee convergence of the control in the cartogram
for the Euclidean distance; hence the agents converge to the configuration y∗. Since φ
and φ−1 are continuous, the vehicles in the physical plane converge to x∗

i = φ−1(y∗
i ).

For a perfect cartogram, using the chain rule, we find

∇x (Φ[dρ]) (x1, . . . ,xn;D) =
(
∂φ

∂x

)−1

︸ ︷︷ ︸
det>0

∇y (Φ[d1]) (y1, . . . ,yn;φ(D)) .
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Hence there is also one and only one minimum in the physical plane, and it is given by
x∗
i = φ−1(y∗

i ). For a perfect cartogram, the vehicles converge exactly to the minimum
of Φ[dρ].

For ε �= 0, the agents still reach the configuration y∗
i in the cartogram space.

In the physical space, this still corresponds to the configuration x∗
i = φ−1(y∗

i ). In
this case, however, x∗

i is not the minimum of Φ[dρ], and our goal is to show that the
minimum of Φ[dρ] is still unique and that x∗

i is ε-close to this minimum. Starting
from (5.6), we find

∇x (Φ[dρ]) (x1, . . . ,xn;D) =
(
∂φ

∂x

)−1

∇y (Φ[d1]) (y1, . . . ,yn;φ(D))

+ ε∇xh(x1, . . . ,xn) +O(ε2),

where ∇xh is continuous almost everywhere. Hence, the (possibly multiply defined)
minima of Φ[dρ] satisfy

∇y (Φ[d1]) (y1, . . . ,yn;φ(D)) = −ε ∂φ
∂x
∇xh(x1, . . . ,xn) +O(ε2).

For ε = 0, the unique solution is y∗. For ε sufficiently small, our goal is to show that
the minimum, seen as a function y∗(ε), is single-valued and continuous in ε. This is
precisely the scope of the implicit function theorem (see, e.g., [19]); this classical result
states that, unless the derivative of the relation versus y is singular at (y, ε) = (y∗, 0),
there exists such a C1 curve of unique minima in a neighborhood of ε = 0. Notice that
the derivative of the implicit relationship at y∗ and ε = 0 is given by ∂2Φ

∂y2

∣∣
y∗ , which

is nonsingular by assumption. As a result, the implicit function theorem guarantees
that, for sufficiently small ε, there exists a unique minimum y(ε) and, as ε → 0, this
minimum converges in a C1 fashion to y∗.

Now that we know that the minimum is unique and varies smoothly with ε, we
can find its location. Setting y(ε) = y∗ + ε δ, we find

yεi = y∗
i − ε

(
∂2Φ
∂y2

)−1
∣∣∣∣∣
y∗

i

∂φ

∂x

∣∣∣∣
φ−1(y∗

i )

∇xh(φ−1(y∗
i )) +O(ε2).

This equation gives the coordinates (in the cartogram) of the minimum of Φ[dρ] (in
physical space). The corresponding configuration in physical space is given by

xεi = φ−1(yi(ε))

= x∗
i − ε

(
∂φ

∂x

)−1
∣∣∣∣∣
x∗

i

(
∂2Φ
∂y2

)−1
∣∣∣∣∣
φ−1(y∗

i )

∂φ

∂x

∣∣∣∣
x∗

i

∇xh(x∗
i ) +O(ε2).(5.7)

Notice that all of the matrices in the equation above are nonsingular. The minimum
of Φ[dρ] is therefore also unique in the physical space and converges continuously to
x∗ as ε→ 0.

Recall that x∗ is the configuration to which the agents converge. xεi is the actual
minimum of Φ[dρ]. The equation above shows that, for small but nonzero ε, the opti-
mum of the cost function with the nonuniform distance dρ is ε-close to the optimum of
the cost function in the cartogram with the Euclidean metric. Furthermore, as ε→ 0,
the configuration of the agents converges continuously to the optimal configuration of
the initial, non-Euclidean problem.
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6. Cartogram error. We have shown in the previous section that, given two
points x1 and x2 in space and their images by the cartogram, φ(x1) and φ(x1), we
have

d1

(
φ(x1), φ(x2)

)
≤ dρ(x1,x2) +

ε

2
√
ρ

∥∥M� +M
∥∥+O

(
ε2
)
.

In the context of controlling vehicles in the cartogram space, convergence is guaran-
teed, provided that we can create a cartogram such that d1

(
φ(x1), φ(x2)

)
is sufficiently

close to dρ(x1,x2). Recall that ε =
∥∥√ρ I− ∂φ

∂x

∥∥ and ‖M‖ = 1; hence,∣∣∣∣ ε

2
√
ρ

∣∣∣∣ ∥∥M� +M
∥∥ ≤ ∥∥∥∥ I− 1

√
ρ

∂φ

∂x

∥∥∥∥ .= η

is the relevant unitless distortion factor for this problem.
Figure 7 shows the distribution of the deformation factor η for the test cartogram

shown in Figure 5 as well as for the cartogram based on the Belgian population
density. In both cases, the maximum deformation factor η is below 0.4. Figure 7
shows also that the deformation is below 0.1 in a very high fraction of the total area.
The distortion factor η grows above 0.1 only in small bands separating regions of very
different densities. For example, there is a narrow annulus of high distortion around
the density peak in the lower right corner of the left panel of Figure 7.

Fig. 7. Level sets of the distortion factor η =
∥∥I − 1

ρ
∂φ
∂x

∥∥ for the cartograms constructed in

Figure 5 (left panel) and in Figure 2 (right panel).

It is worth noting that (5.7) indicates that we can always multiply the cost func-
tion Φ by an arbitrary large number to reduce the influence of the distortion factor. In
the case of the example of section 5.2, the error can be estimated as follows: we have
ρ < 1.075 and Figure 7 shows that, at the equilibrium positions, we have η < 0.1. As a
result we have ε =

∥∥√ρI− ∂φ
∂x

∥∥ =
√
ρ η < 0.11. The error is given by ε

2
√
ρ = η

2 < 0.05,
which is to be compared to the unit side of the square domain.

7. Space-time optimal coverage. In most problems, the metric does not re-
main constant in time. Indeed, when the density ρ is a physical quantity, such as
the refractive index, it changes according to the fluctuations in the environment (e.g.,
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Fig. 8. Convergence to nonuniform coverage with time-varying density. Thick dots: Position
of the four vehicles. Shaded polygons: Voronoi cell for each vehicle (computed in the cartogram
space). Large circles: Circumcircles for each Voronoi cell of the cartogram. Diamonds: Centers
of each circumcircle (i.e., circumcenters). Arrows: Instantaneous velocity of the vehicles (oriented
along the segment joining the vehicle to the circumcenter of its Voronoi cell). The first row depicts
the computation in the cartogram space. The second row gives the resulting positions of the vehicles
in the physical space. From left to right, the snapshots are taken when the peak of density is in the
upper right corner, at y = 1

2
, and in the lower right corner.

sources, sinks, diffusion, advection). When the nonuniform density represents infor-
mation or food, its variations over time are even more subtle: the agents cover the
domain and concentrate in regions of high density, but, at the same time, they de-
plete food or gather information and, in doing so, erode the very density peaks that
attracted them. One such example is the objective analysis (OA) information map
in [15].

The method developed in this paper is well suited for such time-varying metrics.
Indeed, the numerical method presented in section 4 is aimed at producing cartograms
that depend smoothly on the density function ρ. In other words, for a density function
ρ(x, t) that is C1 in time, we find a family of cartograms φt : D → D′

t where both the
transformation φt and the transformed space D′

t change with time in a C1 fashion.
As an example, we modify the density function ρ from section 5.1 as follows:

ρ(x, y) =
3
40

+ e
− (x− 3

4 )
2
+(y− 1

2+1
4 cos( t

2π
))2

1
10

2
.

In other words, the peak of the distribution ρ now moves periodically along the vertical
axis x = 3

4 . Figure 8 shows the result of this simulation for four agents. For the
snapshots on the left, the peak of density is at its maximum position in the upper
right quadrant. For the snapshots on the right, the peak is at the minimum in the
lower right quadrant. The middle panels correspond to an intermediate position.
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Fig. 9. Array of 10 agents covering the square with nonuniform, time-varying density. On the
left, the peak of density is in the upper right quadrant; on the right, the peak is in the lower right
quadrant. The middle panel is an intermediate snapshot.

Notice that, despite the fact that the optimal configuration changes a lot in phys-
ical space, the cartograms are similar to each other. This highlights one of the advan-
tages of the method: the complexity of the nonuniform and time-varying density is
absorbed in the cartogram transformation. In the cartogram plane, a simpler, uniform
coverage algorithm is applied.

In Figure 9, the same simulation is performed for 10 vehicles, and it shows how
the agents organize and move to follow the peak in the density ρ.

For autonomous, nonuniform metrics, we proved uniqueness of the optimal con-
figuration and convergence to this position. The algorithm applies well to the case of
time-varying metrics. If the density function changes slowly enough (in comparison to
agent speed) and, at any time t, the distortion η(t) =

∥∥ I− 1√
ρ(t)

∂φ
∂x (t)

∥∥ is sufficiently

small, then convergence can be inferred by our theorem. The requirement that ρ(t)
does not change too fast guarantees that the cartogram does not change too fast, and,
hence, the boundary φ(D) does not change too fast with respect to vehicle speed. As
a result, the motion of the cartogram boundary (slow dynamics) and the motion of
the vehicles (fast dynamics) are almost decoupled, and we infer convergence from the
fact that vehicles are converging to the equilibrium on timescales much shorter than
the timescale at which φ(D) changes.

For a fast changing metric, there are two possible obstacles that can limit the
use of the method that we proposed. First, a fast changing metric might make the
cartogram boundary move too fast for the vehicle to converge to any configuration.
Second, if the vehicles converge, then the configuration reached might differ signifi-
cantly from the minimum of the metric.
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8. Conclusions. In this paper, we investigated the use of cartograms to achieve
time-varying, nonuniform coverage of a spatial domain by a group of agents. The
method proposed relies on the existence of a stable algorithm that achieves uniform
coverage (e.g., for the Euclidean metric). The control law is extended to nonuniform
coverage (based on a non-Euclidean distance induced by a density function) by the
use of density-equalizing maps.

The advantage of the method presented is its universality: it permits generalizing
many existing uniform coverage algorithms to nonuniform metrics. It also provides a
simple and fast control law. For example, computing Voronoi cells with a nonuniform
metric is, in comparison, a very time-consuming operation.

The control law presented in this paper is not distributed. In particular, the
diffusion equation uses information from all agents and is computed on a central
computer. However, a distributed version of the proposed approach may be possible,
provided that each agent computes its own local diffusion equation. In this case
information passed from neighbors would be used to determine boundary conditions.

Another limitation of the method presented in this paper is the fact that it applies
only to simple vehicle dynamics (first-order control). Although it is possible to find
heuristic adaptations to nonholonomic constraints, uniqueness of the optimal configu-
ration and convergence are not guaranteed by the results presented in this paper. The
major difficulty is that nonholonomic constraints, unlike distances and cost functions,
are not preserved by the cartogram mapping.

An inspiration for this work comes from a desire to understand how animal groups
organize themselves to exploit a time-varying nonuniform food supply. Other appli-
cations are numerous, as teams of unmanned robots are often destined to tasks for
which they need to mimic foraging animals. In [15], underwater vehicles patrol the
ocean to collect scientific data. Information for these agents is analogous to food:
the vehicles “consume” information by going to unsampled areas and lowering the
uncertainty. After a region has been visited, uncertainty grows in time, analogous to
the growing “food source.”

OA provides a framework to study quantitatively these systems by estimating
the residual error (or negative information) for an array of agents. It has been used
successfully to optimize the design of static and moving arrays [3, 15]. The method
presented in this paper is designed to match the OA model. Indeed, the residual error
corresponds to the input density ρ. Adequate data sampling is a key ingredient in
providing accurate ocean models. Recent developments in ocean modeling provide
detailed error maps [16] that can be equally used as the input density of our method.
Our objective is to optimize the motion of sampling agents in such a way that the
residual error in the models assimilating these data is minimum. From this point
of view, the cartograms represent an abstraction layer between a complex objective
(minimize error in large scale ocean models) and the control algorithm itself.

Acknowledgments. The authors are grateful to Russ Davis (Scripps Institu-
tion of Oceanography), Pierre Lermusiaux (MIT), and David Fratantoni (Woods Hole
Oceanographic Institution) for enlightening discussions about underwater glider con-
trol and ocean sampling. The Fourier transforms needed to solve the diffusion equa-
tion on rectangles were performed using FFTW, the “fastest Fourier transform in the
West” [8]. Finite-element approximations of the linear partial differential equation
problems defining the extended density function between the domain of interest and
a larger embedding rectangle were obtained using libsparse, a C++ wrapper to the
University of Florida’s UMFPack (see documentation of the OMA package or [13, 14]).
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PAYOFF-BASED DYNAMICS FOR MULTIPLAYER WEAKLY
ACYCLIC GAMES∗
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Abstract. We consider repeated multiplayer games in which players repeatedly and simultane-
ously choose strategies from a finite set of available strategies according to some strategy adjustment
process. We focus on the specific class of weakly acyclic games, which is particularly relevant for
multiagent cooperative control problems. A strategy adjustment process determines how players
select their strategies at any stage as a function of the information gathered over previous stages.
Of particular interest are “payoff-based” processes in which, at any stage, players know only their
own actions and (noise corrupted) payoffs from previous stages. In particular, players do not know
the actions taken by other players and do not know the structural form of payoff functions. We
introduce three different payoff-based processes for increasingly general scenarios and prove that,
after a sufficiently large number of stages, player actions constitute a Nash equilibrium at any stage
with arbitrarily high probability. We also show how to modify player utility functions through tolls
and incentives in so-called congestion games, a special class of weakly acyclic games, to guarantee
that a centralized objective can be realized as a Nash equilibrium. We illustrate the methods with a
simulation of distributed routing over a network.

Key words. game theory, cooperative control, learning in games
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1. Introduction. The objective in distributed cooperative control for multi-
agent systems is to enable a collection of “self-interested” agents to achieve a desirable
“collective” objective. There are two overriding challenges to achieving this objective.
The first is complexity. Finding an optimal solution by a centralized algorithm may
be prohibitively difficult when there are large numbers of interacting agents. This mo-
tivates the use of adaptive methods that enable agents to “self-organize” into suitable,
if not optimal, collective solutions.

The second challenge is limited information. Agents may have limited knowledge
about the status of other agents, except perhaps for a small subset of “neighboring”
agents. An example is collective motion control for mobile sensor platforms (see, e.g.,
[7]). In these problems, mobile sensors seek to position themselves to achieve various
collective objectives such as rendezvous or area coverage. Sensors can communicate
with neighboring sensors, but otherwise they do not have global knowledge of the
domain of operation or the status and locations of nonneighboring sensors.

A typical assumption is that agents are endowed with a reward or utility function
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that depends on their own strategies and the strategies of other agents. In motion
coordination problems, for example, an agent’s utility function typically depends on
its position relative to other agents or environmental targets, and knowledge of this
function guides local motion adjustments.

In other situations, agents may know nothing about the structure of their utility
functions and how their own utility depends on the actions of other agents (whether
local or far away). In this case, the only course of action is to observe rewards
based on experience and “optimize” on a trial and error basis. The situation is
further complicated because all agents are trying simultaneously to optimize their
own strategies. Therefore, even in the absence of noise, an agent trying the same
strategy twice may see different results because of the nonstationary nature of the
strategies of other agents.

There are several examples of multiagent systems that illustrate this situation.
In distributed routing for ad hoc data networks (see, e.g., [2]), routing nodes seek to
route packets to neighboring nodes based on packet destinations without knowledge
of the overall network structure. The objective is to minimize the delay of packets
to their destinations. This delay must be realized through trial and error, since
the functional dependence of delay on routing strategies is not known. A similar
problem is automotive traffic routing, in which drivers seek to minimize the congestion
experienced to reach a desired destination. Drivers can experience the congestion on
selected routes as a function of the routes selected by other drivers, but drivers do not
know the structure of the congestion function. Finally, in a multiagent approach to
designing manufacturing systems (see, e.g., [9]), it may not be known in advance how
performance measures (such as throughput) depend on manufacturing policy. Rather,
performance can only be measured once a policy is implemented.

Our interest in this paper is to develop algorithms that enable coordination in mul-
tiagent systems for precisely this “payoff-based” scenario, in which agents only have
access to (possibly noisy) measurements of the rewards received through repeated
interactions with other agents. We adopt the framework of “learning in games.” (See
[5, 10, 25, 26] for an extensive overview. See also the recent special issue containing [22]
or survey article [18] for perspectives from machine learning.) Unlike most of the learn-
ing rules in this literature, which assume that agents adjust their behavior based on the
observed behavior of other agents, we shall assume that agents know only their own
past actions and the payoffs that resulted. It is far from obvious that Nash equilibrium
can be achieved under such a restriction, but in fact it has recently been shown that
such “payoff-based” learning rules can be constructed that work in any game [4, 8].

In this paper we show that there are simpler and more intuitive adjustment rules
that achieve this objective for a large class of multiplayer games known as “weakly
acyclic” games. This class captures many problems of interest in cooperative control
[13, 14]. It includes the very special case of “identical interest” games, where each
agent receives the same reward. However, weakly acyclic games (and the related
concept of potential games) capture other scenarios such as congestion games [19] and
similar problems such as distributed routing in networks, weapon target assignment,
consensus, and area coverage. See [15, 1] and references therein for a discussion of a
learning in games approach to cooperative control problems, but under less stringent
assumptions on informational constraints than considered in this paper.

For many multiagent problems, operation at a pure Nash equilibrium may reflect
optimization of a collective objective.1 We will derive payoff-based dynamics that

1Nonetheless, there are varied viewpoints on the role of Nash equilibrium as a solution concept
for multiagent systems. See [22] and [12].
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guarantee asymptotically that agent strategies will constitute a pure Nash equilibrium
with arbitrarily high probability. It need not always be the case that at least one Nash
equilibrium optimizes a collective objective. Motivated by this consideration, we also
discuss the introduction of incentives or tolls in a player’s payoff function to assure
that there is at least one Nash equilibrium that optimizes a collective objective. Even
in this case, however, there may still be suboptimal Nash equilibria.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on finite strategic-form games and repeated games. This is followed by three
types of payoff-based dynamics in section 3 for increasingly general problems. Sub-
section 3.1 presents “safe experimentation dynamics” which is restricted to identical
interest games. Subsection 3.2 presents “simple experimentation dynamics” for the
more general class of weakly acyclic games but with noise-free payoff measurements.
Subsection 3.3 presents “sample experimentation dynamics” for weakly acyclic games
with noisy payoff measurements. Section 4 discusses how to introduce tolls and in-
centives in payoffs so that a Nash equilibrium optimizes a collective objective. Sec-
tion 5 presents an illustrative example of a traffic congestion game. Finally, section 6
contains some concluding remarks. An important analytical tool throughout is the
method of resistance trees for perturbed Markov chains [24], which is reviewed in an
appendix.

2. Background. In this section, we will present a brief background of the game
theoretic concepts used in the paper. We refer the readers to [6, 25, 26] for a more
comprehensive review.

2.1. Finite strategic-form games. Consider a finite strategic-form game with
n-player set P := {P1, . . . ,Pn} where each player Pi ∈ P has a finite action set Ai
and a utility function Ui : A → R where A = A1 × · · · × An. We will sometimes use
a single symbol, e.g., G, to represent the entire game, i.e., the player set, P , action
sets, Ai, and utility functions Ui.

For an action profile a = (a1, a2, . . . , an) ∈ A, let a−i denote the profile of player
actions other than player Pi, i.e.,

a−i = {a1, . . . , ai−1, ai+1, . . . , an} .

With this notation, we will sometimes write a profile a of actions as (ai, a−i). Similarly,
we may write Ui(a) as Ui(ai, a−i).

An action profile a∗ ∈ A is called a pure Nash equilibrium if for all players Pi ∈ P ,

(2.1) Ui(a∗i , a
∗
−i) = max

ai∈Ai

Ui(ai, a∗−i).

Furthermore, if the above condition is satisfied with a unique maximizer for every
player Pi ∈ P , then a∗ is called a strict (Nash) equilibrium.

In this paper we will consider three classes of games: identical interest games,
potential games, and weakly acyclic games. Each class of games has a connection
to general cooperative control problems and multiagent systems for which there is
some global utility or potential function φ : A → R that a global planner seeks to
maximize [13].

2.1.1. Identical interest games. The most restrictive class of games that we
will review in this paper is identical interest games. In such a game, the players’ utility
functions {Ui}ni=1 are chosen to be the same. That is, for some function φ : A → R,

Ui(a) = φ(a)
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for every Pi ∈ P and for every a ∈ A. It is easy to verify that all identical interest
games have at least one pure Nash equilibrium, namely, any action profile a that
maximizes φ(a).

2.1.2. Potential games. A significant generalization of an identical interest
game is a potential game. In a potential game, the change in a player’s utility that
results from a unilateral change in strategy equals the change in the global utility.
Specifically, there is a function φ : A → R such that for every player Pi ∈ P , for every
a−i ∈ A−i, and for every a′i, a

′′
i ∈ Ai,

Ui(a′i, a−i)− Ui(a′′i , a−i) = φ(a′i, a−i)− φ(a′′i , a−i).

When this condition is satisfied, the game is called an exact potential game with
the potential function φ.2 It is easy to see that, in potential games, any action
profile maximizing the potential function is a pure Nash equilibrium, and hence every
potential game possesses at least one such equilibrium. An example of an exact
potential game is illustrated in Figure 1.

L R
U 0, 0 −1, 1
D 1,−1 0, 0

Payoffs

L R
U 0 1
D 1 2

Potential

Fig. 1. An example of a two player exact potential game.

2.1.3. Weakly acyclic games. Consider any finite game G with a set A of
action profiles. A better reply path is a sequence of action profiles a1, a2, . . . , aL such
that for each successive pair aj , aj+1 there is exactly one player such that aji �= aj+1

i

and for that player Ui(aj+1) > Ui(aj). In other words, one player moves at a time,
and each time a player moves he increases his own utility.

Suppose now that G is a potential game with potential function φ. Starting from
an arbitrary action profile a ∈ A, construct a better reply path a = a1, a2, . . . , aL

until it can no longer be extended. Note first that such a path cannot cycle back
on itself, because φ is strictly increasing along the path. Since A is finite, the path
cannot be extended indefinitely. Hence, the last element in a maximal better reply
path from any joint action, a, must be a Nash equilibrium of G.

This idea may be generalized as follows. The game G is weakly acyclic if for any
a ∈ A, there exists a better reply path starting at a and ending at some pure Nash
equilibrium of G [25, 26]. Potential games are special cases of weakly acyclic games.
An example of a two player weakly acyclic game is illustrated in Figure 2. Notice
that the illustrated game is not a potential game.

2.2. Repeated games. In a repeated game, at each time t ∈ {0, 1, 2, . . .}, each
player Pi ∈ P simultaneously chooses an action ai(t) ∈ Ai and receives the utility
Ui(a(t)), where a(t) := (a1(t), . . . , an(t)). Each player Pi ∈ P chooses action ai(t)
at time t according to a probability distribution pi(t), which we will refer to as the

2There are weaker notions of potential games such as ordinal or weighted potential games. Rather
than discuss each variation specifically, we will discuss a more general framework, weakly acyclic
games, in the ensuing section. Any potential game, whether exact, ordinal, or weighted, is a weakly
acyclic game.
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L C R
U 0, 0 0.1, 0 1, 1
M 1, 0 0, 1 0, 0
D 0, 1 1, 0 0, 0

Fig. 2. An example of a two player weakly acyclic game.

strategy of player Pi at time t. A player’s strategy at time t can rely only on ob-
servations from times {0, 1, 2, . . . , t − 1}. Different learning algorithms are specified
by both the assumptions on available information and the mechanism by which the
strategies are updated as information is gathered. For example, if a player knows the
functional form of his utility function and is capable of observing the actions of all
other players at every time step, then the strategy adjustment mechanism of player
Pi can be written in the general form

pi(t) = Fi
(
a(0), . . . , a(t− 1);Ui

)
.

An example of a learning algorithm, or strategy adjustment mechanism, of this form
is the well-known fictitious play [16]. For a detailed review of learning in games, we
direct the reader to [5, 25, 26, 11, 23, 20].

In this paper we deal with the issue of whether players can learn to play a pure
Nash equilibrium through repeated interactions under the most restrictive observa-
tional conditions; players only have access to (i) the action they played and (ii) the
utility (possibly noisy) they received. In this setting, the strategy adjustment mech-
anism of player Pi takes on the form

(2.2) pi(t) = Fi
(
{ai(0), Ui(a(0)) + νi(0)}, . . . , {ai(t− 1), Ui(a(t− 1)) + νi(t− 1)}

)
,

where the νi(t) are zero mean independent and identically distributed (i.i.d.) random
variables.

3. Payoff-based learning algorithms. In this section, we will introduce three
simple payoff-based learning algorithms. The first, called safe experimentation, guar-
antees convergence to a pure optimal Nash equilibrium in any identical interest game.
Such an equilibrium is optimal because each player’s utility is maximized. The second
learning algorithm, called simple experimentation, guarantees convergence to a pure
Nash equilibrium in any weakly acyclic game. The third learning algorithm, called
sample experimentation, guarantees convergence to a pure Nash equilibrium in any
weakly acyclic game even when utility measurements are corrupted with noise.

3.1. Safe experimentation dynamics for identical interest games.

3.1.1. Constant exploration rates. Before introducing the learning dynam-
ics, we introduce the following function. Let

Umax
i (t) := max

0≤τ≤t−1
Ui(a(τ))

be the maximum utility that player Pi has received up to time t− 1.
We will now introduce the safe experimentation dynamics for identical interest

games.
1. Initialization: At time t = 0, each player randomly selects and plays any

action, ai(0). This action will be initially set as the player’s baseline action
at time t = 1 and is denoted by abi (1) = ai(0).
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2. Action selection: At each subsequent time step, each player selects his
baseline action with probability (1 − ε) or experiments with a new random
action with probability ε, i.e.,
• ai(t) = abi (t) with probability (1− ε);
• ai(t) is chosen randomly (uniformly) over Ai with probability ε.

The variable ε will be referred to as the player’s exploration rate.
3. Baseline strategy update: Each player compares the actual utility re-

ceived, Ui(a(t)), with the maximum received utility Umax
i (t) and updates the

baseline action as follows:

abi (t+ 1) =

{
ai(t), Ui(a(t)) > Umax

i (t),
abi(t), Ui(a(t)) ≤ Umax

i (t).

Each player updates the maximum received utility regardless of whether or
not step 2 involved exploration.

4. Return to step 2 and repeat.
The reason that this learning algorithm is called “safe” experimentation is that

the utility evaluated at the baseline action, U(ab(t)), is nondecreasing with respect to
time.

Theorem 3.1. Let G be a finite n-player identical interest game in which all
players use the safe experimentation dynamics. Given any probability p < 1, if the
exploration rate ε > 0 is sufficiently small, then for all sufficiently large times t, a(t)
is an optimal Nash equilibrium of G with at least probability p.

Proof. Since G is an identical interest game, let the utility of each player be
expressed as U : A → R, and let A∗ be the set of “optimal” Nash equilibria of G, i.e.,

A∗ =
{
a∗ ∈ A : U(a∗) = max

a∈A
U(a)

}
.

For any joint action, a(t), the ensuing joint action will constitute an optimal Nash
equilibrium with at least probability(

ε

|A1|

)(
ε

|A2|

)
· · ·
(

ε

|An|

)
,

where |Ai| denotes the cardinality of the action set of player Pi. Therefore, an optimal
Nash equilibrium will eventually be played with probability 1 for any ε > 0.

Suppose an optimal Nash equilibrium is first played at time t∗, i.e., a(t∗) ∈ A∗

and a(t∗ − 1) /∈ A∗. Then the baseline joint action must remain constant from that
time onwards, i.e., ab(t) = a(t∗) for all t > t∗. An optimal Nash equilibrium will then
be played at any time t > t∗ with at least probability (1 − ε)n. Since ε > 0 can be
chosen arbitrarily small, and in particular such that (1− ε)n > p, this completes the
proof.

3.1.2. Diminishing exploration rates. In the safe experimentation dynamics,
the exploration rate ε was defined as a constant. Alternatively, one could let the
exploration rate vary to induce desirable behavior. One example would be to let the
exploration rate decay, such as εt = (1/t)1/n. This would induce exploration at early
stages and reduce exploration at later stages of the game. The theorem and proof
hold under the following conditions for the exploration rate:
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lim
t→∞ εt = 0,

lim
t→∞

t∏
τ=1

[
1−

(
ετ
|A1|

)(
ετ
|A2|

)
· · ·
(

ετ
|An|

)]
= 0.

3.2. Simple experimentation dynamics for weakly acyclic games. We
will now introduce the simple experimentation dynamics for weakly acyclic games.
These dynamics will allow us to relax the assumption of identical interest games.

1. Initialization: At time t = 0, each player randomly selects and plays any
action, ai(0). This action will be initially set as the player’s baseline action
at time 1, i.e., abi(1) = ai(0). Likewise, the player’s baseline utility at time 1
is initialized as ubi(1) = Ui(a(0)).

2. Action selection: At each subsequent time step, each player selects a base-
line action with probability (1− ε) or experiments with a new random action
with probability ε, i.e.,
• ai(t) = abi (t) with probability (1− ε);
• ai(t) is chosen randomly (uniformly) over Ai with probability ε.

The variable ε will be referred to as the player’s exploration rate. Whenever
ai(t) �= abi(t), we will say that player Pi experimented.

3. Baseline action and baseline utility update: Each player compares
the utility received, Ui(a(t)), with his baseline utility, ubi(t), and updates his
baseline action and utility as follows:
• If player Pi experimented (i.e., ai(t) �= abi(t)) and if Ui(a(t)) > ubi(t),

then
abi(t+ 1) = ai(t),
ubi(t+ 1) = Ui(a(t)).

• If player Pi experimented and if Ui(a(t)) ≤ ubi(t), then
abi(t+ 1) = abi(t),
ubi(t+ 1) = ubi(t).

• If player Pi did not experiment (i.e., ai(t) = abi (t)), then
abi(t+ 1) = abi(t),
ubi(t+ 1) = Ui(a(t)).

4. Return to step 2 and repeat.
As before, these dynamics require only utility measurements and hence almost no

information regarding the structure of the game.
Theorem 3.2. Let G be a finite n-player weakly acyclic game in which all play-

ers use the simple experimentation dynamics. Given any probability p < 1, if the
exploration rate ε > 0 is sufficiently small, then for all sufficiently large times t, a(t)
is a Nash equilibrium of G with at least probability p.

The remainder of this subsection is devoted to the proof of Theorem 3.2. The
proof relies on the theory of resistance trees for perturbed Markov chains (see the
appendix for a brief review).

Define the state of the dynamics to be the pair [a, u], where a is the baseline joint
action and u is the baseline utility vector. We will omit the superscript b to avoid
cumbersome notation.

Partition the state space into the following three sets. First, let X be the set of
states [a, u] such that ui �= Ui(a) for at least one player Pi. Let E be the set of states
[a, u] such that ui = Ui(a) for all players Pi and a is a Nash equilibrium. Let D be
the set of states [a, u] such that ui = Ui(a) for all players Pi and a is a disequilibrium
(not a Nash equilibrium). These are all the states.
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Claim 3.1.

(a) Any state [a, u] ∈ X transitions to a state in E ∪ D in one period with
probability O(1).

(b) Any state [a, u] ∈ E∪D transitions to a different state [a′, u′] with probability
at most O(ε).

Proof. For any [a, u′] ∈ X , there exists at least one player Pi such that u′i �=
Ui(a). If all players repeat their part of the joint action profile a, which occurs with
probability (1−ε)n, then [a, u′] transitions to [a, u], where ui = Ui(a) for all players Pi.
Thus the process moves to [a, u] ∈ E ∪D with prob O(1). This proves statement (a).
As for statement (b), any state in E ∪D transitions back to itself whenever no player
experiments, which occurs with probability at least O(1).

Claim 3.2. For any state [a, u] ∈ D, there is a finite sequence of transitions to
a state [a∗, u∗] ∈ E, where the transitions have the form3

[a, u] →
O(ε)

[a1, u1] →
O(ε)
· · · →

O(ε)
[a∗, u∗],

where uki = Ui(ak) for all i and for all k > 0, and each transition occurs with proba-
bility O(ε).

Proof. Such a sequence is guaranteed by weak acyclicity. Since a is not an equilib-
rium, there is a better reply path from a to some equilibrium a∗, say a, a1, a2, . . . , a∗.

At [a, u] the appropriate player Pi experiments with probability ε and chooses the
appropriate better reply with probability 1/|Ai|, and no one else experiments. Thus
the process moves to [a1, u1], where u1

i = Ui(a1) for all players Pi with probability
O(ε) (more precisely, O(ε(1−ε)n−1)). Notice that for the deviator Pi, Ui(a1) > Ui(a),
and therefore u1

i = Ui(a1). For the nondeviator, say, player Pj , u1
j = Uj(a1) since

a1
j = aj. Thus [a1, u1] ∈ D ∪ E. In the next period, the appropriate player deviates,

and so forth.
Claim 3.3. For any equilibrium [a∗, u∗] ∈ E, any path from [a∗, u∗] to another

state [a, u] ∈ E ∪ D, a �= a∗, that does not loop back to [a∗, u∗] must be one of the
following two forms:

(1) [a∗, u∗] →
O(ε)

[a∗, u′] →
O(εk)

[a′, u′′]→ · · · → [a, u], where k ≥ 1;

(2) [a∗, u∗] →
O(εk)

[a′, u′′]→ · · · → [a, u], where k ≥ 2.

Proof. The path must begin by either one player experimenting or more that one
player experimenting. Case (2) results if more than one player experiments. Case (1)
results if exactly one agent, say, agent Pi, experiments with an action a′i �= a∗i and
all other players continue to play their part of a∗. This happens with probability
(ε/|Ai|)(1 − ε)n−1. In this situation, player Pi cannot be better off, meaning that
Ui(a′i, a

∗
−i) ≤ Ui(a∗), since by assumption a∗ is an equilibrium. Hence the baseline

action next period remains a∗ for all players, though their baseline utilities may
change. Denote the next state by [a∗, u′]. If in the subsequent period all players
continue to play their part of the action a∗, which occurs with probability (1 − ε)n,
then the state reverts back to [a∗, u∗] and we have a loop. Hence, the only way the
path can continue without a loop is for one or more players to experiment in the next
stage, which has probability O(εk), k ≥ 1. This is exactly what case (1) alleges.

Proof of Theorem 3.2. This is a finite aperiodic Markov process on the state space
A × Ū1 × · · · × Ūn, where Ūi denotes the (finite) range of Ui(·). Furthermore, from

3We will use the notation z → z′ to denote the transition from state z to state z′. We use
z →

O(ε)
z′ to emphasize that this transition occurs with probability of order ε.
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every state there exists a positive probability path to a Nash equilibrium. Hence, every
recurrent class has at least one Nash equilibrium. We will now show that within any
recurrent class, the trees (see the appendix) rooted at the Nash equilibrium will have
the lowest resistance. Therefore, according to Theorem A.1, the a priori probability
that the state will be a Nash equilibrium can be made arbitrarily close to 1.

In order to apply Theorem A.1, we will construct minimum resistance trees with
vertices consisting of every possible state (within a recurrence class). Each edge
will have resistance 0, 1, 2, . . . associated with the transition probabilities O(1), O(ε),
O(ε2), . . . , respectively.

Our analysis will deviate slightly from the presentation in the appendix. In the
discussion in the appendix, the vertices of minimum resistance trees are recurrence
classes of an associated unperturbed Markov chain. In this case, the unperturbed
Markov chain corresponds to simple experimentation dynamics with ε = 0, and so the
recurrence classes are all states in E ∪ D. Nonetheless, we will construct resistance
trees with the vertices being all possible states, i.e., E ∪D ∪X . The resulting con-
clusions remain the same (see Lemma 1 in [24]). Since the states in X are transient
with probability O(1), the resistance to leave a node corresponding to a state in X
is 0. Therefore, the presence of such states does not affect the conclusions determining
which states are stochastically stable.

Suppose a minimum resistance tree T is rooted at a vertex v that is not in E. If
v ∈ X , it is easy to construct a new tree that has lower resistance. Namely, by Claim
3.1(a), there is a zero-resistance one-hop path P from v to some state [a, u] ∈ E ∪D.
Add the edge of P to T and subtract the edge in T that exits from the vertex [a, u].
This results in a [a, u]-tree T ′. It has lower resistance than T because the added edge
has zero resistance, while the subtracted edge has resistance greater than or equal
to 1 because of Claim 3.1(b). This argument is illustrated in Figure 3, where the edge
of strictly positive resistance (R ≥ 1) is removed and replaced with the edge of zero
resistance (R = 0).

[a, u'']

[a, u'] [a, u]

[a', u][a', u']

[a, u'']

[a, u'] [a, u]

[a', u][a', u']

R > 1

R = 0

Original Tree T (Rooted in X) Revised Tree T' (Rooted in D or E)

Fig. 3. Construction of alternative to tree rooted in X.

Suppose next that v = [a, u] ∈ D but not in E. Construct a path P as in Claim 3.2
from [a, u] to some state [a∗, u∗] ∈ E. As above, construct a new tree T ′ rooted at
[a∗, u∗] by adding the edges of P to T and taking out the redundant edges (the edges
in T that exit from the vertices in P ). The nature of the path P guarantees that the
edges taken out have total resistance at least as high as the resistances of the edges
put in. This is because the entire path P lies in E ∪D, each transition on the path
has resistance 1, and, from Claim 3.2(b), the resistance to leave any state in E ∪D is
at least 1.

To construct a new tree that has strictly lower resistance, we will inspect the
effect of removing the exiting edge from [a∗, u∗] in T . Note that this edge must fit
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either case (1) or (2) of Claim 3.3.
In case (2), the resistance of the exiting edge is at least 2, which is larger than

any edge in P . Hence the new tree has strictly lower resistance than T , which is a
contradiction. This argument is illustrated in Figure 4. A new path is created from
the original root [a, u] ∈ D to the equilibrium [a∗, u∗] ∈ E (R = 1 edges). Redundant
(R ≥ 1, R ≥ 2) edges emanating from the new path are removed. In case (2), the
redundant edge emanating from [a∗, u∗] has a resistance of at least 2.

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

R = 1

R = 1

R = 1

R > 1

R > 1

R > 2

Original Tree T (Rooted in D - Case 2) Revised Tree T' (Rooted in E)

Fig. 4. Construction of alternative to tree rooted in D for case (2).

In case (1), the exiting edge has the form [a∗, u∗]→ [a∗, u′] which has resistance 1
where u∗ �= u′. The next edge in T , say, [a∗, u′]→ [a′, u′′], also has at least resistance 1.
Remove the edge [a∗, u′] → [a′, u′′] from T , and put in the edge [a∗, u′] → [a∗, u∗].
The latter has resistance 0 since [a∗, u′] ∈ X . This results in a tree T ′′ that is rooted
at [a∗, u∗] and has strictly lower resistance than does T , which is a contradiction. This
argument is illustrated in Figure 5. As in Figure 4, a new (R = 1, R = 0) path is
constructed and redundant (R ≥ 1, R = 1) edges are removed. The difference is that
the edge [a∗, u′]→ [a′, u′′] is removed and replaced with [a∗, u′]→ [a∗, u∗].

To recap, a minimum resistance tree cannot be rooted at any state in X or D,
but rather only at a state in in E. Therefore, when ε is sufficiently small, the long-run
probability on E can be made arbitrarily close to 1, and in particular, larger than any
specified probability p.

3.3. Sample experimentation dynamics for weakly acyclic games with
noisy utility measurements.

3.3.1. Noise-free utility measurements. In this section we will focus on de-
veloping payoff-based dynamics for which the limiting behavior exhibits that of a pure
Nash equilibrium with arbitrarily high probability in any finite weakly acyclic game
even in the presence of utility noise. We will show that a variant of the so-called
regret testing algorithm [4] accomplishes this objective for weakly acyclic games with
noisy utility measurements.

We now introduce sample experimentation dynamics.
1. Initialization: At time t = 0, each player randomly selects and plays any

action, ai(0) ∈ Ai. This action will be initially set as each player’s baseline
action, abi(1) = ai(0).
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[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

[a', u'']

[a, u]

[a*, u*]

[a', u']

[a*, u'][a'', u'']

[a, u']

[a, u'']

R = 0

R = 1

R = 1

R = 1

R = 1

R > 1
R > 1

R > 1

Original Tree T (Rooted in D - Case 1) Revised Tree T' (Rooted in E)

Fig. 5. Construction of alternative to tree rooted in D for case (1).

2. Exploration phase: After the baseline action is set, each player engages in
an exploration phase over the next m periods. The exploration phases need
not be synchronized or of the same length for each player, but we will assume
that they are for the proof. For convenience, we will double index the time
of the actions played as

ǎ(t1, t2) = a(mt1 + t2),

where t1 indexes the number of the exploration phase and t2 indexes the
actions played in that exploration phase. We will refer to t1 as the exploration
phase time and to t2 as the exploration action time. By construction, the
exploration phase time and exploration action time satisfy t1 ≥ 1 and m ≥
t2 ≥ 1, respectively. The baseline action will be updated only at the end of
the exploration phase and will therefore be indexed only by the exploration
phase time.
During the exploration phase, each player selects a baseline action with prob-
ability (1− ε) or experiments with a new random action with probability ε.
That is, for any exploration phase time t1 ≥ 1 and for any exploration action
time satisfying m ≥ t2 ≥ 1,
• ǎi(t1, t2) = abi(t1) with probability (1− ε),
• ǎi(t1, t2) is chosen randomly (uniformly) over (Ai \ abi(t1)) with proba-

bility ε.
Again, the variable ε will be referred to as the player’s exploration rate.

3. Action assessment: After the exploration phase, each player evaluates the
average utility received when playing each of his actions during the explo-
ration phase. Let nai

i (t1) be the number of times that player Pi played action
ai during the exploration phase at time t1. The average utility for action ai
during the exploration phase at time t1 is

V̂ ai

i (t1) =

{
1

n
ai
i (t1)

∑m
t2=1 I{ai = ǎi(t1, t2)}Ui(ǎ(t1, t2)), nai

i (t1) > 0,

Umin, nai

i (t1) = 0,

where I{·} is the usual indicator function and Umin satisfies

Umin < min
i

min
a∈A

Ui(a).
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In other words, Umin is less than the smallest payoff any agent can receive.
4. Evaluation of better response set: Each player compares the average

utility received when playing a baseline action, V̂ a
b
i (t)

i (t1), with the average
utility received for each of the other actions, V̂ ai

i (t1), and finds all played
actions which performed δ better than the baseline action. The term δ will
be referred to as the players’ tolerance level. Define A∗

i (t1) to be the set of
actions that outperformed the baseline action as follows:

(3.1) A∗
i (t1) =

{
ai ∈ Ai : V̂ ai

i (t1) ≥ V̂ a
b
i (t1)

i (t1) + δ
}
.

5. Baseline strategy update: Each player updates a baseline action as fol-
lows:
• If A∗

i (t1) = ∅, then abi(t1 + 1) = abi(t1).
• If A∗

i (t1) �= ∅, then
– with probability ω, set abi (t1 + 1) = abi(t1). (We will refer to ω as

the player’s inertia.)
– with probability 1 − ω, randomly select abi(t1 + 1) ∈ A∗

i (t1) with
uniform probability.

6. Return to step 2 and repeat.
For simplicity, we will first state and prove the desired convergence properties

using noiseless utility measurements. The setup for the noisy utility measurements
will be stated afterwards.

Before stating the following theorem, we define the constant α > 0 as follows.
If Ui(a1) �= Ui(a2) for any joint actions a1, a2 ∈ A and any player Pi ∈ P , then
|Ui(a1) − Ui(a2)| > α. In other words, if any two joint actions result in different
utilities at all, then the difference would be at least α.

Theorem 3.3. Let G be a finite n-player weakly acyclic game in which all players
use the sample experimentation dynamics. For any

• probability p < 1,
• tolerance level δ ∈ (0, α),
• inertia ω ∈ (0, 1), and
• exploration rate ε satisfying min{(α− δ)/4, δ/4, 1− p} > (1− (1− ε)n) > 0,

if the exploration phase length m is sufficiently large, then for all sufficiently large
times t > 0, a(t) is a Nash equilibrium of G with at least probability p.

The remainder of this subsection is devoted to the proof of Theorem 3.3.
We will assume for simplicity that utilities are between −1/2 and 1/2, i.e.,

|Ui(a)| ≤ 1/2 for any player Pi ∈ P and any joint action a ∈ A.
We begin with a series of useful claims. The first claim states that for any player

Pi the average utility for an action ai ∈ Ai during the exploration phase can be made
arbitrarily close (with high probability) to the actual utility the player would have
received provided that all other players never experimented. This can be accomplished
if the experimentation rate is sufficiently small and the exploration phase length is
sufficiently large.

Claim 3.4. Let ab be the joint baseline action at the start of an exploration phase
of length m. For

• any probability p < 1,
• any δ∗ > 0, and
• any exploration rate ε > 0 satisfying δ∗/2 ≥ (1 − (1− ε)n−1) > 0,
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if the exploration phase length m is sufficiently large, then

Pr
[∣∣V̂ ai

i − Ui(ai, ab−i)
∣∣ > δ∗

]
< 1− p.

Proof. Let ni(ai) represent the number of times player Pi played action ai during
the exploration phase. In the following discussion, all probabilities and expectations
are conditioned on ni(ai) > 0. We omit making this explicit for the sake of notational
simplicity. The event ni(ai) = 0 has diminishing probability as the exploration phase
lengthm increases, and so this case will not affect the desired conclusions for increasing
phase lengths.

For an arbitrary δ∗ > 0,

Pr
[∣∣V̂ ai

i − Ui(ai, ab−i)
∣∣ > δ∗

]
≤ Pr

[∣∣V̂ ai

i − E{V̂
ai

i }
∣∣+ ∣∣E{V̂ ai

i } − Ui(ai, ab−i)
∣∣ > δ∗

]
≤ Pr

[∣∣V̂ ai

i − E{V̂
ai

i }
∣∣ > δ∗/2

]
︸ ︷︷ ︸

(∗)

+Pr
[∣∣E{V̂ ai

i } − Ui(ai, ab−i)
∣∣ > δ∗/2

]
︸ ︷︷ ︸

(∗∗)

.

First, let us focus on (∗∗). We have

E{V̂ ai

i }−Ui(ai, ab−i) = [1− (1− ε)n−1]
[
E{Ui(ai, a−i(t)) | a−i(t) �= ab−i}−Ui(ai, ab)

]
,

which approaches 0 as ε ↓ 0. Therefore, for any exploration rate ε satisfying δ∗/2 >
(1− (1 − ε)n−1) > 0, we know that

Pr
[∣∣E{V̂ ai

i } − Ui(ai, ab−i)
∣∣ > δ∗/2

]
= 0.

Now we will focus on (∗). By the weak law of large numbers, (∗) approaches 0 as
ni(ai) ↑ ∞. This implies that for any probability p̄ < 1 and any exploration rate
ε > 0, there exists a sample size n∗

i (ai) such that if ni(ai) > n∗
i (ai), then

Pr
[∣∣V̂ ai

i − E{V̂
ai

i }
∣∣ > ρ/2

]
< 1− p̄.

Lastly, for any probability p̄ < 1 and any fixed exploration rate, there exists a mini-
mum exploration length m > 0 such that for any exploration length m > m,

Pr [ni(ai) ≥ n∗
i (ai)] ≥ p̄.

In summary, for any fixed exploration rate ε satisfying δ∗/2 ≥ (1 − (1 − ε)n−1) > 0,
(∗) + (∗∗) can be made arbitrarily close to 0, provided that the exploration length m
is sufficiently large.

Claim 3.5. Let ab be the joint baseline action at the start of an exploration phase
of length m. For any

• probability p < 1,
• tolerance level δ ∈ (0, α), and
• exploration rate ε > 0 satisfying min{(α− δ)/4, δ/4} ≥ (1− (1− ε)n−1) > 0,

if the exploration length m is sufficiently large, then each player’s better response set
A∗
i will contain only and all actions that are a better response to the joint baseline

action, i.e.,

a∗i ∈ A∗
i ⇔ Ui(a∗i , a

b
−i) > Ui(ab)
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with at least probability p.
Proof. Suppose ab is not a Nash equilibrium. For some player Pi ∈ P , let a∗i be

a strict better reply to the baseline joint action, i.e., Ui(a∗i , a
b
−i) > Ui(ab), and let awi

be a nonbetter reply to the baseline joint action, i.e., Ui(awi , a
b
−i) ≤ Ui(ab).

Using Claim 3.4, for any probability p̄ < 1 and any exploration rate ε > 0 satis-
fying min{(α− δ)/4, δ/4} ≥ (1− (1− ε)n−1) > 0 there exists a minimum exploration
length m > 0 such that for any exploration length m > m the following expressions
are true:

Pr
[
|V̂ a

b
i

i − Ui(abi , ab−i)| < δ∗
]
≥ p̄,(3.2)

Pr
[
|V̂ a

∗
i

i − Ui(a∗i , ab−i)| < δ∗
]
≥ p̄,(3.3)

Pr
[
|V̂ a

w
i

i − Ui(awi , ab−i)| < δ∗
]
≥ p̄,(3.4)

where δ∗ = min{(α− δ)/2, δ/2}. Rewriting (3.2), we obtain

Pr
[
|V̂ a

b
i

i − Ui(abi , ab−i)| < δ∗
]
≤ Pr

[
V̂
ab

i

i − Ui(abi , ab−i) < (α− δ)/2
]
,

and rewriting (3.3), we obtain

Pr
[
|V̂ a

∗
i

i − Ui(a∗i , ab−i)| < δ∗
]
≤ Pr

[
V̂
a∗i
i − Ui(a∗i , ab−i) > −(α− δ)/2

]
≤ Pr

[
V̂
a∗i
i − (Ui(abi , a

b
−i) + α) > −(α− δ)/2

]
= Pr

[
V̂
a∗i
i − Ui(abi , ab−i) > (α+ δ)/2

]
,

meaning that

Pr [a∗i ∈ A∗
i ] ≥ p̄2.

Similarly, rewriting (3.2), we obtain

Pr
[
|V̂ a

b
i

i − Ui(abi , ab−i)| < δ∗
]
≤ Pr

[
V̂
ab

i

i − Ui(abi , ab−i) > −δ/2
]
,

and rewriting (3.4), we obtain

Pr
[
|V̂ a

w
i

i − Ui(awi , ab−i)| < δ∗
]
≤ Pr

[
V̂
aw

i

i − Ui(awi , ab−i) < δ/2
]

≤ Pr
[
V̂
aw

i
i − Ui(abi , ab−i) < δ/2

]
,

meaning that

Pr [awi /∈ A∗
i ] ≥ p̄2.

Since p̄ can be chosen arbitrarily close to 1, the proof is complete.
Proof of Theorem 3.3. The evolution of the baseline actions from phase to phase is

a finite aperiodic Markov process on the state space of joint actions, A. Furthermore,
since G is weakly acyclic, from every state there exists a better reply path to a Nash
equilibrium. Hence, every recurrent class has at least one Nash equilibrium. We
will show that these dynamics can be viewed as a perturbation of a certain Markov
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chain whose recurrent classes are restricted to Nash equilibria. We will then appeal
to Theorem A.1 to derive the desired result.

We begin by defining an “unperturbed” process on baseline actions. For any
ab ∈ A, define the true better reply set as

Ā∗
i (a

b) =
{
ai : Ui(ai, ab−i) > Ui(ab)

}
.

Now define the transition process from ab(t1) to ab(t1 + 1) as follows:
• If Ā∗

i (a
b(t1)) = ∅, then abi(t1 + 1) = abi(t1).

• If Ā∗
i (a

b(t1)) �= ∅, then
– with probability ω, set abi (t1 + 1) = abi(t1).
– with probability 1−ω, randomly select abi(t1 +1) ∈ Ā∗

i (t1) with uniform
probability.

This is a special case of a so-called “better reply process with finite memory and
inertia.” From [26, Theorem 6.2], the joint actions of this process converge to a Nash
equilibrium with probability 1 in any weakly acyclic game. Therefore, the recurrence
classes of this unperturbed are precisely the set of pure Nash equilibria.

The above unperturbed process closely resembles the baseline strategy update
process described in step 5 of sample experimentation dynamics. The difference is
that the above process uses the true better reply set, whereas step 5 uses a better
reply set constructed from experimentation over a phase. However, by Claim 3.5, for
any probability p̄ < 1, acceptable tolerance level δ, and acceptable exploration rate
ε, there exists a minimum exploration phase length m such that for any exploration
phase length m > m, each player’s better response set will contain only and all actions
that are a strict better response with at least probability p̄.

With parameters selected according to Claim 3.5, the transitions of the baseline
joint actions in sample experimentation dynamics follow that of the above unper-
turbed better reply process with probability p̄ arbitrarily close to 1. Since the recur-
rence classes of the unperturbed process are only Nash equilibria, we can conclude
from Theorem A.1 that as p̄ approaches 1, the probability that the baseline action for
sufficiently large t1 will be a (pure) Nash equilibrium can be made arbitrarily close
to 1. By selecting the exploration probability ε sufficiently small, we can also conclude
that the joint action during exploration phases, i.e., a(mt1 + t2), will also be a Nash
equilibrium with probability arbitrarily close to 1.

3.3.2. Noisy utility measurements. Suppose that each player receives a noisy
measurement of his true utility, i.e.,

Ũi(ai, a−i) = Ui(ai, a−i) + νi,

where ni is an i.i.d. random variable with zero mean. In the regret testing algo-
rithm with noisy utility measurements, the average utility for action ai during the
exploration phase at time t1 is now

V̂ ai

i (t1) =

{
1

n
ai
i (t1)

∑m
t2=1 I{ai = ǎi(t1, t2)}Ũi(ǎ(t1, t2)), nai

i (t1) > 0,

Umin, nai

i (t1) = 0.

A straightforward modification of the proof of Theorem 3.3 leads to the following
theorem.

Theorem 3.4. Let G be a finite n-player weakly acyclic game where players’
utilities are corrupted with a zero mean noise process. If all players use the sample
experimentation dynamics, then for any
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• probability p < 1,
• tolerance level δ ∈ (0, α),
• inertia ω ∈ (0, 1), and
• exploration rate ε satisfying min{(α− δ)/4, δ/4, 1− p} > (1− (1− ε)n) > 0,

if the exploration phase length m is sufficiently large, then for all sufficiently large
times t > 0, a(t) is a Nash equilibrium of G with at least probability p.

3.3.3. Comment on length and synchronization of players’ exploration
phases. In the proof of Theorem 3.3, we assumed that all players’ exploration phases
were synchronized and of the same length. This assumption was used to ensure that
when a player assessed the performance of a particular action, the baseline action of
the other players remained constant. Because of the players’ inertia this assumption
is unnecessary. The general idea is as follows: a player will repeat a baseline action
regardless of the better response set with positive probability because of the inertia.
Therefore, if all players repeat their baseline action a sufficient number of times,
which happens with positive probability, then the joint baseline action would remain
constant long enough for any player to evaluate an accurate better response set for
that particular joint baseline action.

4. Influencing Nash equilibria in resource allocation problems. In this
section we will derive an approach for influencing the Nash equilibria of a resource
allocation problem using the idea of marginal cost pricing. We will illustrate the setup
and our approach on a congestion game which is an example of a resource allocation
problem.

4.1. Congestion game setup. We consider a transportation network with a
finite set R of road segments (or resources) that needs to be shared by a set of selfish
drivers labeled as D := {d1, . . . , dn}. Each driver has a fixed origin/destination pair
connected through multiple routes. The set of all routes available to driver di is
denoted by Ai. A route ai ∈ Ai consists of multiple road segments, therefore, ai ⊂ R.
Player Pi taking route ai incurs a cost cr for each road segment r ∈ ai. The utility
of driver di taking route ai is defined as the negative of the total cost incurred, i.e.,
Ui = −

∑
r∈ai

cr. Of course, the utility of each driver will depend on the routes chosen
by other drivers.

If we assume that the cost incurred in a road segment depends only on the total
number of drivers sharing that road, then drivers are anonymous, and this leads to a
congestion game [19]. The utility of driver di is now stated more precisely as

Ui(a) = −
∑
r∈ai

cr(σr(a)),

where a := (a1, . . . , an) is the profile of routes chosen by all drivers and σr(a) is the
total number of drivers using the road segment r.

It is known that a congestion game admits the following potential function:

φ̂(a) =
∑
r∈R

σr(a)∑
k=1

cr(k).

Unfortunately, this potential function lacks practical significance for measuring the
effectiveness of a routing strategy in terms of the overall congestion.
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4.2. Congestion game with tolls setup. One approach for equilibrium ma-
nipulation is to influence drivers’ utilities with tolls [21]. In a congestion game with
tolls, a driver’s utility takes on the form

Ui(a) = −
∑
r∈ai

cr(σr(a)) + tr(σr(a)),

where tr(k) is the toll imposed on route r if there are k users.
Suppose that the global planner is interested in minimizing the total congestion

experienced by all drivers on the network, which can be evaluated as

Tc(a) :=
∑
r∈R

σr(a)cr(σr(a)).

It has been shown that there exists a set of tolls such that the potential function
associated with the congestion game with tolls is aligned with the total congestion
experienced by all drivers on the network (see [15, Proposition 4.1]).

Proposition 4.1. Consider a congestion game of any network topology. If the
imposed tolls are set as

tr(k) = (k − 1)[cr(k)− cr(k − 1)] ∀k ≥ 1,

then the total negative congestion experienced by all drivers, φc(a) = −Tc(a), is a
potential function for the congestion game with tolls.

This tolling scheme results in drivers’ local utility functions being aligned with
the global objective of minimal total congestion.

Now suppose that the global planner is interested in minimizing a more general
measure,4

(4.1) φ(a) :=
∑
r∈R

fr(σr(a))cr(σr(a)),

where fr : {0, 1, 2, . . .} → R is any arbitrary function. An example of an objective
function that fits within this framework and may be practical for general resource
allocation problems is

φ(a) =
∑
r∈R

cr(σr(a)).

We will now show that there exists a set of tolls, tr(·), such that the potential
function associated with the congestion game with tolls will be aligned with the global
planner’s objective function of the form given in (4.1).

Proposition 4.2. Consider a congestion game of any network topology. If the
imposed tolls are set as

tr(k) = (fr(k)− 1)cr(k)− fr(k − 1)cr(k − 1) ∀k ≥ 1,

then the global planners objective, φc(a) = −φ(a), is a potential function for the
congestion game with tolls.

4In fact, if cr(σr(a)) �= 0 for all a, then (4.1) is equivalent to
∑

r∈R fr(σr(a)).
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Proof. Let a1 = {a1
i , a−i} and a2 = {a2

i , a−i}. We will use the shorthand notation
σa

1

r to represent σr(a1). The change in utility incurred by driver di in changing from
route a2

i to route a1
i is

Ui(a1)− Ui(a2) = −
∑
r∈a1

i

(
cr(σa

1

r ) + tr(σa
1

r )
)

+
∑
r∈a2

i

(
cr(σa

2

r ) + tr(σa
2

r )
)

= −
∑

r∈a1
i\a2

i

(
cr(σa

1

r ) + tr(σa
1

r )
)

+
∑

r∈a2
i\a1

i

(
cr(σa

2

r ) + tr(σa
2

r )
)
.

The change in the total negative congestion from the joint action a2 to a1 is

φc(a1)− φc(a2) = −
∑

r∈(a1
i∪a2

i )

(
fr(σa

1

r )cr(σa
1

r )− fr(σa
2

r )cr(σa
2

r )
)
.

Since ∑
r∈(a1

i∩a2
i )

(
fr(σa

1

r )cr(σa
1

r )− fr(σa
2

r )cr(σa
2

r )
)

= 0,

the change in the total negative congestion is

φc(a1)− φc(a2)

= −
∑

r∈a1
i\a2

i

(
fr(σa

1

r )cr(σa
1

r )− fr(σa
2

r )cr(σa
2

r )
)

−
∑

r∈a2
i\a1

i

(
fr(σa

1

r )cr(σa
1

r )− fr(σa
2

r )cr(σa
2

r )
)
.

Expanding the first term, we obtain∑
r∈a1

i\a2
i

(
fr(σa

1

r )cr(σa
1

r )− fr(σa
2

r )cr(σa
2

r )
)

=
∑

r∈a1
i\a2

i

(
fr(σa

1

r )cr(σa
1

r )− (fr(σa
1

r − 1))cr(σa
1

r − 1)
)

=
∑

r∈a1
i\a2

i

(
fr(σa

1

r )cr(σa
1

r )− ((fr(σa
1

r )− 1)cr(σa
1

r )− tr(σa
1

r ))
)

=
∑

r∈a1
i\a2

i

(
cr(σa

1

r ) + tr(σa
1

r )
)
.

Therefore,

φc(a1)− φc(a2) = −
∑

r∈a1
i\a2

i

(
cr(σa

1

r ) + tr(σa
1

r )
)

+
∑

r∈a2
i\a1

i

(
cr(σa

2

r ) + tr(σa
2

r )
)

= Ui(a1)− Ui(a2).

By implementing the tolling scheme set forth in Proposition 4.2, we guarantee
that all action profiles that minimize the global planner’s objective are equilibrium of
the congestion game with tolls.

In the special case that fr(σr(a)) = σr(a), Proposition 4.2 produces the same
tolls as Proposition 4.1.
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5. Illustrative example—congestion game. We will consider a discrete rep-
resentation of the congestion game setup considered in Braess’ paradox [3]. In our
setting, there are 1000 vehicles that need to traverse through the network. The net-
work topology and associated congestion functions are illustrated in Figure 6. Each
vehicle can select one of the four possible paths to traverse across the network.

c(k) = 1

c(k) = 1c(k) = k / 1000

c(k) = 0

c(k) = k / 1000

Start Finish

Fig. 6. Congestion game setup.

The reason for using this setup as an illustration of the learning algorithms and
equilibrium manipulation approach developed in this paper is that the Nash equi-
librium of this particular congestion game is easily identifiable. The unique Nash
equilibrium is when all vehicles take the route as highlighted in Figure 7. At this
Nash equilibrium each vehicle has a utility of 2 and the total congestion is 2000.

c(k) = 1

c(k) = 1c(k) = k / 1000

c(k) = 0

c(k) = k / 1000

Fig. 7. Illustration of Nash equilibrium in proposed congestion game.

Since a potential game is weakly acyclic, the payoff-based learning dynamics in
this paper are applicable learning algorithms for this congestion game. In a congestion
game, a payoff-based learning algorithm means that drivers have access only to the
actual congestion experienced. Drivers are unaware of the congestion level on any
alternative routes. Figure 8 shows the evolution of drivers on routes when using
the simple experimentation dynamics. This simulation used an experimentation rate
of ε = 0.25%. One can observe that the vehicles’ collective behavior does indeed
approach that of the Nash equilibrium.

In this congestion game, it is also easy to verify that this vehicle distribution does
not minimize the total congestion experience by all drivers over the network. The
distribution that minimizes the total congestion over the network is when half the
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Fig. 8. Evolution of number of vehicles on each road using simple experimentation dynamics:
the number of vehicles on the roads highlighted by arrows approaches 1000 while the number of
vehicles on all remaining roads approaches 0.

vehicles occupy the top two roads and the other half occupy the bottom two roads.
The middle road is irrelevant.

One can employ the tolling scheme developed in the previous section to locally
influence vehicle behavior to achieve this objective. In this setting, the new cost
functions, i.e., congestion plus tolls, are illustrated in Figure 9.

c(k) = 1

c(k) = 1
c(k) = k / 1000 +

(k-1) / 1000

c(k) = 0

c(k) = k / 1000 +
(k-1) / 1000

Fig. 9. Congestion game setup with tolls to minimize total congestion.

Figure 10 shows the evolution of drivers on routes when using the simple exper-
imentation dynamics. This simulation used an experimentation rate of ε = 0.25%.
When using this tolling scheme, the vehicles’ collective behavior approaches the new
Nash equilibrium which now minimizes the total congestion experienced on the net-
work. The total congestion experienced on the network is now approximately 1500.

There are other tolling schemes that would have resulted in the desired allocation.
One approach is to assign an infinite cost to the middle road, which is equivalent to
removing it from the network. Under this scenario, the unique Nash equilibrium is
for half the vehicles to occupy the top route and the other half to occupy the bottom,
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Fig. 10. Evolution of number of vehicles on each road using simple experimentation dynamics
with optimal tolls: the number of vehicles on the middle road fluctuates around 500 while the number
of vehicles on all remaining roads stabilizes to around 500.

which would minimize the total congestion on the network. Therefore, the existence of
this extra road, even though it has zero cost, resulted in the unique Nash equilibrium
having a higher total congestion. This is Braess’ paradox [3].

The advantage of the tolling scheme set forth in this paper is that it gives a
systematic method for influencing the Nash equilibria of any congestion game. We
would like to highlight that this tolling scheme guarantees only that the action profiles
that maximize the desired objective function are Nash equilibria of the new conges-
tion game with tolls. However, it does not guarantee the lack of suboptimal Nash
equilibria.

In many applications, players may not have access to their true utility, but do
have access to a noisy measurement of their utility. For example, in the traffic setting,
this noisy measurement could be the result of accidents or weather conditions. We
will revisit the original congestion game (without tolls) as illustrated in Figure 6. We
will now assume that a driver’s utility measurement takes on the form

Ũi(a) = −
∑
r∈ai

cr(σr(a)) + νi,

where νi is a random variable with zero mean and variance of 0.1. We will assume
that the noise is driver specific rather than road specific.

Figure 11 shows a comparison of the evolution of drivers on routes when using the
simple and sample experimentation dynamics. The simple experimentation dynamics
simulation used an experimentation rate ε = 0.25%. The sample experimentation
dynamics simulation used an exploration rate ε = 0.25%, a tolerance level δ = 0.002,
an exploration phase length m = 500000, and inertia ω = 0.85. As expected, the noisy
utility measurements influenced vehicle behavior more in the simple experimentation
dynamics than the sample experimentation dynamics.
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Fig. 11. Comparison of evolution of number of vehicles on each road using simple experimenta-
tion dynamics and sample experimentation dynamics (baseline) with noisy utility measurements: the
number of vehicles on the route (upper left, middle, lower right) dominates the number of vehicles
on all remaining roads in both settings.

6. Concluding remarks. We have introduced safe experimentation dynam-
ics for identical interest games, simple experimentation dynamics for weakly acyclic
games with noise-free utility measurements, and sample experimentation dynamics
for weakly acyclic games with noisy utility measurements. For all three settings, we
have shown that for sufficiently large times, the joint action taken by all players will
constitute a Nash equilibrium. Furthermore, we have shown how to guarantee that a
collective objective in a congestion game is a (nonunique) Nash equilibrium. An im-
portant, but unaddressed, topic in this work is characterizing resulting convergence
rates. It is likely that tools regarding mixing times of Markov chains [17] will be
relevant.

Our motivation has been that in many engineered systems, the functional forms of
utility functions are not available, and so players must adjust their strategies through
an adaptive process using only payoff measurements. In the dynamic processes de-
fined here, there is no explicit cooperation or communication between players. On the
one hand, this lack of explicit coordination offers an element of robustness to a vari-
ety of uncertainties in the strategy adjustment processes. Nonetheless, on the other
hand, an interesting future direction would be to investigate to what degree explicit
coordination through limited communications could be beneficial.

Appendix. Background on resistance trees. For a detailed review of the
theory of resistance trees, please see [24].

Let P 0 denote the probability transition matrix for a finite state Markov chain
over the state space Z. Consider a “perturbed” process such that the size of the
perturbations can be indexed by a scalar ε > 0, and let P ε be the associated transition
probability matrix. The process P ε is called a regular perturbed Markov process if P ε

is ergodic for all sufficiently small ε > 0 and P ε approaches P 0 at an exponentially
smooth rate [24]. Specifically, the latter condition means that for all z, z′ ∈ Z,

lim
ε→0+

P εzz′ = P 0
zz′ ,

and

P εzz′ > 0 for some ε > 0 ⇒ 0 < lim
ε→0+

P εzz′

εr(z→z′) <∞
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for some nonnegative real number r(z → z′), which is called the resistance of the
transition z → z′. (Note in particular that if P 0

zz′ > 0, then r(z → z′) = 0.)
Let the recurrence classes of P 0 be denoted by E1, E2, . . . , EN . For each pair of

distinct recurrence classes Ei and Ej , i �= j, an ij-path is defined to be a sequence
of distinct states ζ = (z1 → z2 → · · · → zn) such that z1 ∈ Ei and zn ∈ Ej .
The resistance of this path is the sum of the resistances of its edges, that is, r(ζ) =
r(z1 → z2) + r(z2 → z3) + · · · + r(zn−1 → zn). Let ρij = min r(ζ) be the least
resistance over all ij-paths ζ. Note that ρij must be positive for all distinct i and j,
because there exists no path of zero resistance between distinct recurrence classes.

Now construct a complete directed graph with N vertices, one for each recurrence
class. The vertex corresponding to class Ej will be called j. The weight on the directed
edge i→ j is ρij . A tree, T , rooted at vertex j, also called a j-tree, is a set of N − 1
directed edges such that, from every vertex different from j, there is a unique directed
path in the tree to j. The resistance of a rooted tree, T , is the sum of the resistances
ρij on the N −1 edges that compose it. The stochastic potential, γj , of the recurrence
class Ej is defined to be the minimum resistance over all trees rooted at j. The
following theorem gives a simple criterion for determining the stochastically stable
states (see [24, Theorem 4]).

Theorem A.1. Let P ε be a regular perturbed Markov process, and for each ε > 0
let με be the unique stationary distribution of P ε. Then limε→0 μ

ε exists and the
limiting distribution μ0 is a stationary distribution of P 0. The stochastically stable
states (i.e., the support of μ0) are precisely those states contained in the recurrence
classes with minimum stochastic potential.
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MINIMAL INTERCONNECTION TOPOLOGY IN DISTRIBUTED
CONTROL DESIGN∗
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Abstract. In this paper, we consider a distributed control design problem. Multiple agents (or
subsystems) that are dynamically uncoupled need to be controlled to optimize a joint cost function.
An interconnection graph specifies the topology according to which the agents can access information
about each others’ state. We propose and partially analyze a new model for determining the influence
of the topology of the interconnection graph on the performance achieved by the subsystems. We
consider the classical linear-quadratic regulator (LQR) cost function and propose making one of the
weight matrices to be topology dependent to capture the extra cost incurred when more communi-
cation between the agents is allowed. We present results about optimal topologies for some models
of the dependence of the weight matrix on the communication graph. We also give some results
about the existence of “critical prices” at which adding supplementary edges becomes detrimental to
closed-loop performance. One conclusion of the work is that if the communication between the agents
comes at a cost, then adding communication edges may be harmful for the system performance.

Key words. distributed control, interconnection topology
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1. Introduction. The question of optimal decentralized or structured control
design for systems composed of interconnected subsystems has been widely studied at
least since the 1970s (see, e.g., [4, 20]). The defining feature of these problems is that,
while optimization of the cost function can demand that the control of one subsystem
know the states of all the other subsystems, the topology (or information pattern)
imposed by the specified system structure may not allow such interactions to happen.
A lot is known about the information patterns for which an optimal structured control
law exists [24] or has (or does not have) some desirable properties, such as being linear
and satisfying a separation principle [20, 25], or being computable in polynomial time
in the dimension of the plant’s data [5, 19]. Many synthesis methods are also available
that can impose a specific topology on a controller (see, e.g., [15] and the references
therein), resulting in control laws that can be proved to have a particular structure
a posteriori [2, 8, 18] or that give an approximation to the exact optimal structured
controller (see, e.g., [11] and the references therein).

In all the works mentioned above, however, the controller’s interconnection topol-
ogy is always (if sometimes implicitly) assumed to be known to the designer prior to
synthesis, and optimization and/or design are to be performed among control laws
with this particular structure. While this problem formulation is appropriate when de-
centralization is viewed as an external constraint (e.g., when controlling a system with
a pre-existing interconnection topology such as a power distribution network), there
are situations where the interconnection graph and the controller are both designed
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at the same time. For example, when designing cooperative multi-agent systems, the
choice of the architecture or the information pattern (leader-follower, fully decentral-
ized, or some other structure) may itself be a valid design choice, and thus, an integral
part of the control design process. In such cases, it makes sense to try to find the
minimal (with respect to some cost function) topology needed to achieve a particular
control goal.

This structural optimization problem is complementary to other communication
theoretic trade-offs arising in network/distributed controller codesign (as discussed,
e.g., in [16]). The optimization of the communication topology along with the control
laws followed by the individual agents also falls within the framework of the theory of
organizational efficiency and information cost introduced in economics by Marschak
and Radner in [17] and later studied in, e.g., [6, 23, 14]. It is surprising that, while
the tools and ideas of team decision theory that were developed in [17] have been
successfully applied to distributed control problems with given information structure
[13], the very question of efficiency of decision architectures, which these authors were
originally interested in, has received relatively little attention in the control literature.
In particular, we are only aware of the following recent attempts at finding a minimal
control interconnection structure:

• In [21], the authors have shown that, when constructing a distributed con-
troller from a set of observer-based controllers using different and parallel
observations, the star interconnection topology is minimal, in the sense that
the resulting control design problem has the minimal number of free param-
eters needed to ensure closed-loop stability.
• In [26], another kind of optimal topology design is investigated, which uses

the closed-loop system’s convergence rate to equilibrium as a cost function.
More precisely, the authors use semidefinite programming to characterize the
weighted interconnection graph resulting in the fastest convergence to con-
sensus, under the assumption of nearest-neighbor averaging dynamics.

In this paper, we present a new model for studying the role of controller topol-
ogy in distributed control problems, which is inspired by some of the works in the
economics literature mentioned above.

More precisely, we propose to modify the classical linear-quadratic regulator
(LQR) cost function by making one of the weight matrices topology dependent. While
this way of explicitly incorporating the role of communication topologies in control
design is admittedly somewhat artificial, it allows us to bring the tools of LQR design
and convex optimization to bear on the problem and, in some cases, to give tractable
algorithms for designing the minimal topology, even though the design of optimal
structured controllers, for a fixed topology, is itself a difficult question.

Other possible topology or communication-dependent costs for the codesign of an
information pattern and controller, which are not considered here, include

(i) a fixed one-shot cost for the addition of every new communication edge,
(ii) a price that is proportional to the bit or entropy rate of the messages trans-

mitted along the edges.
In case (i), the global cost associated with the communication topology would be
independent of the quantity of information exchanged between subcontrollers, while
in case (ii), this quantity would be accounted for very precisely. The cost function
considered in this paper thus represents an intermediate case, in which the price
paid for communication does depend on the exchanged signals (although maybe in a
nonphysical way), but where the details of the communication protocols used are not
relevant.
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The paper is organized as follows. We begin by introducing our model and vari-
ous notations in section 2. As in most of the works on distributed control mentioned
above, we assume the communication links if they exist, to be ideal. Then in sec-
tion 3, we consider particular models of the dependence of the weight matrices on
topology and compute the optimal cost achieved by various topologies. In particular,
we prove the somewhat surprising result that, under certain assumptions, the optimal
control topology according to our criterion is the fully decentralized one. Then, in
section 4, we consider arbitrary graphs and arbitrary weight matrices. We provide
some conditions for the existence of “critical prices” at which it becomes detrimental
to add edges to a pre-existing controller topology. Finally, in section 5, we illustrate
some of the results by considering a simple example.

2. Problem formulation.

2.1. Notation. For a matrix M , we will denote the (i, j)th element by [M ]ij .
Similarly, for a column vector v, the ith element is denoted as vi. For matrices and
vectors that have been defined blockwise we will abuse the notation and use [M ]ij to
mean the (i, j)th block of M and use vi to mean the ith block of v. The particular
use will be clear from the context. The transpose of a matrix M and a vector v
will be denoted by M∗ and v∗, respectively. The norm of a vector v is denoted by
the symbol ‖v‖. For a matrix M , we denote the spectral radius of M by λmax(M)
and the maximum singular value by σmax(M). Given matrices M1,M2, . . . ,Mn, we
will denote the block-diagonal matrix, formed by placing the matrices Mi’s along the
diagonal, as diagi (Mi). The space of all symmetric positive definite n × n matrices
is denoted by S

n. For two matrices M1 and M2, we will say M1 ≥M2 if M1 −M2 is
positive semidefinite.

2.2. Structured control laws. Assume we are given N discrete time, linear
time-invariant (LTI) subsystems (or agents) described by

(2.1) xi(k + 1) = Aixi(k) + Biui(k)

for all i = 1 . . . N and k ≥ 0. At each time k, the state xi(k) and input ui(k) of each
subsystem is an element of R

ni and R
mi , respectively. In what follows, we will write

n :=
∑N

i=1 ni and m :=
∑N

i=1 mi. The state of the entire system can be defined by
stacking the states of all the subsystems in a column vector, which we denote by x(k):

x(k) =

⎛⎜⎝ x1(k)
...

xN (k)

⎞⎟⎠ .

We can similarly define the column vector u(k) by stacking all the individual control
inputs ui(k)’s. Each pair (Ai, Bi) is assumed to be controllable which, in turn (see,
e.g., [11]), implies that the full system, with matrices A := diagi(Ai), B := diagi(Bi),
is also controllable.

Let GN be the set of all undirected graphs with N vertices. We will think of each
vertex of a graph g ∈ GN as representing the subsystem (2.1) labeled with the same
index i, where 1 ≤ i ≤ N . To every graph g ∈ GN is associated an edge set E(g)
defining the edges present in g and an adjacency matrix A(g) defined as

[A(g)]ij =

{
1 if (i, j) ∈ E(g),

0 otherwise.
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All the graphs we will consider have self-loops, i.e., (i, i) ∈ E(g) for all i = 1 . . . N ,
g ∈ GN . If a graph g1 is a subgraph of g2, i.e., if E(g1) ⊂ E(g2), we will write g1 � g2.
Clearly, relation “ � ” defines a partial order on GN .

Each graph in GN specifies a communication topology that can be used to con-
struct specific control laws for subsystems (2.1). To this end, we introduce the space
Km,n(g) of structured matrices with structure imposed by g. A matrix K in Km,n(g)
is defined blockwise, with each block Kij being an mi×nj matrix such that [K]ij = 0
whenever [A(g)]ij = 0. The space Kn,n(g) is defined similarly, with blocks of size
ni × nj .

According to these definitions, a control law u defined by

(2.2)

⎛⎜⎝ u1(k)
...

uN (k)

⎞⎟⎠ = K(g)

⎛⎜⎝ x1(k)
...

xN (k)

⎞⎟⎠ for all k ≥ 0

for some feedback matrix gain K(g) ∈ Km,n(g) is such that ui(k) involves the values
of xj(k) for only those j such that (i, j) ∈ E(g).

Each edge (i, j) in a graph g can thus informally be thought of as a communication
link allowing agents i and j to use each other’s state value when computing their con-
trol input. The whole graph specifies the information pattern or the communication
topology. A control law satisfying (2.2) is said to have structure g. An unstructured
control law is one that has structure corresponding to the complete graph. It should
also be noted from (2.2) that we are interested only in static and linear control laws
so that the matrix K(g) is time invariant. Thus, a communication link, if present, is
assumed to be perfect in the sense that we ignore effects such as quantization issues,
data dropouts, and data delays longer than one time step.

A control law of the form (2.2) will be called stabilizing if, in closed-loop form,

lim
k→∞

x(k) = 0 for all x0 such that ‖x0‖ ≤ 1.

This is equivalent to the matrix A+BK(g) being Schur, i.e., having all its eigenvalues
with modulus strictly less than one.

2.3. Cost functions. For any given positive definite matrix Q ∈ S
n, control law

u, and initial condition x0, we define the familiar quadratic cost

J(Q, x0;u) :=
1

2

∞∑
k=0

⎡⎢⎣ x1(k)
...

xN (k)

⎤⎥⎦
∗

Q

⎡⎢⎣ x1(k)
...

xN (k)

⎤⎥⎦ +

⎡⎢⎣ u1(k)
...

uN (k)

⎤⎥⎦
∗ ⎡⎢⎣ u1(k)

...
uN (k)

⎤⎥⎦
subject to xi(k + 1) = Aixi(k) + Biui(k) for all k ≥ 0

xi(0) = [x0]i for all i = 1 . . . N.(2.3)

In order to study the influence of a control law’s structure on this cost, it is preferable
to eliminate the dependence on initial conditions and consider the worst-case cost

J(Q, u) := sup
‖x0‖≤1

J(Q, x0;u).

The minimum value of this worst-case cost over the choice of control laws is defined
as

J�(Q) := inf
u

J(Q, u).
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It is well known that for all initial conditions x0 and control laws u, J(Q, x0;u) ≥
x∗

0Px0, where P is the unique positive definite solution of the Riccati equation

(2.4) P = A∗PA + Q−A∗PB (B∗PB + I)
−1

B∗PA.

Furthermore, the cost x∗
0Px0 is achievable by the familiar LQR control. Thus, we

immediately obtain

J�(Q) = λmax(P ).

When a graph g ∈ GN imposes a structure on the allowed control laws, we can
analogously define the best performance achievable by a structured control law as

(2.5) J�
g (Q) :=

{
inf
u

J(Q, u)

subject to u has structure g.

It is clear that for any graph g, J�(Q) ≤ J�
g (Q). In keeping with the spirit of the

previous notations, we will write Jg(Q, u) instead of J(Q, u) when the control law u at
hand has structure g. We will also sometimes abuse notation by writing Jg(Q,K(g))
instead of Jg(Q, u) when the control law u and gain matrix K(g) are related, as in
(2.2).

We can now establish the following properties of function Jg(Q, .) for a fixed
positive definite matrix Q ∈ S

n.
Proposition 2.1. Let g ∈ GN and matrix Q ∈ S

n. A control law u with structure
g is stabilizing if and only if Jg(Q, u) is finite. Furthermore, when u is stabilizing,
the cost Jg(Q, u) = λmax(P (g)), where the matrix P (g) is the unique positive definite
solution of the following Lyapunov equation:

(2.6) (A + BK(g))∗P (g)(A + BK(g))− P (g) + Q + K(g)∗K(g) = 0,

with K(g) being given as per (2.2) for the control law u.
Proof. If u is stabilizing, then Lyapunov equation (2.6) has a unique positive

definite solution P for any matrix Q. Then, clearly, J(Q, x0;u) = x∗
0Px0 for all initial

condition x0 and, thus,

Jg(Q, u) = sup
‖x0‖≤1

Jg(Q, x0;u) = λmax(P ) < +∞.

If u is not stabilizing, there exists an initial condition x0 such that the state x(k)
of system (2.1) does not tend to zero as k goes to infinity in closed-loop form. Hence,
+∞ = J(Q, x0;u) ≤ J(Q, u).

The following proposition shows that, under natural constraint qualification re-
quirements, the definition of best performance achievable by a structured control law
as defined in (2.5) makes sense.

Proposition 2.2. Let g ∈ GN be a graph and Q ∈ S
n a positive definite weight

matrix. If there exists a stabilizing control law with structure g, then the infimum in
(2.5) is attained; i.e., there exists an optimal control gain K̄(g) ∈ Km,n(g) such that
J�
g (Q) = Jg(Q, K̄(g)).

Proof. Let {Kl} be a minimizing sequence of control gains with structure g for
Jg(Q, .), i.e., such that

lim
l→∞

Jg(Q,Kl) = J�
g (Q).
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Let u0 be a stabilizing control law with structure g. By definition, there exists l0 such
that for l > l0, Jg(Q,Kl) ≤ Jg(Q, u0). Hence, for l > l0 and all x0 with norm less
than one,

x∗
0K

∗
l Klx0 ≤ J(Q, x0;Kl)

≤ Jg(Q,Kl)

≤ Jg(Q, u0) < +∞,

which means that, for l > l0, Kl belongs to the closed ball (for the norm σmax(.))

{K ∈ Km,n(g) |σmax(K) ≤ Jg(Q, u0)}.

Since Km,n(g) is finite dimensional, this ball is compact, and thus {Kl} has a converg-
ing subsequence (which we still denote as {Kl}) with limit K̄(g) in this ball. Finally,
it is easy to show that function Jg(Q, .) is continuous on its domain and, hence, that

J�
g (Q) = lim

n→∞Jg(Q,Kn) = Jg(Q, K̄(g)).

2.4. Value of a graph. We are now in a position to introduce the value of a
graph. The terminology is borrowed from [14]. Let a mapping Q : GN → S

n be given.
The value of graph g is defined as

(2.7) V (g) := J�
g (Q(g)).

The motivation for introducing such graph-dependent weighting matrices and cost
functions is the following. Assume that we are interested in finding a controller
minimizing the cost J(Q0, .) for some positive definite matrix Q0. If there is no
restriction on the structure of the control law, the optimal controller’s interconnection
topology will typically be a full graph. In practice, however, building and maintaining
each of the graph’s communication edges has a cost which, if taken into account, may
make this control law less attractive. It is to capture this trade-off between closed-
loop performance and controller topology that we introduce an information cost [17]
associated to every communication graph g. Of course, there are many ways in which
such a cost could be defined, and our choice of a graph-dependent weight matrix Q is
mainly motivated by the fact that the resulting control design problem naturally fits
into the LQR framework. Several choices are possible for the map Q, some of which
are detailed below along with a possible interpretation.

Definition 2.3. We say that a weight map Q : GN → S
n is

– edge separable without interference if it satisfies

(2.8) Q(g) := Q0 +
∑

(i,j)∈E(g)
i�=j

Pij

for all graphs g, with each matrix Pij ≥ 0 being partitioned according to
the subsystems and having all blocks, except the (i, i)th, (i, j)th, (j, i)th, and
(j, j)th, equal to zero. In this case, a subsystem pays a price for transmitting
the value of its state to another subsystem.

– edge separable with externalities if it is still given by (2.8), but with all the
diagonal blocks of each matrix Pij being possibly nonzero. Conceptually, such
information costs can model situations in which the subsystems that are ex-
changing information over a particular link are not the only ones paying a
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price for it. Instead, the subsystems not directly involved in the communica-
tion also agree to contribute to the cost of information sharing. Such a model
is reasonable when subsystems are cooperating with each other.
The situation when the cost of one agent can be influenced by the action of
others is referred to as an “externality” in the economics literature, which
motivates the name used for this type of weight map.

– nonseparable or “with interference” if Q(g) can be a full matrix without any
particular structure for every graph g. This corresponds to the general case
where the cost paid for communication over every link depends on all the
other links present in the graph. It is to capture this idea of parasitic effect
of edges on each other that we say that “there is interference.” However,
“interference” is not meant in its physical sense.

Accounting for the communication cost through an increase in the value of the
matrix Q implies that the communication cost varies as the square of the state value.
As mentioned before, this quadratic communication cost is considered mostly for sim-
plicity and ease of analysis. We note, however, that obtaining a measure of commu-
nication cost that is suitable for all applications of multi-agent systems and admits a
theoretical analysis is still an open research question. We thus hope that our approach
will provide a useful first step in this direction.

We will also make use of the following two properties of a map Q.
Definition 2.4. We say that a map Q : GN → S

n is
(i) nondecreasing if for all g, g′ ∈ GN , g � g′ ⇒ Q(g) ≤ Q(g′).
(ii) structure compatible if for all g ∈ GN , Q(g) ∈ Kn,n(g).
Note that edge separability in the mapping Q is not sufficient for structure com-

patibility, since the matrix Q0 in (2.8) may not be block diagonal.
Our goal in the following sections is to characterize the efficient graph g� defined

by

(2.9) g� := arg min
g∈GN

V (g).

The structure imposed by g� corresponds to the minimal communication requirements
(in the sense of the cost function (2.3)) needed to control the N agents. Since there
are only finitely many elements in GN , g� always exists provided the value function
V is proper. One way to determine g� would be to enumerate the value V (g) for
every graph g ∈ GN and minimize over that set. The problems with this approach,
however, are that calculating the value of a single graph is typically a hard, nonconvex
optimization problem, and that the number of possible graphs in GN is exponential
in N .

In the remainder of this paper, we explore two alternative and complementary
approaches for characterizing the efficient graph g� which do not rely on such an
exhaustive search. In section 3, we show that, for particular families of maps Q, it
is possible to compute g� explicitly. Next, we consider more general maps Q and
derive tractable necessary and sufficient conditions for two graphs g and g′ to satisfy
V (g) ≤ V (g′).

3. Cliques and efficient graph.

3.1. Nondecreasing Q. In this section, we focus on maps Q which are com-
patible with the partial order � on the graphs in GN . This will allow us to give
conditions for comparing the value of two graphs independently of the system (2.1)
and for characterizing the efficient graph rigorously.
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(a) (b)

(c) (d)

Fig. 3.1. Some examples of graphs. All but (b) are clique graphs.

We start with the following simple result.
Proposition 3.1.

(i) If g � g′, then for all Q > 0, J�
g′(Q) ≤ J�

g (Q).
(ii) If Q ≤ Q′, then for all g ∈ GN , J�

g (Q) ≤ J�
g (Q′).

We thus obtain the following immediate corollary.
Corollary 3.2. If the map Q is nondecreasing and g � g′, J�

g′(Q(g)) ≤ V (g′).
Proof. Applying item (ii) of Proposition 3.1 to Q = Q(g) and Q′ = Q(g′) yields

J�
g′(Q(g)) ≤ J�

g′(Q(g′)).

Since by definition

J�
g′(Q(g′)) = V (g′) ,

we immediately obtain

(3.1) J�
g′(Q(g)) ≤ V (g′).

Before we go further and prove our first result on graph efficiency, we need to
introduce the following concept borrowed from [12].

Definition 3.3. A graph g ∈ GN is said to be a clique graph if each of its
connected components is a clique, i.e., a complete subgraph.

Examples and counterexamples of clique graphs are given in Figure 3.1. As we
will see, these graphs are useful because their value can be readily computed.

Proposition 3.4. Let g ∈ GN be a clique graph and the map Q be structure
compatible. Then V (g) = J�(Q(g)). In particular, V (g) = λmax(P (g)), where P (g)
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is the unique positive definite solution of the Riccati equation

(3.2) P (g) = A∗P (g)A +Q(g)−A∗P (g)B (B∗P (g)B + I)
−1

B∗P (g)A.

Proof. We have already mentioned in the previous section that the unstructured
control law minimizing J(Q(g), .) and the corresponding optimal value are given by
the solution to Riccati equation (3.2). Since g is a clique graph, using a reordering of
the vertices, the matrix A(g) can be converted to a block-diagonal form. The systems
thus become decoupled and one can readily show that, under our assumptions, the
optimal control law K(g), in fact, has structure g (see, e.g., the proof of Proposition
2.6 in [10]).

Now, note that, by definition of K(g),

J(Q(g), x0;u) ≥ J(Q(g), x0;K(g))

for all x0 and arbitrary control laws u. Hence, for all u,

J(Q(g), u) ≥ J(Q(g),K(g))

and, in particular, considering control laws with structure g,

V (g) = J�
g (Q(g)) ≥ J(Q(g),K(g)).

The fact that K(g) has structure g then completes the proof.

Proposition 3.4 and its proof are reminiscent of the results of [2], where it is shown
that, for spatially invariant systems, the optimal controller is itself spatially invariant.
Here, the optimal controller has the same structure as the clique graph, when the map
Q is structure compatible. This property allows us to compare the value of a clique
graph to that of its supergraphs.

Theorem 3.5. Let Q be nondecreasing and structure compatible and g be a clique
graph. Then V (g) ≤ V (g′) for all g′ ∈ GN such that g � g′. In particular, the graph
g� characterized by E(g�) = {(i, i) : 1 ≤ i ≤ N} is efficient, as defined in (2.9). In
other words, the minimal control topology (for cost (2.3)) is fully decentralized.

Proof. By Proposition 3.4, since g is a clique graph and Q is structure compatible,
V (g) = J�(Q(g)). Also, since Q is nondecreasing, we can use relation (3.1) to write
J�
g′(Q(g)) ≤ V (g′). Finally, by definition of the various minimization problems, we

have

V (g) = J�(Q(g)) ≤ J�
g′(Q(g)) ≤ V (g′).

That the fully decentralized topology is minimal follows from the fact that g�, as
defined in the theorem, is a clique graph and, clearly, that g� � g for all g ∈ GN .

The result of Theorem 3.5 illustrates that, if a cost is charged for communication,
cooperation can sometimes be detrimental. Note that from [11] we know that for
the purposes of stabilizability and controllability, all communication topologies are
equivalent. However, different information patterns yield different performance and
this result states that more communication links (and hence less constraints on the
structure of the control law) may not automatically translate into better performance
in the case of structure compatibility.
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3.2. Merely structure-compatible Q. The previous section has shown that
it is possible to compare clique graphs to their supergraphs when map Q is structure
compatible and nondecreasing, and that adding edges to a clique graph is then always
detrimental to the value. These results hold independently of the subsystems (2.1)
under consideration.

In this section, we remove the nondecreasing assumption on map Q and derive
conditions for comparing clique graphs to arbitrary graphs. In the remainder of this
section, we will assume that either

• g is a clique graph and map Q is structure compatible, or
• g is the complete graph, i.e., E(g) = {(i, j), 1 ≤ i ≤ j ≤ N}, and map Q is

arbitrary.
Theorem 3.6. Let γ = λmax(P (g)), where P (g) is the solution of Riccati equation

(2.4) with Q = Q(g). A graph g′ ∈ GN satisfies V (g′) ≤ γ = V (g) if and only if
λ� ≤ γ, where λ� is defined as

(3.3) λ� :=

⎧⎪⎨⎪⎩
min
P ′,K′

λmax(P
′)

subject to P ′ ≥ (A + BK ′)∗P ′(A + BK ′) +Q(g′) + K ′∗K ′,
K ′ ∈ Km,n(g′).

Proof. Assume λ� ≤ γ. Then there exists P ′ > 0 and K ′ ∈ Km,n(g′) such that
(3.3) holds and λmax(P

′) ≤ γ. Also, we see that along any closed-loop trajectory with
initial condition x0,

x∗(k)P ′x(k)− x∗(k + 1)P ′x(k + 1) ≥ x∗(k)Q(g′)x(k) + u∗(k)u(k).

Then, summing over k, we obtain

(3.4) x∗
0P

′x0 ≥
∞∑
k=0

(x∗(k)Q(g′)x(k) + u∗(k)u(k)) = Jg′ (Q(g′), x0;u)

for the control law u satisfying u(k) = K ′x(k). Taking the supremum over x0 over
the unit ball yields

γ ≥ J(Q(g′),K ′) ≥ V (g′).

Reciprocally, assume V (g′) ≤ V (g). In this case, V (g′) is bounded, and thus there
exists a stabilizing control law with structure g′. By virtue of Proposition 2.2, this
implies that there exists K̄ ′ such that V (g′) = J(Q(g′), K̄ ′). The control law corre-
sponding to K̄ ′ must itself be stabilizing, and thus, according to Proposition 2.1,

V (g′) = λmax(P̄
′),

where P̄ ′ is the positive definite solution of Lyapunov equation (2.6) with Q = Q(g′).
Since (P̄ ′, K̄ ′) is feasible for the optimization problem on the right-hand side of

(3.3), this problem has the same optimal value as the problem (P),

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
inf

P ′,K′
λmax(P

′)

subject to P ′ ≥ (A + BK ′)∗P ′(A + BK) +Q(g′) + K ′∗K ′,
K ′ ∈ Km,n(g′),
λmax(P

′) ≤ λmax(P̄
′).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMAL INTERCONNECTION TOPOLOGY 407

The feasible set of (P) is compact since it is clearly closed and, if (P,K) is feasible
for (P), both λmax(P ) and σmax(K) are bounded by λmax(P̄

′). Hence the infimum
in (P) is attained; i.e., there exists (P0,K0) such that the optimal value of problem
(P) is λmax(P0). Then, clearly, λ� = λmax(P0), which means that the optimal value
is also attained in the problem on the right-hand side of (3.3) and, by definition of
P0,

λ� = λmax(P0) ≤ λmax(P̄
′) = V (g′) ≤ γ.

Condition (3.3), although both necessary and sufficient, is not practical for com-
paring the value of a graph to that of a clique graph, since problem (3.3) is not easily
solved numerically. This is because it involves a bilinear constraint on variables P ′

and K ′, and the change of variables traditionally used to convexify static state feed-
back synthesis problems is inoperative here because of the structural constraint on
K ′. Some approaches have been proposed recently for obtaining merely sufficient, but
convex, synthesis conditions in a similar context, from restricting oneself to a diagonal
matrix P ′ [1] to introducing additional variables [7]. These methods could be applied
to the present problem as well, and used to derive a computable upper bound for λ�

and, in turn, a sufficient condition for g′ having lower value than g. However, we give
different sets of convex sufficient and necessary conditions for comparing the values
of graphs.

Theorem 3.7 (sufficient condition). Let P (g) be the unique positive definite
solution of Riccati equation (3.2) with Q = Q(g). If there exists a matrix K ∈ Km,n(g′)
such that the following linear matrix inequality (LMI) in matrix variable K is satisfied:

(3.5)

⎡⎢⎣ −P (g) +Q(g′)
[

(A + BK)∗ K∗ ][
(A + BK)

K

]
−
[

P (g)−1 0
0 I

] ⎤⎥⎦ < 0,

then V (g) ≥ V (g′).
Proof. If matrix K is feasible for LMI (3.5), the pair (P (g),K) is feasible for

problem (3.3) since, according to the Schur complement formula,

−P (g) +Q(g′) + (A + BK)∗P (g)(A + BK) + K∗K < 0.

As a result, λ� ≤ λmax(P (g)) = γ and, according to Theorem 3.6, V (g′) ≤ V (g).
Theorem 3.8 (necessary condition). If V (g) ≥ V (g′), then there exists a matrix

K ∈ Km,n(g′) and a matrix X > 0 such that the following LMI (in K and X) is
satisfied:

(3.6)

⎡⎢⎣ −γI +Q(g′)
[

(A + BK)∗ K∗ ][
(A + BK)

K

]
−
[

X 0
0 I

] ⎤⎥⎦ ≤ 0,

where γ is defined as in Theorem 3.6.
Proof. By Theorem 3.6, if V (g) ≥ V (g′), there exists (P ′,K ′) feasible for problem

(3.3) with λmax(P
′) ≤ γ. Hence, there exist P ′ and K ′ such that P ′ ≤ γI and

P ′ ≥ (A + BK ′)∗P ′(A + BK ′) +Q(g′) + K ′∗K ′ and, as a result,

γI ≥ (A + BK ′)∗P ′(A + BK ′) +Q(g′) + K ′∗K ′.

Using a Schur complement and letting X = P ′ shows that the LMI of Theorem 3.8 is
feasible.
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4. Comparing arbitrary graphs. In this section, we extend some of the tools
presented so far and compare the values of arbitrary graphs for any given map Q.
Because it is already difficult to compute the value of an arbitrary graph (as opposed
to the case of clique graphs and structure-compatible maps), we settle for tractable
sufficient conditions on the weighting matrices Q(g) and Q(g′), which allow us to
compare graphs g and g′. More precisely, we ask what (tractably testable) properties
of a map Q are sufficient to guarantee that one graph has a smaller value than another
one.

Theorem 4.1 (sufficient condition). Consider two graphs g and g′. If there exist
K ∈ Km,n(g′) and a matrix P > 0 such that

P = (A + BK)∗P (A + BK) +Q(g′) + K∗K,(4.1)

Q(g) ≥ Q(g′) +
(
K + S−1B∗PA

)∗
S
(
K + S−1B∗PA

)
,(4.2)

S = B∗PB + I,(4.3)

then V (g) > V (g′).
Proof. Assume P > 0 satisfies (4.1). Then, since Q(g′) + K∗K > 0, by the

properties of a discrete algebraic Lyapunov equation [9], the matrix (A + BK) is
Schur. Thus,

lim
k→∞

x(k) = 0

for the closed-loop system

x(k + 1) = (A + BK)x(k),

starting from any initial condition x0. Also, proceeding as in the proof of Theorem 3.6,
we see that along any closed-loop trajectory with initial condition x0,

(4.4) x∗
0Px0 = Jg′ (Q(g′), x0;u)

for the control law u satisfying u(k) = Kx(k). Now from (4.1) we see that P satisfies

P = A∗PA−A∗PBS−1B∗PA +Q(g′) +
(
K + S−1B∗PA

)∗
S
(
K + S−1B∗PA

)
,

where S = B∗PB + I. This Riccati equation is identical to the one obtained using
LQ control theory if we were to look for an unstructured control law that minimizes
a cost function of the form (2.3), but with the weighting matrix

Q = Q(g′) +
(
K + S−1B∗PA

)∗
S
(
K + S−1B∗PA

)
.

Thus, for all initial conditions x0 and control laws v,

x∗
0Px0 ≤ J(Q(g′) +

(
K + S−1B∗PA

)∗
S
(
K + S−1B∗PA

)
, x0; v)

and, maximizing over x0,

Jg′(Q(g′), u) ≤ J(Q(g′) +
(
K + S−1B∗PA

)∗
S
(
K + S−1B∗PA

)
, v)

for all control laws v. But, from (4.2), we obtain that

J(Q(g′) +
(
K + S−1B∗PA

)∗
S
(
K + S−1B∗PA

)
) ≤ J(Q(g), v)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMAL INTERCONNECTION TOPOLOGY 409

and, thus, that Jg′(Q(g′), u) ≤ J(Q(g), v) for all v. In particular, this implies that

V (g′) ≤ Jg′(Q(g′), u) ≤ V (g).

Conditions (4.1) can be used to design a map Q to enforce some desired control
topology. For example, imagine a situation where the map Q is chosen by one insti-
tution (the price designer) while the controller is synthesized by another (the network
builder) and where a topology, g′, has been agreed on and implemented. Then, the
price designer can ensure that there is no incentive to build a new edge by choosing
a stabilizing control gain K ∈ Km,n(g′), solving Lyapunov equation (4.1) and picking
Q such that (4.2) holds. On the other hand, the network builder is only given the
map Q. If it wants to use conditions (4.1) to determine whether it is advantagous to
add new edges to a pre-existing control topology (or, more aptly, to find a certificate
that it is detrimental to do so) it has to solve equations (4.1) for both P and K. Even
after using the Schur complement formula on inequality (4.2) and rewriting (4.1) as
two matrix inequalities, this is still a hard task to perform, since one then has to solve
a set of bilinear matrix inequalities which, in general, is NP-hard [22].

Another type of sufficient condition can be obtained for comparing arbitrary
graphs by building on the ideas of section 3. In particular, we can state the following.

Theorem 4.2. Let g, g′ be two graphs and Q be any weight map. If there exists
a diagonal matrix Λ such that Q(g) < Λ < Q(g′), then V (g) < V (g′).

Proof. Let e be the fully decentralized graph, i.e., E(e) = {(i, i) : 1 ≤ i ≤ N}, and
defineH(g) := Λ for all g. MapH is clearly structure compatible (and nondecreasing),
and we can compute the value of any graph h in GN by using this weighting map
instead of Q. We will denote this value by VH(h). We can now proceed in two steps:

(a) Using Proposition 3.1, we see that

V (g) = J�
g (Q(g))

≤ J�
e (Q(g)) since g � e

≤ J�
e (Λ) = VH(e).

(b) Using Theorem 3.5, we see that VH(e) ≤ VH(g′) since H is structure compat-
ible. But H(g′) = Λ ≤ Q(g′), and so

J�
g′(H(g′)) ≤ J�

g′(Q(g′)).

Hence V (g) ≤ VH(e) ≤ VH(g′) ≤ V (g′).
In fact, the arguments of the previous proof are still valid if matrix Λ, instead of

being diagonal, has the structure of a clique graph. We can thus state the following.
Corollary 4.3. Let h be a clique subgraph of both graphs g and g′. If there

exists a matrix M ∈ Km,n(h) such that Q(g) < M < Q(g′), then V (g) < V (g′).

5. Communication topology design for multivehicle systems: An ex-
ample. In this section, we illustrate our results by applying them to the problem of
determining the most economical information pattern required to keep multiple vehi-
cles in a geometric formation, while taking into account the cost of communication.

Consider the system pictured in Figure 5.1 and composed of three independent
nonholonomic vehicles modeled, in continuous time, by the equations

(5.1)

⎧⎪⎨⎪⎩
ẋi = Vi cos θi,

ẏi = Vi sin θi,

θ̇i = ωi,
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x

y

V1V3

V2

h

g

f

(a) (b)

1

2
3

Fig. 5.1. Multivehicle formation. (a) Kinematics of the problem. (b) Three possible communi-
cation topologies. See text for details.

for all i = 1, . . . , 3, where (xi, yi) are the coordinates of the center of mass of the
ith vehicle, θi is its heading angle, Vi is its velocity, and ωi (the control input) is its
angular velocity. Linearizing these equations around straight-line trajectories parallel
to the x-axis (i.e., around θi ≡ 0 and yi ≡ constant, for each i) and discretizing them
with a zeroth-order hold scheme with a time step of 0.1 yields the double-integrator
model

(5.2)

(
δyi(k + 1)
θi(k + 1)

)
=

(
1 0.1
0 1

)(
δyi(k)
θi(k)

)
+

(
0.005
0.1

)
ωi(k)

for each vehicle, where we have set Vi ≡ 1 for all i, and δyi designates the deviation
from the desired constant value of yi. Equations (5.2) can also be thought of as
capturing the motion of the vehicles in a frame moving parallel to the x-axis with
unit velocity. We want these vehicles to evolve in formation so that

• angle θi(k) and deviation δyi(k) remain small for all i, at each time k;
• vehicle number 3 is always at the middle point between vehicle 1 and 2.

With such requirements, it makes sense to design control laws {ωi}i=1,...,3 for subsys-
tems (5.2) so that the cost function

∞∑
k=0

(
δy2

1(k) + δy2
2(k) + δy2

3(k)
)

+
(
θ2
1(k) + θ2

2(k) + θ2
3(k)

)
+

(
δy3(k)− δy1(k) + δy2(k)

2

)2

+
(
ω2

1(k) + ω2
2(k) + ω2

3(k)
)

is minimized in closed-loop form. This amounts to solving an optimal control problem
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of the form (2.5) with matrix Q0 given by

(5.3) Q0 =

⎛⎜⎜⎜⎜⎜⎜⎝

5
4 0 1

2 0 −1 0
0 1 0 0 0 0
1
2 0 5

4 0 −1 0
0 0 0 1 0 0
−1 0 −1 0 2 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

In (5.3), matrix Q0 is partitioned conformably to the subsystems, with the first and
second coordinates of subsystem i’s state being δyi and θi, respectively.

Note that without any communication cost, the optimal controller for the matrix
Q0 is full, which means that the optimal graph is a full graph. In order to determine
an efficient communication graph for this problem, we must define a communication
cost in the form of a mapping Q : G3 → S

6. We choose to adopt an edge-separable
map with externalities, such that

Q(g) = Q0 +
∑

(i,j)∈E(g)

Pij for all g,

with each positive definite matrix Pij having all its blocks equal to zero except for
the diagonal and the (i, j) and (j, i) ones. Note that the map Q so obtained is
nondecreasing but not structure compatible, since Q0 is not block diagonal. We want
to determine price matrices such that the graphs pictured in Figure 5.1(b) satisfy
V (g) ≤ V (f) and V (h) ≤ V (g). We start by choosing

P12 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 0
0 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
and use Theorem 4.1 to find a price matrix P13 such that V (h) ≤ V (g). Picking the
stabilizing controller

K =

⎛⎝ −1 −1 0 0 0 0
0 0 −1 −1 0 0
0 0 0 0 −1 −1

⎞⎠
with structure h, one can show that (4.1) are satisfied for some matrix P > 0 if we
take

P13 = Q(g)−Q(h) =

⎛⎜⎜⎜⎜⎜⎜⎝

10 0 0 0 −0.5 0
0 5 0 0 0 0
0 0 10 1 0 0
0 0 1 10 0 0
−0.5 0 0 0 10 0

0 0 0 0 0 5

⎞⎟⎟⎟⎟⎟⎟⎠ .

To find a matrix P23 such that V (f) ≥ V (g), we can use Theorem 4.2 and solve the
two LMIs

Q0 + P12 + P13 < Λ,

Λ < Q0 + P12 + P13 + P23
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in the structured variables Λ and P23. Using SeDuMi, we find that the following pair
is feasible:

P23 =

⎛⎜⎜⎜⎜⎜⎜⎝

78.797 0 0 0 0 0
0 78.797 0 0 0 0
0 0 78.797 0 13.1328 0
0 0 0 78.797 0 13.1328
0 0 13.1328 0 78.797 0
0 0 0 13.1328 0 78.797

⎞⎟⎟⎟⎟⎟⎟⎠ ; Λ = 39.3985 I6.

By adopting the price matrices given above, the price designer can thus ensure that
graph h will be chosen by the network builder.

6. Conclusions and future work. In this paper, we proposed and partially
analyzed a new model for determining the influence of the structure of a controller on
closed-loop performance in distributed control design problems. For a plant composed
of dynamically uncoupled subsystems, we proposed making one of the weight matrices
of the classical LQR cost function topology dependent, so as to capture the cost
of communication between subsystems. For some models of such dependencies, we
investigated the existence and properties of an optimal structured controller.

This paper is only a first attempt at studying the influence of interconnection
topology on performance in distributed control design problems. The problem is
hard because the underlying problem of determining optimal structured controllers is
hard. The chief virtue of our approach is that it allows us to circumvent this problem
and enables us to give rigorous statements about optimal topologies and comparing
topologies to each other. Our results thus complement the more heuristic claims of
[3] and [21].

Even within the realm of this restricted model, many unanswered questions re-
main. For example, it would be nice to be able to compare the values of any two
graphs and not just of those that are comparable for the partial order �. Likewise,
one may ask whether it is possible to derive bounds similar to those of Theorem 4.1
that are tractable or explicit. Another avenue of future research would be to make
the communication cost model more physically motivated by considering metrics such
as entropy rate. Finally, the effect of imperfections in the communication links also
needs to be studied.

Acknowledgments. Discussions with Profs. Anders Rantzer and Tudor Stoe-
nescu, on this and related topics, are gratefully acknowledged.
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EXISTENCE RESULTS FOR OPTIMAL CONTROL PROBLEMS
WITH SOME SPECIAL NONLINEAR DEPENDENCE ON STATE

AND CONTROL∗
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Abstract. We present a general approach to prove existence of solutions for optimal control
problems not based on typical convexity conditions, which quite often are very hard, if not impossible,
to check. By taking advantage of several relaxations of the problem, we isolate an assumption which
guarantees the existence of solutions of the original optimal control problem. To show the validity of
this crucial hypothesis through various means and in various contexts is the main goal of this paper.
In each such situation, we end up with some existence result. In particular, we would like to stress
a general result that takes advantage of the particular structure of both the cost functional and the
state equation. One main motivation for our work here comes from a model for guidance and control
of ocean vehicles. Some explicit existence results and comparison examples are given.
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1. Introduction. This paper focuses on the analysis of optimal control problems
of the general form

(P1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize in u :
∫ T

0

[
s∑

i=1

ci(x(t))φi(u(t))

]
dt

subject to x′(t) =
s∑

i=1

Qi(x(t))φi(u(t)) in (0, T ), x(0) = x0 ∈ RN ,

and u ∈ L∞(0, T ), u(t) ∈ K,

where K ⊂ Rm is compact. The state x : (0, T )→ RN takes values in RN .
The mappings

ci : RN → R, φi : Rm → R, Qi : RN → RN

as well as the restriction set K ⊂ Rm will play a fundamental role. We assume, at
this initial stage, that ci are continuous, φi are of class C1, and each Qi is Lipschitz
so that the state system is well-posed.

In such a general form, we cannot apply results for nonnecessarily convex problems
like the ones in [2], [6], [25], or [30]. Besides, techniques based on Bauer’s maximum
principle (see [3], [4]) are quite difficult to extend to our general setting because it
is hard to analyze the concavity of the cost functional when the dependence on both
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state and control comes in product form. Also Rockafellar’s variational reformulation
introduced in [27], and well described in [7], [12] or recently in [23] or [24], looks as if
it cannot avoid assuming a separated dependence on the state and control variables,
since this is the structure of the variational problem for which the existence of solution
has been so far ensured [8].

Concerning the classical Filippov–Roxin theory introduced in [13] and [31], it is
not easy at all to know if typical convexity assumptions hold, or when they may hold,
as we can see from the examples and counterexamples in [7]. When analyzing explicit
examples, one realizes such difficulties coming from the need of a deep understanding
of typical orientor fields. The same troubles would arise when applying refinements
of this result as the ones in [20] and [21].

Recently (see [9]), an existence result has been shown for minimum-time problems
where the typical convexity assumptions over the set-valued function on the differen-
tial inclusion have been replaced by more general conditions. In fact, the intersection
of this result with the ones we present here is not empty, although, as we will com-
ment, our frame extends to situations not covered by this result. Such analysis can
be done by writing problem (P1) as a minimum-time problem as suggested in [7].

Our aim is to provide hypotheses on the different ingredients of the problem so
that existence of solutions can be achieved through an independent road. Actually, it
is not easy to claim whether our results improve on classical or more recent general
results. They provide an alternative tool which can be more easily used in practice
than such results when one faces an optimal control problem under the special struc-
ture we consider here. As a matter of fact, convexity will also occur in our statements
but in an unexpected and nonstandard way.

Before stating our main general result, a bit of notation is convenient. We will
write

(1) c : RN → Rs, φ : Rn → Rs, Q : RN → RNs,

with components ci, φi, and Qi, respectively. Consider also a new ingredient of the
problem related to φ. Suppose that there is a C1 mapping

(2) Ψ : Rs → Rs−n, Ψ = (ψ1, . . . , ψs−n) (s > n),

so that φ(K) ⊂ {Ψ = 0}. This is simply saying, in a rough way, that the embedded
(parametrized) manifold φ(K) of Rs is part of the manifold defined implicitly by
Ψ = 0. In practical terms, it suffices to check that the composition Ψ(φ(u)) = 0 for
u ∈ K.

For a pair (c,Q), put

(3) N (c,Q) = {v ∈ Rs : Qv = 0, cv ≤ 0} .

Similarly, set

N (K,φ) =
{
v ∈ Rs : for each u ∈ K,(4)

either ∇Ψ(φ(u))v = 0 or ∃i s.t. ∇ψi(φ(u))v > 0
}
.

Our main general result is the following.
Theorem 1.1. Assume that the mapping Ψ as above is strictly convex (compo-

nentwise) and C1. If for each x ∈ RN we have

(5) N (c(x), Q(x)) ⊂ N (K,φ),
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then the corresponding optimal control problem (P1) admits at least one solution.
As it stands, this result looks rather abstract, and it is hard to grasp to what

extent it may be applied in more specific situations.
A particular, yet still under some generality, situation where this result can be

implemented is the case of polynomial dependence where the φi’s are polynomials of
various degrees. The main structural assumption, in addition to the one coming from
the set K, is concerned with the convexity of the corresponding mapping Ψ.

Suppose we take φi(u) = ui, i = 1, 2, . . . , n, and φn+i(u), i = 1, 2, . . . , s − n,
convex polynomials of whatever degree, or simply polynomials whose restriction to K
is convex. In particular, K itself is supposed to be convex. Then we can take

(6) Ψi(v) = φn+i(v)− vn+i, i = 1, 2, . . . , s− n, v = (vi)i=1,2,...,n.

In this case, it is clear that

Ψ(φ(u)) = 0 for u ∈ K,

by construction, and, in addition, Ψ is smooth and convex. The important constraint
(5) can also be analyzed in more concrete terms if we can better specify the structure
of the problem.

As an illustration, though more general results are possible, we will concentrate
on an optimal control problem of the type

(P )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Minimize in u :
∫ T

0

[
n∑

i=1

ci(x(t))ui(t) +
n∑

i=1

cn+i(x(t))u2
i (t)

]
dt

subject to x′(t) = Q0(x(t)) +Q1(x(t))u(t) +Q2(x(t))u2(t) in (0, T ),

x(0) = x0 ∈ Rn and u(t) ∈ K ⊂ Rn.

We are taking here N = n. Q1 and Q2 are n × n matrices that, together with
the vector Q0, comply with appropriate technical hypotheses so that the state law is
a well-posed problem. Set

(7) Q =
(
Q1 Q2

)
, c =

(
c1 c2

)
,

where Q1 is a nonsingular n× n matrix, and c1 ∈ Rn. In addition, we put

D(x) = −(Q1)−1Q2, E(x) = c1D + c2,(8)

U(m,x) = 2
∑

i

miei ⊗ eiD − id, m = φ(u),

where the ei’s stand for the vectors of the canonical basis of Rn, and id is the identity
matrix of size n× n.

Theorem 1.2. Suppose that for the ingredients (c,Q,K) of (P ), the following
hold:

1. the matrix U is always nonsingular for u ∈ K, and x ∈ Rn;
2. for such pairs (u, x), we always have U−TE < 0, componentwise.

Then the optimal control problem admits solutions.
As a more specific example of the kind of existence result that can be obtained

through this approach, we state the following corollary, whose proof amounts to going
carefully through the arithmetic involved after Theorem 1.2.
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Corollary 1.1. Consider the optimal control problem

Minimize in u :
∫ T

0

[c1(x(t))(u1(t))2 + c2(x(t))u2(t)2] dt

under

x′1(t) = u1(t)− u2(t) + q1(x)u1(t)2 + u2(t)2,

x′2(t) = q2(x)u1(t) + u2(t) + u1(t)2 + u2(t)2,

and an initial condition x(0) = x0, where u(t) ∈ K = [0, 1]2,

q1(x) ∈
(

1
3
, 1
)
, q2(x) ∈ (−1, 1), c1(x), c2(x) > 0,

and

q1(x) + 1
2

c2(x) < c1(x) <
2(q1(x))2 + q1(x)(q2(x) + 1)− q2(x)− 3

4(q1(x) − 1)
c2(x).

Then there is at least one optimal solution of the problem.
Our strategy to prove these results is not new as it is based on the well-established

philosophy of relying on relaxed versions of the original problem, and then, under
suitable assumptions, proving that there are solutions of the relaxed problem which are
indeed solutions of the original one (see [10], [15], [17], [18], [33], and [34]). From this
perspective, it is a very good example of the power of relaxed versions in optimization
problems.

The relaxed version of the problem that we will be using is formulated in terms
of Young measures associated with sequences of admissible controls. These so-called
parametrized measures were introduced by Young [34], [35], [36], [37], and have been
extensively used in calculus of variations and optimal control theory (see, for example,
[21], [22], [28], and [29]). Because of the special structure of the dependence on u,
we will be concerned with (generalized) “moments” of such probability measures.
Namely, the set

(9) L = {m ∈ Rs : mi = φi(u), 1 ≤ i ≤ s, u ∈ K}

and the space of moments

(10) Λ =
{
m ∈ Rs : mi =

∫
K

φi(λ) dμ(λ), 1 ≤ i ≤ s, μ ∈ P (K)
}

will play a fundamental role. Here P (K) is the convex set of all probability measures
supported in K. Since the mapping

M : μ ∈ P (K) 	→ Λ, M(μ) =
∫

K

φ(λ) dμ(λ)

is linear, we easily conclude that Λ is a convex set of vectors and, in addition, that
the set of its extreme points is contained in L. In fact, for some particular φi’s of
polynomial type, the set of the extreme points of Λ is precisely L. We examine and
comment on the set Λ in section 3. This is closely related to the classical moment
problem (see [1], [32] or more recently [11], [19]).
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A crucial fact in our strategy is the following.
Assumption 1.1. For each fixed x ∈ RN and ξ ∈ Q(x)Λ ⊂ RN , the minimum

min
m∈Λ
{c(x) ·m : ξ = Q(x)m}

is attained only in L.
It is interesting to realize the meaning of this assumption. If we drop the linear

constraint ξ = Qm on the above minimum, then the minimum is always attained in
a certain point in L simply because a linear function on a convex set will always take
its extreme values on extreme points of such a convex set. However, it is precisely
the presence of the linear constraint ξ = Qm that makes the hypothesis meaningful,
as the extreme points of the section of Λ by such a set of linear constraints may not
(indeed most of the time do not) belong to L, so that the extreme points of the linear
function c ·m over such a convex section may not attain its minimum on L. Our main
hypothesis establishes that this should be so and, fundamentally, that the minimum
is only attained in L.

Under this assumption and the other technical requirements indicated at the
beginning, one can show a general existence theorem of optimal solutions for our
problem.

Theorem 1.3. Under Assumption 1.1 and the additional well-posedness hy-
potheses on (c,Q) indicated above, the initial optimal control problem (P1) admits a
solution.

Notice that we are not assuming any convexity on the set K in this statement.
The proof of this theorem can be found in section 2. As remarked before, the proof is
more or less standard, and it involves the use of an appropriate relaxed formulation
of the problem in terms of moments of Young measures [21], [29].

Condition (5) in Theorem 1.1 is nothing but a sufficient condition to ensure As-
sumption 1.1 in a more explicit way. As a matter of fact, all of our efforts are directed
towards finding in various ways more explicit conditions for the validity of this as-
sumption. In this vein, the rest of the paper focuses on exploring more fully our
Assumption 1.1 either through duality or geometric arguments, or in order to prove
Theorem 1.1. Ideally, one would like to provide explicit results saying that for a cer-
tain set M, Assumption 1.1 holds if for each x ∈ RN , (c(x), Q(x)) ∈ M. In fact, by
looking at Assumption 1.1 from the point of view of duality, one can write a general
statement whose proof is a standard exercise.

Proposition 1.1. If for any x ∈ RN , (c,Q) = (c(x), Q(x)) are such that for
every η ∈ RN there is a unique m(η) ∈ L solution of the problem

(11) Minimize in m ∈ L : (c+ ηQ)m,

then Assumption 1.1 holds.
We briefly comment on this in section 3. One then says that (c,Q) ∈ M if this

pair verifies the condition on this proposition. A full analysis of this setM turns out
to depend dramatically on the ingredients of the problem. In particular, we will treat
the cases n = N = 1 and the typical situation of algebraic moments of degrees 2 and 3
in sections 4, 5, and 6. In section 7 we apply our results to a few explicit examples
and compare it with the application of the classical Filippov–Roxin theory.

Situations where either N > 1 or n > 1 are much harder to deal with, especially
because existence results are more demanding on the structure of the underlying
problem. In particular, we need a convexity assumption on how the nonlinear de-
pendence on controls occurs. We found that (5) turns out to be a general sufficient
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condition for the validity of Assumption 1.1, thus permitting us to prove Theorem 1.1
based on Theorem 1.3. Both Theorem 1.2 and Corollary 1.1 then follow directly from
Theorem 1.1 after some algebra. This can be found in section 8.

Finally, we would like to point out that one particular interesting example, from
the point of view of applications, that adapts to our results comes from the control
of underwater vehicles (submarines). See [5], [14], and [16]. This served as a clear
motivation for our work. We plan to go back to this problem in the near future.

2. Proof of Theorem 1.3. Consider the following four formulations of the same
underlying optimal control problem.

(P1) The original optimal control problem described in section 1.
(P2) The relaxed formulation in terms of Young measures (see [21], [22], [28], [29])

associated with sequences of admissible controls:

Minimize in μ = {μt}t∈(0,T ) : Ĩ(μ) =
∫ T

0

[∫
K

∑
i

ci(x(t))φi(λ) dμt(λ)

]
dt

subject to

x′(t) =
∫

K

∑
i

Qi(x(t))φi(λ) dμt(λ)

and

supp(μt) ⊂ K, x(0) = x0 ∈ RN .

(P3) The above relaxed formulation (P2) rewritten by taking advantage of the
moment structure of the cost density and the state equation. If we put c =
(c1, . . . , cs) ∈ Rs, Q ∈MN×s, and m such that

mi =
∫

K

φi(λ) dμt(λ) ∀i ∈ {1, . . . , s},

then we pretend to

Minimize in m ∈ Λ :
∫ T

0

c(x(t)) ·m(t) dt

subject to

x′(t) = Q(x(t))m(t), x(0) = x0.

(P4) Variational reformulation of formulation (P3) (see [7], [23], [24], [27]). This
amounts to defining an appropriate density by setting

ϕ(x, ξ) = min
m∈Λ
{c(x) ·m : ξ = Q(x)m}.

Then we would like to

Minimize in x(t) :
∫ T

0

ϕ(x(t), x′(t)) dt

subject to x(t) being Lipschitz in (0, T ) and x(0) = x0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXISTENCE FOR OPTIMAL CONTROL PROBLEM 421

We know that the three versions of the problem, (P2), (P3), and (P4), admit
solutions because they are relaxations of the original problem (P1). In fact, since K
is compact, (P2) is a particular case of the relaxed problems studied in [21] and [29].
The existence of solution for the linear optimal control problem (P3) is part of the
classical theory [7]. Indeed, (P3) is nothing but (P2) rewritten in terms of moments,
so that the equivalence is immediate. (P4) is the reformulated problem introduced in
[27] whose equivalence to (P3) was largely explored in [7] and [23], [24].

Let x̃ be one such solution of (P4). By Assumption 1.1 applied to a.e. t ∈ (0, T ),
we have

ϕ(x̃(t), x̃′(t)) = min
m∈Λ
{c(x̃(t)) ·m(t) : x̃′(t) = Q(x̃(t))m(t)} = c(x̃(t)) · m̃(t)

for a measurable m̃(t) ∈ L, a solution of (P3) (see [23]). The fundamental fact here
(through Assumption 1.1) is that m̃(t) ∈ L for a.e. t ∈ (0, T ), and this in turn
implies that m̃(t) is the vector of moments of an optimal Dirac-type Young measure
μ = {μt}t∈(0,T ) = {δũ(t)}t∈(0,T ) for an admissible ũ for (P1). This admissible control
ũ is optimal for (P1). This finishes the proof.

3. The set Λ and duality. The moment set Λ deserves some comments before
proceeding further. Consider the mapping φ as in (1) and L as in (9).

We can regard L as part of an embedded n-manifold in Rs, s > n, and φ its
standard or canonical parametrization. The moment set Λ defined in (10) is contained
in the convex hull of this manifold.

The most important fact about Λ that one may need in our analysis is stated in
the next proposition.

Proposition 3.1. The set of extreme points of Λ is contained in L.
Proof. First notice, as shown in [19] in a context similar to ours, that the com-

pactness of K implies

co(L) = co(L) = Λ̄ = Λ.

The fact of K being bounded plays an important role because otherwise Λ can be
shown to be not necessarily closed [11].

Since Λ = co(L) then it is known from convex analysis [26] that

ext(Λ) ⊆ L,

where ext(Λ) represents the extreme points of Λ.
Remark 3.1. For some φ’s it is possible to conclude that ext(Λ) = L. This is the

case, for example, when φ contains all the linear and quadratic terms of an n-variable
polynomial. However, this is not essential in what follows.

Due to this result the proof of Proposition 1.1 is standard (see [26]), so that we
shall only make a few remarks.

Since

ext(Λ) ⊆ co(L),

which is a compact set, the minimum of

(c+ ηQ)m

in Λ is always attained at least in one point of L (it can be attained also in points of
Λ \ L). However, if this point happens to be unique, because of Proposition 3.1, it is
also immediate to check that it must be the unique minimizer in Λ.
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The condition (11) in Proposition 1.1 means that

min
m∈Λ

(c+ ηQ)m = min
m∈L

(c+ ηQ)m = (c+ ηQ)φ(a)

for a single a ∈ K, which also verifies

min
m∈Λ

(c+ ηQ)m− ηξ = (c+ ηQ)φ(a)− ηξ

for ξ ∈ Q(x)Λ, that is, such that Assumption 1.1 is nonempty.
In particular the associated Karush–Kuhn–Tucker vector η̄ verifies (see [26])

c · φ(a) + η̄(Qφ(a) − ξ) = min
m∈Λ
{c ·m : Qm = ξ} = c · φ(a)

for a single a ∈ K complying with Qφ(a) = ξ. As a consequence, for all admissible
m ∈ Λ different from φ(a), we have

c ·m > c · φ(a).

4. Polynomial dependence. The case N = n = 1, p = 2. Until section 8,
we concentrate on the situation where

φ : Rn → Rs

is such that φi(u) = ui, i = 1, 2, . . . , n, and φn+i(u), i = 1, 2, . . . , s − n, are convex
polynomials of some degree p, or simply polynomials whose restriction to K is convex.
We will consider K itself to be convex.

Our goal is to explore different possibilities to apply Theorem 1.3 directly by
ensuring Assumption 1.1. In other words, we will search for functions

c : RN → Rs, Q : RN → RNs,

such that for every x ∈ RN ,

(c(x), Q(x)) ∈M,

whereM represents the set

(12)
{

(c,Q) : ∀ ξ ∈ QΛ, arg min
m∈Λ
{c ·m : ξ = Qm} ∈ L

}
.

During the following three sections we will focus on the one-dimensional case
N = n = 1 and use some ideas based in duality (Proposition 1.1) and in geometric
interpretations.

In sections 4, 5, and 6, we explore various scenarios where Assumption 1.1 can
be derived and defer explicit examples until section 7. In particular, we consider in
this section the situation where φ is given by φ(a) = (a, a2). We are talking about
polynomial components of degree less than or equal to p = 2.

Let K = [a1, a2], L, and Λ as in (9)–(10). The geometric interpretation of these
sets is quite easy, as we can see in Figure 1. Here, we have s = 2, and

c : R→ R2, Q : R→ R2
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Fig. 1. Λ = co(L) for p = 2.

can be identified with vectors in R2 or, more precisely, with plane curves parametrized
by x. To emphasize that function Q is not matrix-valued but vector-valued, we will
call it q.

Next we describe sufficient conditions for (c(x), q(x)) ∈M.
Lemma 4.1. Let K, L, and φ be as above. For every x ∈ R, let q = q(x) and

c = c(x) be vectors such that one of the following conditions is verified:
1. q1 + q2(a1 + a2) = 0 and

det
(
c1 c2

q1 q2

)
�= 0;

2. q1 + q2(a1 + a2) �= 0 and

(q1 + q2(a1 + a2)) det
(
c1 c2

q1 q2

)
< 0.

Then (c, q) ∈M, and consequently Assumption 1.1 is verified.
Proof. Suppose there is η such that the minimum of (c + ηq) ·m is attained in

more than one point of L = φ(K). This means that the real function

g(t) = (c+ ηq) · φ(t) = (c1 + ηq1)t+ (c2 + ηq2)t2

has more than one minimum point over K. For that to happen, either g is constant
on t, i.e., {

c1 + ηq1 = 0

c2 + ηq2 = 0
⇔ det

(
c1 c2

q1 q2

)
= 0,

which contradicts our hypothesis, or else we must have

c2 + ηq2 < 0, g′
(
a1 + a2

2

)
= 0.

This condition can be written as

c1 + (a1 + a2)c2 + η[q1 + (a1 + a2)q2] = 0.
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If q1 + q2(a1 + a2) = 0, but c1 +(a1 + a2)c2 �= 0 (condition 1 of Lemma 4.1), then this
equation can never be fulfilled. Otherwise, there is a unique value for η, by solving
this equation, which should also verify the condition on the sign of c2 + ηq2. It is
elementary, after going through the algebra, that the condition on this sign cannot
be true under the second condition on the statement of the lemma.

5. The case N = n = 1, p = 3. We study the case where φ(a) = (a, a2, a3),
s = 3, and c and q can be identified as vectors in R3. The understanding of the set
Λ and its sections by planes in R3 is much more subtle, however. In Figure 2 we can
see Λ and L for a1 > 0.

Fig. 2. Λ = co(L) for p = 3.

To repeat the procedure used for p = 2, and apply Proposition 1.1, we would like
to give sufficient conditions for the function

(13) g(t) = (c+ ηq) · φ(t) = (c1 + ηq1)t+ (c2 + ηq2)t2 + (c3 + ηq3)t3

to have a single minimum over K = [a1, a2] for every η. As indicated, and after some
reflection, a complete analysis of the situation is rather confusing and the conditions
on vectors c and q much more involved. To illustrate this, we give a sufficient condition
in the following form.

Lemma 5.1. For all x ∈ R, let c = c(x) and q = q(x) be vectors in R3 such that

q22 − 3q1q3 < 0, (2c2q2 − 3c1q3 − 3q1c3)2 − 4(c22 − 3c1c3)(q22 − 3q1q3) < 0;

then (c, q) ∈M, and Assumption 1.1 is verified.
Proof. The proof consists in the realization that the conditions on vectors c and

q ensure that the cubic polynomial (13) is monotone in all of R (avoiding degenerate
situations), and thus it can attain the minimum only in a single point of any finite
interval. Notice that this condition is independent of the interval. In fact, we have
to discard the possibility for the derivative of the polynomial g(t) to have roots. This
amounts to the negativity of the corresponding discriminant. And this, in turn, is a
quadratic expression in η that ought to always be negative. This occurs when that
parabola has a negative discriminant, and the leading coefficient is also negative.
These two conditions are exactly those in the statement of this lemma.
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A more general condition would focus on considering the local maximizer and the
local minimizer of g(t), M+ and M−, respectively, and demanding that the interval
[a1, a2] have an empty intersection with the interval determined by M+ and M−. But
this would lead to rather complicated expressions. Even so, sometimes under more
specific hypotheses on the form of vectors c and q these conditions can be exploited.

Remark 5.1. Notice that the relation

ext(Λ) = L

is not true for a general K if it has positive and negative values. However, it is true
if we consider a1 > 0 or a2 < 0.

Lemma 5.2. Let K = [a1, a2] with a1 > 0 and

(c, q) = ((0, c2, c3), (0, q2, q3))

such that

−q2
q3
< 0, (c2, c3) ·

(
1,−q2

q3

)
< 0.

Then the assumptions of Proposition 1.1 are valid, and consequently so is As-
sumption 1.1.

Proof. In this situation, the maximizer M+ referred to above is given by

M+ =
−(c2 + ηq2)− |c2 + ηq2|

3(c3 + ηq3)
.

If q2 > 0, then q3 > 0, and we have
c2
q2
> − c3

q3
.

Hence if η ∈ ]−∞,− c2
q2

] \ {− c3
q3
}, then

M+ =
−(c2 + ηq2) + c2 + ηq2

3(c3 + ηq3)
= 0.

If η > − c2
q2

, then

M+(η) =
−(c2 + ηq2)− (c2 + ηq2)

3(c2 + ηq2)
=
−2(c2 + ηq2)
3(c3 + ηq3)

< 0.

In any case M+(η) ≤ 0, thus a1 > M+.
Also if η = − c3

q3
, then

g(t) = (c2 + ηq2)t2 = (c2, c3) ·
(

1,−q2
q3

)
t2,

which has a unique minimum in K since we have assumed a1 > 0. We conclude that
the condition (11) in Proposition 1.1 is verified.

In a very similar way we can prove the following.
Lemma 5.3. Let K = [a1, a2] with a2 < 0 and

(c, q) = ((0, c2, c3), (0, q2, q3))

such that

−q2
q3
> 0, (c2, c3) ·

(
1,−q2

q3

)
< 0.

Then (c, q) ∈M, and consequently Assumption 1.1 is valid.
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6. A geometric approach to the case N = n = 1, p = 3. As we have seen,
the use of Proposition 1.1 is simpler only when restricted to some particular classes
of examples. Thus we propose a general criteria for obtaining Assumption 1.1 based
on a geometric approach.

We first give a result that generalizes the strict convexity of a φ-parametrized
plane curve for a three-dimensional one.

Lemma 6.1. Let K = [a1, a2] with a1 > 0, φ(t) = (t, t2, t3), and L the curve
parametrized by φ for t in K.

1. Given t in K, then for all s ∈ K such that s �= t, we have

(φ(s) − φ(t)) ·N(t) > 0,

where N(t) is the normal vector to φ at t.
2. For every t ∈ K, v ∈ Λ = co(L) \ {φ(t)}, we have

(v − φ(t)) ·N(t) > 0.

Proof. To check the first part of the statement notice that since

φ′(t) = (1, 2t, 3t2)

and

φ′′(t) = (0, 2, 6t)

we have that the normal vector, colinear to φ′(t)× φ′′(t), is given by

N(t) = ct(−9t2 − 2t, 1− 9t4, 6t3 + 3t),

where ct > 0 is a normalizing constant. Setting

N1 = −9t3 − 2t, N2 = 1− 9t4, N3 = 6t3 + 3t,

we find that the solution s of

(φ(s)− φ(t)) ·N(t) = 0

also verifies

N3s
3 +N2s

2 +N1s−N · φ(t) = 0,

which is equivalent to

(s− t)2(N3s+N2 + 2tN3) = 0.

This means that

ŝ = −N2

N3
− 2t = −3t4 + 6t2 + 1

6t3 + 3t

is the only solution different from t, but also that it is negative for all t > 0, and
consequently that it should be excluded. Once we assumed K ⊂ R+ and s �= t the
conclusion is immediate.
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By using the previous discussion, proving the second part of the statement is
trivial once we notice that both m and φ(t) can be rewritten as

4∑
i=1

αiφ(si) and
4∑

i=1

αiφ(t),

respectively, where si ∈ K and
∑4

i=1 αi = 1.
Another useful lemma follows.
Lemma 6.2. If q and c are such that

(14) (φ′(t)× (c× q)) · (φ(s)− φ(t))

does not change sign for t, s ∈ K, s �= t, then if v ∈ Λ, v �= φ(t), and q ·(v−φ(t)) = 0,
we have

c · (v − φ(t)) �= 0.

This means that the linear function c cannot take the same value over φ(t) and
any v �= φ(t) in the plane section

{v ∈ Λ : q · v = q · φ(t)}.

Proof. Notice that for v ∈ Λ,

(φ′(t)× (c× q)) · (v − φ(t)) = (φ′(t)× (c× q)) ·
(

4∑
i=1

αiφ(si)−
4∑

i=1

αiφ(t)

)

=
4∑

i=1

αi(φ′(t)× (c× q)) · (φ(si)− φ(t)) > 0 (or < 0),

so that the condition stated is also verified for any v ∈ Λ.
Suppose now that v ∈ Λ verifies q · (v − φ(t)) = 0 for given t ∈ K with v �= φ(t)

and is such that c · (v − φ(t)) = 0. Then

(φ′(t)× (c× q)) · (v − φ(t)) = [(φ′(t) · q)c− (φ′(t) · c)q] · (v − φ(t))

= (φ′(t) · q)c · (v − φ(t)) − (φ′(t) · c)q · (v − φ(t)) = 0,

a contradiction concerning the argument above.
We now define the setM1 of pairs (c, q) ∈ R3×R3 through the following require-

ments:
(i) the quantity in (14) does not change sign over the pairs t, s ∈ K, s �= t;
(ii) whenever there is a unique a ∈ K = [a1, a2] such that

(15) (φ(a1) + φ(a2)− 2φ(a)) · q = 0,

then

(φ(a1) + φ(a2)− 2φ(a)) · c > 0.

Once more we can establish the following result.
Proposition 6.1. Let M be as in (12).
If a1 > 0 and (c, q) ∈M1, then (c, q) ∈M and Assumption 1.1 holds.
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Proof. 1. Suppose first that there is a ∈ K such that we have (15).
Let

va =
φ(a1) + φ(a2)

2
.

Consider v ∈ Λ such that

[v − φ(a)] · q = 0.

Suppose

c · [v − φ(a)] < 0,

and consider the continuous function

G(v, u) = c · (v − u)

over the bounded path connecting (va, φ(a)) and (v, φ(a)) given by

S = {α[(v, φ(a)) − (va, φ(a))] + (va, φ(a)) : α ∈ [0, 1]}.

It is easy to check that every component of a vector of S is contained in the section

{v ∈ Λ : q · v = q · φ(a)}.

Then there exists α such that

G(α[(v, φ(a)) − (va, φ(a))] + (va, φ(a))) = 0,

or in other words

c · [α(v − va) + va − φ(a)] = 0,

which by Lemma 6.2 means that necessarily

α(v − va) + va = φ(a).

Consequently

α(v − φ(t)) ·N(t) + (1− α)(vt − φ(t)) ·N(t) = 0,

and this is in contradiction with Lemma 6.1. Hence

c · [v − φ(a)] > 0 if c · [va − φ(a)] > 0.

Let t̄ be such that

q · φ(a1) = q · φ(t̄)

and t �= a, t ≥ t̄, such that

vt = α[φ(a2)− φ(a1)] + φ(a1) ∈ Λ

verifies

[vt − φ(t)] · q = 0.
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Considering once more the continuous function G(v, u) over the path connecting
(vt, φ(t)) and (va, φ(a)), as

α[vt − va] + va ∈ {v : q · v = q · φ(t)},

we can, as we did above, conclude that if

c · [vt − φ(t)] < 0,

then for certain α,

α[vt − va] + va = φ

and, consequently,

c · [vt − φ(t)] > 0

for any t ≥ t̄. The same type of argument shows that

c · [v − φ(t)] > 0

for any v such that

q · v = q · φ(t).

If t < t̄, there exists s ∈ K such that

q · φ(s) = q · φ(t).

In this situation, again the continuity of G should be applied to the path connecting

(vt̄, φ(t̄)) = (φ(a1), φ(t̄))

and

(φ(s), φ(t̄)),

repeatedly until the limit case when φ(s) = φ(t̄).
If there is t̄ �= a2 such that

q · φ(a2) = q · φ(t̄),

we shall proceed in an analogous way.
2. Suppose now that there are a, b ∈ K such that

(va − φ(a)) · q = (va − φ(b)) · q = 0.

Then it is not difficult to conclude that

a = a1 and b = a2.

Hence assuming (without loss of generality) that

(φ(a1)− φ(a2)) · c > 0
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we can, once again, use the continuity of G to conclude

c · [φ(s)− φ(t)] > 0,

where φ(s) and φ(t) verify

(φ(s) − φ(t)) · q = 0

and, after that, for a general v such that

(v − φ(b)) · q = 0.

Remark 6.1. This type of argument can be also deduced for the case N = n = 1,
p = 2, where it can be seen to be equivalent to the conditions in Lemma 4.1. However,
when the parameters N , n, and p increase their values, it becomes very hard to give
geometrically based sufficient conditions in such an exhaustive manner as we have
done here. Even so, in section 8 we show how to give more restrictive yet more
general sufficient conditions (Theorems 1.2 and 1.1) for interesting high-dimensional
particular situations, where some geometrical ideas can be used as a way to verify
Assumption 1.1.

7. Examples. Before going further to higher-dimensional situations we gather in
this section some typical, academic examples for which either Lemma 4.1, Lemma 5.2,
or Proposition 6.1 can be applied.

7.1. Example 1. Let us consider the optimal control problem

Minimize in u :
∫ T

0

[c(x(t))u(t) + u2(t)] dt

under

x′(t) = q(x(t))u(t) + u2(t), x(0) = x0,

where |u(t)| ≤ 1.
We have the following remarkable existence result.
Lemma 7.1. If the functions q and c are Lipschitz, and

q(q − c) > 0,

then the optimal control problem admits a solution.
The proof reduces to performing some elementary algebra to check the conditions

of Lemma 4.1.
Instead of applying that lemma, as both our cost and state-equation functions

have cross dependence on x and on u so that we can’t apply the results of [3], [4],
[25], one can try the classical existence result based on the classical Filippov–Roxin
theory. For that we need to check if the orientor field

Ax = {(ξ, v) : v ≥ c(x)u+ u2, ξ = q(x)u + u2, u ∈ K = [−1, 1]}

is a convex set. Notice thatK is bounded so coercivity is not an issue here. Proceeding
in that direction, we can see that

ξ = q(x)u + u2
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is equivalent to

u1 = −q +
√
q2 + 4ξ
2

or u2 = −q −
√
q2 + 4ξ
2

,

which are possible solutions when ξ is such that ξ ≥ − q2

4 and at least one of them
belongs to K = [−1, 1]. Letting

Fi(x, ξ) = c(x)ui + u2
i , i = 1, 2,

we see that

F2 ≤ F1

for all ξ as above. Consequently

Ax = A1
x ∪ A2

x

=
{

(ξ, v) : v ≥ F2(x, ξ), ξ ∈ u−1
2 (K) ∩

[
−q

2

4
,+∞

[}

∪
{

(ξ, v) : v ≥ F1(x, ξ), ξ ∈
(
u−1

1 (K) \ u−1
2 (K)

)
∩
[
−q

2

4
,+∞

[}
,

where, for i = 1, 2, u−1
i refers to the preimage of the solutions ui as functions of ξ.

Because of the assumption on (c, q) it is easy to see that A2
x = ∅, and consequently

that the convexity of Ax reduces to the convexity of the function

F2(ξ) =
q − c

2
(q −

√
q2 + 4ξ)

over a certain convex set

u−1
2 (K) ∩

[
−q

2

4
,+∞

[
.

This can be checked by elementary calculus.
We now turn to the possibility of applying the result in [9] to this example. First,

in order to write our problem as a minimum-time problem, we require that c(x)u+u2

never change sign in R×K [7]. So a first restriction must be imposed. For example,
consider c(.) and q(.) such that

q(x) > c(x) > 1.

The right member of the differential equation of the minimum-time problem is given
by

F(x,K) =
{
q(x)u + u2

c(x)u + u2
: u ∈ K

}
.

The result in [9] doesn’t ask for the convexity of the set-valued map F , but it requires
a linear boundedness in the sense that

∃α, β s.t. ∀x ∈ R, ∀ξ ∈ F(x,K) then

‖ξ‖ ≤ α‖x‖+ β.

It is easy to see that this condition places a real constraint on the relative growth of
pairs (c, q), even before verifying the remaining assumptions in [9].
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7.2. Example 2. Look at the problem

Minimize in u :
∫ T

0

[c(x(t))u2(t) + u3(t)] dt

under

x′(t) = [q(x(t))]u2(t) + u3(t), x(0) = x0,

where u(t) ∈ [a0, a1], a0 > 0.
Lemma 7.2. If the functions q(x) and c(x) are Lipschitz,

c(x) < q(x) ∀x,

and q(x) is always positive, then the optimal control problem admits solutions.
This result comes directly by applying Lemma 5.2 and Theorem 1.3.
Let us see what we would need to do if, alternatively, we decided to use the

classical existence theory.
As we have seen in the previous example, we need to check the convexity of the

orientor field

Ax = {(ξ, v) : v ≥ c(x)u2 + u3, ξ = q(x)u2 + u3, u ∈ K = [a0, a1]}.

In this case, according to the discriminant

Δ = 27ξ2 − 4ξq

of the equation

ξ = q(x)u2 + u3,

we will have from one to three possible real solutions. Consider for each ξ

Fi = c(x)u2
i + u3

i ,

such that

F1 ≤ F2 ≤ F3,

where ui = ux
i (ξ), i = 1, 2, 3, are the three, possibly equal, real solutions. Then

Ax = A1
x ∪ A2

x ∪ A3
x

= {(ξ, v) : v ≥ F1, ξ ∈ u−1
1 (K)}

∪{(ξ, v) : v ≥ F2, ξ ∈ u−1
2 (K) \ u−1

1 (K)}

∪{(ξ, v) : v ≥ F3, ξ ∈ u−1
3 (K) \

(
u−1

2 (K) ∪ u−1
1 (K)

)
}.

Checking the convexity of this set or, alternatively, of the function

ϕx(ξ) =

⎧⎪⎪⎨
⎪⎪⎩
F1(ξ) if ξ ∈ u−1

1 (K),

F2(ξ) if ξ ∈ u−1
2 (K) \ u−1

1 (K),

F3(ξ) if ξ ∈ u−1
3 (K) \

(
u−1

2 (K) ∪ u−1
1 (K)

)
is not an easy task at all, especially when compared to the almost immediate exercise of
verifying the conditions of Lemma 5.2. It is also plausible that the inherent difficulties
in applying classical theory will increase until a practically impossible scenario in
which we let N , n, and p grow.
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7.3. Example 3. In order to give a heuristic for using the criteria given in
Proposition 6.1, let us consider the previous problem just by rewriting q as c− β and
for a specific K.

Minimize in u :
∫ T

0

[c(x(t))u2(t) + u3(t)] dt

under

x′(t) = [c(x(t)) − β(x(t))]u2(t) + u3(t), x(0) = x0,

where u(t) ∈ [1, 2].
Lemma 7.3. If the functions β and c are Lipschitz, and

β < min{0, c},

then the optimal control problem admits solutions.
Proof. First notice that for a ∈ K = [a1, a2], we can find α such that the vector

B = α[φ(a2)− φ(a1)] + φ(a1)

verifies

[B − φ(a)] · q = 0.

Moreover, it is not difficult to see that

α =
a3 − a3

1 −m(a2 − a2
1)

a3
2 − a3

1 −m(a2
2 − a2

1)
,

and in the projection plane yz, (B2, B3) belongs to the line of slope m passing through
(a2, a3),

B3 − a3 = m(B2 − a2),

where

B2 − a2 =
(a− a1)[a2(a2 + a1)− a2(a+ a1)]
a2
2 + a1a2 + a2

1 −m(a2 + a1)

and m = − q2
q3
.

In our case K = [1, 2], so because of what we have just seen, taking a1 = 1 and
a2 = 2 we see that for a ∈ K, we can find

α =
a3 −ma2 +m− 1

7− 3m
∈ [0, 1]

such that

[α[φ(a2)− φ(a1)] + φ(a1)− φ(a)] · q = 0,

where

m = −c− β
1

= β − c < 0.
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Furthermore, it is easy to see that the equation α = 1
2 has a unique solution in K.

Consequently, if we consider q = (0, c − β, 1) and c̄ = (0, c, 1), there exists a unique
a ∈ K such that

[φ(1)− φ(0)− 2φ(a)] · q = 0.

Also, because of what we have seen above,[
1
2
(φ(1)− φ(0)) − φ(a)

]
· c̄ = (B2 − a2)c+ (B3 − a3) = (B2 − a2)(c+m)

=
(a− 1)(3a2 − 4a− 4)

7− 3m
(c+ β − c) > 0.

In addition, given t, s ∈ K, s �= t,

(φ′(t)× (c× q)) · (φ(s)− φ(t)) = 0⇔

βt(0, 3t,−2) · (φ(s) − φ(t)) = 0⇔

(s− t)[3t(s+ t)− 2(s2 + st+ t2)] = 0⇔

s = − t
2
∨ s = t,

which is impossible since s ∈ K = [1, 2] and s �= t. The result follows then by applying
Proposition 6.1.

8. The case N , n > 1. The previous analysis makes it very clear that checking
Assumption 1.1 may be a very hard task as soon as n and/or N become greater than
1. Yet in this section we would like to show that there are chances to prove some
nontrivial results.

The three main ingredients in Assumption 1.1 are
(i) the vector c ∈ Rs in the cost functional;
(ii) the matrix Q ∈MN×s occurring in the state equation;
(iii) the convexification Λ of the set of moments L.
For (c,Q) given, consider the set N (c,Q) as it was defined in (3). Let Ψ be as in

(2) and such that ∇Ψ(m) is a rank s− n matrix and L can be seen as the embedded
(parametrized) manifold of Rs in the manifold defined implicitly by Ψ = 0. This
means that Ψ(φ(u)) = 0 for all u ∈ K.

Consider also the set of vectors N (K,φ) described in (4), that is, the set of
“ascent” directions for Ψ at points of L.

We are now in a position to prove Theorem 1.1.
Proof. The proof is rather straightforward. First, note that due to the convexity

assumption on Ψ, and the fact that L ⊂ {Ψ = 0}, we have Λ ⊂ {Ψ ≤ 0}.
Suppose that m0 ∈ L and m1 ∈ Λ, so that

Ψ(m0) = 0, Ψ(m1) ≤ 0, cm1 ≤ cm0, and Qm1 = Qm0 (= ξ).

Then it is obvious that m = m1 −m0 ∈ N (c,Q). Because of our assumption, m ∈
N (K,φ). We have two possibilities:

1. ∇Ψ(m0)m = 0. Because of the convexity of each component of Ψ, we have

Ψ(m1)−Ψ(m0)−∇Ψ(m0)m ≥ 0.
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But then

0 = Ψ(m0) ≤ Ψ(m1) ≤ 0,

so that m1 ∈ L. Because of the strict convexity of each component of Ψ, this means
that m1 = m0, and Assumption 1.1 holds.

2. ∇ψi(m0)m > 0 for some i. Once again we have

ψi(m1)− ψi(m0)−∇ψi(m0)m ≥ 0.

But this is impossible because ψi(m1) > 0 cannot happen for a vector in Λ.
Remark 8.1. Notice that if in the original problem (P1) we would have considered

the dynamics given by

Q(x)φ(u) +Q0(x)

instead of just Q(x), Assumption 1.1 and Theorem 1.1 could be written in exactly
the same way.

Though Theorem 1.1 can be applied to more general cases, we will focus on a
particular situation motivated by the control of underwater vehicles [5]. We will
briefly describe the structure of the state equation. Indeed, it is just

x′(t) = Q1(x)φ(u) +Q0(x),

where the state x ∈ R12 incorporates the position and orientation in body and world
coordinates, and the control u ∈ R10 accounts for guidance and propulsion. Under
suitable simplifying assumptions (see [5], [14], [16]), the components of the control
vector u occur only as either linear or pure squares, in such a way that φ(u) =
(u, u2) ∈ R20 and u2 = (u2

i )i, componentwise. Q1 and Q0 are matrices which may
have essentially any kind of dependence on the state x.

To cover the sort of situations just described, we will concentrate on the optimal
control problem (P ) already stated in section 1 and set D, E, and U as in (7)–(8).

We can now prove Theorem 1.2.
Proof of Theorem 1.2. Notice that accordingly to (6), as s = 2n, we have, for

m ∈ Rs,

ψi(m) = m2
i −mn+i, i = 1, 2, . . . , n,

which are certainly smooth and (strictly) convex. Moreover,

∇Ψ(m) =
(
2m̃ −id

)
,

where

m̃ = 2
∑

i

miei ⊗ ei,

and ei is the canonical basis of Rn.
Suppose we have, for a vector v ∈ R2n, v = (v1, v2), that

Qv = 0, cv ≤ 0.

A more explicit way of writing this is

Q1v1 +Q2v2 = 0, c1v1 + c2v2 ≤ 0.
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So

v1 = Dv2, Ev2 ≤ 0.

We have to check that such a vector v is not a direction of descent for every function
ψj , or it is an ascent direction for at least one of them. Note that

∇Ψ(m)v = Uv2, Ev2 ≤ 0.

It is an elementary linear algebra exercise to check that if U−TE < 0, then condition
(5) is verified so that Theorem 1.1 can be applied.

Corollary 1.1 is a specific example of the kind of existence result that can be
obtained through this approach. Its proof amounts to going carefully through the
arithmetic while checking that matrix U and vector E defined from such a given class
of (c(.), Q(.)) verify the assumptions of Theorem 1.2.

By using the same ideas, more general situations can be treated; for example, the
number of controls could be greater than the components of the state. This is in fact
the situation in the model that has served as an inspiration for us. We will pursue a
closer analysis of such a particular situation, even stressing the more practical issues,
in a forthcoming work.
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ON A STOCHASTIC, IRREVERSIBLE INVESTMENT PROBLEM∗
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Abstract. The productive sector of the economy, represented by a single firm employing labor
to produce the consumption good, is studied in a stochastic continuous time model on a finite time
interval. The firm must choose the optimal level of employment and capital investment in order to
maximize its expected total profits. In this stochastic control problem the firm’s capacity is modeled
as an Itô process controlled by a monotone process, possibly singular, that represents the cumulative
real investment. It is optimal to invest when the shadow value of installed capital exceeds the capital’s
replacement cost; this threshold is the free boundary of a related optimal stopping problem which we
recast as a stopping problem without integral cost, similar to the American option problem. Then,
under a regularity condition, we characterize the free boundary as the unique solution of a nonlinear
integral equation.
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stopping, instantaneous stopping equation
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1. Introduction. Irreversible investment problems have been studied widely in
the economic literature; cf. [10] and the references therein. In these models, the
producers of the goods, the firms, make decisions regarding labor levels and capital
investment strategies. Most of the models are restricted to infinite horizon. For ex-
ample, Abel and Eberly [1] provide an explicit solution of an irreversible investment
problem in a continuous time Markovian setting, where the control processes are
investment rates. Oksendal [15] considers a class of infinite horizon capital accumu-
lation problems within a relatively large Markovian setting. Bertola [4], [5], Alvarez
[2], and Riedel and Su [18] propose models with deterministic dynamics and profit
rate influenced by a stochastic parameter process. [4], [5] exploit the connection with
the optimal stopping problem of deciding when capital should be installed, whereas
[18] uses a connection with backward stochastic differential equations while allowing
both infinite and finite horizon. [2] allows a more general stochastic parameter process
than [5].

In the mathematical economics literature some reversible investment problems
are formulated as singular stochastic control problems. We cite, among others, Guo
and Pham [11] and Merhi and Zervos [14] in the infinite horizon case and Hamadene
and Jeanblanc [12] in the finite horizon case.

A more extensive review can be found in [6], where irreversible investment prob-
lems and their corresponding optimal stopping problems are linked, respectively, to
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the q theory of investment and to the theory of options, i.e., the option value of wait-
ing. Of particular interest is the work of Baldursson and Karatzas [3]. They show
that the solution of the myopic investor’s problem, which can be solved in terms of
stopping rules involving the Snell envelope, leads to a solution of the “social plan-
ner’s” problem; the latter is equivalent to the optimal irreversible investment problem
facing a firm. These results motivated us to study in [6], [7] an irreversible investment
problem that is closely linked to the present work. Here we extend the setting of
[6] in three ways; that is, we endogenize the choice of labor input, we incorporate
a scrap value of the production facility by adding a terminal payoff in the control
problem, and we obtain the existence result for the general case of time dependent
parameters. Moreover, since the explicit expression of the free boundary obtained in
[6] was incorrect and the corrections required were only outlined in [7], in this pa-
per we provide the details which amount to finding an integral equation for the free
boundary by transforming the problem into one that looks like an American option
problem (cf. [13], [17]). Such a device is new and of interest in its own right.

We introduce a model of a firm that produces one good using labor L(t) and
utilizing production capacity (capital) C(t), a geometric Brownian motion controlled
by a nondecreasing process ν(t) representing the cumulative investment. We postulate
a production function R(C,L) and a given wage process w(t). The firm chooses L
and ν to maximize profit over a finite time interval, i.e.,

sup
ν,L

E

{∫ T

0

e−
∫

t
0 μF (r)dr[R(C(t), L(t))− w(t)L(t)] dt

+ e−
∫

T
0 μF (r) drG(C(T ))−

∫
[0,T )

e−
∫

t
0 μF (r) dr dν(t)

}
,

where G is the scrap value of the production facility and μF (t) is a random discount
factor.

In section 2 we formulate the problem precisely, and using convex analysis we find
a function IR

A(C,·)(w) that will provide the optimal labor for given C and w. This
reduces the problem faced by the firm to a maximization over ν only. In section 3 we
establish existence and uniqueness of the optimal investment process ν̂. Under Marko-
vian assumptions and some additional restrictions we show that ν̂(t) is continuous on
(0, T ] with a possible initial jump and is singular as it activates at the free boundary
where the shadow value of installed capital exceeds the capital’s replacement cost.
The proof of continuity of ν̂ is new and does not require knowledge of the boundary;
on the contrary in [6] it was deduced from the continuity of the incorrect boundary.
In section 4 we find an algorithm to find this free boundary when the production
function is of Cobb–Douglas type and the scrap value is constant. To this end we find
an optimal stopping problem with no integral cost or scrap value whose solution is
given by the above free boundary. The similarity with the American option problem
is exploited to find an integral equation for the free boundary if the latter is continu-
ous. We conclude with a numerical example that compares the free boundary to the
incorrect one of [6]. The appendix contains a technical result on convex analysis.

2. The firm’s investment problem. In this paper the firm represents the
productive sector of an economy with finite horizon T modeled on a complete prob-
ability space (Ω,F , P ) with filtration {Ft : t ∈ [0, T ]}, which is the usual augmen-
tation of the filtration generated by an exogenous n-dimensional Brownian motion
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{W (t) : t ∈ [0, T ]}. We work with an n-dimensional Brownian motion as we then
apply the results in [8], where a two-dimensional Brownian motion is used. The
firm produces a single kind of perishable consumption good at rate R(C,L) when its
capacity is C and it employs L units of labor.

The capital invested on the time interval [0, t] for research, product development,
and plant retooling or expansion is denoted by a process ν(t) a.s. finite, left-continuous
with right limits, nondecreasing, and adapted. The irreversibility of investment is
expressed in the nondecreasing nature of ν. The corresponding capacity is denoted
by Cy,ν(t) and is assumed to satisfy{

dCy,ν(t) = Cy,ν(t)[−μC(t)dt+ σ�
C (t)dW (t)] + fC(t)dν(t), t ∈ [0, T ),

Cy,ν(0) = y ≥ 0,
(2.1)

where μC , σC , and fC are given bounded, measurable, adapted processes, fC being
continuous with 0 < kf ≤ fC ≤ κf and μC ≥ 0. fC is a conversion factor in the sense
that each unit of new investment is converted into fC units of capacity (it includes,
for example, the cost of raising new equity).

It is convenient to define

Co(t) := C1,0(t) and ν(t) :=
∫

[0,t)

fC(s)
Co(s)

dν(s).(2.2)

Then Co(t) = e−
∫

t
0 μC(r)drM0(t), where, for every s ∈ [0, T ], Ms is the exponential

martingale

Ms(t) = e[
∫

t
s
σ�

C (r)dW (r)− 1
2

∫
t
s
‖σC(r)‖2dr], t ∈ [s, T ],(2.3)

and E{[Ms(t)]p} < ∞ for any p. Notice that Co represents the decay of a unit of
initial capital in the absence of investment and we have Cy,ν(t) = [y + ν(t)]Co(t).

Recall from convex analysis (cf. [19]) that if u is a function R
n �→ [−∞,∞), then

the (effective) domain of u is dom(u) := {x|u(x) > −∞} and im(u) := u(dom(u)).
The function u is (strictly) concave if it is (strictly) concave on dom(u) (assumed to
be nonempty). This makes the function a proper, concave function in the terminology
of convex analysis. The supergradients of u at x are all y ∈ R

n such that for all z
one has u(z) − u(x) ≤ (z − x)�y. The set of all supergradients of u at x is called
the supergradient set or the superdifferential and is denoted by ∂u(x). The (effective)
domain of ∂u(x) is dom(∂u) := {x|∂u(x) �= ∅}. The (concave) conjugate function of
u is defined as

u∗(y) := inf
x∈Rn
{x�y − u(x)}.

Also, a set B is affine if it is the translate of a subspace of R
n, including {0} and R

n;
int(B) denotes the interior of the set B, cl(B) denotes its closure, aff(B) denotes its
affine hull (i.e., the smallest affine set containing B), and ri(B) denotes the relative
interior of B, i.e., the interior of B relative to aff(B).

The production function R(C,L) of the firm is a function of the capacity C and
of labor L employed. For R(C,L) we make the following assumptions; cf. [9].

Assumption 1.

(i) R : R
2 �→ [−∞,∞) is upper semicontinuous, concave, and nondecreasing,

and [0,∞)2 ⊂ dom(R).
(ii) R is continuous and nonnegative on [0,∞)2.
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(iii) R is twice continuously differentiable on int(dom(R)).
It follows that R is a closed proper concave function such that its supergradient is
∂R = ∇R on int(dom(R)) ⊂ dom(∂R).

Let κL ∈ (0,∞) be the labor supply and set A := [0, κL] and Ã = [0,∞)×A.
Assumption 2. R is strictly increasing, strictly concave on int(dom(R)) ∩ Ã.
Assumption 3. limC→∞ infL∈ARC(C,L) = 0.
Given a finite, constant, upper bound κw > 0 on possible wages, for each fixed

wage rate w ∈ [0, κw] and for each fixed C the manager of the firm will first choose
L ∈ A to maximize profits. This leads to a reduced production function R̃(C,w) that
can be formulated in terms of conjugate functions as follows. Let RA(C, ·) denote
R(C, ·) modified as −∞ off A and set

R̃(C,w) := sup
L∈A
{R(C,L)− wL} = sup

L∈R

{RA(C,L)− wL}.

Assumptions 1 and 2 imply that [9, Proposition 3.2] can be applied with u(·) = R(C, ·),
A = [0, κL], 0+A = {0}, and uA(·) = RA(C, ·) to obtain the optimal L as the
supergradient of the concave conjugate function of RA(C, ·) denoted by IR

A(C,·)(w)
in [9].

The reduced production function R̃(C,w) is the negative of the concave conjugate
of RA(C, ·); hence it is convex in w and (cf. Proposition 5.1 in the appendix) strictly
concave in C. We can establish a growth condition as follows. For any ε > 0,

sup
C≥0
{R̃(C,w) − εC}

is the negative of the concave conjugate of RÃ(·, ·), i.e., of R(·, ·) extended as −∞
off Ã. Hence it is continuous on ri(dom((RÃ)∗)), i.e., on (0,∞) × (−∞,∞), by [9,
Proposition 3.3] (note that 0+Ã = [0,∞) × {0} and with this constraint set the
proposition requires Assumptions 1–3). It follows that

(2.4)

sup
C≥0

max
w∈[0,κw]

{R̃(C,w) − εC} = − min
w∈[0,κw]

(RÃ)∗(ε, w) := κε <∞ for every ε > 0,

where κε depends on κL, κw, and ε. This is the growth condition.
Once the reduced production function R̃(C,w) is obtained, given a predictable,

[0, κw]-valued wage process w(t, ω), the manager of the firm chooses the investment
ν(t, ω) so as to maximize the expected total discounted production profits plus scrap
value net of investment; i.e., he maximizes

J0,y(ν) := E

{∫ T

0

e−
∫

t
0 μF (r)drR̃(Cy,ν(t), w(t)) dt+e−

∫
T
0 μF (r) drG(Cy,ν(T ))(2.5)

−
∫

[0,T )

e−
∫ t
0 μF (r) dr dν(t)

}
.

Here G(Cy,ν(T )) is a scrap value associated with the firm at time T and
∫ t
0 μF (r) dr

is the manager discount factor, not to be confused with the risk neutral discount
rate that usually occurs in papers including financial markets, which we do not have.
Manager discount rate may be quite different, as managers are individuals and may
have their own preferences, not necessarily rational.
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We assume that μF is a bounded, nonnegative, measurable, adapted process with
μ̄ := μC + μF ≥ εo > 0 a.s., and G : [0,∞) �→ [0,∞) is a concave, nondecreasing,
continuously differentiable function such that

lim
C→∞

G′(C) = 0 and G′(0) fC(T ) ≤ 1 a.s.(2.6)

The firm’s optimal investment problem is

V (0, y) := max
ν∈S

J0,y(ν),(2.7)

where S := {ν : left-continuous, nondecreasing, adapted process with ν(0) = 0 a.s.}
is the convex set of investment strategies.

Notice that the strict concavity of R̃(·, w), the concavity of G, and the affine
nature of Cy,ν(t) in ν imply that J0,y(ν) is concave on S; in fact, it is strictly concave
since fC ≥ kf > 0. Therefore, if a solution of the firm’s optimal profits problem exists,
then it is unique. The following estimates are needed to handle the unboundness of
the reduced production function R̃.

Proposition 2.1. There exists a constant KJ depending on T, κL, κw, κf , kf
only such that

(a) J0,y(ν) ≤ KJ (1 + y) for all ν ∈ S,

(b) E

{∫
[0,T )

e−
∫

t
0 μF (r) dr dν(t)

}
≤ 2KJ (1 + y) if J0,y(ν) ≥ 0.

Proof. According to (2.4) and (2.6), for every ε > 0 there exists κε, depending on
ε, such that R̃(C,w) ≤ κε + εC and similarly G(C) ≤ κε + εC.

We now have

J0,y(ν) ≤ E

{∫
[0,T )

e−
∫

t
0 μF (r) dr

(
κε + εCo(t)(y + ν(t))

)
dt

+ e−
∫ T
0 μF (r) dr

(
κε + εCo(T )

(
y +

∫
[0,T )

dν(t)
))

−
∫

[0,T )

e−
∫

t
0 μF (r) dr dν(t)

}

≤ (κε + ε y)(T + 1) + E

{∫
[0,T )

e−
∫

t
0 μF (r) dr

[
εe
∫

t
0 μF (r) dr fC(t)

Co(t)

×E
{∫

[t,T )

e−
∫ s
0 μF (r) drCo(s) ds+ e−

∫ T
0 μF (r) drCo(T )

∣∣∣Ft
}
− 1
]
dν(t)

}
,

where we have interchanged the order of integration and used the fact that Co(t) is
the product of a process bounded by 1 and an exponential martingale, i.e., Co(t) =
e−

∫
t
0 μC(s)dsM0(t). Then the square bracket above is less than or equal to ε(T − t+

1)fC(t) − 1, hence less than or equal to −1/2 for ε sufficiently small since fC(t) ≤
κf a.s.

Now parts (a) and (b) of the proposition follow.
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Remark 2.2. We point out that Proposition 2.1 still holds if, instead of (2.6),
we assume that the scrap value G : [0,∞) �→ [0,∞) is a concave, nondecreasing,
continuously differentiable function with subaffine growth, i.e.,

G(C) ≤ ao + boC, G′(0) fC(T ) ≤ 1, bo κf < 1,(2.8)

with ao and bo nonnegative constants.
In fact, by using Co(s)/Co(t) = e−

∫
s
t
μC(r)drMt(s) for t ≤ s ≤ T and the third

part of (2.8), we obtain

J0,y(ν) ≤ (κε + ε y)T + ao + bo y + E

{∫
[0,T )

e−
∫ t
0 μF (r) dr[(εT + bo)fC(t)− 1] dν(t)

}

with [(εT + bo)fC(t)− 1] < −(1− boκf )/2 if ε < (1− boκf)/(2Tκf). Then J0,y(ν) ≤
K ′

J (1 + y) with K ′
J depending only on ao, bo, T, κL, κw and the bounds on fC . Sim-

ilarly, E
∫
[0,T )

e−μF (t) dν(t) ≤ 2K ′
J

(1+y)
(1−boκf ) if J0,y(ν) ≥ 0. The result follows with

KJ := K′
J

(1−boκf ) .

3. Solution of the optimal investment problem. We now aim to generalize
the optimal investment existence theorem of [6]. Notice that in [6] we had constant
parameters and no labor. By using some results in [3], we shall find the solution of
(2.7) via the optimal stopping problem naturally associated with it. In fact, we define
the opportunity cost of not investing until time t, when the initial capacity is y, by

ζy,T (t) :=
∫ t

0

e−
∫

s
0 μF (r)drCo(s)R̃C(yCo(s), w(s)) ds + e−

∫
t
0 μF (r) drC

o(t)
fC(t)

11{t<T}

+ e−
∫ T
0 μF (r) drCo(T )G′(yCo(T ))11{t=T};

hence we define the optimal stopping problem

Zy,T (t) := ess inf
τ∈Υ[t,T ]

E{ζy,T (τ)|Ft},(3.1)

where Υ[t, T ] is the set of stopping times τ with values in [t, T ]. We denote by Zy,T (. )
a modification of Zy,T (. ) with right-continuous with left limits paths; then we set

τ∗(0, y) := inf{s ∈ [0, T ) : Zy,T (s) = ζy,T (s)} ∧ T,(3.2)

νy(t) := [sup{z ≥ y : τ∗(0, z+) < t} − y]+ if t > 0, and νy(0) = 0.(3.3)

Thus νy (modulo a shift) is τ∗(0, ·)’s left-continuous inverse. Notice that τ∗(0, y) is
nondecreasing in y a.s.; cf. [3, Lemma 1]. Also, if ŷ(0) := sup{z ≥ 0 : τ∗(0, z) = 0},
then νy(0+) = max{ŷ(0) − y, 0} := [ŷ(0) − y]+; i.e., expanding capacity up to level
ŷ(0) is the optimal strategy at time 0+.

Then we have the following theorem.
Theorem 3.1. Assume that w is a continuous process with values in [0, κw], and

either condition (2.6) or condition (2.8) holds. For y fixed, set

ν̂(t) :=
∫

[0,t)

Co(s)
fC(s)

dνy(s).(3.4)
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Then the following hold:
(i) ν̂ is the unique optimal control of the investment problem maxν∈S J0,y(ν).
(ii) E‖ν̂‖T ≤ 2KJ (1 + y) maxt,ω e

∫ t
0 μF (r)dr.

(iii) If Cy,ν̂(T ) ≡ 0, then y = 0 and ν̂ ≡ 0; moreover, a.e. a.s.,

e
∫

t
0 μF (r) drfC(t)E

{∫ T

t

e−
∫

s
0 μF (r)drR̃C(yCo(s), w(s))

Co(s)
Co(t)

ds(3.5)

+ e−
∫ T
0 μF (r) drG′(yCo(T ))

Co(T )
Co(t)

∣∣∣∣Ft
}
≤ 1.

Proof. Since 0 ≤ J0,y(0), (ii) follows easily from (b) of Proposition 2.1 and the
nondecreasing paths of ν̂.

Part (iii) follows from Cy,ν̂(T ) = [y + νy(T )]Co(T ). To show (3.5) we calculate
the Gâteaux derivative of J0,y(·) at 0 in the direction ν:

dJ0,y(0; ν) = E

∫
[0,T )

[
fC(t)E

{∫ T

t

e−
∫ s
0 μF (r)drR̃C(yCo(s), w(s))

Co(s)
Co(t)

ds

+ e−
∫ T
0 μF (r) drG′(yCo(T ))

Co(T )
Co(t)

∣∣∣∣Ft
}
− e−

∫ t
0 μF (r) dr

]
dν(t).

If 0 is optimal, then dJ0,y(0; ν) ≤ 0; i.e., (3.5) holds.
For (i) we transform the problem into “the social planning problem” of [3] and

verify that the assumptions are met. This is done in [6] for a simpler case. In [3] the
following variables occur: Π, γo, Go (denoted γ,G in [3]), p, g, which we now define as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Π(t, y) := e−
∫

t
0 μF (r) dr[R̃(yCo(t), w(t)) − R̃(Co(t), w(t))],

γo(t) := e−
∫ t
0 μF (r) drCo(t)fC(t)−1,

Go(y) := e−
∫

T
0 μF (r) dr[G(yCo(T ))−G(Co(T ))],

p(t, y) := e−
∫ t
0 μF (r) drCo(t)R̃C(yCo(t), w(t)),

g(y) := e−
∫ T
0 μF (r) drCo(T )G′(yCo(T )).

Notice that Proposition 5.1 in the appendix implies that

R̃C(yCo(t), w(t)) = RC(yCo(t), IR
A(yCo(t),·)(w(t)))(3.6)

with IR
A(C,·)(w) continuous in (C,w). Hence p(t, y) is continuous since w is. More-

over, p is strictly decreasing in y since R̃ is strictly concave in its first variable.
Now J of [3] becomes

J(y, ν) := E

∫ T

0

Π(t, y + ν(t)) dt+Go(y + ν(T ))−
∫

[0,T )

γo(t) dν(t),

with ν defined in (2.2). Then J0,y(ν) = J(y, ν) + J0,1(0). Hence if we find ν which
maximizes J(y, . ), then the corresponding ν will be optimal for J0,y. It remains to
show that p (= Πy), g (= G′

o), and γo satisfy (2.1), (2.3), (2.4), (3.2), (3.3), and (4.4)
of [3]. In fact, (3.3) of [3] follows from the second half of our (2.6), and the integrability
of p(. , y) is required only for y > 0. We do not have (4.4) of [3] since R̃(C,w) and
G(C) are not bounded, but J0,y(ν) ≤ KJ (1 + y) by Proposition 2.1 (Remark 2.2,
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respectively), and this is all that is needed in [3, definitions (4.3), (4.3)′]. So the
arguments of [6] apply to establish the result.

Remark 3.2. If R is of Cobb–Douglas type with zero shift, R(C,L) = 1
αβ C

αLβ

with α, β > 0, and α + β < 1, then IR
A(C,·)(w) = (C

α

αw )
1

1−β for C near zero,

and RC(C, IR
A(C,·)(w)) = C

α+β−1
1−β (β(αw)

β
1−β )−1 → ∞ as C → 0, for any

w ∈ [0, κw]. Since R̃C(yCo(s), w(s)) = RC(yCo(s), IR
A(yCo(s),·)(w(s))) (cf. (3.6)),

limy↓0 dJ0,y(0; ν) =∞ by monotone convergence (cf. the proof of (3.5)), so (3.5) fails;
in fact, Cy,ν̂(t) > 0 for all t > 0.

On the other hand, if μF and μC are constant and if RC(0, L) = RC(0) is labor
independent (e.g., if (3.8)(i) below holds), then (3.5) reduces to

R̃C(0)
(

1− e−(μF +μC)(T−t)

μF + μC

)
+G′(0)e−(μF +μC)(T−t) ≤ 1

fC(t)
a.e. a.s.(3.7)

So if y = 0, then ν̂ ≡ 0; i.e., the production facility will not be built if the marginal
return at zero capacity (the left-hand side of (3.7)), hence at any capacity greater
than zero, is never greater than the marginal cost of new capacity (the right-hand
side).

We now make some “Markovian” restrictions in order to obtain the continuity of
ν̂(t).

Assumption-[M].

(i) R(C,L) = R1(C) +R2(L),

(ii) μF , μC , σC , fC are constant.
(3.8)

Such an additive production function make sense if, for example, C represents tech-
nology, then buying or finding new technology may increase productivity with little
change in labor. Observe that now R̃C(yCo(t), w(t)) = R1

C(yCo(t)) is continuous
irrespective of w. Also recall that Assumptions 2 and 3 hold for R1 and they do not
assume R1

C(0) =∞, as does the Inada condition.
Assumption-[G].

(i) G ∈ C3([0,∞)),

(ii) |G′′(C)| ≤ κG(1 + |C|kG) for some constant κG and some (possibly

negative) constant exponent kG,

(iii) R1
C(C)− (μC + μF )G′(C)

+ (‖σC‖2 − μC)CG′′(C) + ‖σC‖2C2G′′′(C)/2 ≥ 0.

(3.9)

Under Assumption-[M] we are in the setting of section 4 of [6] but with scrap
value. Then the capacity process starting at time t from y > 0 and controlled by ν,{

dCt,y,ν(s) = Ct,y,ν(s)[−μCds+ σ�
C dW (s− t)] + fC dν(s− t), s ∈ (t, T ],

Ct,y,ν(t) = y,

is Fs−t-adapted and time-homogeneous since it may be identified with Cy,ν(s − t),
the process starting at time zero from y. It follows that the corresponding profit may
be written in terms of Cy;ν , that is,

Jt,y(ν) = E

{∫ T−t

0

e−μF sR̃(Cy,ν(s))ds + e−μF (T−t)G(Cy,ν(T − t))
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−
∫

[0,T−t)
e−μF s dν(s)

}
.

Hence the associated optimal stopping problem is Zy,T−t(0) (cf. (3.1)).
We define v(t, y) := Zy,T−t(0), a right-continuous with left limits modification of

Zy,T−t(0); hence up to a null set

v(t, y) = inf
τ∈Υ[0,T−t]

E

{∫ τ

0

e−μF sCo(s)R1
C(y Co(s)) ds+ e−μF τCo(τ)

1
fC

11{τ<T−t}

+ e−μF (T−t)Co(T − t)G′(y Co(T − t))11{τ=T−t}

}
.(3.10)

Now a generalization of (4.8) of [6] to the case with scrap value implies that

v(t, y) =
∂

∂y
V (t, y);(3.11)

i.e., v is the shadow value of installed capital, and

τ∗(t, y) := inf{s ∈ [0, T − t) : Zy,T−t(s) = ζy,T−t(s)} ∧ (T − t)(3.12)

is optimal for v(t, y) (cf. the second half of (2.6), the second part of (2.8), (3.2),
and [3]).

Notice that if τ∗(t, y) = 0 for some (t, y) with t < T , then τ∗(t, z) = 0 for all z < y
since R1

C and G′ are nonincreasing. Hence we may define on {t < T } the “boundary”

ŷ(t) := sup{z ≥ 0 : τ∗(t, z) = 0}.(3.13)

The following result is new and was not contained in [6], where the continuity
of ν̂ was an obvious consequence of the explicit expression of the boundary, which
unfortunately was incorrect.

Proposition 3.3. Under Assumption-[M] and Assumption-[G],

• v is {nonincreasing in y for each t
nonincreasing in t for each y

and v ≤ 1
fC

;

• ŷ(t) is nonincreasing;
• the optimal investment process ν̂(t) is continuous on 0 < t ≤ T , except per-

haps for an initial jump.
Proof. We set Y y(t) := y Co(t) under a new measure Q ∼ P with dQ

dP =
exp

{
σ�
CW (T )− 1

2‖σC‖2T
}
. Then W (t) − σCt is a Wiener process under Q and

BQ(t) := 1
‖σC‖σ

�
C (W (t) − σC t) is a one-dimensional Brownian motion in terms of

which we have{
dY y(t) = Y y(t)

[
(‖σC‖2 − μC) dt+ ‖σC‖ dBQ(t)

]
, t ∈ (0, T ],

Y y(0) = y.
(3.14)

With μ̄ := μC + μF , we may write

v(t, y) = inf
τ∈Υ[0,T−t]

EQ
{∫ τ

0

e−μ̄ sR1
C(Y y(s)) ds + e−μ̄ τ

1
fC

11{τ<T−t}(3.15)

+ e−μ̄ τG′(Y y(τ))11{τ=T−t}

}
;
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now the arguments of Theorem 4.1 of [6] apply and show that the optimal stopping
time of (3.15) may be characterized as the first time (s, Y y(s)) hits the boundary of
v(t+ . , . ) = 1/fC, i.e.,

τ∗(t, y) = inf
{
s ∈ [0, T − t) : v(t+ s, Y y(s)) =

1
fC

}
∧ (T − t).(3.16)

It is easy to see that v is nonincreasing in y (in fact, v(t, y) is strictly decreasing
in y on y > ŷ(t)) and v ≤ 1

fC
; hence

for each t, the set
{
y > 0 : v(t, y) <

1
fC

}
is connected.(3.17)

We shall now show that v is also nonincreasing in t. With t1 < t2 and τ ∈
Υ[0, T − t1], let τ̃ : τ ∧ (T − t2), τ ′ := (τ − T + t2) ∨ 0, so τ = τ̃ + τ ′. Note that
τ̃ ∈ Υ[0, T − t2] but τ ′ is only an {F.+T−t2}-stopping time. Let ỹ := Y y(T − t2).
Then

v(t1, y) = inf
τ∈Υ[0,T−t1]

EQ
{∫ τ̃

0

e−μ̄ sR1
C(Y y(s)) ds+

∫ τ

τ̃

e−μ̄ sR1
C(Y y(s)) ds

+ e−μ̄ τ
1
fC

11{τ<T−t2} + e−μ̄ τ
1
fC

11{T−t2≤τ<T−t1}

+ e−μ̄ (T−t1)G′(Y y(T − t1))11{τ=T−t1}

}

≥ inf
τ̃∈Υ[0,T−t2]

EQ
{∫ τ̃

0

e−μ̄ sR1
C(Y y(s)) ds+ e−μ̄ τ̃

1
fC

11{τ̃<T−t2}

+ 11{τ̃=T−t2}e
−μ̄ (T−t2) ess inf

0≤τ ′≤t2−t1
ḡ(ỹ, τ ′)

}
,

where

ḡ(y, τ ′) := EQ
{∫ τ ′

0

e−μ̄ sR1
C(Y y(s)) ds+ e−μ̄ τ

′ 1
fC

11{τ ′<t2−t1}

+ e−μ̄ (t2−t1)G′(Y y(t2 − t1))11{τ ′=t2−t1}

}

≥ EQ
{∫ τ ′

0

e−μ̄ sR1
C(Y y(s)) ds+ e−μ̄ τ

′
G′(Y y(τ ′))

}

since 1/fC ≥ G′(0) ≥ G′(Y y(τ ′)). If we apply Itô’s lemma to the term inside
the last expectation, then Assumption-[G] implies that it dominates G′(Y y(0)) +∫ τ ′

0 e−μ̄ tG′′(Y y(t))Y y(t)σ�
C dB

Q(t). The bound (3.9)(ii) on G′′ guarantees that the
stochastic integral has mean 0, so ḡ(y, τ ′) ≥ G′(y). Hence

v(t1, y) ≥ inf
τ̃∈Υ[0,T−t2]

EQ
{∫ τ̃

0

e−μ̄ sR1
C(Y y(s)) ds+ e−μ̄ τ̃

1
fC

11{τ̃<T−t2}

+ e−μ̄ τ̃G′(Y y(τ̃ ))11{τ̃=T−t2}

}
= v(t2, y);
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i.e., t �→ v(t, y) is nonincreasing. As a consequence,

for each y > 0, the set
{
t ≥ 0 : v(t, y) <

1
fC

}
is connected.(3.18)

Then (3.16) and v(t, y) ≤ 1
fC

imply that τ∗(0, y) is the first exit time of (s, Y y(s))
from the Borel set

Δ :=
{

(t, y) ∈ [0, T )× (0,∞) : v(t, y) <
1
fC

}
,(3.19)

the continuation region of problem (3.15) (see also [6, definition (4.12)]). The mono-
tonicity properties of v established above imply that the left boundary of Δ is a
nonincreasing curve in the (t, y)-plane and Δ lies to the right and above this curve; in
fact, the curve is graph(ŷ).

As pointed out below (3.3), τ∗(0, y) is nondecreasing in y a.s.; we now show that,
in fact, y �→ τ∗(0, y) is strictly increasing a.s. on y > ŷ(0).

Take x > y > ŷ(0) and τ∗(0, y) > s ≥ 0. Then Y x(s)−Y y(s) = (x−y)Co(s) > 0,
so that (s, Y y(s)) always lies strictly below (s, Y x(s)). Now the nonincreasing nature
of the boundary implies that at s = τ∗(0, y), (s, Y y(s)) lies in the boundary but
(s, Y x(s)) still lies in the interior of Δ, so τ∗(0, y) < τ∗(0, x).

It follows that τ∗(0, ·)’s left-continuous inverse (i.e., νy modulo a shift) is contin-
uous except possibly for an initial jump and so ν̂ is continuous except possibly for an
initial jump.

4. An algorithm for the free boundary. In this section we work under
Assumption-[M]; we take the production function R1(C) to be of Cobb–Douglas type,
i.e., R1(C) = 1

αC
α with 0 < α < 1. Finally, we specify the scrap value G(y) to be

constant, i.e., G(y) = ao ≥ 0.
In order to find an algorithm for the free boundary ŷ(t) defined in (3.13), we

reformulate the optimal stopping problem (3.15) into a stopping problem with no
integral cost or scrap value, as is the case for the American option problem. This is
accomplished as follows.

Recall that Y y(t) = y e(
1
2‖σC‖2−μC)t+‖σC‖BQ(t) (see (3.14)), so we have the fol-

lowing useful equality:

e−μ̄r
(
Y y(r)

)α−1

= yα−1 eP (α−1) rm(r), y > 0,(4.1)

involving the Q-martingale m(r) := e[−
1
2 (α−1)2‖σC‖2 r+(α−1)‖σC‖BQ(r)] and the poly-

nomial P with P (α− 1) := 1
2‖σC‖2 (α− 1)2 + (1

2‖σC‖2 − μC) (α− 1)− μ̄ < 0 (cf. [6,
definition (5.5)]).

Let L denote the differential generator of Y y, i.e., L := 1
2‖σC‖2 y2 ∂yy +(‖σC‖2−

μC)y ∂y. Let ϕ be the solution of ϕt(t, y) + (L − μ̄)ϕ(t, y) = yα−1 with ϕ(0, y) = 0.
Then ϕ is the C∞((0, T )×(0,∞))-function, strictly increasing in t, strictly decreasing
and convex in y, given by

ϕ(t, y) =
[e−P (α−1)t − 1]
−P (α− 1)

yα−1.(4.2)

Define

H(t, y) := ϕ(t, y) +
1
fC

11{t<T},(4.3)
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and introduce the optimal stopping problem

v̂(t, y) := inf
τ∈Υ[0,T−t]

EQ
{
e−μ̄τH(t+ τ, Y y(τ))

}
, y > 0.(4.4)

The definition ofH and the equation for ϕ link v̂ to the value function v of the optimal
stopping problem (3.15); in fact, for t fixed,

d[e−μ̄sϕ(t+ s, Y y(s))]

= e−μ̄s
{
[ϕt + (L− μ̄)ϕ](t + s, Y y(s))ds+ ϕy(t+ s, Y y(s))Y y(s)‖σC‖ dBQ(s)

}

= e−μ̄s
{
(Y y(s))α−1 ds+ ϕy(t+ s, Y y(s))Y y(s)‖σC‖ dBQ(s)

}
and EQ{[M0(t)]2α−2} <∞ (cf. (2.3)) implies, for every stopping time τ ∈ Υ[0, T − t],
that

ϕ(t, y) = EQ
{
e−μ̄ τϕ(t+ τ, Y y(τ)) −

∫ τ

0

e−μ̄ s(Y y(s))α−1 ds

}

= EQ
{
e−μ̄ τ

[
H(t+ τ, Y y(τ)) − 1

fC
11{t+τ<T}

]
−
∫ τ

0

e−μ̄s(Y y(s))α−1ds

}
;

that is,

ϕ(t, y) = EQ
{
e−μ̄ τ

[
H(t+ τ, Y y(τ)) − 1

fC
11{t+τ<T}

]
−
∫ τ

0

e−μ̄s(Y y(s))α−1ds

}
.

Hence, by taking the inf over τ ∈ Υ[0, T − t], we obtain

v̂(t, y) = v(t, y) + ϕ(t, y).(4.5)

As a consequence, the continuation region Δ (cf. (3.19)) may be written in terms of
v̂, i.e.,

Δ = {(t, y) ∈ [0, T )× (0,∞) : v̂(t, y) < H(t, y)},(4.6)

and similarly for its t-section, i.e., Δt = {y ∈ (0,∞) : v̂(t, y) < H(t, y)}.
Moreover, the optimal stopping time τ∗(t, y) of v(t, y) (cf. (3.16)) is also optimal

for v̂(t, y) since

τ∗(t, y) = inf
{
s ∈ [0, T − t) : v(t+ s, Y y(s)) =

1
fC

}
∧ (T − t)(4.7)

= inf {s ∈ [0, T − t] : v̂(t+ s, Y y(s)) = H(t+ s, Y y(s))},

and it is nondecreasing in y (cf. the discussion following (3.3)).
Proposition 4.1. The value function v̂(t, y) of the new optimal stopping problem

(4.4) has the following properties:
[i]v̂ v̂(t, ·) is nonincreasing in y for all t ∈ [0, T ];
[ii]v̂ z → v̂(t, zα−1) is concave on (0,∞) for all t ∈ [0, T ];
[iii]v̂ v̂(t, ·) is continuous in y on (0,∞) for all t ∈ [0, T ], and

v̂(t, x)− v̂(t, y) ≤ e−P (α−1)T − 1
−P (α− 1)

|xα−1 − yα−1|;
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[iv]v̂ (v̂ −H)(t, ·) is nonincreasing on (0,∞) for all t ∈ [0, T );
[v]v̂ for t ∈ [0, T ), at points y ∈ (0,∞) where v̂y(t, y) exists, one has

|v̂y(t, y)| ≤
e−P (α−1)t

−P (α− 1)
|α− 1|y

α−1

y
;

[vi]v̂ v̂(·, y) is nondecreasing in t on [0, T ] for all y ∈ (0,∞) (despite the disconti-
nuity of H at t = T );

[vii]v̂ v̂(·, y) is continuous in t on [0, T ] for all y ∈ (0,∞);
[viii]v̂ v̂ is continuous in (t, y) ∈ [0, T ]× (0,∞);
[ix]v̂ (v̂ −H)(·, y) is nonincreasing on [0, T ) for all y ∈ (0,∞).
Proof. Property [i]v̂ follows from the analogous property of H(t, ·).
To show [ii]v̂, recall that H(t, y) is convex in y for each t fixed since H(t, y) :=

ϕ(t, y) + ( 1
fC
− bo) 11{t<T} = [e−P (α−1)t−1]

−P (α−1) yα−1 + bo + ( 1
fC
− bo) 11{t<T}. It follows that

H(t, zα−1) is concave in z since 0 < (α − 1)2 < 1. Hence z → v̂(t, zα−1) is concave,
being the inf of concave functions.

Now the continuity of v̂ in y follows from the concavity of v̂(t, zα−1) and the
continuity of y

1
α−1 on (0,∞). Also, for x, y ∈ (0,∞), we have the following estimate:

v̂(t, x)− v̂(t, y)(4.8)

≤ EQ
{
e−μ̄τ

∗(t,y)
[
H(t+ τ∗(t, y), Y x(τ∗(t, y)))−H(t+ τ∗(t, y), Y y(τ∗(t, y)))

]}

= EQ
{
e−μ̄τ

∗(t,y)
[
ϕ(t+ τ∗(t, y), Y x(τ∗(t, y))) − ϕ(t+ τ∗(t, y), Y y(τ∗(t, y)))

]}

= EQ
{[

e−P (α−1)(t+τ∗(t,y)) − 1
−P (α− 1)

]
eP (α−1)τ∗(t,y)m(τ∗(t, y))

}
(xα−1 − yα−1),

where we have used the definition of P and the equality (4.1). Thus [iii]v̂ follows.
From the above computation we also obtain

v̂(t, x)− v̂(t, y) ≤ EQ
{
e−P (α−1)tm(τ∗(t, y))− eP (α−1)τ∗(t,y)m(τ∗(t, y))

−P (α− 1)

}
(xα−1− yα−1),

and therefore

v̂(t, x) − v̂(t, y) ≤ e−P (α−1)t

−P (α− 1)
(xα−1 − yα−1), for x < y,

since xα−1 − yα−1 > 0 and −eP (α−1)τ∗(t,y) m(τ∗(t,y))
−P (α−1) < 0; whereas

v̂(t, x)− v̂(t, y) ≤ [e−P (α−1)t − 1]
−P (α− 1)

(xα−1− yα−1) = H(t, x)−H(t, y), for x > y,

(4.9)
since xα−1 − yα−1 < 0 and eP (α−1) rm(r) is a Q-supermartingale. Inequality (4.9)
implies [iv]v̂ and also

e−P (α−1)t

−P (α− 1)
(α− 1)

yα−1

y
≤ v̂y(t, y−), v̂y(t, y+) ≤ [e−P (α−1)t − 1]

−P (α− 1)
(α− 1)

yα−1

y
;

therefore [v]v̂ holds.
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Although [vi]v̂ follows from Proposition 3.3, we give here a direct proof. Let
t1, t2 ∈ [0, T ) with t1 < t2, take y > 0, and define τ1 := t2 − t1 + τ∗(t2, y). Then
0 ≤ τ1 ≤ T − t1 is admissible at (t1, y) and

v̂(t1, y)− v̂(t2, y)

≤ EQ
{
e−μ̄τ1ϕ(t1 + τ1, Y

y(τ1))− e−μ̄τ
∗(t2,y)ϕ(t2 + τ∗(t2, y), Y y(τ∗(t2, y)))

}

≤ yα−1EQ
{
e−P (α−1)(t2+τ∗(t2,y)) − 1

−P (α− 1)

×
[
eP (α−1) τ1m(τ1)− eP (α−1)τ∗(t2,y)m(τ∗(t2, y))

]}
≤ 0

since τ1 > τ∗(t2, y), EQ{(e−μ̄τ1 − e−μ̄τ
∗(t2,y))bo} ≤ 0, and eP (α−1) rm(r) is a Q-

supermartingale. The proof still holds if t2 = T since then τ∗(t2, y) = 0 and τ1 =
T − t1, so that 11{t1+τ1<T} = 11{t2<T} = 0.

We now prove [vii]v̂. For t1 < t2 in [0, T ] and τ2 := τ∗(t1, y) ∧ (T − t2) we have

0 ≤ v̂(t2, y)− v̂(t1, y)

≤ EQ
{
e−μ̄τ2H(t2 + τ2, Y

y(τ2))− e−μ̄τ
∗(t1,y)H(t1 + τ∗(t1, y), Y y(τ∗(t1, y)))

}

≤ EQ
{
e−μ̄τ2ϕ(t2 + τ2, Y

y(τ2))− e−μ̄τ
∗(t1,y)ϕ(t1 + τ∗(t1, y), Y y(τ∗(t1, y)))

}
since for ω in {τ∗(t1, y) = T − t1} we have 11{t1+τ∗(t1,y)<T} = 11{t2+τ2<T} = 0, for ω in
{T − t2 ≤ τ∗(t1, y) < T − t1} we have 11{t2+τ2<T} = 0 whereas −11{t1+τ∗(t1,y)<T} ≤ 0,
and, finally, for ω in {τ∗(t1, y) < T − t2} we have τ2 = τ∗(t1, y) and the two terms
involving 1

fC
cancel.

Therefore,

0 ≤ v̂(t2, y)− v̂(t1, y)

≤ yα−1EQ
{
e−P (α−1)(t2+τ2) − 1
−P (α− 1)

eP (α−1) τ2 m(τ2)

− e−P (α−1)(t1+τ
∗(t1,y)) − 1

−P (α− 1)
eP (α−1) τ∗(t1,y)m(τ∗(t1, y))

}
,

but eP (α−1) rm(r) is a Q-supermartingale and τ2 ≤ τ∗(t1, y), and hence

0 ≤ v̂(t2, y)− v̂(t1, y)

≤ yα−1

−P (α− 1)
EQ
{[
e−P (α−1) t2m(τ2)− e−P (α−1) t1m(τ∗(t1, y))

]}

=
yα−1

−P (α− 1)

[
e−P (α−1) t2 − e−P (α−1) t1

]
.

It follows that v̂ is continuous in t uniformly in (t, y) ∈ [0, T ] × [ε,∞) for any
ε > 0, and hence v̂ is continuous in (t, y) ∈ [0, T ] × (0,∞); that is, [viii]v̂ holds.
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Finally, for t1 < t2 in [0, T ), the above inequality implies that v̂(t2, y) − v̂(t1, y) ≤
H(t2, y)−H(t1, y), and so [ix]v̂ is proved.

We are now able to say more about the continuation region (cf. (4.6)).
Proposition 4.2. The following properties hold for the continuation region Δ:
[i]Δ for each t ∈ [0, T ), the t-section Δt of the continuation region is open in

(0,∞);
[ii]Δ the t-section Δt of the continuation region is a semi-infinite interval;
[iii]Δ Δ ∩ {t > 0} is an open set.

Proof. Part [i]Δ follows from the continuity in y of v̂ and H . For [ii]Δ it suffices
to point out that [iv]v̂ implies that if x > y and y ∈ Δt, then x ∈ Δt. On the other
hand, [iii]Δ follows from the continuity of v̂ in (t, y).

Now [ii]Δ implies that Δt must have the form (ŷ(t),∞) for some nonnegative
number ŷ(t).

Proposition 4.3. Let ŷ(t) be the function representing the boundary of the
continuation region Δ. Then the following hold:

[i]bdy ŷ(t) is nonincreasing and left-continuous for t < T ;
[ii]bdy ŷ(t) satisfies 0 < ŷ(t) for t < T ;
[iii]bdy ŷ(T−) = 0.

Proof. For t ∈ [0, T ), ε > 0 small enough and for any δ > 0 we have 0 >
v̂(t, ŷ(t) + δ) − H(t, ŷ(t) + δ) ≥ v̂(t + ε, ŷ(t) + δ) − H(t + ε, ŷ(t) + δ). Therefore,
(ŷ(t) + δ) is in Δt+ε, hence ŷ(t+ ε) ≤ ŷ(t) + δ, but δ > 0 is arbitrary, and we obtain
ŷ(t+ ε) ≤ ŷ(t).

Now let t > 0 and ε > 0 small enough; then ŷ(t) ≤ ŷ(t − ε) and hence ŷ(t) ≤
limε↓0 ŷ(t−ε) := ŷ(t−). On the other hand, (t−ε, ŷ(t−ε)) ∈ ([0, T ]×[0,∞))−(Δ∩{t >
0}), which is a closed set; thus also (t, ŷ(t−)) ∈ ([0, T ]× [0,∞)) − (Δ ∩ {t > 0}). It
now follows from the definition of ŷ(t) that ŷ(t−) ≤ ŷ(t), and we conclude that
ŷ(t−) = ŷ(t). Hence [i]bdy is proved.

To show that ŷ(t) > 0 assume the contrary, i.e., ŷ(t) = 0 for t < T . Then [i]bdy
implies that ŷ(t + s) = 0 for all s > 0. For y ∈ Δt it follows that Y y(s) > 0 for any
s ∈ [0, T − t]. Hence τ∗(t, y) = T − t and

v̂(t, y) = EQ
{
e−μ̄(T−t)ϕ(T, Y y(T − t))

}

= yα−1 e
−P (α−1)T − 1
−P (α− 1)

eP (α−1)(T−t)EQ{m(T − t)}

= yα−1
[e−P (α−1)t − eP (α−1)(T−t)

−P (α− 1)

]
∀y > 0.

However, H(t, y) = e−P (α−1)T −1
−P (α−1) yα−1 + 1

fC
, so (v̂−H)(t, y) = yα−1 [−e

P (α−1)(T−t)+1
−P (α−1) ]−

1
fC

> 0 if y is small. This contradiction proves [ii]bdy.
Notice that ŷ(T−) exists due to [i]bdy. If ŷ(T−) > 0, then limy↓ŷ(T−) v̂(T, y) =

H(T, ŷ(T−)) = ϕ(T, ŷ(T−)) and limt↑T v̂(t, ŷ(t)) = limt↑T H(t, ŷ(t)) = ϕ(T, ŷ(T−))+
1
fC

. This contradicts the continuity of v̂ on [0, T ]× (0,∞).
We then have (cf. (4.6))

Δ = {(t, y) ∈ [0, T )× (0,∞) : y > ŷ(t)}(4.10)

and we set

Δleft := {(t, y) ∈ [0, T )× (0,∞) : y < ŷ(t)}.
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Theorem 4.4. The value function v̂(t, y) of the optimal stopping problem (4.4)
is the unique nonnegative solution of the following ŷ-optimality conditions:

(1) −v̂t(t, y)− (L− μ̄)v̂(t, y) = 0, (t, y) ∈ Δ ∩ {t > 0};
(2) −v̂t(t, y)− (L− μ̄)v̂(t, y) ≤ 0, (t, y) ∈ Δleft ∩ {t > 0};
(3) v̂(t, y) < H(t, y), (t, y) ∈ Δ;
(4) v̂(t, y) = H(t, y), (t, y) ∈ Δleft;
(5) v̂(T, y) = ϕ(T, y) = H(T, y), y ∈ (0,∞);
(6) v̂(t, ŷ(t)) = H(t, ŷ(t)), t ∈ [0, T ).
Proof. The proof of (1)–(6) is based on standard arguments. (3), (4), and (5)

hold by construction; (6) follows by continuity in y.
To show (1) let (s, y) ∈ Δ ∩ {t > 0}. For ε > 0 and y1 < y < y2 define

the rectangle R = (s − ε, s + ε) × (y1, y2) such that its closure cl(R) ⊂ Δ. Define
∂◦R := ∂R\ [{s− ε}× (y1, y2)] of R and consider the initial-boundary value problem{−ft(t, y)− (L− μ̄)f(t, y) = 0 in R,

f = v̂ on ∂◦R.

Then by reversing time, t → T − t, this problem corresponds to a classical initial
value problem with uniformly parabolic operator in R (due to s + ε < T and Propo-
sition 4.3) and parabolic boundary ∂◦R. Hence the classical theory may be applied to
obtain the unique solution f with ft, fy, fyy continuous. It remains to show that f co-
incides with v̂ in R. Define the stopping time θ := inf{t ∈ [0, ε] : (s+ t, Y y(t)) ∈ ∂◦R}
and the process F (t) := e−μ̄tf(s+ t, Y y(t)); then

F (0) = f(s, y)

= EQ
{
F (θ) +

∫ θ

0

e−μ̄t
[
− ft(s+ t, Y y(t))− (L − μ̄)f(s+ t, Y y(t))

]
dt+ martingale

}
;

that is, f(s, y) = EQ{F (θ)} = EQ{e−μ̄θv̂(s + θ, Y y(θ))}. Recall that τ∗(s, y) =
inf {t ∈ [0, T − s] : v̂(s + t, Y y(t)) = H(s + t, Y y(t))}; then the Markov property
and the fact that Q-a.s. θ ≤ τ∗(s, y), the optimal stopping time for (s, y), imply
that τ∗(s, y) = θ + τ(θ) a.s., where we have set τ(θ) := τ∗(s + θ, Y y(θ)). Therefore,
EQ{e−μ̄θv̂(s + θ, Y y(θ))} = EQ{e−μ̄θe−μ̄τ(θ)H(s + θ + τ(θ), Y Y

y(θ)(τ(θ)))}, hence
f(s, y) = EQ{e−μ̄θ v̂(s+ θ, Y y(θ))} = v̂(s, y), and (1) follows.

For (2) we proceed by contradiction. If at some (s, x) ∈ Δleft ∩ {t > 0} we
had −v̂t(s, y) − (L − μ̄)v̂(s, y) > 0, then the same inequality would hold in a ball
B ⊂ Δleft ∩ {t > 0} centered in (s, y), thanks to (4) and the smoothness of H . Note
that ŷ(s) > 0 since s < T . Hence the Itô formula applied to e−μ̄tH(s+ t, Y y(t)) up to
the first exit time τB of (s+ t, Y y(t)) from B would give H(s, y) > EQ{e−μ̄τBH(s+
τB, Y

y(τB))}, but v̂(s, y) = H(s, y) (again by point (4)), and we would contradict the
definition of v̂.

As for the uniqueness, let ψ(t, y) be another nonnegative solution of (1)–(6) (with
Δ given by ŷ). For t ∈ [0, T ) define Δε := {(t, y) ∈ Δ : ‖(T − t, y)‖ > ε}. For (t, y) ∈
Δε set τε(t, y) := inf{s > 0 : (t + s, Y y(s)) /∈ Δε}. Note that τε(t, y) ↑ τ∗(t, y) =
inf{s ∈ [0, T − t] : Y y(s) = ŷ(t+s)}∧ (T − t) a.s. as ε ↓ 0 since Y y(τ∗(t, y)) �= 0 a.s. It
follows from (1)–(6) that the process Gε(s) := e−μ̄(s∧τε(t,y))ψ(t+(s∧ τε(t, y)), Y y(s∧
τε(t, y))) is a bounded martingale; hence by using (5) and (6) we obtain

ψ(t, y) = Gε(0) = EQ{Gε(T − t)} = EQ{e−μ̄τ
ε(t,y)ψ(t+ τε(t, y), Y y(τε(t, y)))}

= EQ{e−μ̄τε(t,y)H(t+ τε(t, y), Y y(τε(t, y))) 11{τε(t,y)=τ∗(t,y)}}
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+EQ{e−μ̄τε(t,y)ψ(t+ τε(t, y), Y y(τε(t, y))) 11{τε(t,y)<τ∗(t,y)}}

= v̂(t, y) + EQ
{[
e−μ̄τ

ε(t,y)ψ(t+ τε(t, y), Y y(τε(t, y)))

− e−μ̄τ
∗(t,y)H(t+ τ∗(t, y), Y y(τ∗(t, y)))

]
11{τε(t,y)<τ∗(t,y)}

}
,

since τ∗(t, y) is optimal for v̂(t, y). Observe that 11{τε(t,y)<τ∗(t,y)} ↓ 0 a.s. as ε ↓ 0.
Moreover, by (4.1) for p > 1

EQ
{[
e−μ̄τ

ε(t,y)ψ(t+ τε(t, y), Y y(τε(t, y)))
]p}

≤ EQ
{[
e−μ̄τ

ε(t,y)H(s+ τε(t, y), Y y(τε(t, y)))
]p}

≤ kpEQ
{[e−P (α−1)t − eP (α−1) τε(t,y)

−P (α− 1)
m(τε(t, y)) yα−1

]p
+

1
fpC

}

≤ Kp

[( e−P (α−1)t

−P (α− 1)

)p
y(α−1)p + 1

]
<∞

since EQ{[m(τε(t, y))]p} = e
1
2p(p−1)(α−1)2 ‖σC‖2 τε(t,y) ≤ e

1
2p(p−1)(α−1)2 ‖σC‖2 (T−t) <

∞. Similarly EQ{[e−μ̄τ∗(t,y)H(t + τ∗(t, y), Y y(τ∗(t, y)))]p} < ∞. Hence by uniform
integrability ψ = v̂ on Δε for any ε > 0, that is, on Δ.

Corollary 4.5. The function ŷ(t) representing the boundary of the continuation
region Δ is bounded above; in fact,
[iv]bdy ŷ(t) ≤ y◦ := ( μ̄

fC
)

1
α−1 for t < T .

Proof. Set U := {(t, y) ∈ [0, T ) × (0,∞) : −Ht(t, y) − (L − μ̄)H(t, y) > 0}.
Since H = ϕ + 1

fC
on Δ, Itô’s formula implies that H(t, y) > EQ{e−μ̄ τ∗(t,y)[ϕ(t +

τ∗(t, y), Y y(τ∗(t, y))) + 1
fC

]} ≥ EQ{e−μ̄ τ∗(t,y)[H(t+ τ∗(t, y), Y y(τ∗(t, y)))]} ≥ v̂(t, y)
for (t, y) ∈ Δ. Hence U ⊂ Δ; that is, it is never optimal to stop before the process
exits from U , i.e., when −yα−1 + μ̄

fC
11{t<T} > 0.

We shall now show that the free boundary may be characterized as the unique
solution of an integral equation in the spirit of [13]. Most of the arguments below
are similar to those used by Jacka [13] for the free boundary of the American put or,
more generally, by Pedersen and Peskir [17]. However, these arguments require the
smooth fit property, i.e.,

v̂y(t, ŷ(t)) = Hy(t, ŷ(t)), t ∈ [0, T ).(4.11)

The concavity property [ii]v̂ (cf. Proposition 4.1) combined with the differentiabil-
ity of y

1
α−1 guarantees that the one-sided y-derivatives of v̂ are defined and satisfy

v̂y(t, ŷ(t)−) = Hy(t, ŷ(t)) ≥ v̂y(t, ŷ(t)+) since v̂(t, ·) = H(t, ·) on the complement of
Δt and (v̂ − H)(t, y) is nonincreasing in y for t < T . For smooth fit it remains to
show that v̂y(t, ŷ(t)+) ≥ Hy(t, ŷ(t)). Since our v̂ is an inf rather than a sup as in the
option problem we are unable to show this without further assumptions.

Assumption-[Cfb].

The free boundary ŷ(t) is continuous on [0, T ).(4.12)
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Lemma 4.6. Under Assumption-[Cfb] the smooth fit property (4.11) holds.
Proof. We show that v̂y(t, ŷ(t)+) ≥ Hy(t, ŷ(t)). Fix t < T and set ŷ := ŷ(t); then

for ε > 0 the inf in v̂(t, ŷ + ε) is attained at τ∗ε := τ∗(t, ŷ + ε) (cf. (4.7)), and this
is nondecreasing in ε. So v̂(t, ŷ + ε) is equal to EQ{e−μ̄τ∗

ε H(t+ τ∗ε , Y ŷ+ε(τ∗ε ))}; now
by subtracting v̂(t, ŷ) (a quantity less than or equal to EQ{e−μ̄τ∗

ε H(t+ τ∗ε , Y
ŷ(τ∗ε ))})

we obtain v̂(t, ŷ+ ε)− v̂(t, ŷ) ≥ EQ{e−μ̄τ∗
ε [H(t+ τ∗ε , Y

ŷ+ε(τ∗ε ))−H(t+ τ∗ε , Y
ŷ(τ∗ε ))]}.

Hence if we divide by ε and take limits as ε ↓ 0, then we get (cf. (4.1) and (4.2))

v̂y(t, ŷ+) ≥ lim
ε↓0

[(ŷ + ε)α−1 − (ŷ)α−1]
ε

EQ
{
e−P (α−1)(t+τ∗

ε ) − 1
−P (α− 1)

eP (α−1) τ∗
ε m(τ∗ε )

}
.

Notice that τ∗ε ↓ τo as ε ↓ 0, where τo is the first time (t+ ·, Y ŷ(·)) hits the boundary
of {(s, y) ∈ Δ : s > t}. Now ŷ > 0 implies that the diffusion Y ŷ is nondegenerate and
ŷ(t) = ŷ(t+) by assumption; therefore τo = 0. So e−P (α−1)(t+τ∗

ε )−1
−P (α−1) eP (α−1) τ∗

ε m(τ∗ε )

converges to e−P (α−1)t−1
−P (α−1) a.s. Also,

∣∣∣∣e−P (α−1)(t+τ∗
ε ) − 1

−P (α− 1)
eP (α−1) τ∗

ε

∣∣∣∣ ≤ K1,

where K1 is a constant depending on T − t since τ∗ε ∈ [0, T − t], and standard inequal-
ities imply that EQ{(m(τ∗ε )p} ≤ e p(p−1)

2 (α−1)2‖σC‖2(T−t). Hence

e−P (α−1)(t+τ∗
ε ) − 1

−P (α− 1)
eP (α−1) τ∗

ε m(τ∗ε )

is uniformly integrable. It follows that

v̂y(t, ŷ+) ≥ (α− 1)ŷα−2 e
−P (α−1)t − 1
−P (α− 1)

= Hy(t, ŷ).

We point out that if the free boundary is continuous, then, contrary to what
we claimed in [6], the smooth fit condition (4.11) holds also for the original v since
v = v̂ − ϕ. There are examples of solutions to optimal stopping problems where
smooth fit fails, e.g., [16]. In our case the regularity of the data gives no indication
that Assumption-[Cfb] should fail; hence we assume [Cfb], although we are not able
to prove it.

Lemma 4.7. Under Assumption-[Cfb] the process

Ms(t)(4.13)

:= e−μ̄tv̂(s+ t, Y y(t)) +
∫ t

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)≤ŷ(s+r)}dr,

t ∈ [0, T − s], is a martingale for s ∈ (0, T ) and y > 0.
Proof. It follows from (1) and (4) of Theorem 4.4 that −v̂t(t, y) − (L − μ̄)v̂(t, y)

equals −yα−1 + μ̄
fC

11{t<T} if y < ŷ(t) and t ∈ (0, T ), whereas it equals zero for
y > ŷ(t) and t ∈ (0, T ). By Lemma 4.6, v̂ is C1 in y due to the smooth fit property,
so dMs(t) = e−μ̄tv̂y(s+ t, Y y(t))Y y(t) ‖σC‖ dBQ(t) and

EQ
{∫ T−s

0

∣∣∣e−μ̄tv̂y(s+ t, Y y(t))Y y(t) ‖σC‖
∣∣∣2 dt}



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

456 MARIA B. CHIAROLLA AND ULRICH G. HAUSSMANN

≤
∫ T−s

0

EQ
{
e−2μ̄t‖σC‖2

[
α− 1

−P (α− 1)

]2
e−2P (α−1)t y2α−1

× e2(α−1)‖σC‖BQ(t)+2(α−1)( 1
2‖σC‖2−μC)t

}
dt

= y2α−1‖σC‖2
[

α− 1
−P (α− 1)

]2

×
∫ T−s

0

e(α−1)2‖σC‖2tEQ
{
e2(α−1)‖σC‖BQ(t)− 1

2 (4(α−1)2‖σC‖2t
}
dt

= y2α−1‖σC‖2
[

α− 1
−P (α− 1)

]2 ∫ T−s

0

e(α−1)2‖σC‖2tdt

= y2α−1 e
(α−1)2‖σC‖2(T−s) − 1

[−P (α− 1)]2
<∞

due to the estimate of v̂y in Proposition 4.1, [v]v̂. Hence Ms is indeed a martin-
gale.

We now have the following theorem.
Theorem 4.8. Under Assumption-[Cfb] the free boundary ŷ(·) is the unique

left-continuous solution h(·) of the integral equation

H(s, y) = EQ
{
e−μ̄(T−s)H(T, Y y(T − s))(4.14)

+
∫ T−s

0

e−μ̄t
[
−(Y y(t))α−1 +

μ̄

fC
11{s+t<T}

]
11{Y y(t)≤h(s+t)} dt

}
∀y ≤ h(s),

satisfying 0 < h(s) ≤ y◦ for all s < T .
Proof. As v̂(T, y) = H(T, y) for any y, then for h = ŷ Lemma 4.7 gives H(s, y) =

EQMs(T − s). Since Ms(0) = v̂(s, y) = H(s, y) for y ≤ ŷ(s), the martingale property
of Ms(t) implies that ŷ is a solution of the integral equation above.

Now let h(t) ≤ yo be another left-continuous solution and set

φ(s, y) := EQ
{
e−μ̄(T−s)H(T, Y y(T − s))

+
∫ T−s

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)≤h(s+r)} dr

}
.

Then φ(T, y) = H(T, y). For fixed s ∈ (0, T ), t ∈ [0, T − s], and y > 0,

e−μ̄tφ(s+ t, Y y(t)) = EQ
{
e−μ̄(T−s)H(T, Y z(T − s− t))

+
∫ T−s

t

e−μ̄r
[
−(Y z(r − t))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y z(r−t)≤h(s+r)} dr

}∣∣∣∣
z=Y y(t)

= EQ
{
e−μ̄(T−s)H(T, Y y(T − s))



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IRREVERSIBLE INVESTMENT 457

+
∫ T−s

t

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)≤h(s+r)} dr

∣∣∣∣Ft
}
,

and hence the process

Ns(t) := e−μ̄tφ(s+ t, Y y(t))

+
∫ t

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)≤h(s+r)}dr

= EQ
{
e−μ̄(T−s)H(T, Y y(T − s))

+
∫ T−s

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)≤h(s+r)} dr

∣∣∣∣Ft
}

is a martingale on [0, T−s]. As h is a solution of (4.14), φ(s, y) = H(s, y) for y ≤ h(s).
The proof now follows along the same lines as that of [13, Theorem 4.2.2].

Pick y > h(s) and define the stopping time τ := inf{t ∈ [0, T − s) : Y y(t) ≤
h(s+t)}∧(T−s); then φ(s, y) = Ns(0) = EQ{e−μ̄τφ(s+τ, Y y(τ))} = EQ{e−μ̄τH(s+
τ, Y y(τ))}, and hence φ(s, y) ≥ v̂(s, y). On the other hand, for y ≤ h(s), we have
φ(s, y) = H(s, y) ≥ v̂(s, y). Therefore, φ(s, y) ≥ v̂(s, y) for all s ∈ (0, T ) and y > 0.

Now pick 0 < y ≤ h(s) ∧ ŷ(s) (so v̂(s, y) = H(s, y) = φ(s, y)) and define the
stopping time τ ′ := inf{t ∈ [0, T − s) : Y y(t) ≥ ŷ(s+ t)} ∧ (T − s); then

0 = v̂(s, y)− φ(s, y) = Ms(0)−Ns(0)

= EQ
{
e−μ̄τ

′[
v̂(s+ τ ′, Y y(τ ′))− φ(s+ τ ′, Y y(τ ′))

]}

+EQ
{∫ τ ′

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]

×
[
11{Y y(r)≤ŷ(s+r)} − 11{Y y(r)≤h(s+r)}

]
dr

}
,

and Y y(·) ≤ ŷ(s+ ·) on [0, τ ′) implies that

0 = EQ
{
e−μ̄τ

′[
v̂(s+ τ ′, Y y(τ ′))− φ(s + τ ′, Y y(τ ′))

]}
(4.15)

+EQ
{∫ τ ′

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)>h(s+r)}dr

}
.

Since both terms on the right-hand side of (4.15) are nonpositive (recall that ŷ is
below y◦ := ( μ̄

fC
)

1
α−1 and hence Y y(·) ≤ ŷ(s + ·) ≤ ( μ̄

fC
)

1
α−1 on [0, τ ′)), it follows

that both terms are zero. In particular, from the integral term we deduce that the
Lebesgue×Q measure of {h(s + r) < Y y(r) ≤ ŷ(s + r)} ∩ {r < τ ′} is zero for all
s, y. Since the distribution of Y y(r) has support (0,∞), we conclude that h ≥ ŷ a.e.
This fact, the assumption h(·) ≤ yo, and H(T, Y y(T − s)) = v̂(T, Y y(T − s)) in the
definition of φ imply that φ(s, y) ≤ EQMs(T −s) = Ms(0) = v̂(s, y), and hence φ = v̂
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on y > 0. Define τ ′′ := inf{t ∈ [0, T − s) : Y y(t) ≥ h(s + t)} ∧ (T − s), and proceed
as for τ ′ to obtain

0 = EQ
{
e−μ̄τ

′′[
v̂(s+ τ ′′, Y y(τ ′′))− φ(s+ τ ′′, Y y(τ ′′))

]}

−EQ
{∫ τ ′′

0

e−μ̄r
[
−(Y y(r))α−1 +

μ̄

fC
11{s+r<T}

]
11{Y y(r)>ŷ(s+r)}dr

}
.

As above, it follows that ŷ ≥ h, hence h = ŷ almost everywhere, and so h ≡ ŷ by left
continuity.

Lemma 4.9. Under Assumption-[Cfb] for the free boundary the following repre-
sentation holds:∫ T−s

0

e−μ̄tEQ
{[

(Y ŷ(s)(t))α−1 − μ̄

fC
11{s+t<T}

]
11{Y ŷ(s)(t)<ŷ(s+t)}

}
dt(4.16)

=
[
eP (α−1)(T−s) − 1

P (α− 1)

]
(ŷ(s))α−1 − 1

fC
11{s<T}.

Proof. For y = ŷ(s) we have

e−μ̄(T−s)EQ{H(T, Y ŷ(s)(T−s))}−H(s, ŷ(s)) =
[
eP (α−1)(T−s) − 1

P (α− 1)

]
yα−1− 1

fC
11{s<T}.

Then (4.14) implies (4.16).
Theorem 4.10. Under Assumption-[Cfb] the optimal free boundary ŷ(·) is iden-

tified as the unique solution of the instantaneous-stopping equation

(
ŷ(s)

)α−1
∫ T−s

0

eP (α−1)t
[
1− Φ

(
Ψ(t; s, ŷ(s))− (α− 1)‖σC‖

√
t
)]
dt

+
μ̄

fC

∫ T−s

0

e−μ̄t Φ(Ψ(t; s, ŷ(s)))dt =
1
fC

11{s<T},(4.17)

where Φ(z) =
∫ z
−∞

1√
2π
e−r

2/2dr is the cumulative of the N(0, 1)-distribution and

Ψ(t; s, y) =
1

‖σC‖
√
t

[
ln
(
ŷ(s+ t)

y

)
−
(

1
2
‖σC‖2 − μC

)
t

]
.

Proof. We calculate the expected value in (4.16), EQ{11{Y y(t)<ŷ(s+t)}} = Q{ω ∈
Ω : ‖σC‖BQ(ω, t) + (1

2‖σC‖2 − μC) t < ln( ŷ(s+t)y )} = Φ(Ψ(t; s, y)). Similarly,

EQ
{
e−μ̄t(Y y(t))α−1 11{Y y(t)<ŷ(s+t)}

}

= EQ
{
yα−1 eP (α−1)tm(t) 11{‖σC‖BQ(t)+( 1

2‖σC‖2−μC) t<ln( ŷ(s+t)
y )}

}
= yα−1 eP (α−1)t

×EQ
{
m(t)11{‖σC‖ [BQ(t)−(α−1)‖σC‖ t]<ln( ŷ(s+t)

y )−( 1
2‖σC‖2−μC) t−(α−1)‖σC‖2 t}

}

= yα−1 eP (α−1)t Φ
(
Ψ(t; s, y)− (α− 1)‖σC‖

√
t
)
.
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Having found ŷ(t) from Theorem 4.10 we can find v̂(t, y) as the solution of the
corresponding Cauchy problem in the continuation region Δ and as H(t, y) elsewhere.

Now V (t, y) (cf. (2.7)) is obtained as follows. Recall that the optimal investment
is zero in the continuation region, i.e., until the first time the diffusion reaches the
free boundary; then the dynamic programming equation and Dynkin’s formula imply
that −Vt − 1

2‖σC‖2 y2 Vyy + μC y Vy + μFV = yα/α in Δ. Since v(t, y) = v̂(t, y) −
ϕ(t, y) = (v̂ − H)(t, y) + 1

fC
11{t<T} by (4.5) and the definition of H , and V (t, y) =∫

v(t, y) dy + h(t) for some function h with h(T ) = ao by (3.11), we can substitute
this representation into the above PDE. However, ϕt(t, y) + (L − μ̄)ϕ(t, y) = yα−1

by construction and −v̂t(t, y) − (L − μ̄)v̂(t, y) = 0 in Δ by Theorem 4.4; hence we
obtain ht(t)− μF h(t) = 0, which together with h(T ) = ao gives h(t) = ao e

−μF (T−t).
Therefore, V (t, y) =

∫
(v̂(t, y)− ϕ(t, y)) dy + ao e

−μF (T−t) for y > ŷ(t).
On the other hand, for y ≤ ŷ(t) we have V (t, y) = V (t, ŷ(t)) − ŷ(t)−y

fC
since

Vy = v = 1
fC

here. In the above procedure ŷ and v̂ will usually have to be found
numerically.

In [6, section 5] (cf. also [7]) we calculated a curve y∗(t) which was incorrectly
identified as the free boundary. A discrete approximation of the integral equation
(4.17) allows us to compare the free boundary ŷ(t) to y∗(t). See Figure 1, where ŷ is
denoted by y.

5. Appendix. Recall from section 2 that the optimal L is IuA(·,C)(w) with
uA(·, C) := RA(C, ·). We are now writing the C-dependence explicitly. We wish
to present the next result in some generality as it is required in sections 2 and 3
as well as in [8]; the notation also corresponds to that used in [9] to which we will
refer. Here x replaces L, y replaces w, u(x,C) replaces R(C, x), and x̂(y, C) replaces
IuA(·,C)(w). The parameter μ is 0 here; cf. [9]. A is a general convex polyhedral
set satisfying some assumptions (cf. the proposition below); these are satisfied by our
current A = [0, κL]. We write T = [0,∞) for the domain of the parameter C and
NA(x) for the cone of outward normals to A at x. Recall that the concave conjugate
function of uA(·, C) is

u∗A(y, C) := inf
x∈A
{x�y − u(x,C)} = − sup

x∈A
{u(x,C)− y�x}.(5.1)

As a conjugate function, u∗A(y, C) is concave in y for fixed C.
Proposition 5.1. Assume that A is polyhedral and that Assumptions 1, 2, 3 of

[9] hold with the same μ for all C. If u(. , . ) is strictly concave and twice continuously
differentiable, then

∂

∂C
u∗A(y, C) = − ∂

∂C
u(x,C)

∣∣∣
x=x̂(y,C)

a.e. in C,(5.2)

and C �→ u∗A(y, C) is strictly convex on T for each y where it is finite.
Proof. According to [19, Theorem 23.5(a*)] and [9, Proposition 3.2], the inf in

(5.1) is attained at x̂(y, C) = IuA(·,C)(y). Observe that x̂(y, C) is continuous and its
C-derivative is bounded (cf. (3.9) of [9]); hence it is Lipschitz in C and ∂

∂C x̂(y, C)
exists a.e. For fixed y

− ∂

∂C
u∗A(y, C) =

d

dC
[u(x̂(y, C), C)− y�x̂(y, C)]

=
∂

∂C
u(x,C)

∣∣∣
x=x̂(y,C)

+ [∇u(x̂(y, C), C)− y]� ∂

∂C
x̂(y, C)
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Fig. 1. G ≡ 0, σC = 0.2, μC = 0.1, μd = 0.1, α = 0.5, fC = 0.8, T = 10 except as indicated in
the legends.

=
∂

∂C
u(x,C)

∣∣∣
x=x̂(y,C)

+ �n(x̂(y, C))�
∂

∂C
x̂(y, C),

where �n(x̂(y, C)) is an outward normal to A at x̂(y, C); cf. [9, Corollary 3.9]. However,
∂
∂C x̂(y, C)= ∂

∂C I
uA(·,C)(y) is orthogonal to NA(IuA(·,C)(y)) (see [9, Remark 3.15]), so

we obtain �n(x̂(y, C))� ∂
∂C I

uA(·,C)(y) = 0, and (5.2) follows.
To prove strict concavity, we show that ∂

∂C u(x,C)|x=x̂(y,C) is strictly decreasing
in C ∈ int(T ). We write Hu(x,C) for the Hessian of u with respect to both variables
at (x,C), and Hu(·,C)(x) for the Hessian with respect to x only. For y ∈ RuA(C) :=
∇u(A ∩ int(dom(u(·, C)))) fixed, (3.8) of [9] yields

d

dC

(
∂

∂C
u(x̂(y, C), C)

)
=

∂

∂C
∇u(x,C)�

∣∣∣
x=x̂(y,C)

x̂C(y, C) +
∂2

∂C2
u(x,C)

∣∣∣
x=x̂(y,C)

= − ∂

∂C
∇u(x,C)�

∣∣∣
x=x̂(y,C)

(
Hu(·,C)(x̂(y, C))

)−1 ∂

∂C
∇u(x,C)

∣∣∣
x=x̂(y,C)

(5.3)
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+
∂2

∂C2
u(x,C)

∣∣∣
x=x̂(y,C)

.

The previous expression is negative if ∂
∂C∇u = 0 since u is strictly concave. Otherwise,

let ζ = k−1(Hu(·,C))−1 ∂
∂C∇u with k =

√
− ∂
∂C∇u�(Hu(·,C))−1 ∂

∂C∇u. Since Hu is
negative definite, then for any scalar s

0 > (s ζ�, 1)Hu

(
s ζ

1

)

= −s2 + 2s k−1 ∂

∂C
∇u(x,C)�

∣∣∣
x=x̂(y,C)

(
Hu(·,C)(x̂(y, C))

)−1 ∂

∂C
∇u(x,C)

∣∣∣
x=x̂(y,C)

+
∂2

∂C2
u(x,C)

∣∣∣
x=x̂(y,C)

= −s2 − 2s k +
∂2

∂C2
u(x,C)

∣∣∣
x=x̂(y,C)

.

It follows that the discriminant of the above quadratic (in s) is negative, i.e.,

k2 +
∂2

∂C2
u(x,C)

∣∣∣
x=x̂(y,C)

< 0,

so the negativity of the last expression in (5.3) follows.
If y ∈ Sk(C), then the result follows from the same argument using (3.9) of [9]

instead of (3.8) and

ζ = k−1

(
((Hu(·,C))11)−1 ∂

∂C∇1u

0dim(y2)

)

for the appropriate k =
√
− ∂
∂C∇1u�((Hu(·,C))11)−1 ∂

∂C∇1u. Hence the proposition
follows.

It would appear that the results of [9, Proposition 3.14] and of Proposition 5.1 hold
without the polyhedral property of A if the boundary of A is piecewise continuously
differentiable.
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REGULAR ALMOST INTERCONNECTION OF
MULTIDIMENSIONAL BEHAVIORS∗
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Abstract. Reading the doctoral thesis of Napp Avelli (2007) I realized that Gabriel’s localization
theory, which I applied in context with the stabilization of multidimensional input/output behaviors,
can also be used for the construction of regular almost interconnections of behaviors in arbitrary
dimensions and not only in two dimensions. In this paper I expose this theory in the language of
quotient modules and derive an algorithm for arbitrary dimensions which has, however, not yet been
implemented. Regular interconnections were introduced and discussed by Willems [IEEE Trans.
Automat. Control, 36 (1991), pp. 259–294; 42 (1997), pp. 458–472] for one-dimensional behaviors.
Their multidimensional counterparts have been treated by Rocha, Wood, Shankar, Zerz, Lomadze,
Napp Avelli, and others since 1998. Two-dimensional almost direct sum decompositions and regular
almost interconnections have been considered by Valcher and Bisiacco since 2000 and are also the
main subject of Napp Avelli’s thesis and his recent submitted paper. Roughly, two behaviors are
almost equal if they differ by finite-dimensional behaviors only; so the latter are considered negligible
in this context. Two-dimensional behaviors have special properties which are not discussed in the
present paper. I also briefly discuss other variants of regular almost interconnections where only
stable autonomous behaviors are considered negligible.
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1. Introduction. Regular interconnections were introduced and discussed by
Willems in one dimension [23], [24], [16]. Soon thereafter Rocha and Wood [18],
Shankar [20], and Zerz and Lomadze [26] extended the notions and partially the results
to behaviors in higher dimensions. In context with the two-dimensional controllable-
autonomous decomposition, almost direct sum decompositions have been discussed by
Valcher and Bisiacco since 2000 [22], [1], [2]. Roughly, two behaviors are almost equal
if they differ by finite-dimensional behaviors only; so the latter are considered negli-
gible in this context. For such identifications the theory of quotient categories and
modules was developed fifty years ago by Serre, Gabriel et al. That two-dimensional
behaviors have various properties which do not hold in higher dimensions can be in-
ferred from [4, Chap. VII, sec. 4, Thms. 2, 4, 5, and 6 and Ex. 3] and was also observed
in [11, Thms. 7.42 and 7.74]. The starting point of the present paper was Chapter 5
of Napp Avelli’s thesis [9], [10], where, in particular, the basic theory for arbitrary
dimensions and an algorithm for two-dimensional regular almost interconnection are
presented. Reading this thesis I realized that Gabriel localization of polynomial mod-
ules, which I applied in [14] for the stabilization of multidimensional input/output
systems, can also be used to sharpen Napp Avelli’s general theory and to extend his
two-dimensional algorithm [10, Cor. 22] to arbitrary higher dimensions. In the present
paper those results, for instance, [10, Thm. 17], which hold in two dimensions only
are not discussed.

The regular almost interconnection problem is the following: Let F be one of
the standard, discrete or continuous, multidimensional F -signal spaces over a field
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F and let B ⊆ B1,B2 ⊆ F l be behaviors defined as the solution spaces of linear
systems of partial difference or differential equations with constant coefficients. Then
B is called a regular almost interconnection of B1 and B2 if F l = B1 + B2 and if the
behavior (B1

⋂
B2)/B is finite-dimensional over F [10, Problem 19]. In the almost

theory the behaviors B and B1

⋂
B2 are then identified. The problem is to decide for

given B ⊆ B1 whether such a B2 exists and, if so, to construct one such B2. If in
addition B = B1

⋂
B2, then B is called a regular interconnection of B1 and B2. The

behavior B1 is interpreted as that of a given plant which by means of the controller
B2 is changed to a desired behavior B.

The main results of this paper are Theorem 3.3 and the associated Algorithm 4.1
for the solution of the regular almost interconnection problem in arbitrary dimen-
sions. The latter makes essential use of Zerz and Lomadze’s method [26, sec. 3] to
check the existence of regular interconnections. The algorithmic problems in con-
text with the stabilization of transfer matrices [7], [25] or input/output behaviors
[14] do not appear here. Theorem 3.1 characterizes more general almost direct sum
decompositions of behaviors [10, Problem 15] by means of quotient modules. But in
contrast to the two-dimensional case of [10, Thm. 17] the corresponding algorithms
in the general multidimensional situation of the present paper are not yet complete.
Section 2 presents a survey without proofs of Gabriel’s localization theory after [21]
and [14, sec. 3] and derives several results which are needed for Theorems 3.1 and 3.3
and Algorithm 4.1. The short last section discusses other forms of regular almost
interconnections where only stable autonomous behaviors are considered negligible.

2. Generalized quotient modules. In the first part of this section we intro-
duce the module categories which are relevant for the regular almost interconnection
problem and give a survey of section 3 of [14], but refer to [21] and [14] for the de-
tails, the used (standard) terminology, and the notation. Corollary 2.1 describes the
essential properties of the quotient module Q(M) of a module M . In the second part
we prove several results which are essential for the construction of a regular almost
interconnection which itself is described in sections 3 and 4.

Let F be a field and A := F [s] := F [s1, . . . , sr] the polynomial algebra in r ≥ 2
indeterminates with its quotient field K := F (s). The category with the A-modules
as objects and the A-linear maps as morphisms is denoted by ModA. The ring A is a
factorial noetherian integral domain as assumed in section 3 of [14]. Let F be one of
the large injective cogenerator signal A-modules from [11, main examples in sec. 2 and
Thm. 2.54], for instance, the multisequence space F = C

N
r

, respectively, the space
F = D′(Rr,C), of distributions in the discrete, respectively, continuous, cases of linear
partial difference, respectively, differential, equations with constant coefficients. Its
scalar multiplication is denoted by ◦. By definition an injective cogenerator is large if
every finitely generated A-module M is a submodule of some finite power F l, up to
isomorphism.

As in [14, sec. 3] let Spec(A), respectively, Max(A), denote the set of prime,
respectively, of maximal, ideals of A. The associator or set of associated prime ideals
of an A-module M is denoted by Ass(M). A prime ideal p belongs to Ass(M) if A/p
is a submodule of M , up to isomorphism. The injective module F is a cogenerator
if and only if it contains all simple modules A/m, m ∈ Max(A), up to isomorphism,
i.e., if Max(A) ⊆ Ass(F). It is a large injective cogenerator if and only if all modules
A/p, p ∈ Spec(A), are contained in F , up to isomorphism, or, in other terms, if
Ass(F) = Spec(A) [11, Lem. 2.52]. In the complex continuous case the module

Flf := ⊕λ∈Cr C[t]eλ•t, t = (t1, . . . , tr) ∈ R
r, λ • t := λ1t1 + · · ·+ λrtr,
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of locally finite distributions or polynomial-exponential functions is the unique least
injective cogenerator [12, Thm. 6.6] and satisfies

Ass(Flf) = Max(A), hence no A/p, p ∈ Spec(A) \Max(A),

is contained in Flf and therefore Flf is definitely not large.
As the disjoint decomposition of Spec(A) = Ass(F) according to [14, eq. (40)] we

choose

(1) Spec(A) = P1 � P2, P1 := Max(A), P2 := Spec(A) \Max(A).

Notice that any prime ideal p = Ap of height one, where p is an irreducible polynomial,
is not maximal in dimension r ≥ 2 and therefore contained in P2. Since A is factorial
we have

(2) A =
⋂
p

{AAp; p irreducible} ⊂ K = F (s), hence also A =
⋂

p∈P2

Ap.

A module M is called locally finite if its finitely generated submodules M ′ or, equiv-
alently, its cyclic submodules Ax have finite F -dimension [M ′ : F ] := dimF (M ′).
According to [4, Chap. IV, sec. 2.5, Prop. 7] or [13, Thm. 28] a module M is locally
finite if and only if its associator Ass(M) or, equivalently, its support supp(M) :=
{p ∈ Spec(A); Mp 	= 0} is contained in Max(A). The disjoint decomposition (1) gives
rise to a direct sum decomposition

(3)
F = F1 ⊕F2 with

Ass(F1) = P1 = Max(A), Ass(F2) = P2 = Spec(A) \Max(A).

Of course, both F1 and F2 are injective. For general decompositions Spec(A) =
P1 � P2 as in [14, eq. (40)] the associated decomposition (3) is not unique. However,
for the special decomposition of (1), F1 is uniquely determined and coincides with
the locally finite part of F . Indeed, according to [12, Thm. 1.14] we have

(4)

F1 = Flf := {y ∈ F ; [A ◦ y : F ] <∞} =
⊕

m∈Max(A)

F(m), where

F(m) =
∞⋃
k=0

annF(mk), annF (mk) := {y ∈ F ; mk ◦ y = 0}.

The module F(m) is the indecomposable injective envelope of A/m and even the least
injective cogenerator over the local ring Am. The injective module Flf = F1 is the
least injective cogenerator over A = F [s]. For many standard signal spaces F like
C

N
r

or D′(Rr,C) it coincides with the polynomial-exponential functions or sequences
as derived in [12, Thms. 1.25, 5.26, 6.6, and 6.10]. While the direct complement F2

of Flf is not unique, the direct decomposition (3) implies the isomorphism of injective
modules

(5) F2
∼= F/Flf ,

and therefore F2 is unique up to isomorphism. Notice, however, that in general no
constructive description of a special F2 is available.

According to [14, eq. (50)] the decomposition (1) and the associated module F2
∼=

F/Flf give rise to a localization theory introduced by Gabriel [5]. More specifically
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we obtain the full localizing or Serre subcategory or hereditary torsion class C of ModA
and a Gabriel topology T [21, Thm. VI.5.1] where

C := {C ∈ModA; HomA(C,F2) = 0}
= {C ∈ModA; ∀p ∈ P2 : Cp = 0},

T := {a ⊆ A; A/a ∈ C} .
(6)

The modules in C are called T-torsion modules. The second equality in (6) implies
that

(7) C := {C; supp(C) ⊆ P1 = Max(A)}.

This signifies that the T-torsion modules are exactly the locally finite ones. Either
directly or by means of the injectivity of F2 one sees that the class C is closed under
taking submodules, factor modules, extensions, and direct sums, in particular

(8) C = {C ∈ModA; ∀x ∈ C : annA(x) := {a ∈ A; ax = 0} ∈ T} .

The largest submodule of M in C or largest locally finite submodule Mlf of M is also
called the T-torsion radical of M and denoted by torT(M) := Mlf . If torT(M) = 0,
the module is called T-torsion free. Due to (8) a T-torsion module is a torsion module
in the usual sense, and hence a torsion free module is T-torsion free. The Chinese
remainder theorem or [4, Chap. IV, sec. 2.5, Prop. 8] implies

(9) Mlf = torT(M) = ⊕m∈Ass(M)M(m) with M(m) :=
∞⋃
k=0

annM (mk).

If AM is finitely generated, then Ass(M) is finite and the increasing sequence of
annihilators annM (mk) becomes stationary. If e(m) is the least index k such that
annM (mk) = annM (mk+1), we obtain

(10)
Mlf = torT(M) = ⊕m∈Ass(M)M(m) and

0 = annM (m0) � annM (m1) � · · · � annM (me(m)) = M(m), e(m) > 0.

An A-module N is called T-closed if for every ideal a ∈ T the canonical map

(11) Hom(inj, N) : N = HomA(A,N)→ HomA(a, N), x �→ (a �→ ax)

is an isomorphism or, in other words, if for every linear map f : a → N there is a
unique x ∈ N with f(a) = ax for all a ∈ a. The full additive subcategory of ModA
of all T-closed submodules is denoted by ModA,T. Its properties are described in
[21, Chap. X, sec. 1]. It is obviously closed under taking arbitrary inverse limits or,
equivalently, under products and kernels and therefore the kernels, products, and lim-
its in ModA,T coincide with the standard ones in ModA. The category ModA,T also
admits arbitrary colimits or, equivalently, coproducts or direct sums and cokernels
and is indeed abelian. According to [21, pp. 195–200, 213–216] the inclusion func-
tor inj : ModA,T ⊂ ModA has an exact left adjoint quotient module or localization
functor

(12) Q : ModA → ModA,T, M �→ Q(M),
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with the functorial adjunction morphism

(13) ηM : M → Q(M), i.e., HomA(Q(M), N) ∼= HomA(M,N), g �→ gηM ,

for M ∈ ModA and N ∈ ModA,T. In [14, sec. 3] we used the notation MT := Q(M).
The functor Q is unique up to functorial isomorphism. Concrete representations of
Q(M) in various cases will be given below.

The inclusion functor inj : ModA,T → ModA preserves all limits as a right adjoint
functor and is left exact in particular, but not right exact. If N1 and N2 are T-closed
and g : N1 → N2 is A-linear, the cokernel of g in the category ModA,T is given as

(14) cokT(g : N1 → N2) = Q (N2/g(N1)) .

The kernel of the canonical map ηM : M → Q(M) is [21, Chap. IX, Lem. 1.2]

(15) Mlf = torT(M) = ker(ηM : M → Q(M)).

Hence ηM is a monomorphism and then M ⊂ Q(M) by identification if and only if
M is T-torsionfree. The adjointness of Q and the properties of C directly imply

(16)

Q(N) = N for all N ∈ModA,T and

Q(N) = 0 ⇐⇒ N ∈ C ⇐⇒ N is locally finite, hence

Q(M) = Q(M/ torT(M)) for all M ∈ModA .

In particular, a T-closed module is T-torsionfree.
An arbitrary morphism f : M1 →M2 in ModA gives rise to the exact sequences

(17)
0→ ker(f)

inj−→M1
f−→M2

can−→ cok(f) = M2/f(M1)→ 0 in ModA and

0→ Q(ker(f))
inj−→ Q(M1)

Q(f)−→ Q(M2)
Q(can)−→ Q(cok(f))→ 0 in ModA,T .

Hence

(18) Q(f) is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zero

a monomorphism

an epimorphism

an isomorphism

⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

im(f) ∈ C

ker(f) ∈ C

cok(f) ∈ C

ker(f), cok(f) ∈ C.

If im(f) ∈ C, the map f is called T-zero or almost zero or zero modulo C. The almost
terminology is due to Napp Avelli [9], [10]. Analogously we define T- or almost mono-
morphisms, epimorphisms, and isomorphisms. In dimension r = 2 these maps coincide
with the pseudozero, pseudoinjective maps, etc., from [4, Chap. VII, sec. 4.4, Def. 3].
In particular,

(19) ηM : M → Q(M) with Q(ηM ) = idQ(M) : Q(M)→ Q(Q(M)) = Q(M)

is a T-isomorphism.
Corollary 2.1. The quotient functor Q is characterized by the the following

equivalent properties, i.e., every additive functor Q1 : ModA → ModA,T with these
properties coincides with Q up to a functorial isomorphism:

1. The adjointness relation (13) holds for Q1.
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2. Q1 : ModA → ModA,T is exact and (16) holds for Q1.
3. Q1(N) = N for each T-closed module N , and Q1(f) is an isomorphism if f

is a T-isomorphism.
In particular, a module M is annihilated by Q, i.e., Q(M) = 0, if and only if it is
locally finite. Thus application of Q signifies to ignore locally finite and especially
finite-dimensional A-modules. Most of the subsequent derivations except (20) and
(21) use the preceding properties only.

According to [14, Lems. 3.2 and 3.4] and (2) the quotient module Q(A) of A is

(20) Q(A) =
⋂

p∈P2

Ap = A ⊂ K = F (s)

and thus coincides with A. If, more generally, U is a finitely generated torsionfree
module and thus a submodule of some A1×m, the quotient Q(U) is given [14, Lem. 3.6]
as

(21) U ⊆ Q(U) =
⋂

p∈P2

Up ⊆ Q(A1×m) = A1×m.

In particular, Q(U) is itself a finitely generated A-module. The canonical Gel’fand
map

U → U∗∗ := HomA(HomA(U,A), A), u �→ (α �→ α(u)),

is injective and U∗∗ is naturally identified with its bidual lattice in A1×m [4, Chap. VII,
p. 517]. Then [4, Chap. VII, sec. 4.2, Thm. 2]

(22) U ⊆ Q(U) =
⋂

p∈P2

Up ⊆
⋂

p irreducible

UAp = U∗∗ ⊆ A1×m.

Therefore, if U is reflexive, i.e., if the Gel’fand map is an isomorphism or U = U∗∗,
we get that Q(U) = U and U is T-closed. In particular, the dual module M∗ =
(M/ tor(M))∗ and the bidual module M∗∗ are reflexive and thus T-closed for any
finitely generated A-module M . If M is a finitely generated torsion module, the
quotient Q(M) = Q(M/Mlf) is not finitely generated in general, and this creates
problems for explicit computations.

Remark 2.2. In dimension r = 2 we have

P2 = Spec(A) \Max(A) = {Ap; p irreducible} ∪ {0},

and therefore Q(U) = U∗∗ for a finitely generated torsionfree U . From the general
theory we conclude that U∗∗/U = Q(U)/U is finite-dimensional. The module U+ :=
U∗∗ is free and plays an important part in Napp Avelli’s two-dimensional theory [10,
p. 7, Thm. 12, Lem. 21].

The module F2
∼= F/Flf is an injective cogenerator of ModA,T [21, Chap. X,

Prop. 1.9].
Lemma 2.3 (cf. [21, Chap. IX, Prop. 2.1]). Let N be a T-closed module and

f : M1 →M2 a T-isomorphism, i.e., a linear map with ker(f), cok(f) ∈ C.
1. The canonical map

Hom(f,N) : HomA(M2, N)→ HomA(M1, N), g2 �→ g1 := g2f,

is an isomorphism or, equivalently, any linear map g1 : M1 → N can be
uniquely extended to g2 : M2 → N with g2f = g1.
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2. If M1 ⊆ M2, M2/M1 ∈ C, and torT(M2) = 0, the inclusion M1 ⊆ M2 is
essential; i.e., for each nonzero submodule U of M2 also U

⋂
M1 is nonzero.

In particular, the inclusion M2 ⊆ Q(M2) is essential.
Proof.
1. The adjointness isomorphism HomA(Q(M), N) ∼= HomA(M,N) implies

HomA(M2, N) ∼= HomA(Q(M2), N)
Hom(Q(f),N)∼= ,

HomA(Q(M1), N) ∼= HomA(M1, N).

2. Let 0 	= x ∈ U . Since x ∈ M2/M1 ∈ C the annihilator a := annA(x) belongs
to T and ax ⊆M1. The condition

torT(M2) = 0 implies 0 	= ax ⊆ U
⋂
M1

and thus the assertion.
Theorem 2.4. If M is a submodule of the T-closed module N, then

M ⊆ Q(M) ⊆ N and Q(M)/M = torT(N/M).

In other words, Q(M) is the largest submodule V with M ⊆ V ⊆ N and locally finite
V/M , and hence

Q(M) = {y ∈ N ; ∃a ∈ T with ay ⊆M}
= {y ∈ N ; dimF ((Ay +M)/M) <∞}.

Notice here that Q is unique up to a functorial isomorphism only. But as submodule
of N the quotient module Q(M) is uniquely determined as the largest submodule with
locally finite factor module.

Proof.
1. Since N is T-closed its T-torsion submodule is zero, and the same holds for
M . We infer M ⊆ Q(M) and Q(M)/M ∈ C. By item 1 of Lemma 2.3 the
injection inj : M → N has a unique extension

g : Q(M)→ N with ker(g)
⋂
M = ker(inj) = 0, hence ker(g) = 0

according to item 2 of the lemma. Thus g is a monomorphism and

Q(M) ∼= g(Q(M)) and M = g(M) ⊆ g(Q(M)) ⊆ N, g(Q(M))/M ∈ C.

Without loss of generality we therefore assume

M ⊆ Q(M) ⊆ N and Q(M)/M ⊆ torT(N/M).

2. Let U ⊇ M be the unique submodule of N with U/M = torT(N/M), and
hence Q(M) ⊆ U . Since U/M belongs to C so does U/Q(M). Since Q(M)
is T-closed the identity map idQ(M) has a unique extension h : U → Q(M),
again by Lemma 2.3, item 1, and then

U = Q(M)⊕ ker(h) and ker(h)
⋂
Q(M) = 0.

Since the inclusion Q(M) ⊆ U is essential according to item 2 of the lemma
we infer ker(h) = 0 and U = Q(M) as asserted.
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Theorem 2.5. Let M be a finitely generated A-module with

Mlf = torT(M) = 0 or Ass(M) ⊆ P2 = Spec(A) \Max(A).

1. The set S :=
⋂

p∈Ass(M)(A \ p) ⊂ A is multiplicatively closed and the quotient
ring

AS =
⋂

p∈Ass(M)

Ap ⊆ K = F (s) is semilocal with

Max(AS) = {pS ; p is maximal in Ass(M)}.

2. The canonical map M →MS is injective.
3. The module MS is T-closed as A-module.

By Theorem 2.4 this implies

(23)
M ⊆ Q(M) ⊆MS, Q(M)/M = torT(MS/M) and

Q(M) = {y ∈MS; dimF ((Ay +M)/M) <∞}.

Proof.
1. The first assertion follows from [4, Chap. II, sec. 3.5, Prop. 17].
2. Corollary 2 from [4, Chap. IV, sec. 1.2] implies

S :=
⋂

p∈Ass(M)

(A \ p) = {s ∈ A; s◦ : M →M is injective} and thus also

ker
(

can : M →MS , x �→
x

1

)
= {x ∈M ; ∃s ∈ S with sx = 0} = 0.

Therefore we can and do identify M ⊆MS , x = x
1 .

3. Let a ∈ T and thus

supp(A/a) = {p ∈ Spec(A); a ⊆ p} ⊆ Max(A).

We show that a ∩ S 	= ∅ and therefore aS = AS . If

a ∩ S = ∅, then a ⊆
⋃

p∈Ass(M)

p and a ⊆ p0

for some p0 ∈ Ass(M), the last implication following from [4, Chap. II,
sec. 1.2, Prop. 2]. Since a ∈ T this prime ideal p0 is maximal, and since
Ass(M) ⊂ Spec(A) \Max(A) it is not. This is a contradiction and therefore
aS = AS . But then

MS
∼= HomAS (AS ,MS) = HomAS (aS ,MS) ∼= HomA(a,MS) for all a ∈ T.

This signifies that MS is T-closed.

3. Regular almost interconnections. The assumptions are the same as in
the preceding section. The next theorem characterizes the almost direct sum decom-
position of modules and behaviors [10, Problem 15, Thm. 17] by means of quotient
modules, but does not contain the two-dimensional constructive part of [10, Thm. 17].

Theorem 3.1. For a finitely generated A-module M and a submodule M1 the
following assertions are equivalent:
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1. There is a submodule M2 of M such that the canonical map

+ : M1 ×M2
+−→M, (x1, x2) �→ x1 + x2, is a T-isomorphism,

i.e., has F -finite dimensional kernel, isomorphic to M1

⋂
M2, and cokernel

M/(M1 +M2).
2. Q(M1) is a direct summand of Q(M) = Q(M/ torT(M)).

If these conditions are satisfied and if M is T-torsionfree, i.e., Mlf = torT(M) = 0,
then the map + is injective, i.e., M1

⋂
M2 = 0 and M1 +M2 = M1 ⊕M2.

Proof. 1 =⇒ 2: Recall that Q is exact and that thus Q(M1) is a submodule of
Q(M). The T-isomorphism implies the isomorphism

+ = Q(+) : Q(M1 ×M2) = Q(M1)×Q(M2) ∼= Q(M), and hence

Q(M1)⊕Q(M2) = Q(M).

2 =⇒ 1: Assume Q(M1)⊕V = Q(M). As a direct summand of a T-closed mod-
ule V is also T-closed. Let g := ηM : M → Q(M) be the universal map which is a T-
isomorphism and hence has locally finite kernel and cokernel. Define M2 := g−1(V ) ⊆
M and the restriction g|M2 : M2 → V . With g also its restriction has locally finite
kernel and cokernel, is therefore a T-isomorphism too, and induces the isomorphism
Q(g|M2) : Q(M2) ∼= Q(V ) = V. Summing up we obtain commutative diagrams

M1 ×M2
+−→ M

↓ ηM1 × g|M2 ↓ g
Q(M1)× V +−→ Q(M)

and
Q(M1)×Q(M2)

+−→ Q(M)
↓ Q(ηM1)×Q(g|M2) ↓ Q(g)

Q(M1)× V +−→ Q(M)

,

where the right diagram is obtained from the left one by application of Q, where
Q(N) = N for each T-closed module, and where the vertical maps and the lower
horizontal map in the right diagram are bijective by construction, respectively, due
to Q(M1) ⊕ V = Q(M). Therefore all maps in the right diagram are isomorphisms
and hence all morphisms in the left diagram and especially + : M1 ×M2 → M are
T-isomorphisms as asserted.

By construction M1

⋂
M2
∼= ker(+) is F -finite-dimensional and thus a T-torsion

submodule of M whose largest T-torsion submodule is torT(M) and zero by assump-
tion. This implies M1

⋂
M2 = 0.

The behavioral interpretation of the preceding theorem is the following: Let

(24)

M = A1×l/U ⊃Mi = Ui/U, i = 1, 2, and hence

ker(M1 ×M2
+−→M) ∼= M1

⋂
M2 =

(
U1

⋂
U2

)
/U,

cok(M1 ×M2
+−→M) = M/(M1 +M2) ∼= A1×l/(U1 + U2).

The modules in the last two rows are F -finite-dimensional by Theorem 3.1. Let
D := HomA(−,F) denote the duality functor. For the standard injective cogenerators
from [11] the module M is finite-dimensional if and only if D(M) has this property
[13, Thm. 17], and then

(25) dimF (M) = dimF (D(M)).
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The preceding modules give rise to the behaviors [11, Cor. 2.48]

(26)

B := U⊥ := {w ∈ F l; U ◦w = 0} ∼= D(M) = HomA(A1×l/U,F) with

U = B⊥ := {ξ ∈ A1×l; ξ ◦ B = 0},

Bi := U⊥
i ⊆ B = U⊥, B1

⋂
B2 = (U1 + U2)⊥, B1 + B2 =

(
U1

⋂
U2

)⊥
,

B/(B1 + B2) ∼= D
((
U1

⋂
U2

)
/U
)
, B1

⋂
B2
∼= D

(
A1×l/(U1 + U2)

)
.

Comparison of (24) and (26) by means of (25) furnishes the following.
Corollary and Definition 3.2 (T- or almost direct sum decomposition).

For behaviors B1,B2 ⊆ B ⊆ F l the behaviors B1

⋂
B2 and B/(B1 + B2) are finite-

dimensional if and only if this holds for the modules

A1×l/
(
B⊥

1 + B⊥
2

)
and

(
B⊥

1

⋂
B⊥

2

)
/B⊥, and then

dimF

(
B1

⋂
B2

)
= dimF

(
A1×l/

(
B⊥

1 + B⊥
2

))
and

dimF (B/ (B1 + B2)) = dimF

((
B⊥

1

⋂
B⊥

2

)
/B⊥

)
.

Under these equivalent conditions B is called the T- or almost direct sum of the two
subbehaviors B1 and B2 [10, Problem 15]. For r = 2 Theorem 17 of [10] characterizes
these decompositions constructively.

If A1×l/B⊥ is T-torsionfree, i.e., if B has no finite-dimensional factor behavior,
then the equality B = B1 + B2 holds. The paper [2] discusses almost direct sum
decompositions for r = 2 with this additional property B1 + B2 = B.

For the regular almost interconnection problem we assume that

(27)

B ⊆ B1, B2 ⊆ F l, B := U⊥, Bi := U⊥
i , and hence U = B⊥, Ui = B⊥

i ,

B1

⋂
B2 = (U1 + U2)⊥,

(
B1

⋂
B2

)
/B ∼= D (U/(U1 + U2)) ,

B1 + B2 =
(
U1

⋂
U2

)⊥ ∼= D
(
A1×l/

(
U1

⋂
U2

))
⊆ F l = D(A1×l).

Theorem 3.3 (regular T- or almost interconnection). For subbehaviors B ⊆
B1 ⊆ F l and the just introduced notations, the following assertions are equivalent:

1. There is a submodule U2 of U such that the canonical map U1 × U2
+−→ U is

a T-isomorphism, and then U1

⋂
U2 = 0.

2. Q(U1) is a direct summand of Q(U) ⊆ A1×l.
3. There is a subbehavior B2 of F l which also contains B such that B1 +B2 = F l

and (B1

⋂
B2) /B is finite-dimensional.

4. There is a subbehavior B2 of F l which also contains B such that

B1 + B2 = F l and B1

⋂
B2

⋂
F l2 = B

⋂
F l2.

If the preceding equivalent conditions are satisfied, the behavior B is called a regular
T- or almost interconnection of B1 and B2. Item 4 is of limited value since a direct
summand F2 cannot be determined constructively.

In dimension r = 2 we have Q(U1) = U+
1 and Q(U) = U+ according to Re-

mark 2.2. Napp Avelli’s criterion [10, Lem. 21] thus coincides with item 2.
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Proof. 1 ⇐⇒ 2: Theorem 3.1. Moreover, since U is torsionfree and U1

⋂
U2
∼=

ker(+) is finite-dimensional the identity U1

⋂
U2 = 0 follows.

2 ⇐⇒ 3: This follows like Corollary 3.2 from (27) and the equivalence

U1

⋂
U2 = 0 ⇐⇒ B1 + B2 =

(
U1

⋂
U2

)⊥
= 0⊥ = F l.

3 =⇒ 4: The decomposition F = Flf ⊕F2 from (3) induces decompositions

B ∼= HomA(A1×l/U,F) ∼= HomA(A1×l/U,Flf)⊕HomA(A1×l/U,F2),

and hence B =
(
B
⋂
F llf
)
⊕
(
B
⋂
F l2
)

with B
⋂
F l2 ∼= HomA(A1×l/U,F2)

and analogous decompositions for all other behaviors. The T-torsion modules C are
characterized by HomA(C,F2) = 0 according to (6), in particular HomA(U/(U1 +
U2),F2) = 0. Since F2 is injective the functor D2 := HomA(−,F2) is exact. Therefore
the canonical exact sequence

0→ U/(U1 + U2)→ A1×l/(U1 + U2)→ A1×l/U → 0

induces the exact sequence

0→ D2(A1×l/U)→ D2(A1×l/(U1 + U2))→ D2(U/(U1 + U2) = 0,

and hence B
⋂
F l2 = B1

⋂
B2

⋂
F l2.

4 =⇒ 3: analogous.

4. Algorithms. In this section we prove Algorithm 4.1, which makes Theo-
rem 3.3 constructive, and thereby extend the algorithm of Napp Avelli [10, Cor. 22]
to higher dimensions than two, but with a completely different method. The algorithm
makes essential use of the algorithm of Zerz and Lomadze for regular interconnection
[26, sec. 3]. More generally, we describe how to check in Theorem 3.1 whether Q(M1)
is a direct summand of Q(M) and how to construct M2 if this is the case. The latter
algorithm is not complete if the finitely generated module AM is not torsionfree since
then Q(M) is not A-finitely generated in general. For the torsionfree modules U1 ⊆ U
in Theorem 3.3 this problem does not arise. We leave it to the future and the younger
generation to really implement the algorithms which are only described in words here.

Ideals and, more generally, submodules U of A1×l are given by finitely many gen-
erators. Arbitrary finitely generated A-modules are described by generators and rela-
tions in the form M = A1×l/U . Via Gröbner bases also Hom-modules HomA(M1,M2)
and the annihilators annA(M), annM (a), a ⊆ A, and especially annM (mk), m ∈
Max(A), can be computed. The finite associator Ass(M) and then also

(28) Mlf = torT(M) = ⊕m∈Ass(M)
⋂

Max(A)M(m), M(m) :=
∞⋃
k=0

annM (mk),

and M/Mlf can be computed since the ascending sequences of the annM (mk) become
stationary. Since Q(M) = Q(M/Mlf) one may assume for constructive purposes that
Mlf = torT(M) = 0 and M ⊆ Q(M) ⊆ MS as in Theorem 2.5. In what follows we
therefore assume

(29)
M1 ⊆M ⊆ Q(M) ⊆MS, S :=

⋂
p∈Ass(M)

(A \ p),

Q(M1) ⊆ Q(M), Q(M)/M = torT(MS/M).
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Algorithm 4.1. The following algorithm checks for arbitrary dimension r ≥ 2
whether a subbehavior B ⊆ B1 admits a regular almost interconnection and, if so,
constructs it. In the situation of Theorem 3.3 we assume U1 ⊆ U ⊆ A1×l and that U
and U1 are nonzero. We are going to compute Q(U) =

⋂
p∈P2

Up ⊆ A1×l; cf. (21). It
is clear that infinite intersections cannot, in general, be calculated. The zero ideal is
the only prime ideal associated with U since it is torsionfree. Hence S = A \ {0} in
(29) and

(30) U ⊆ Q(U) ⊂ US = KU ⊆ K1×l, K = F (s), Q(U)/U = torT(KU/U).

As submodule of A1×l = Q(A1×l) the module Q(U) is finitely generated.
We choose a free A-module V with

(31) U ⊆ V ⊂ KU = KV ⊆ KA1×l = K1×l

and obtain the exact sequence

(32)
0→ V/U

inj−→ KU/U
can−→ KU/V → 0, and hence

Ass(KU/U) ⊆ Ass(V/U)
⋃

Ass(KU/V ) [4, Chap. IV, sec. 1.2, Prop. 3].

If m := rank(U) := dimK(KU), then

(33)
V ∼= A1×m, KV ∼= K1×m and KU/V = KV/V ∼= (K/A)1×m, and hence

Ass(KU/V ) = Ass(K/A) = {Ap; p irreducible} ⊆ P2.

From the preceding two equations we infer

(34) M := Ass(KU/U)
⋂

Max(A) = Ass(V/U)
⋂

Max(A).

Since V/U is finitely generated, the setM in (34) is finite and can be computed. From
(9) and (30) we infer

(35)

Q(U)/U = torT(KU/U) = ⊕m∈M(KU/U)(m) with

(KU/U)(m) :=
∞⋃
k=0

annKU/U (mk).

Notice that for a nonzero ideal a and a nonzero element a ∈ a the annihilator

annKU/U (a) :=
{
ξ ∈ KU/U ; aξ ⊆ U

}
=
{
ξ ∈ a−1U/U ; aξ ⊆ U

}
∼= {η ∈ U/aU ; aη ⊆ aU}, ξ �→ aξ,

(36)

and especially annKU/U (mk) can be computed. Since Q(U)/U is finitely generated
there are exponents e(m) ∈ N with

(37) 0 = annKU/U (m0) � · · · � annKU/U (me(m)) = (KU/U)(m).

These exponents and (KU/U)(m) can be calculated too. This implies that also gener-
ators of

(38) Q(U)/U = torT(KU/U) and finally of Q(U)
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can be constructively determined. In the same fashion generators of Q(U1) can be
computed. Assume now that matrices

(39) R ∈ Ak×l and R1 ∈ Ak1×l with Q(U1) = A1×k1R1 ⊆ Q(U) = A1×kR

have been determined. Compute a matrix R2 ∈ Ag×k such that

(40) A1×gR2 = ker
(
A1×k ◦R→ Q(U)/Q(U1) = A1×kR/A1×k1R1, ξ �→ ξR

)
.

According to [26, p. 1077] the submodule Q(U1) is a direct summand of Q(U) if and
only if the inhomogeneous linear system

(41)
R2R = R2XR1 has a solution X ∈ Ak×k1 and then

Q(U)/Q(U1)→ Q(U), ξR �→ ξ(R −XR1),

is the associated section of the canonical map. If X exists, we infer

(42) Q(U) = Q(U1)⊕A1×k(R −XR1),

and finally, by Theorems 3.1 and 3.3, the T-isomorphism

(43) + : U1 × U2 → U, (u1, u2) �→ u1 + u2, with U2 := U
⋂
A1×k(R−XR1)

and the regular almost interconnection

(44)
B := U⊥ ⊆ B1

⋂
B2, Bi := U⊥

i , with

B2 =
(
U
⋂
A1×k(R−XR1)

)⊥
= B + {w ∈ F l; (R −XR1) ◦ w = 0}.

Corollary 4.2. The preceding Algorithm 4.1 can be applied to the computation
of Q(M) and Q(M1) in the situation of Theorem 3.1 and Corollary 3.2 if M and
hence also M1 are torsionfree. It thus furnishes a constructive almost direct sum
decomposition of a controllable behavior B if this exists.

We proceed with the situation of Theorem 3.1 and use (29) too. The next theorem
gives another equivalent condition to the two equivalent conditions from Theorem 3.1,
but the new condition is not fully constructive.

Theorem 4.3. For the data from (29) the following properties are equivalent:
1. Q(M1) is a direct summand of Q(M) or there is a submodule M2 of M such

that + : M1 ×M2 →M is a T-isomorphism.
2. There is an s ∈ S and a linear map f : M → M1 such that f(x1) = sx1 for

all x1 ∈M1, and hence f(M1) = sM1, and f(M)/sM1 ∈ C.
Then also M1,S is a direct summand of MS.

For fixed s the existence of f in condition 2 can be checked via Gröbner bases
again. There is no algorithm, however, which does this for all infinitely many s. The
method of Zerz and Lomadze [26] also enables us to check whether M1,S is a direct
summand of MS and, if so, to construct a direct complement. However, in general
this direct decomposition does not imply a direct decomposition Q(M) = Q(M1) ⊕ V
as in Algorithm 4.1.
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Proof. 2 =⇒ 1: The map s◦ : MS �→ MS is an isomorphism. Thus f induces
the map

g := s−1f : M → s−1M1 with g(x1) = x1 for x1 ∈M1 and

g(M)/M1 ⊆ torT(s−1M1/M1) ⊆ torT(M1,S/M1) = Q(M1)/M1, and hence

g : M → Q(M1) and g|M1 = inj : M1 → Q(M1).

Since Q(M1) is T-closed and since Q(M)/M ∈ C the map g admits a unique extension
h : Q(M)→ Q(M1) which also satisfies h|M1 = inj and therefore h|Q(M1) = idQ(M1).
The preceding arguments hold by means of Lemma 2.3. We conclude Q(M) =
Q(M1) ⊕ ker(h) as asserted. The map g : M → s−1M1 ⊆ M1,S with g|M1 = inj
also induces the map

gS : MS →M1,S with gS |M1,S = idM1,S , and hence MS = M1,S ⊕ ker(gS).

1 =⇒ 2: Let g : Q(M) → Q(M1) be a retraction of the injection, i.e., with
g(x1) = x1 for all x1 ∈ Q(M1). This induces

g(M) ⊆ Q(M1) ⊆M1,S =
⋃
s∈S

s−1M1 and g(M)/M1 ⊆ torT(M1,S/M1).

Since M is finitely generated and since the submodules s−1M1 of M1,S are directed
upwards, there is an s ∈ S such that

g(M) ⊆ s−1M1, g(x1) = x1 for x1 ∈M1 and g(M)/M1 ⊆ torT(s−1M1/M1).

The map f := sg : M →M1 then has the asserted properties.
Corollary 4.4. With the notation from (29) the quotient module Q(M) of a

finitely generated module M with Mlf = 0 admits the representation

Q(M) =
⋃
s∈S

U(s), M ⊆ U(s) ⊆ s−1M, U(s)/M = torT(s−1M/M).

Each single U(s) can be computed, but the infinite directed union is not finitely gen-
erated in general and cannot be calculated.

5. Stable finite-dimensional systems. In this section we are going to talk
about stable systems and therefore assume that F is the field C of complex numbers.
To motivate the following considerations consider the C-one-dimensional, unstable
differential behavior

B := {y ∈ C∞(R,C); (s− 1) ◦ y = 0} = Cet.

This example shows that the consideration of a behavior up to a C-finite-dimensional
one as in the preceding sections may be misleading if this finite-dimensional part is
unstable. In stability and stabilization theory it is therefore customary to neglect
only those autonomous systems which are stable in a suitable sense, for instance,
asymptotically stable in the standard one-dimensional theory. Feedback stabilization
of multidimensional input/output systems was treated with this philosophy in [14].
In this short section we describe how the theory of the preceding sections can be
extended to the case where only stable finite-dimensional behaviors are neglected. It
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turns out that the localization theory is very versatile and can be easily adapted to
this situation.

The assumptions of section 2 remain in force. As in [14, sec. 5, eq. (70)] we
additionally choose a disjoint decomposition

(45) C
r := Λ1 � Λ2

into a stable part Λ1 and an unstable part Λ2. The standard choice in the continuous
case is Λ2 := {z ∈ C; �(z) ≥ 0}r. For r = 1 the set Λ1 consists of the complex
numbers with negative real part which is customarily used for continuous stabilization
theory. Multidimensional stability and stabilization with respect to (45) have been
discussed in [14]. In the complex continuous case the decomposition (45) implies the
direct sum decomposition

(46) F1 = Flf = Flf,1 ⊕Flf,2, Flf,i = ⊕λ∈ΛiC[t]eλ•t, i = 1, 2,

of the space of polynomial-exponential functions. For the real and the discrete cases
analogous decompositions hold. These decompositions, in turn, furnish the direct
decomposition

(47) F = Flf ⊕F2 = FΛ
1 ⊕FΛ

2 , FΛ
1 := Flf,1, FΛ

2 = Flf,2 ⊕F2.

The map

(48) C
r ∼= Max(A), λ �→ mλ :=

r∑
k=1

A(sk − λk),

is bijective. The decomposition F := FΛ
1 ⊕FΛ

2 then induces the disjoint decomposition

(49)
Spec(A) = PΛ

1 � PΛ
2 with PΛ

1 := Ass(FΛ
1 ) = {mλ; λ ∈ Λ1} ⊆ Max(A)

and PΛ
2 := Ass(FΛ

2 ) = (Spec(A) \Max(A)) � {mλ; λ ∈ Λ2}.

A locally finite (torsion) module M is called stable with respect to the decomposition
(45) if Ass(M) ⊆ PΛ

1 . If M = A1×p/U is stable and C-finite-dimensional, its as-
sociated autonomous behavior B ∼= HomA(M,F) consists of polynomial-exponential
trajectories with exponents in Λ1 [13, eq. (38)]; indeed

(50) B = ⊕λ∈Λ1, mλ∈Ass(M)B(mλ), B(mλ) ⊆ C[t]peλ•t.

For r = 1 and Λ1 = {z ∈ C; �(z) < 0} this signifies that B is asymptotically stable.
The Serre subcategory C of locally finite modules and its associated Gabriel topol-

ogy is now replaced by the subcategory and Gabriel topology

(51)

CΛ := {C ∈ModA; HomA(C,FΛ
2 ) = 0} = {C ∈ ModA; ∀p ∈ PΛ

2 : Cp = 0} ⊆ C,

TΛ := {a ⊆ A; A/a ∈ CΛ} ⊆ T,

CΛ = {C ∈ModA; ∀x ∈ C : annA(x) ∈ TΛ} = {C ∈ ModA; Ass(C) ⊆ PΛ
1 }.

TΛ-torsion, TΛ-torsionfree, and TΛ-closed modules, the category ModA,TΛ , and the
quotient functor QΛ : ModA → ModA,TΛ are defined in analogy to the case of the
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topology T and have the corresponding properties. The TΛ-torsion radical torTΛ(M)
is the largest TΛ-torsion submodule of M and contained in Mlf = torT(M). Every
T-closed module is also TΛ-closed since TΛ ⊆ T. Therefore every A-module M gives
rise to the commutative diagram with exact rows,

(52)
0→ torTΛ(M)

inj−→ M
ηΛ

−→ QΛ(M) = QΛ(M/ torTΛ(M))⋂
‖ ↓ g = QΛ(η)

0→ torT(M)
inj−→ M

η−→ Q(M) = QΛQ(M),

where g = QΛ(η) is the unique A-linear map with gηΛ = η.
Mutatis mutandis equations (14)–(22), Lemma 2.3, Theorems 2.4, 2.5, 3.1, and 3.3,

and Algorithm 4.1 hold when F1,F2,P1,P2 are replaced by FΛ
1 ,FΛ

2 ,PΛ
1 ,PΛ

2 . We thus
obtain a theory of behaviors up to C-finite-dimensional, Λ-stable ones.

Remark 5.1. The localization theory can be applied to more general decomposi-
tions Spec(A) = Q1 � Q2 with the property that p1 ⊂ p2 ∈ Q2 implies p1 ∈ Q2, for
instance, for given n with 0 < n ≤ r,

Q1 := {p ∈ Spec(A); dim(A/p) < n}, Q2 := {p ∈ Spec(A); dim(Ap) ≤ r − n}.

Here we used dim(Ap) + dim(A/p) = r. In particular,

P1 = Max(A) = {p ∈ Spec(A); dim(A/p) < 1},

P2 = Spec(A) \Max(A) = {p; dim(Ap) ≤ r − 1}.

The choice

Q1 := {p ∈ Spec(A); dim(A/p) < r − 1},

Q2 := {p ∈ Spec(A); dim(Ap) ≤ 1}

leads to the pseudozero modules and pseudoisomorphisms from [4, Chap. VII, sec. 4.4,
Defs. 2 and 3].

Remark 5.2. In [14] the localization theory was applied to the Serre subcategory
and Gabriel topology

(53)
CIO,Λ := {C ∈ModA; ∀λ ∈ Λ2 : Cmλ

= 0} ⊃

CΛ =
{
C ∈ CIO,Λ; C locally finite

)
} and TIO,Λ :=

{
a ⊆ A; A/a ∈ CIO,Λ

}
.

The corresponding localization functor QIO,Λ satisfies [14, Lem. 3.4]

(54) QIO,Λ(A) = AT with T := {t ∈ A; ∀λ ∈ Λ2 : t(λ) 	= 0}.

A finitely generated (torsion) module M ∈ CIO,Λ gives rise to an autonomous behavior
B0 := HomA(M,F) which we call Λ-stable or T -stable. In [14] we mainly discussed
its part HomA(M,Flf) of polynomial-exponential trajectories. Theorems 3.1 and 3.3
also hold for this Serre subcategory and associated quotient module and give rise to a
theory of regular TIO,Λ-interconnections up to T -stable autonomous behaviors. Since
CIO,Λ is much bigger than CΛ from (51) and contains many nonlocally finite modules,
there are many more associated regular TIO,Λ- than TΛ-interconnections.
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The torsion radical torTIO,Λ(M) is given by the infinite intersection [14, Lemma 3.5]

(55)
torTIO,Λ(M) =

⋂
λ∈Λ2

ker
(
M

can−→Mmλ
, x �→ x

1

)

= {x ∈M ; ∀λ ∈ Λ2∃tλ ∈ A with tλ(λ) 	= 0 and tλx = 0}

and cannot be easily computed in general. The quotient module QIO,Λ(U) of a finitely
generated torsionfree module U ⊆ A1×l is also given by the infinite intersection [14,
Lem. 3.6]

(56) QIO,Λ(U) = A1×l
T

⋂ ⋂
λ∈Λ2

Umλ

and is also hard to compute in general. Define, however, M := A1×l/U and assume
that all modules Mmλ

= A1×l
mλ

/Umλ
, λ ∈ Λ2, are torsionfree. Then QIO,Λ(U) can be

computed as [14, Thm. 5.14]

(57) QIO,Λ(U) = Ucont,T ⊆ A1×l
T , where Ucont/U = tor(A1×l/U)

is the torsion submodule of M . If even M is torsionfree, i.e., if the behavior HomA

(M,F) is controllable, then QIO,Λ(U) = UT is the usual quotient module and its
AT -generators are the A-generators of U .

Hence, if in Theorem 3.3 the given behaviors B ⊆ B1 are controllable, matrices

(58)
R ∈ Ak×l, R1 ∈ Ak1×l with U = A1×kR, U1 = A1×k1R1 and

Q(U) = UT = A1×k
T R, Q(U1) = U1,T = A1×k1

T R1

are given. Hence B ⊆ B1 admit a regular TIO,Λ-interconnection if and only if equa-
tions (41) have a solution X ∈ Ak×k1T . But there is yet no algorithm which solves
inhomogeneous systems of linear equations in the quotient ring

AT , T = {t ∈ A; ∀λ ∈ Λ2 : t(λ) 	= 0},

as pointed out in [14, Rem. 5.10]; cf. also [7] and [25].

Acknowledgments. I appreciate the referees’ work in my interest. I thank
D. Napp Avelli and S. Shankar for pointing out that the behavior interconnection in
Theorem 3.3 is indeed regular. Although this is a simple observation, I had missed it.
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Abstract. This paper studies the habit-forming preference problem of maximizing total ex-
pected utility from consumption net of the standard of living, a weighted average of past consump-
tion. We describe the effective state space of the corresponding optimal wealth and standard of
living processes, identify the associated value function as a generalized utility function, and exploit
the interplay between dynamic programming and Feynman–Kac results via the theory of random
fields and stochastic partial differential equations (SPDEs). The resulting value random field of the
optimization problem satisfies a nonlinear, backward SPDE of parabolic type, widely referred to
as the stochastic Hamilton–Jacobi–Bellman equation. The dual value random field is characterized
further in terms of a backward parabolic SPDE which is linear. Progressively measurable versions of
stochastic feedback formulae for the optimal portfolio and consumption choices are obtained as well.

Key words. habit formation, generalized utility function, random fields, stochastic backward
partial differential equations, feedback formulae, stochastic Hamilton–Jacobi–Bellman equation
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1. Introduction. An important question in financial mathematics is to explain
the effect of past consumption patterns on current and future economic decisions.
A useful tool in this effort has been the concept of habit formation: an individual
who consumes portions of his wealth over time is expected to develop habits which
will have a decisive impact on his subsequent consumption behavior. Employed in
a wide variety of economic applications, habit formation was in turn considered by
several authors in the classical utility optimization problem (e.g., Sundaresan (1989),
Constantinides (1990), Detemple and Zapatero (1991, 1992), Heaton (1993), Chapman
(1998), Schroder and Skiadas (2002)).

The present paper studies portfolio/consumption optimization under habit for-
mation in the complete market model of Detemple and Zapatero (1992). We adopt
nonseparable von Neumann–Morgenstern preferences over a given time horizon [0, T ]
and study the stochastic control problem of maximizing total expected utility

(1.1) E

∫ T

0

u
(
t, c(t)− z(t; c)

)
dt

from consumption c(·) in excess of a standard of living (or “habit index”) z(·; c). This
is a weighted linear average of past consumption, given by

(1.2) z(t; c) � z e−
∫

t
0 α(v)dv +

∫ t

0

δ(s) e−
∫

t
s
α(v)dvc(s) ds, 0 ≤ t ≤ T,

with z ≥ 0 and nonnegative stochastic coefficients α(·), δ(·). Moreover, by assuming
infinite marginal utility at zero, i.e., u′(t, 0+) = ∞, we force consumption never to
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fall below the current level of standard of living, thus triggering the development
of “addictive” consumption patterns: the agent is constantly “forced” to consume
more than he used to in the past. At t = 0 the assumption u′(t, 0+) = ∞ postulates
the condition x > wz, specifying the wedge D of Assumption 4.1 as the domain of
acceptability for the initial wealth x and initial standard of living z. The quantity w
stands for the cost, per unit of standard of living, of the subsistence consumption: the
consumption policy that matches the standard of living exactly, at all times.

Existence of an optimal portfolio/consumption pair is proved in Detemple and
Zapatero (1992) by establishing a recursive linear stochastic equation for the properly
normalized marginal utility. In order to set up the mathematical background needed
for further analysis, we present a brief formulation of their solution. Our contribution
starts by characterizing the effective state space of the corresponding optimal wealth
X0(·) and standard of living z0(·) processes as the random wedge Dt (cf. (5.18))
determined by the evolution W(t) of w as a random process. This result reveals
the stochastic evolution of the imposed condition x > wz over time, in the sense
that X0(t) > W(t)z0(t) for all t ∈ [0, T ), and motivates the study of the dynamic
aspects of our stochastic control problem. Thus, we define the value function V of
the optimization problem as a mapping that depends on both x and z. Considering
the latter as a pair of variables running on D, we classify V in a broad family of
utility functions; in fact, V (·, z) and the utility function u(t, ·) exhibit similar analytic
properties. This is carried out through the convex dual of the value function, defined
in (5.24), in conjunction with differential techniques developed in Rockafellar (1970).

In order to describe quantitatively the dependence of the agent’s optimal invest-
ment π0(·) on his wealth X0(·) and standard of living z0(·), Detemple and Zapatero
(1992) restrict the utility function to have either the logarithmic u(t, x) = log x or the
power u(t, x) = xp/p form for a model with nonrandom coefficients. Driven by ideas
of dynamic programming, we pursue such formulae for the optimal policies, where
now u can be an arbitrary utility function and the model coefficients may be random
in general. Classical dynamic programming techniques are, however, inadequate for
the analysis of non-Markovian models. On the other hand, the dynamic evolution of
domain D, represented by the stochastically evolving wedges Dt, hints that the basic
principles of dynamic programming might be applicable in more general settings as
well. Indeed, Peng (1992) considered a stochastic control problem with stochastic co-
efficients and made use of Bellman’s optimality principle to formulate an associated
stochastic Hamilton–Jacobi–Bellman equation. The discussion in that paper was for-
mal, due to insufficient regularity of the value function. The present paper culminates
with an explicit application and validation of Peng’s ideas for utility maximization.

Since stock prices and the money-market price are not necessarily Markov pro-
cesses, we are now required to work with conditional expectations; these take into
account the market history up to the present and thereby lead to the consideration
of random fields. In this context, an important role is played by certain linear, back-
ward parabolic stochastic partial differential equations which characterize the result-
ing random fields as their unique adapted solutions; in other words, adapted versions
of stochastic Feynman–Kac formulae are established.

Under reasonable assumptions on the utility preferences, the adapted value ran-
dom field of the stochastic control problem solves, in the classical sense, a nonlin-
ear, backward stochastic partial differential equation of parabolic type. Namely, the
value random field possesses sufficient smoothness, such that all of the spatial deriva-
tives involved in the equation exist almost surely. This equation is the stochastic
Hamilton–Jacobi–Bellman equation one would expect, according to the program of
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Peng (1992), and is derived from two linear Cauchy problems, which admit unique so-
lutions subject to certain regularity conditions. Apart from the classical linear/quadratic
case discussed in Peng (1992), and to the best of our knowledge, this work is the first
to illustrate explicitly, directly, and completely the role of backward stochastic par-
tial differential equations (SPDEs) in the study of stochastic control problems in any
generality; see Remarks 7.5 and 7.6 in this respect.

We also characterize the dual value random field as the unique adapted solution
of a linear, parabolic backward SPDE. We conclude by deriving stochastic “feedback
formulae” for the optimal portfolio-consumption decisions, in terms of the pair con-
sisting of the current level of wealth and standard of living. In the special case of
deterministic coefficients, these formulae establish this pair as a sufficient statistic for
the optimal investment and consumption actions of an economic agent in this market.

Preview. Sections 2–5 introduce the market model and study the portfolio-
consumption stochastic control problem under habit formation. Section 6 investi-
gates the interrelation of dynamic programming with the theory of SPDEs, which
establishes the optimal policies in “feedback form”. Section 7 develops the stochastic
Hamilton–Jacobi–Bellman equation satisfied by the value random field and provides
an equivalent characterization for its dual. A stochastic Feynman–Kac formula is
presented in section 8 (appendix), and conclusions follow in section 9.

Literature overview. Duality methods in stochastic control were introduced by
Bismut (1973) and elaborated further in Xu (1990) and Karatzas and Shreve (1998).
Detemple and Zapatero (1991, 1992) employ martingale methods (Cox and Huang
(1989), Karatzas (1989), Karatzas, Lehockzy, and Shreve (1987), and Pliska (1986))
to derive a closed-form solution for the optimal consumption policy, denoted by c0(·).
They also provide insights about the structure of the optimal portfolio investment
π0(·) that finances the policy c0(·), via an application of the Clark (1970)/Ocone and
Karatzas (1991) formula.

Detemple and Karatzas (2003) explored more recently a case of nonaddictive
habits. In particular, their optimization problem deals with a utility function u:[0, T ]×
R → R (e.g., of exponential type) where the marginal utility at zero is finite and
the “addiction” condition (4.2) is removed. Nonetheless, the natural constraint of
a nonnegative consumption plan remains intact in the model. The existence of an
optimal pair was demonstrated and the optimal consumption process was provided in
closed form, in terms of an endogenously determined stopping time, after which the
nonnegativity constraint on consumption ceases to be binding.

The use of dynamic programming techniques on stochastic control problems orig-
inated with Merton (1969, 1971), who obtained closed-form solutions in the special
case of constant coefficients for models without habit formation. The infinite-horizon
case was generalized by Karatzas et al. (1986). Karatzas, Lehoczky, and Shreve (1987)
coupled martingale methods with convexity methods to allow random, adapted model
coefficients for general preferences; nonetheless, they reinstated the Markovian frame-
work with constant coefficients to obtain the optimal portfolio in closed form. A
study on the case of deterministic coefficients in markets without habits can be found
in Karatzas and Shreve (1998).

“Pathwise” stochastic control problems were studied recently by Lions and Sou-
ganidis (1998a, 1998b), who proposed a new notion of stochastic viscosity solutions for
the associated fully nonlinear stochastic Hamilton–Jacobi–Bellman equations. In two
subsequent papers, Buckdahn and Ma (2001a, 2001b) employ a Doss–Sussmann-type
transformation to extend this notion in a “pointwise” manner and obtain accord-
ingly existence and uniqueness results for similar SPDEs. A problem of “pathwise”
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stochastic optimization, that emerges from mathematical finance and concerns the
dependence on the paths of an exogenous noise, is considered by Buckdahn and Ma
(2007).

Results concerning the existence, uniqueness, and regularity of adapted solutions
to SPDEs of the type considered in the present paper were obtained in Ma and
Yong (1997, 1999). Kunita (1990) contains a systematic study of semimartingales with
spatial parameters, including the derivation of the generalized Itô–Kunita–Wentzell
formula that is put to significant use throughout our analysis.

The setting of (1.1), (1.2) represents only one of many possible ways in which to
capture effects of habit formation and/or intertemporal substitution of preferences.
We refer the reader to Hindy and Huang (1993), Hindy, Huang, and Kreps (1992),
and Bank and Riedel (2000, 2001) for alternative approaches using other functionals
of past and present consumption, as well as to the references in these papers and to
the survey by Bank and Föllmer (2003).

Appendix on notation. The paper is quite heavy with notation, so here is a partial
list for ease of reference:
• u(·), ũ(·), I(·): a utility function, its convex dual, and the inverse function of its

derivative u′(·), respectively; see section 3.
• Z(·), Zt(·): exponential (local) martingales; (2.6) and (6.4), respectively.
• H(·), Ht(·): state price density processes; (2.8) and (6.4), respectively.
• Γ(·),Γt(·): state price density processes adjusted for habit formation; (5.1) and

(6.5), respectively.
• V (x, z),V(t, x, z): the value function of (4.8) and the value random field of (7.4),

respectively.
• Ṽ (y), Ṽ(t, y): the convex duals of the value function V (·, ·) and of the random

field V(t, ·, ·) as above; they appear in (5.24) and (7.23), respectively.
• w,W(·), and w(·): the marginal costs of subsistence consumption in (4.6), (5.12),

in (5.19), and in (6.6), respectively.
• X (·), G(·) and X(t, ·), G(t, ·): the auxiliary functions of (5.3), (5.17) and the

auxiliary random fields of (6.13), (7.7), respectively.
• Y(·), Y(t, ·): the inverses of the function X (·) and of the random field X(t, ·).
• c0(·), π0(·), and X0(·): the optimal consumption, portfolio, and wealth processes

of (5.10), (5.14), and (5.13), respectively.
• A′(x, z), A′(t, x, z): classes of admissible portfolio/consumption process pairs;

Definition 4.2 and (7.5), respectively.
• B′(x, z): class of admissible consumption processes; Definition 4.3.
• C(t, x, z), Π(t, x, z): the optimal consumption and portfolio random fields of

(6.20) and (6.21), respectively.
The following notation will also be in use throughout the paper:
For any integer k ≥ 0, let
• Ck(Rn; Rd) denote the set of functions from R

n to R
d that are continuously

differentiable up to order k.
Consider a probability space (Ω,F , P ) endowed with a filtration F. Then for any

1 ≤ p ≤ ∞, any Banach space X with norm ‖ · ‖X, and any sub-σ-algebra G ⊆ F , let
• L

p
G(Ω; X) denote the set of all X-valued, G-measurable random variables X such

that E‖X‖p
X
<∞;

• L
p
F
(0, T ; X) denote the set of all F-progressively measurable, X-valued processes

X : [0, T ]× Ω→ X such that
∫ T
0
‖X(t)‖p

X
dt <∞ almost surely;
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• L
p
F
(0, T ; Lp(Ω; X)) denote the set of all F-progressively measurable, X-valued

processes X : [0, T ]× Ω→ X such that
∫ T
0
E‖X(t)‖p

X
dt <∞;

• CF([0, T ]; X) denote the set of all continuous, F-adapted processes X(·, ω) :
[0, T ]→ X for P -a.e. ω ∈ Ω.

We shall define similarly the set CF([0, T ]; Lp(Ω; X)), and let R
+ stand for the

positive real numbers.

2. The model. We adopt a model for the financial market M0 which consists
of one riskless asset (money market) with price S0(t) given by

(2.1) dS0(t) = r(t)S0(t)dt, S0(0) = 1,

and m risky securities (stocks) with prices per share {Si(t)}1≤i≤m, satisfying the
stochastic differential equations

(2.2) dSi(t) = Si(t)

⎡
⎣bi(t)dt+

d∑
j=1

σij(t) dWj(t)

⎤
⎦ , i = 1, . . . ,m.

Here W (·) = (W1(·), . . . ,Wd(·))∗ is a d-dimensional Brownian motion on a probability
space (Ω,F , P ) and F = {F(t); 0 ≤ t ≤ T } will denote the P -augmentation of the
Brownian filtration FW (t) � σ(W (s); s ∈ [0, t]). We assume that d ≥ m; i.e., the
number of sources of uncertainty in the model is at least as large as the number of
stocks available for investment. All processes encountered in this paper are defined on
a fixed, finite time horizon [0, T ], where T is the terminal time.

The interest rate r(·), as well as the instantaneous rate of return vector b(·) =
(b1(·), . . . , bm(·))∗ and the volatility matrix σ(·) = {σij(·)}1≤i≤m,1≤j≤d, are taken to
be F-progressively measurable random processes and to satisfy

(2.3)
∫ T

0

‖b(t)‖dt <∞,
∫ T

0

|r(t)|dt ≤ �

almost surely for some given real constant � > 0. It will be assumed that σ(·) is
bounded and that the matrix σ(t) has full rank for every t. Under the latter assumption
the matrix σ(·)σ∗(·) is invertible, so its inverse and the progressively measurable
relative risk process

(2.4) ϑ(t) � σ∗(t)(σ(t)σ∗(t))−1[b(t)− r(t)1m]

are well defined; here we denote by 1k the k-dimensional vector whose every compo-
nent is one. We make the additional assumption that ϑ(·) satisfies

(2.5) E

∫ T

0

‖ϑ(t)‖2dt <∞.

We shall encounter quite often the exponential local martingale process

(2.6) Z(t) � exp
{
−
∫ t

0

ϑ∗(s)dW (s) − 1
2

∫ t

0

‖ϑ(s)‖2ds
}

;

the discount process

(2.7) β(t) � exp
{
−
∫ t

0

r(s)ds
}

;
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their product, that is, the so-called state-price density process

(2.8) H(t) � β(t)Z(t);

as well as the process

(2.9) W0(t) �W (t) +
∫ t

0

ϑ(s)ds, 0 ≤ t ≤ T.

We envision an economic agent who starts with a given initial endowment x > 0
and whose actions cannot affect the market prices. At any time t ∈ [0, T ] the agent
can decide both the proportion πi(t) of his wealth X(t) to be invested in the ith stock
(1 ≤ i ≤ m) and his consumption rate c(t) ≥ 0. These decisions cannot anticipate
the future but must depend only on the currently available information F(t). The
remaining amount [1 −

∑m
i=1 πi(t)]X(t) is invested in the money market. Here the

investor is allowed both to sell stocks short and to borrow money at the money
market interest rate r(·); that is, the πi(·) above are not restricted to take values only
in [0, 1], and their sum may exceed 1.

The resulting portfolio strategy π = (π1, . . . , πm)∗ : [0, T ]×Ω→ R
m and consump-

tion strategy c : [0, T ] × Ω → [0,∞) are assumed to be F-progressively measurable
processes and to satisfy the integrability condition

∫ T
0

(
c(t) + ‖π(t)‖2

)
dt <∞ almost

surely.
According to the model dynamics of (2.1) and (2.2), the wealth process X(·) ≡

Xx,π,c(·), corresponding to the portfolio/consumption pair (π, c) and initial capital
x ∈ R

+, is the solution of the linear stochastic differential equation

dX(t) =
m∑
i=1

πi(t)X(t)

⎧⎨
⎩bi(t)dt+

m∑
j=1

σij(t)dWj(t)

⎫⎬
⎭(2.10)

+

{
1−

m∑
i=1

πi(t)

}
X(t)r(t)dt− c(t)dt(2.11)

= [r(t)X(t) − c(t)]dt+X(t)π∗(t)σ(t)dW0(t),

subject to the initial condition X(0) = x > 0. Equivalently, we have

(2.12) β(t)X(t) +
∫ t

0

β(s)c(s)ds = x+
∫ t

0

β(s)X(s)π∗(s)σ(s)dW0(s),

and, from Itô’s lemma, applied to the product of Z(·) and β(·)X(·), we obtain

(2.13) H(t)X(t) +
∫ t

0

H(s)c(s)ds = x+
∫ t

0

H(s)X(s)[σ∗(s)π(s) − ϑ(s)]∗dW (s).

A portfolio/consumption process pair (π, c) is called admissible for the initial capital
x ∈ R

+ if the agent’s wealth remains nonnegative at all times, i.e., if

(2.14) X(t) ≥ 0 ∀ t ∈ [0, T ],

almost surely. We shall denote the family of admissible pairs (π, c) by A(x).
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For any (π, c) ∈ A(x), the left-hand side of (2.13) is a continuous and nonnegative
local martingale, thus a supermartingale. Consequently,

(2.15) E

(∫ T

0

H(s)c(s)ds

)
≤ x ∀ (π, c) ∈ A(x).

Let us denote by B(x) the set of consumption policies c : [0, T ]×Ω→ [0,∞) which
are progressively measurable and satisfy (2.15). We have just verified that c(·) ∈ B(x)
for all pairs (π, c) ∈ A(x). In a complete market, where the number of stocks available
for trading matches exactly the dimension of the “driving” Brownian motion, the
converse holds as well, in the sense that any consumption strategy c(·) satisfying
(2.15) can be financed by some portfolio policy π(·). For this reason, (2.15) can be
interpreted as a “budget constraint”.

Lemma 2.1. Let the market model of (2.1), (2.2) be complete, namely, m = d.
Then, for every consumption process c(·) ∈ B(x), there exists a portfolio process π(·)
such that (π, c) ∈ A(x), and the associated wealth process X(·) ≡ Xx,π,c(·) is given by

H(t)X(t) = x+Et(D(t))−E(D(0)), t ∈ [0, T ], where D(t) �
∫ T

t

H(s)c(s)ds.

Here and in what follows, Et[·] denotes conditional expectation E[·|F(t)] with
respect to the probability measure P , given the σ-algebra F(t). For the proof of
Lemma 2.1, see Karatzas and Shreve (1998), pp. 166–169.

3. Utility functions. A utility function is a jointly continuous mapping u :
[0, T ]×R

+ → R such that, for every t ∈ [0, T ], the function u(t, ·) is strictly increasing,
strictly concave, and of class C1(R+), and its derivative u′(t, x) � ∂

∂xu(t, x) satisfies

(3.1) u′(t, 0+) =∞, u′(t,∞) = 0.

These assumptions imply that the inverse I(t, ·) : R
+ → R

+ of the function u′(t, ·)
exists for every t ∈ [0, T ], and is continuous and strictly decreasing with

(3.2) I(t, 0+) =∞, I(t,∞) = 0.

Furthermore, one can easily see the stronger assertion

(3.3) lim
x→∞

(
max
t∈[0,T ]

u′(t, x)
)

= 0.

Let us now introduce, for each t ∈ [0, T ], the Legendre–Fenchel transform ũ(t, ·) :
R

+ → R of the convex function −u(t,−x), namely,

(3.4) ũ(t, y) � max
x>0

[
u(t, x)− xy

]
= u

(
t, I(t, y)

)
− yI(t, y), 0 < y <∞.

The function ũ(t, ·) is strictly decreasing, is strictly convex, and satisfies

(3.5)
∂

∂y
ũ(t, y) = −I(t, y), 0 < y <∞.

We note here that ũ : [0, T ]× R
+ → R is jointly continuous as well.
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4. The maximization problem. For given utility function u : [0, T ]×R
+ → R

and initial capital x > 0, we shall consider von Neumann–Morgenstern preferences
with expected utility

(4.1) J(z;π, c) ≡ J(z; c) � E
[∫ T

0

u
(
t, c(t)− z(t; c)

)
dt

]
,

corresponding to any given pair (π, c) ∈ A(x) and its associated index process z(·) ≡
z(·; c), defined in (1.2) and (4.3). This process represents the “standard of living” of the
decision maker, an index that captures past consumption behavior and conditions the
current consumption felicity by developing “habits”. Of course, in order to ensure that
the above expectation exists and is finite, we shall take into account only consumption
strategies c(·) that satisfy

(4.2) c(t)− z(t; c) > 0 ∀ 0 ≤ t ≤ T

almost surely. This additional budget specification insists that consumption must
always exceed the standard of living, establishing incentives for a systematic buildup
of habits over time and leading to “addiction patterns”.

We shall stipulate that the standard of living follows the dynamics

dz(t) =
(
δ(t)c(t) − α(t)z(t)

)
dt, t ∈ [0, T ],

z(0) = z.
(4.3)

Here α(·) and δ(·) are nonnegative, bounded, and F-adapted processes and z ≥ 0 is a
given real number. Thus, there exist constants A > 0 and Δ > 0 such that

(4.4) 0 ≤ α(t) ≤ A, 0 ≤ δ(t) ≤ Δ ∀ t ∈ [0, T ]

hold almost surely. Equivalently, (4.3) stipulates z(·) ≡ z(·; c) as in (1.2) and expresses
z(·) as an exponentially weighted average of past consumption.

It is not hard to see that the constraint (4.2) forces the consumption c(·) to always
exceed the so-called subsistence consumption ĉ(·), for which ĉ(·) ≡ z(·; ĉ). This is the
consumption pattern that matches exactly the standard of living at all times; from
(4.3), this subsistence consumption satisfies the linear equation

d ĉ(t) =
(
δ(t)− α(t)

)
ĉ(t)dt, t ∈ [0, T ], and ĉ(0) = z,

and we claim that, with ẑ(·) � z(·; ĉ), the constraint (4.2) implies that

(4.5) c(t) > ĉ(t) = ẑ(t) = z e
∫

t
0 (δ(v)−α(v))dv ∀ t ∈ [0, T ].

Indeed, in light of (1.2) the inequality (4.2) can be cast as

Q(t) � B(t)−
∫ t

0

B(s)δ(s) ds > B̂(t)−
∫ t

0

B̂(s)δ(s) ds � Q̂(t), 0 ≤ t ≤ T,

where B(t) � c(t) e
∫ t
0 α(s)ds, B̂(t) � ĉ(t) e

∫ t
0 α(s)ds. A straightforward integration by

parts deduces from this inequality the comparison

B(t) = Q(t) +
∫ t

0

Q(s) e
∫ t

s
δ(u)du ds > Q̂(t) +

∫ t

0

Q̂(s) e
∫ t

s
δ(u)du ds = B̂(t),

namely, the inequality claimed in (4.5).
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Back into the budget constraint (2.15), this inequality (4.5) gives x > wz, where

(4.6) w � E
[∫ T

0

e
∫ t
0 (δ(v)−α(v))dvH(t)dt

]

represents the “marginal” cost of subsistence consumption per unit of standard of
living. Therefore, we need to impose the following restriction on the initial capital x
and the initial standard of living level z.

Assumption 4.1. In the notation of (4.6), the pair (x, z) belongs to the set

D �
{
(x, z) ∈ R

+ × [0,∞); x > wz
}
.

Definition 4.2. The dynamic optimization problem is to maximize the expres-
sion of (4.1) over the class A′(x, z) of admissible portfolio/consumption pairs (π, c) ∈
A(x) that satisfy (4.2) and

(4.7) E

[∫ T

0

u−
(
t, c(t)− z(t; c)

)
dt

]
<∞

(here and in what follows, b− denotes the negative part of the real number b). The
value function of this problem will be denoted by

(4.8) V (x, z) � sup
(π,c)∈A′(x,z)

J(z;π, c), (x, z) ∈ D.

Definition 4.3. The static optimization problem is to maximize the expression
(4.1) over the set B′(x, z) of consumption processes c(·) ∈ B(x) that satisfy (4.2) and
(4.7). The value function of this problem will be denoted by

(4.9) U(x, z) � sup
c(·)∈B′(x,z)

J(z; c), (x, z) ∈ D.

We obtain from (2.15) that V (x, z) ≤ U(x, z) for all (x, z) ∈ D. In fact, equality
prevails here: it suffices to solve only the static maximization problem, since for a
static consumption optimizer process c0(·) ∈ B′(x, z) in (4.9) we can always construct,
according to Lemma 2.1, a portfolio process π0(·) such that (π0, c0) ∈ A′(x, z) satisfies

U(x, z) = J(z; c0) = J(z; c0, π0) = V (x, z) ∀ (x, z) ∈ D

and constitutes a dynamic portfolio/consumption maximizing process pair for (4.8).
We also note that the set B′(x, z) of Definition 4.3 is convex, thanks to the linearity

of c �→ z(t; c) and the concavity of x �→ u(t, x).

5. Solution of the optimization problem in complete markets. The static
optimization problem of Definition 4.3 is treated as a typical maximization problem
with constraints (2.15) and (4.2) in the case m = d of a complete market and admits
a solution derived by Detemple and Zapatero (1992). In this section, we shall follow
briefly their analysis, obtaining further results associated with the value function V
and with related features of the problem. More precisely, we shall identify the effective
state space for the vector of wealth/standard of living processes, generated by the
optimal portfolio/consumption pair, as a random wedge spanned by the temporal
variable t ∈ [0, T ] and a family of suitable random half-planes (cf. Theorem 5.5).
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Theorem 5.8 describes the relation of the value function V with a utility function as
defined in section 3 and begins the study of its dual value function Ṽ . An alternative
representation for the quantity w of (4.6) is provided as well.

In providing constructive arguments for the existence of an optimal consumption
policy to the static problem, a prominent role will be played by the “adjusted” (for
the formation of habits) state-price density process

(5.1) Γ(t) � H(t) + δ(t) · Et

(∫ T

t

e
∫ s

t
(δ(v)−α(v))dvH(s)ds

)
, t ∈ [0, T ],

which solves the recursive linear stochastic equation

(5.2) Γ(t) = H(t) + δ(t) · Et

(∫ T

t

e−
∫

s
t
α(v)dvΓ(s)ds

)
, t ∈ [0, T ];

cf. Detemple and Zapatero (1992). The process Γ(·) is the state-price density process
H(·) compensated by an additional term that reflects the effect of habits. (In the
absence of habits, that is, with δ(·) ≡ 0, we have Γ(·) ≡ H(·).) Furthermore, we shall
need to impose the following condition.

Assumption 5.1. It will be assumed that, for every y ∈ R
+, we have

E

(∫ T

0

H(t)I(t, yΓ(t)) dt

)
<∞ and E

(∫ T

0

∣∣u(t, I(t, yΓ(t))
)∣∣ dt

)
<∞.

In what follows we shall provide conditions, on both the utility preferences and the
model coefficients, which ensure the validity of the above assumption; cf. Remarks 5.7
and 6.3. Under Assumption 5.1, the function

(5.3) X (y) � E
[∫ T

0

Γ(t)I(t, yΓ(t))dt

]
, 0 < y <∞,

inherits from I(t, ·) its continuity and strict decrease, as well as X (0+) = ∞ and
X (∞) = 0. We shall denote the (continuous, strictly decreasing, onto) inverse of this
function by Y(·). Obviously, then Assumption 4.1 ensures the existence of a number
y0 � Y(x− wz) ∈ R

+ that satisfies

(5.4) X (y0) = x− wz.

With this y0 > 0, we consider now the process of net consumption given by

(5.5) c0(t)− z(t; c0) � I
(
t, y0Γ(t)

)
for t ∈ [0, T ].

Inverting (5.5), we derive the relationship

(5.6) Γ(t) =
1
y0
u′
(
t, c0(t)− z(t; c0)

)
, t ∈ [0, T ],

which identifies the “adjusted” state-price density process Γ(·) as a “normalized
marginal utility” process. Substituting back into (4.3), the standard of living pro-
cess z0(·) ≡ z(·; c0) is seen to satisfy the dynamics

(5.7) dz0(t) =
[
δ(t)I(t, y0Γ(t)) + (δ(t)− α(t))z0(t)

]
dt, z0(0) = z;
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whereas solving the first-order linear ordinary differential equation (5.7) we arrive at
the expression

(5.8) z0(t) = e
∫

t
0 (δ(v)−α(v))dv

[
z +

∫ t

0

δ(s)F0(s)ds
]
, t ∈ [0, T ],

with

(5.9) F0(t) � e
∫

t
0 (α(v)−δ(v))dv I

(
t, y0Γ(t)

)
, t ∈ [0, T ].

Thanks to (5.5) and (5.8), we obtain the consumption process as

(5.10) c0(t) = e
∫ t
0 (δ(v)−α(v))dv

[
F0(t) + z +

∫ t

0

δ(s)F0(s)ds
]
, t ∈ [0, T ].

Theorem 5.2. Given Assumptions 4.1 and 5.1, the consumption process c0(·) of
(5.10) solves the static optimization problem of Definition 4.3 and satisfies the budget
constraint (2.15) without slackness; that is, c0(·) ∈ B′(x, z) with

(5.11) E

[∫ T

0

H(t)c0(t)dt

]
= x.

Furthermore, we have that J(z; c) ≤ J(z; c0) <∞ holds for any c(·) ∈ B′(x, z).
Proof. From Assumption 5.1 and the identity (5.5), we see that c0(·) satisfies

condition (4.7) as well as J(z; c0) <∞. On the other hand, using (5.10) we obtain

E

[∫ T

0

H(t)c0(t)dt

]
= E

[∫ T

0

e
∫

t
0 (δ(v)−α(v))dvH(t) (F0(t) + z)dt

+
∫ T

0

e
∫ t
0 (δ(v)−α(v))dvH(t)

(∫ t

0

δ(s)F0(s)ds
)
dt

]

= E

[∫ T

0

e
∫

t
0 (δ(v)−α(v))dvH(t) (F0(t) + z)dt

+
∫ T

0

δ(t)F0(t) · Et

(∫ T

t

e
∫

s
0 (δ(v)−α(v))dvH(s)ds

)
dt

]

= E

[∫ T

0

Γ(t)I(t, y0Γ(t))dt

]
+ wz = x.

(The next-to-last equation comes from the definitions (5.1), (5.9), whereas the last
equation is a consequence of (5.3), (5.4).) The property (4.2) is also satisfied by c0(·),
thanks to (5.5) and to the property of infinite marginal utility at the origin, imposed
in (3.1). It follows readily that c0(·) ∈ B′(x, z).

A proof for the last assertion of the theorem was given by Detemple and Karatzas
(2003), in the case of nonaddictive habits.

Remark 5.3. From (5.4), (5.11), (5.3), (5.5), (5.2), and (1.2), we have for z > 0
the computations

zw = E

∫ T

0

H(t)c0(t)dt−X (y0) = E

∫ T

0

[
H(t)c0(t)− Γ(t)

(
c0(t)− z0(t)

)]
dt
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= E

∫ T

0

[
−δ(t)Et

(∫ T

t

e−
∫

s
t
α(v)dvΓ(s)ds

)
c0(t) + z0(t)Γ(t)

]
dt

= E

[
−
∫ T

0

Γ(s)
(∫ s

0

δ(t)e−
∫ s

t
α(v)dvc0(t)dt

)
ds+

∫ T

0

z0(t)Γ(t)dt

]

= E

∫ T

0

(
z0(t)−

∫ t

0

δ(s)e−
∫ t

s
α(v)dvc0(s)ds

)
Γ(t) dt

= z · E
∫ T

0

e−
∫

t
0 α(v)dv Γ(t) dt.

We obtain the expression

(5.12) w = E

[∫ T

0

e−
∫ t
0 α(v)dv Γ(t) dt

]
,

which recasts the “subsistence-consumption-cost-per-unit-of-standard-of-living” quan-
tity w of (4.6) as a weighted average of the “adjusted state-price density process” Γ(·)
of (5.1), discounted at the rate α(·).

This representation (5.12) of w makes the terminology “adjusted state-price den-
sity” for Γ(·) quite intuitive: namely, a comparison of (5.12) with (4.6), which involves
only the density processH(·), suggests the significance of Γ(·) as a modified state-price
density process that takes habit formation into account.

Corollary 5.4. Under Assumptions 4.1 and 5.1, there exists a portfolio process
π0(·) such that the pair (π0, c0) ∈ A′(x, z) attains the supremum of J(z;π, c) over
A′(x, z) in (4.8), and the corresponding wealth process X0(·) ≡ Xx,π0,c0(·) is given by

(5.13) X0(t) =
1

H(t)
Et

[∫ T

t

H(s)c0(s) ds

]
, t ∈ [0, T ].

This optimal investment π0(·) has the representation

(5.14) π0(t) =
(
σ(t)σ∗(t)

)−1
σ(t)

[
ψ0(t)

X0(t)H(t)
+ ϑ(t)

]
,

in terms of the R
d-valued, F-progressively measurable, almost surely square-integrable

process ψ0(·) that represents the martingale

(5.15) M0(t) � Et

[∫ T

0

H(s)c0(s) ds

]
, t ∈ [0, T ],

as a stochastic integral, namely, M0(t) = x+
∫ t
0 ψ

∗
0(s)dW (s). Furthermore, the value

function V of the dynamic maximization problem (4.8) is given as

(5.16) V (x, z) = G
(
Y(x− wz)

)
, (x, z) ∈ D;

here Y(·) is the inverse of the function X (·), defined in (5.3), and

(5.17) G(y) � E
[∫ T

0

u
(
t, I(t, yΓ(t))

)
dt

]
, y ∈ R

+.
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Proof. The existence of the optimal portfolio π0(·), along with the validation
of (5.13)–(5.15), is a consequence of Lemma 2.1 and (5.11). From the optimality of
(π0, c0) we get

V (x, z) = E

[∫ T

0

u
(
t, c0(t)− z0(t)

)
dt

]
, (x, z) ∈ D,

and (5.16) follows readily from (5.5), (5.4).
The optimal policies (π0, c0) drive the investor to bankruptcy at time t = T : we

have X0(T ) = 0 almost surely. This is natural, since utility is derived here only from
consumption, not from terminal wealth.

Assumption 4.1 determines the “domain of acceptability” D for the initial values
of wealth and standard of living. The next issue to be explored is the temporal evo-
lution of these quantities as random processes, under the optimal pair policy (π0, c0)
and for all times t ∈ [0, T ].

Theorem 5.5. Under Assumptions 4.1 and 5.1, the effective state space for the
optimal wealth/standard of living process

(
X0(·), z0(·)

)
is given by the family of ran-

dom wedges

Dt �
{

(x, z) ∈ R
+ × [0,∞); x >W(t)z

}
, 0 ≤ t < T,

DT �
{

(0, z); z ∈ [0,∞)
}
,

(5.18)

where

(5.19) W(t) � 1
H(t)

Et

[∫ T

t

e
∫ s

t
(δ(v)−α(v))dvH(s) ds

]
, 0 ≤ t ≤ T,

stands for the cost of subsistence consumption, per unit of standard of living, at time
t. In other words, we have, almost surely,

(5.20)
(
X0(t), z0(t)

)
∈ Dt ∀ t ∈ [0, T ].

Note that we have W(0) = w and D0 = D, the quantities of Assumption 4.1; the
random wedges Dt of (5.18) determine dynamically the range where the vector process
of wealth/standard of living

(
X0(·), z0(·)

)
takes values under the optimal regime.

Proof of Theorem 5.5. Consider the optimal pair (π0, c0) and the resulting stan-
dard of living process z0(·), specified, respectively, by (5.14), (5.10), and (5.8). Re-
calling the definitions of (5.1) and (5.19), the corresponding wealth process X0(·) of
(5.13) may be reformulated as

X0(t) =
1

H(t)
Et

[∫ T

t

H(s)

{
I(s, y0Γ(s)) + ze

∫
s
0 (δ(v)−α(v))dv

+
∫ s

0

δ(θ)e
∫ s

θ
(δ(v)−α(v))dvI(θ, y0Γ(θ))dθ

}
ds

]

=
1

H(t)
Et

[∫ T

t

H(s)

{
ze

∫ s
0 (δ(v)−α(v))dv
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+
∫ t

0

δ(θ)e
∫

s
θ
(δ(v)−α(v))dvI(θ, y0Γ(θ))dθ

}
ds

+
∫ T

t

H(s)I(s, y0Γ(s))ds

+
∫ T

t

δ(θ)I(θ, y0Γ(θ))

(∫ T

θ

e
∫ s

θ
(δ(v)−α(v))dvH(s)ds

)
dθ

]

=
1

H(t)
Et

[
z0(t)

∫ T

t

e
∫ s

t
(δ(v)−α(v))dvH(s)ds

+
∫ T

t

{
H(s) + δ(s)Es

(∫ T

s

H(θ)e
∫ θ

s
(δ(v)−α(v))dvdθ

)}
I(s, y0Γ(s))ds

]

=W(t)z0(t) +
1

H(t)
Et

[∫ T

t

Γ(s)I(s, y0Γ(s))ds

]
, 0 ≤ t ≤ T.

Therefore,

X0(t)−W(t)z0(t) =
1

H(t)
Et

[∫ T

t

Γ(s)I(s, y0Γ(s))ds

]
> 0 ∀ t ∈ [0, T ),

almost surely, and (5.20) holds on [0, T ). The remaining assertions of the theorem
follow directly from (5.13).

Example 5.6 (logarithmic utility). Consider u(t, x) = log x for all (t, x) ∈ [0, T ]×
R

+. Then we have that I(t, y) = 1/y for (t, y) ∈ [0, T ]×R
+, X (y) = T/y for y ∈ R

+,
and Y(x) = T/x for x ∈ R

+. The optimal consumption, standard of living, and wealth
processes are as follows:

c0(t) = z e
∫ t
0 (δ(v)−α(v))dv +

x− wz
T

[
1

Γ(t)
+
∫ t

0

δ(s)
Γ(s)

e−
∫ t

s
(δ(v)−α(v))dvds

]
,

z0(t) = z e
∫ t
0 (δ(v)−α(v))dv +

x− wz
T

∫ t

0

δ(s)
Γ(s)

e−
∫ t

s
(δ(v)−α(v))dv ds,

X0(t) =
1

H(t)

[
z0(t)Et

(∫ T

t

e
∫ s

t
(δ(v)−α(v))dvH(s)ds

)
+
T − t
T

(x− wz)
]

for 0 ≤ t ≤ T. Moreover,

G(y) = −T log y − E
[∫ T

0

log Γ(t)dt

]
, y ∈ R

+,

and the value function is

V (x, z) = T log
(
x− wz
T

)
− E

[∫ T

0

log Γ(t)dt

]
, (x, z) ∈ D.
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Note here that the conditions of Assumption 5.1 are satisfied; the first holds trivially,
and the second is implied by the observation

E
(
log Γ(t)

)
≤ log

(
E(Γ(t))

)
≤ �+ log

(
1 + ΔTeΔT

)
<∞, 0 ≤ t ≤ T,

where we used Jensen’s inequality, (2.3), and the supermartingale property of Z(·).
Finally, one may ascertain an explicit stochastic integral representation for M0(·),
defined in (5.15), under the additional assumption of deterministic model coefficients;
cf. Example 7.9. The optimal portfolio process π0(·) then follows by (5.14).

Remark 5.7. Consider utility functions such that

(5.21) sup
0≤t≤T

I(t, y) ≤ κy−ρ ∀ y ∈ R
+

holds for some κ > 0, ρ > 0. Then the first condition of Assumption 5.1 holds under
at least one of the subsequent conditions:

(5.22) 0 < ρ ≤ 1

or

(5.23) ϑ(·) is bounded uniformly on [0, T ]× Ω.

In particular, (5.21) and (5.22) yield

X (y) ≤ κy−ρE
[∫ T

0

(1 ∨ Γ(t))

]
<∞, y ∈ R

+.

Otherwise, use (5.23), (2.3), and the Novikov condition to set (H(t))1−ρ = m(t)L(t),
in terms of the uniformly bounded process

m(t) � exp
{

(ρ− 1)
∫ t

0

r(v)dv +
1
2
ρ(ρ− 1)

∫ t

0

‖ϑ(v)‖2dv
}

and the martingale

L(t) � exp
{

(ρ− 1)
∫ t

0

ϑ∗(v)dW (v) − 1
2
(ρ− 1)2

∫ t

0

‖ϑ(v)‖2dv
}
.

Then (5.21) implies that

X (y) ≤ κy−ρ
(
1 + ΔTe�+ΔT

)(1−ρ)
E

[∫ T

0

m(t)L(t)dt

]
<∞, y ∈ R

+.

The function V (·, z) has all of the properties of a utility function as defined in
section 3 for any given z ≥ 0; we formalize this aspect of the value function in the
result that follows, leading to the notion of a generalized utility function and to the
explicit computation of its convex dual

(5.24) Ṽ (y) � sup
(x,z)∈D

{
V (x, z)− (x− wz)y

}
, y ∈ R.

Theorem 5.8. Under Assumptions 4.1 and 5.1, the mapping V : D → R of (4.8)
is a generalized utility function, in the sense of being strictly concave and of class
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C1,1(D); it is strictly increasing in its first argument, is strictly decreasing in the
second, and satisfies Vx((wz)+, z) =∞, Vx(∞, z) = 0 for any z ≥ 0. Furthermore,

(5.25) lim
(x,z)→(χ,ζ)

(x,z)∈D

V (x, z) =
∫ T

0

u(t, 0+) dt ∀ (χ, ζ) ∈ ∂D,

where ∂D =
{
(x, z) ∈ [0,∞)2; x = w z

}
is the boundary of D.

Furthermore, with X (·) and G(·) given by (5.3) and (5.17), respectively, we have

Vx(x, z) = Y(x− wz), Vz(x, z) = −wY(x− wz) ∀ (x, z) ∈ D,(5.26)

Ṽ (y) = G(y)− yX (y) = E

∫ T

0

ũ
(
t, yΓ(t)

)
dt ∀ y > 0,(5.27)

Ṽ ′(y) = −X (y) ∀ y > 0.(5.28)

Proof. We show first the strict concavity of V . Let (x1, z1), (x2, z2) ∈ D and
λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1. For each (xi, zi) consider the optimal portfo-
lio/consumption policy (πi, ci) ∈ A′(xi, zi) which generates the corresponding wealth
process Xxi,πi,ci(·) and the standard of living process zi(·), i = 1, 2. Define now the
portfolio/consumption plan (π, c) � (λ1π1 +λ2π2, λ1c1 +λ2c2), denoting by Xx,π,c(·),
z(·) the corresponding wealth and standard of living with x � λ1x1 + λ2x2 and
z � λ1z1 + λ2z2. It is then easy to see that (π, c) ∈ A′(x, z) and

Xx,π,c(·) = λ1X
x1,π1,c1(·) + λ2X

x2,π2,c2(·), z(·) = λ1z1(·) + λ2z2(·)

hold almost surely. Therefore, the strict concavity of u(t, ·) implies that

λ1V (x1, z1) + λ2V (x2, z2)

= λ1E

[∫ T

0

u(t, c1(t)− z1(t))dt
]

+ λ2E

[∫ T

0

u(t, c2(t)− z2(t))dt
]

< E

[∫ T

0

u(t, c(t)− z(t))dt
]
≤ V (x, z) = V (λ1x1 + λ2x2, λ1z1 + λ2z2).

As a real-valued concave function on D, V is continuous on its domain.
To establish (5.25), we consider pairs (x, z) ∈ D and observe from (5.16) that

lim(x,z)→(χ,ζ) V (x, z) = limy→∞G(y) holds for any (χ, ζ) ∈ ∂D. But (3.2) indicates
that limy→∞ I(t, yΓ(t)) = 0 for 0 ≤ t ≤ T , and Assumption 5.1 ensures that G(y)
of (5.17) is finite for any y ∈ R

+; thus, (5.25) becomes a direct consequence of the
monotone convergence theorem.

We undertake (5.27) next; its second equality is checked algebraically via (3.4),
(5.3), and (5.17). Turning now to the first, for every (x, z) ∈ D, y > 0, and (π, c) ∈
A′(x, z), the relation of (3.4) gives

(5.29) u
(
t, c(t)− z(t)

)
≤ ũ(t, yΓ(t)) + yΓ(t)

(
c(t)− z(t)

)
.

Taking expectations, we use (1.2), (5.2), (5.12), and the budget constraint (2.15) to
obtain
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E

∫ T

0

u
(
t, c(t)− z(t)

)
dt ≤ E

∫ T

0

[
ũ
(
t, yΓ(t)

)
+ yΓ(t)

(
c(t)− z(t)

)]
dt

= E

∫ T

0

ũ
(
t, yΓ(t)

)
dt

+ y · E
∫ T

0

Γ(t)
(
c(t)− ze−

∫
t
0 α(v)dv −

∫ t

0

δ(s)e−
∫

t
s
α(v)dvc(s)ds

)
dt

= E

∫ T

0

ũ
(
t, yΓ(t)

)
dt− ywz

+ y · E
[∫ T

0

Γ(t)c(t)dt −
∫ T

0

δ(s)

(∫ T

s

e−
∫

t
s
α(v)dvΓ(t)dt

)
c(s)ds

]
(5.30)

= E

∫ T

0

ũ
(
t, yΓ(t)

)
dt− ywz

+ y · E
∫ T

0

{
Γ(t)− δ(t)Et

(∫ T

t

e−
∫

s
t
α(v)dvΓ(s)ds

)}
c(t)dt

= E

∫ T

0

ũ
(
t, yΓ(t)

)
dt− ywz + y ·E

∫ T

0

H(t)c(t)dt

≤ E

∫ T

0

ũ
(
t, yΓ(t)

)
dt+ y(x− wz) = G(y)− yX (y) + y(x− wz).

The inequalities in (5.30) will hold as equalities if and only if

(5.31) c(t)− z(t) = I
(
t, yΓ(t)

)
and E

∫ T

0

H(t)c(t) dt = x.

Setting Q(y) � G(y) − yX (y) and maximizing over (π, c) ∈ A′(x, z), it follows from
(5.30) that V (x, z) ≤ Q(y)+ (x−wz)y for every (x, z) ∈ D, and thereby Ṽ (y) ≤ Q(y)
for every y > 0. Conversely, (5.30) becomes an equality if the first equation of (5.31)
is satisfied and if X (y) = x−wz, so Q(y) = V (X (y) +wz, z)−X (y)y ≤ Ṽ (y). Hence
(5.27) is established, and clearly the supremum in (5.24) is attained if x−wz = X (y).

We argue now (5.28) by noting the identity

yI(t, y)− hI(t, h)−
∫ y

h

I(t, λ)dλ = yI(t, y)− hI(t, h) + ũ(t, y)− ũ(t, h)

= u(t, I(t, y))− u(t, I(t, h)),(5.32)

which holds for any utility function u(·) and 0 ≤ t ≤ T , 0 < h < y < ∞; recall (3.4)
and (3.5). This enables us to compute
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yX (y)− hX (h)−
∫ y

h

X (ξ)dξ

=E

∫ T

0

[
yH(t)I(t, yH(t))− hH(t)I(t, hH(t))−

∫ yH(t)

hH(t)

I(t, λ)dλ

]
dt

=E

∫ T

0

[
u
(
t, I(t, yH(t))

)
− u

(
t, I(t, hH(t))

)]
dt = G(y)−G(h),

(5.33)

which in conjunction with (5.27) leads to

(5.34) Ṽ (y)− Ṽ (h) = −
∫ y

h

X (ξ)dξ, 0 < h < y <∞,

and (5.28) follows. Finally, let us rewrite (5.24) in the more suggestive form

Ṽ (y) = sup
(x,z)∈D

{
V (x, z)− (x, z) · (y,−wy)

}
, y ∈ R,

where v1 · v2 stands for the dot product between any two vectors v1 and v2. We
recall that for (x∗, z∗) ∈ D and y > 0 we have (y,−wy) ∈ ∂V (x∗, z∗) if and only if the
maximum in the above expression is attained by (x∗, z∗) (see, e.g., Rockafellar (1970),
Theorem 23.5). However, we have already shown that this maximum is attained by
the pair (x∗, z∗) only if x∗ − wz∗ = X (y), implying that

∂V (x∗, z∗) =
{(
Y(x∗ − wz∗),−wY(x∗ − wz∗)

)}
.

This proves (5.26) (see, e.g., Theorem 23.4 of Rockafellar (1970)), and it implies that
Vx(·, z) is continuous, positive (thus V (·, z) is strictly increasing), and strictly decreas-
ing on (wz,∞), with limx↓wz Vx(x, z) = limx↓wz Y(x−wz) =∞ and limx↑∞ Vx(x, z) =
limx↑∞ Y(x−wz) = 0; meanwhile, Vz(x, ·) < 0 is continuous, so V (x, ·) is strictly de-
creasing. Consequently, V (·, ·) is a generalized utility function.

Remark 5.9. We note that, given any z ∈ [0,∞), (5.16) can be written as G(y) =
V (X (y) + wz, z) for every y ∈ R

+. Thus, if X (·) is differentiable, then by (5.26) the
function G(·) is also differentiable with

(5.35) G′(y) = Vx
(
X (y) + wz, z

)
X ′(y) = yX ′(y), y ∈ R

+.

6. The role of SPDEs. In section 5 we established the existence and unique-
ness, up to almost-everywhere equivalence, of a solution to our habit-modulated utility
maximization problem in the case of a complete security market. The analysis provided
a concrete representation for the optimal consumption process c0(·), given by (5.10),
but not for the optimal portfolio strategy π0(·); no useful expression aside from (5.14)
was given for it. In this section we shall address this issue using a technique based
on the ideas of dynamic programming. Our motivation goes back to Theorem 5.5,
which brings forth the dynamic nature of the optimal wealth/standard of living pair(
X0(·), z0(·)

)
in terms of a stochastically evolving range.

Our analysis will be supported by the theory of backward stochastic partial differ-
ential equations (BSPDEs) and their interrelation with appropriate adapted versions
of stochastic Feynman–Kac formulae, which have been developed fairly recently. This
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interplay will be based on the generalized Itô–Kunita–Wentzell formula (cf. Propo-
sition 8.1) and will show that the value function of problem (4.8) satisfies a non-
linear, backward stochastic Hamilton–Jacobi–Bellman partial differential equation of
parabolic type.

We shall provide the optimal portfolio π0(t) and consumption policy c0(t) in
closed, stochastic “feedback forms” on the current wealth X0(t) and the standard of
living z0(t). In other words, we shall get hold of suitable random fields C : [0, T ) ×
R

+ × [0,∞)× Ω→ R
+ and Π : [0, T )× R

+ × [0,∞)× Ω→ R
d, for which

(6.1) c0(t) = C(t,X0(t), z0(t)) and π0(t) = Π(t,X0(t), z0(t)), 0 ≤ t < T.

The conditions listed below will allow us to present the main concepts of our
dynamic approach with a minimum of technical fuss.

Assumption 6.1. The model-coefficient processes r(·), b(·), ϑ(·), σ(·), α(·), and
δ(·) are continuous, and ‖ϑ(·)‖ is bounded away from zero and infinity:

(6.2) ∃ k1, k2 > 0 such that 0 < k1 ≤ ‖ϑ(t)‖ ≤ k2 <∞ ∀ t ∈ [0, T ].

It will also be assumed that δ(·) is differentiable and r(·)− δ(·) +α(·) is nonrandom.
These last assumptions on δ(·) and r(·) − δ(·) + α(·) are rather severe and can

actually be relaxed and omitted, respectively; cf. Remark 6.4. They will be crucial,
however, in our effort to keep the required analysis and notation at manageable levels,
without obscuring by technicalities the essential ideas.

Since the market price of risk ϑ(·) is now assumed to be bounded, the local
martingale Z(·) of (2.6) becomes a martingale. Thus, by Girsanov’s theorem, the
process W0(·) of (2.9) is a standard, d-dimensional Brownian motion under the new
probability measure

(6.3) P 0(A) � E[Z(T )1A], A ∈ F(T ).

We shall refer to P 0 as the equivalent martingale measure of the financial marketM0

and denote expectation under this measure by E0.
Assumption 6.2. We shall assume that the utility function u(·) satisfies the

following:
(i) polynomial growth of I:

∃ γ > 0 such that I(t, y) ≤ γ + y−γ ∀ (t, y) ∈ [0, T ]× R
+;

(ii) polynomial growth of u ◦ I:

∃ γ > 0 such that u
(
t, I(t, y)

)
≥ −γ − yγ ∀ (t, y) ∈ [0, T ]× R

+;

(iii) for each t ∈ [0, T ], y �→ u(t, y) and y �→ I(t, y) are of class C4(R+);
(iv) I ′(t, y) = ∂

∂y I(t, y) is strictly negative for every (t, y) ∈ [0, T ]× R
+;

(v) for every t ∈ [0, T ], y �→ g(t, y) � yI ′(t, y) is increasing and concave.
Remark 6.3. Assumption 6.2(i),(ii), together with (3.3) and the strict decrease of

I(t, ·), yields that

∃ γ > 0 such that
∣∣u(t, I(t, y))∣∣ ≤ γ + yγ + y−γ ∀ (t, y) ∈ [0, T ]× R

+.

Notice that Assumptions 6.1 and 6.2(i),(ii) guarantee the validity of Assumption 5.1
in the preceding section; compare also with Remark 5.7. Moreover, the composite
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function u(t, I(t, ·)) inherits the order of smoothness posited in Assumption 6.2(iii)
for its components for every t ∈ [0, T ].

For each (t, y) ∈ [0, T ]× R
+ and t ≤ s ≤ T , we consider the stochastic processes

(6.4)

Zt(s) � exp
{
−
∫ s

t

ϑ∗(v)dW (v) − 1
2

∫ s

t

‖ϑ(v)‖2dv
}
, Ht(s) � Zt(s) e−

∫
s
t
r(v)dv.

These extend the processes of (2.6) and (2.8), respectively, to initial times other than
zero. In accordance with (5.1), we shall also consider the extended “adjusted” state-
price density process

Γt(s) � Ht(s) + δ(s) · Es

(∫ T

s

e
∫ θ

s
(δ(v)−α(v))dvHt(θ)dθ

)

= Ht(s)
[
1 + δ(s)W(s)

]
(6.5)

= Ht(s)

[
1 + δ(s)

∫ T

s

e
∫ θ

s
(−r(v)+δ(v)−α(v))dvdθ

]
= Ht(s)μ(s), t ≤ s ≤ T.

We have used (5.19), Assumption 6.1, and the martingale property of Z(·) and have
set

μ(t) � 1 + δ(t)w(t), where w(t) �
∫ T

t

e
∫ s

t
(−r(v)+δ(v)−α(v))dvds,(6.6)

w′(t) � d

dt
w(t) =

[
r(t) + α(t) − δ(t)

]
w(t) − 1 =

[
r(t) + α(t)

]
w(t)− μ(t)(6.7)

for 0 ≤ t ≤ T . Note that w(·) is the deterministic reduction of W(·) in (5.19) under
the simplifying assumption (Assumption 6.1); namely,W(·) ≡ w(·) within the context
of this section.

We shall introduce also the diffusion process

(6.8) Y (t,y)(s) � yΓt(s), t ≤ s ≤ T,

which, from (6.4) and (6.5), satisfies the linear stochastic differential equation

(6.9) dY (t,y)(s) = Y (t,y)(s)
[(

μ′(s)
μ(s)

− r(s)
)
ds− ϑ∗(s)dW (s)

]
,

or equivalently

(6.10) dY (t,y)(s) = Y (t,y)(s)
[(

μ′(s)
μ(s)

− r(s) + ‖ϑ(s)‖2
)
ds− ϑ∗(s)dW0(s)

]

with initial condition

(6.11) Y (t,y)(t) = yμ(t),

as well as Y (t,y)(s) = yY (t,1)(s) = yH(s)μ(s)/H(t).
Remark 6.4. The last two conditions of Assumption 6.1 on δ(·) and r(·) − δ(·) +

α(·) allowed us to derive the useful representation (6.5) for the process Γt(·) with a
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minimum of notation and technical fuss. This representation led to the very explicit
computation of the semimartingale decomposition for the process Y (t,y)(·) in (6.8)–
(6.11), which will be crucial for our analysis in the rest of the paper.

These two conditions will not be needed any further; in fact, it is possible actually
to relax the former and omit the latter. In particular, we may instead assume that
δ(·) is a semimartingale and still obtain a representation of the form (6.5) and a
semimartingale decomposition for the process Y (t,y)(·) of (6.8).

To this end, it suffices to show that W(·) of (5.19) has a semimartingale decom-
position as well. Indeed,

W(t) =
1

Ĥ(t)
Et

[∫ T

t

Ĥ(s)ds

]
=

1

Ĥ(t)

{
Et

[∫ T

0

Ĥ(s)ds

]
−
∫ t

0

Ĥ(s)ds

}
,

where we have Ĥ(t) � e
∫ t
0 (δ(v)−α(v))dvH(t) for 0 ≤ t ≤ T . Since the process M̂(t) �

Et
∫ T
0 Ĥ(s)ds, 0 ≤ t ≤ T , is a local martingale under the measure P , the standard

representation result for Brownian local martingales as stochastic integrals (see, e.g.,
Karatzas and Shreve (1991), Problem 3.4.16) implies the existence of an R

d-valued,
F-progressively measurable and almost sure square-integrable process ψ̂(·) so that
M̂(t) = M̂(0) +

∫ t
0
ψ̂(s)dW (s), 0 ≤ t ≤ T .

This leads to a semimartingale decomposition for W(·) and thence to a similar
decomposition for the process Y (t,y)(·) = yZt(·)e−

∫ ·
t
r(v)dv[1 + δ(·)W(·)] in (6.8); this

decomposition is far more cumbersome to write down, or keep track of, than (6.9);
yet it exists. We have opted for the simplicity of (6.9), afforded by the conditions of
Assumption 6.1 on δ(·) and r(·) − δ(·) + α(·).

Invoking the “Bayes rule” for conditional expectations, a computation similar to
the one presented in the proof of Theorem 5.5 shows that the optimal wealth/standard
of living vector process

(
X0(·), z0(·)

)
of (5.8), (5.13) satisfies

X0(t)− w(t)z0(t) =
1
ξ
Et

[∫ T

t

Y (t,ξ)(s) I
(
s, Y (0,ξ)(s)

)
ds

]

= E0
t

[ ∫ T

t

e−
∫

s
t
r(v)dvμ(s) I

(
s, Y (0,ξ)(s)

)
ds

]
= X

(
t,
Y (0,ξ)(t)
μ(t)

)
(6.12)

for 0 ≤ t ≤ T and ξ = Y(x − wz). We have used here the definition (6.8) and
introduced the random field X : [0, T ]× R

+ × Ω→ R
+ defined as

(6.13) X(t, y) � E0
t

[∫ T

t

e−
∫ s

t
r(v)dvμ(s) I

(
s, yY (t,1)(s)

)
ds

]
.

A comparison of (5.3), (6.12), and (6.13) reveals the dynamic and stochastic evolution
of the function X (·) as a random field, since X (·) = X(0, ·).

We proceed with the derivation of the random fields C and Π in (6.1) by obtaining
first a semimartingale decomposition for the random field X(·, ·) of (6.13). A significant
role in this program will be played by a BSPDE established for X(·, ·), which will lead
to a stochastic Feynman–Kac formula and consequently to the desired decomposition.

Remark 6.5. Similar results have been obtained by Ma and Yong (1997) in re-
lated contexts (integral representations, stochastic Black–Scholes formulae) using the
so-called four-step scheme for forward-backward stochastic differential equations (FB-
SDEs). In the appendix, we formalize this connection by providing both a stochastic



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

502 NIKOLAOS ENGLEZOS AND IOANNIS KARATZAS

Feynman–Kac result and an equivalent FBSDE formulation for the various BSPDEs
constructed in the present and the next section.

Lemma 6.6. Consider the random field X of (6.13). Under Assumptions 6.1 and
6.2, there exists a random field ΨX : [0, T ]×R

+ ×Ω→ R
d such that the pair (X,ΨX)

belongs to the class CF

(
[0, T ]; L2(Ω;C3(R+))

)
× L

2
F

(
0, T ; L2(Ω;C2(R+; Rd))

)
and is

the unique solution of the Cauchy problem for the equation

−dX(t, y) =

[
1
2
‖ϑ(t)‖2y2Xyy(t, y) +

(
‖ϑ(t)‖2 − r(t)

)
yXy(t, y)− r(t)X(t, y)

− ϑ∗(t)yΨX
y (t, y) + μ(t)I

(
t, yμ(t)

)]
dt−

(
ΨX(t, y)

)∗
dW0(t)

(6.14)

on [0, T )× R
+, subject to the terminal condition

(6.15) X(T, y) = 0 on R
+,

almost surely. Furthermore, for each t ∈ [0, T ) we have X(t, 0+) = ∞, X(t,∞) = 0,
and X(t, ·) is strictly decreasing; this establishes the existence of a strictly decreasing
inverse random field Y(t, ·) : R

+ onto−−−→ R
+, such that

(6.16) X
(
t,Y(t, x)

)
= x ∀ x ∈ R

+

holds almost surely. The resulting random field Y is of class CF

(
[0, T );C3(R+)

)
.

Proof. The first part of the lemma is verified directly from (6.10), (6.11), (6.13),
and Proposition 8.3 in the appendix, through the identifications

m(·) =
μ′(·)
μ(·) − r(·) + ‖ϑ(·)‖2, ν(·) = −ϑ(·), N(·, ·) = I(·, ·),

�(·) = q(·) = μ(·), and ρ(·) = −r(·).

Next, we shall verify that Xy(t, y) is strictly negative, almost surely. To this end,
let (t, y) ∈ [0, T )×R

+, h > 0, and invoke the (strict) decrease of I(t, ·), coupled with
(2.3), to verify that

1
h

[
X(t, y)−X(t, y+h)

]
≥ E0

t

[∫ T

t

e−�

h

{
I
(
s, yY (t,1)(s)

)
− I

(
s, (y + h)Y (t,1)(s)

)}
ds

]
.

By the mean value theorem, there is a real number yh ∈ [y, y + h] such that

I
(
s, yY (t,1)(s)

)
− I

(
s, (y + h)Y (t,1)(s)

)
= −hY (t,1)(s)I ′

(
s, yhY

(t,1)(s)
)
,

and conditions (2.3), (4.4), (6.2), and the supermartingale property of Zt(·) imply
the inequality Y (t,1)(s) ≤ φ(s)Zt0(s), in terms of the deterministic function φ(t) �[
1 + Δ(T − s) e�+Δ(T−s)]e�+κ2

2(T−t) and the P 0-martingale

(6.17) Zt0(s) � exp
{
−
∫ s

t

ϑ∗(v)dW0(v)−
1
2

∫ s

t

‖ϑ(v)‖2dv
}
, t ≤ s ≤ T.
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Due to Assumption 6.2(v), the right-hand side of the former inequality attains the
lower bounds

−E0
t

[∫ T

t

e−�

yh
g
(
s, yhφ(s)Zt0(s)

)
ds

]
≥ −

∫ T

t

e−�

yh
g
(
s, yhφ(s)E0

t

(
Zt0(s)

))
ds

= −e−�
∫ T

t

I ′(s, yhφ(s))φ(s)ds,

where we have also used Jensen’s inequality. Passing to the limit as h ↓ 0, we obtain
from Fatou’s lemma

Xy(t, y) ≤ e−�
∫ T

t

I ′(s, yφ(s))φ(s)ds < 0.

According to the implicit function theorem, the inverse Y(t, ·) : R
+ onto−−−→ R

+ of the
random field X(t, ·) exists almost surely, in the context of (6.16); in fact, the two ran-
dom fields have the same order of regularity on their respective domains. Concluding,
the claimed values of X(t, 0+) and X(t,∞) are easily confirmed, respectively, by the
monotone and dominated convergence theorem.

Remark 6.7. It is worth noting that Lemma 6.6 assigns to the pair of random
fields (X,ΨX) an additional order of smoothness than is required for solving the SPDE
(6.14), (6.15). Nevertheless, this extra smoothness allows us to apply the Itô–Kunita–
Wentzell formula of Proposition 8.1 in the appendix. Furthermore, the above lemma
yields the representation

X(t, y) =
∫ T

t

[
1
2
‖ϑ(s)‖2y2Xyy(s, y) +

(
‖ϑ(s)‖2 − r(s)

)
yXy(s, y)− r(s)X(s, y)

− ϑ∗(s)yΨX
y (s, y) + μ(s)I

(
s, yμ(s)

)]
ds−

∫ T

t

(
ΨX(s, y)

)∗
dW0(s)

for the pair (X,ΨX), namely, the semimartingale decomposition of the stochastic pro-
cesses X(·, y) defined in (6.13) for each y ∈ R

+.
The random field Y(·, ·) represents the random dynamic extension of the function

Y(·) introduced in section 5; in particular, Y(·) = Y(0, ·).
Remark 6.8. Combining (2.7) with (8.8)–(8.11) of Proposition 8.3 in the appendix,

with the identification of processes made in the proof of the preceding lemma, we
obtain the dynamics

d

[
β(s)X

(
s,
Y (0,y)(s)
μ(s)

)]
= −β(s)

{
μ(s)I

(
s, Y (0,y)(s)

)
ds

+
[
ϑ(s)

Y (0,y)(s)
μ(s)

Xy

(
s,
Y (0,y)(s)
μ(s)

)
−ΨX

(
s,
Y (0,y)(s)
μ(s)

)]∗
dW0(s)

}
,

and integrate to obtain
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β(t)X

(
t,
Y (0,y)(t)
μ(t)

)
+
∫ t

0

β(s)μ(s)I
(
s, Y (0,y)(s)

)
ds(6.18)

= X(0, y)−
∫ t

0

β(s)
[
ϑ(s)

Y (0,y)(s)
μ(s)

Xy

(
s,
Y (0,y)(s)
μ(s)

)
−ΨX

(
s,
Y (0,y)(s)
μ(s)

)]∗
dW0(s)

for every (t, y) ∈ [0, T ]× R
+, almost surely.

We are in a position now to obtain stochastic feedback formulae for the optimal
investment and consumption processes. In view of (6.12), for each t ∈ [0, T ), the
effective range for the running optimal wealth X0(t) and for the associated standard
of living z0(t) will be

(6.19) Dt �
{
(x, z) ∈ R

+ × [0,∞); x > w(t)z
}
.

Theorem 6.9. Under Assumptions 6.1 and 6.2, the optimal consumption c0(·)
and the optimal portfolio strategy π0(·) for the dynamic optimization problem (4.8)
are given in the “stochastic adapted feedback form” (6.1), where the random fields C
and Π are given for t ∈ [0, T ) and (x, z) ∈ Dt as

(6.20)

C(t, x, z) � z + I(t, μ(t)Y(t, x − w(t)z)),

(6.21)

Π(t, x, z) � − 1
x

(
σ∗(t)

)−1

[
ϑ(t)

Y
(
t, x− w(t)z

)
Yx

(
t, x− w(t)z

) −ΨX
(
t,Y

(
t, x− w(t)z

))]
.

Proof. For any initial wealth x and standard of living z such that (x, z) ∈ D0 of
(6.19), we may rewrite (6.12) as

Y (0,J )(t)
∣∣∣∣
J=Y(0,x−wz)

= μ(t)J (t) with J (t) � Y
(
t,X0(t)− w(t)z0(t)

)
.

From (5.5) and (6.8), it develops that the optimal consumption process of (5.10) is
expressed by

c0(t) = z0(t) + I
(
t, μ(t)J (t)

)
, 0 ≤ t < T,

and (6.20) is proved. Considering (6.18) for y = Y(0, x − wz), in connection with
(6.12), we obtain

β(t)
[
X0(t)− w(t)z0(t)

]
+
∫ t

0

β(s)μ(s)
[
c0(s)− z0(s)

]
ds

= x− wz −
∫ t

0

β(s)
[
ϑ(s)J (s)Xy

(
s,J (s)

)
−ΨX

(
s,J (s)

)]∗
dW0(s).

Now differentiate (6.16), to arrive at Xy
(
t,Y(t, x − w(t)z)

)
= 1/Yx(t, x − w(t)z) for

every (x, z) ∈ Dt; setting Jx(t) � Yx

(
t,X0(t)−w(t)z0(t)

)
and using (6.6), the above



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UTILITY MAXIMIZATION WITH HABIT FORMATION 505

equation becomes

β(t)X0(t) +
∫ t

0

β(s)c0(s)ds

= x−
∫ t

0

β(s)
[
ϑ(s)

J (s)
Jx(s)

−ΨX(s,J (s))
]∗
dW0(s) + β(t)w(t)z0(t)

− wz −
∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds+

∫ t

0

β(s)z0(s)ds.(6.22)

On the other hand, use (4.3) and (6.7) to compute

β(t)w(t)z0(t)− wz =
∫ t

0

d
(
β(s)w(s)z0(s)

)

=
∫ t

0

β(s)δ(s)w(s)
[
c0(s)− z0(s)

]
ds−

∫ t

0

β(s)z0(s)ds,

(6.23)

and conclude that (6.22) reads

β(t)X0(t) +
∫ t

0

β(s)c0(s)ds = x−
∫ t

0

β(s)
[
ϑ(s)

J (s)
Jx(s)

−ΨX(s,J (s))
]∗
dW0(s),

almost surely. A comparison of the latter with the integral expression (2.12) implies
that (6.21) follows from X0(t)π∗

0(t)σ(t) = −
[
ϑ(t) J (t)

Jx(t) −ΨX(t,J (t))
]∗.

Remark 6.10. Under the additional assumption of deterministic coefficients r(·) :
[0, T ] → R, ϑ(·) : [0, T ] → R

d, σ(·) : [0, T ] → L(Rd; Rd), α(·) : [0, T ] → [0,∞), and
δ(·) : [0, T ] → [0,∞), the process Y (t,y)(·) of (6.8) is Markovian. (Here L(Rd; Rd)
is the set of (d × d) matrices.) Thus, the random fields of (6.20) and (6.21), which
represent the optimal policies in feedback form, reduce to the deterministic functions

C(t, x, z) = z + I
(
t, μ(t)Y(t, x − w(t)z)

)
,(6.24)

Π(t, x, z) = −(σ∗(t))−1ϑ(t) ·
Y
(
t, x− w(t)z

)
xYx

(
t, x− w(t)z

) ,(6.25)

where Y(t, ·) is the inverse of the function

X (t, y) � E0

[∫ T

t

e−
∫ s

t
r(v)dvμ(s)I

(
s, yY (t,1)(s)

)
ds

]
, 0 < y <∞;

cf. Lemma 6.6 and (6.13). It is then evident that the decision maker needs only to
keep track of his current level of wealth X0(t) and standard of living z0(t), not of the
entire history of the market up to time t; in other words, these quantities serve as
sufficient statistics for the optimization problem (4.8).

7. The stochastic Hamilton–Jacobi–Bellman equation. We shall investi-
gate now the analytical behavior of the value function for the optimization problem
(4.8) as a solution of a nonlinear partial differential equation, widely referred to as
the stochastic Hamilton–Jacobi–Bellman equation. In this vein, we find it useful to
generalize the time horizon of our asset market M0 by taking initial date t ∈ [0, T ]
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rather than zero. Hence, for a fixed starting time t ∈ [0, T ] and any given capi-
tal wealth/initial standard of living pair (x, z) ∈ Dt (cf. (6.19)), the wealth process
Xt,x,π,c(·), corresponding to a portfolio strategy π(·) and a consumption process c(·),
satisfies the stochastic integral equation

(7.1) X(s) = x+
∫ s

t

[r(v)X(v) − c(v)]dv +
∫ s

t

X(v)π∗(v)σ(v)dW0(v)

for t ≤ s ≤ T, and the respective standard of living process z(·) is developed by

(7.2) z(s) = ze−
∫

s
t
α(θ)dθ +

∫ s

t

δ(v)e−
∫

s
v
α(θ)dθc(v)dv, t ≤ s ≤ T.

In this context, we shall call admissible at the initial condition (t, x), and denote their
class by A(t, x), all portfolio/consumption pairs (π, c) such that Xt,x,π,c(s) ≥ 0 for
all s ∈ [t, T ], almost surely. Each of these pairs satisfies the budget constraint

(7.3) Et

[∫ T

t

Ht(s)c(s)ds

]
≤ x.

Conversely, a variant of Lemma 2.1, subject to an initial date t that is not necessarily
zero, shows that for every given consumption plan c(·) satisfying (7.3) we can fash-
ion a portfolio strategy π(·) such that (π, c) ∈ A(t, x). Furthermore, we extend the
optimization problem of Definition 4.2 by the random field

(7.4) V(t, x, z) � ess sup
(π,c)∈A′(t,x,z)

Et

[∫ T

t

u
(
s, c(s)− z(s)

)
ds

]
,

where
(7.5)

A′(t, x, z) �
{

(π, c) ∈ A(t, x); Et

[∫ T

t

u−
(
s, c(s)− z(s)

)
ds

]
<∞, almost surely

}
,

and V(0, ·, ·) = V (·, ·). Invoking Assumptions 6.1 and 6.2, and imitating the method-
ology deployed in section 5, we obtain the almost sure representation

(7.6) V(t, x, z) = G
(
t,Y(t, x− w(t)z)

)
, (x, z) ∈ Dt, t ∈ [0, T ),

by analogy with (5.16), where we have also introduced the real-valued random field

(7.7) G(t, y) � Et

[∫ T

t

u
(
s, I(s, yY (t,1)(s))

)
ds

]
, (t, y) ∈ [0, T ]× R

+.

One observes that the random fields (7.4) and (7.7) constitute the dynamic, prob-
abilistic analogues of those in (4.8) and (5.17), respectively, since V (·, ·) = V(0, ·, ·)
and G(·) = G(0, ·); this complies with the temporal and stochastic evolution of the
function X (·) described in the previous section. Clearly

(7.8) V(T, x, z) = 0 ∀ (x, z) ∈ D;
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in fact, V(t, x, z) < ∞ for every t ∈ [0, T ), (x, z) ∈ Dt, and with ∂Dt =
{
(x, z) ∈

[0,∞)2; x = w(t)z
}

the boundary of Dt (cf. (5.25)) we have

(7.9) lim
(x,z)→(χ,ζ)
(x,z)∈Dt

V(t, x, z) =
∫ T

t

u(s, 0+)ds ∀ (χ, ζ) ∈ ∂Dt.

We derive now a semimartingale decomposition for the random field G of (7.7).
Lemma 7.1. Under Assumptions 6.1 and 6.2, there exists a random field ΦG :

[0, T ]×R
+×Ω→ R

d such that the pair of random fields (G,ΦG), where G is given by
(7.7), is of class CF

(
[0, T ]; L2(Ω;C3(R+))

)
×L

2
F

(
0, T ; L2(Ω;C2(R+; Rd))

)
and provides

the unique solution of the Cauchy problem

−dG(t, y) =

[
1
2
‖ϑ(t)‖2y2Gyy(t, y)− r(t)yGy(t, y)

− ϑ∗(t)yΦG
y (t, y) + u

(
t, I(t, yμ(t))

)]
dt−

(
ΦG(t, y)

)∗
dW (t)

(7.10)

on [0, T )× R
+, and the terminal condition

(7.11) G(T, y) = 0 on R
+,

almost surely. Moreover, for every (t, y) ∈ [0, T )× R
+ we have almost surely

G(t, y)−G(t, z) = yX(t, y)− zX(t, z)−
∫ y

z

X(t, ξ)dξ, 0 < z < y <∞,(7.12)

Gy(t, y) = yXy(t, y), Gyy(t, y) = Xy(t, y) + yXyy(t, y).(7.13)

Once again (cf. Remark 6.7), the additional smoothness of (G,ΦG) will be essen-
tial for the formal derivation of explicit calculations, and the semimartingale decom-
position of the process G(·, y), y ∈ R

+ is given as

G(t, y) =
∫ T

t

[
1
2
‖ϑ(s)‖2y2Gyy(s, y)− r(s)yGy(s, y)

− ϑ∗(s)yΦG
y (s, y) + u

(
s, I(s, yμ(s))

)]
ds−

∫ T

t

(
ΦG(s, y)

)∗
dW (s).

Proof of Lemma 7.1. Use (6.9), (6.11), and (7.7), and apply Proposition 8.3 in
the appendix for m(·) = (μ′(·)/μ(·)) − r(·), ν(·) = −ϑ(·), N(·, ·) = u

(
·, I(·, ·)

)
, �(·) =

μ(·), q(·) = 1, and ρ(·) = 0, to check that the pair of random fields (G,ΦG) has
the asserted order of regularity and is the unique solution of the Cauchy problem
(7.10), (7.11), almost surely. Repeat the computations in (5.33) concerning conditional
expectations, subject to an initial time t �= 0, to obtain (7.12); differentiation then
yields (7.13).

We derive now the semimartingale decomposition of the random field Y in (6.16).
Lemma 7.2. Under the hypotheses of Lemma 6.6, there exists a pair of random

fields (Θ,Σ) ∈ LF

(
0, T

′
;C1(R+)

)
× L

2
F

(
0, T

′
;C2(R+; Rd)

)
for each 0 < T

′
< T , such

that

(7.14) dY(t, x) = −Θ(t, x)dt+ Σ∗(t, x)dW0(t)
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holds almost surely for every (t, x) ∈ [0, T )× R
+. In particular, these random fields

are uniquely determined by the following relationships:

1
2

[
‖Σ(t, x)‖2 − ‖ϑ(t)‖2Y2(t, x)

]
Xyy

(
t,Y(t, x)

)
− μ(t) I

(
t, μ(t)Y(t, x)

)
+
[ (
r(t) − ‖ϑ(t)‖2

)
Y(t, x) + ϑ∗(t)Σ(t, x) −Θ(t, x)

]
Xy
(
t,Y(t, x)

)
(7.15)

+ r(t)x +
[
Σ(t, x) + ϑ(t)Y(t, x)

]∗
ΨX
y

(
t,Y(t, x)

)
+ ϑ∗(t)ΨX

(
t,Y(t, x)

)
= 0

and

Xy
(
t,Y(t, x)

)
Σ(t, x) + ΨX

(
t,Y(t, x)

)
= 0.(7.16)

Proof. Let (t, x) ∈ [0, T )×R
+. Invoking (6.14) for X and postulating the represen-

tation (7.14) for Y, we differentiate the identity (6.16) with respect to the temporal
variable, using Proposition 8.1 in the appendix and (2.9), and then integrate over [0, t]
to compute∫ t

0

{
1
2

[
‖Σ(s, x)‖2 − ‖ϑ(s)‖2Y2(s, x)

]
Xyy(s,Y(s, x))− μ(s)I

(
s, μ(s)Y(s, x)

)

+
[ (
r(s) − ‖ϑ(s)‖2

)
Y(s, x) + ϑ∗(s)Σ(s, x)−Θ(s, x)

]
Xy(s,Y(s, x))

+ r(s)x +
[
Σ(s, x) + ϑ(s)Y(s, x)

]∗
ΨX
y

(
s,Y(s, x)

)
+ ϑ∗(s)ΨX

(
s,Y(s, x)

)}
ds

+
∫ t

0

{
Xy
(
s,Y(s, x)

)
Σ(s, x) + ΨX

(
s,Y(s, x)

)}∗
dW (s) = 0,

almost surely. Thus, the uniqueness for the decomposition of a continuous semimartin-
gale (see, e.g., Karatzas and Shreve (1991), page 149) implies that both integrals of the
above equation vanish. Differentiation of the Lebesgue integral implies (7.15), while
the quadratic variation of the stochastic integral vanishes as well, leading to (7.16).
The derived equations define uniquely the random fields Θ and Σ, assigning to them
the claimed order of adaptivity, integrability, and smoothness; these are then seen to
satisfy the representation (7.14).

Lemma 7.3. Under Assumptions 6.1 and 6.2, the random fields ΨX of (6.14) and
ΦG of (7.10) satisfy almost surely the relationship

(7.17) ΦG
y (t, y)− yΨX

y (t, y) = 0 ∀ (t, y) ∈ [0, T )× R
+.

Proof. Taking time differentials in (7.12), we get almost surely

dG(t, y)− dG(t, z) = y dX(t, y)− z dX(t, z)−
∫ y

z

dX(t, λ) dλ, 0 ≤ t < T.

Now make the substitutions (6.14), (7.10) in the above formula, and equate the re-
spective martingale parts (see, e.g., Karatzas and Shreve (1991), Problem 3.3.2) to
obtain

(7.18) ΦG(t, y)− ΦG(t, z) = yΨX(t, y)− zΨX(t, z)−
∫ y

z

ΨX(t, λ) dλ.
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Of course, (7.18) is valid only if the interchange of Lebesgue and Itô integrals

∫ y

z

∫ t

0

ΨX(s, λ)dW (s) dλ =
∫ t

0

∫ y

z

ΨX(s, λ)dλ dW (s)

holds almost surely for each t ∈ [0, T ). But this is true, due to the observation that
L(t, ·) =

∫ ·
z
ΨX(t, λ)dλ is a C2 random field on [z,∞) and Exercise 3.1.5 in Kunita

(1990). Differentiating (7.18) we obtain (7.17).
We are ready now to state the main result of this section.
Theorem 7.4 (stochastic Hamilton–Jacobi–Bellman equation). Under Assump-

tions 6.1 and 6.2, the pair of random fields (V,Ξ) given by (7.6)–(7.8) and

(7.19) Ξ(t, x, z) � ΦG
(
t,Y(t, x− w(t)z)

)
−Y

(
t, x− w(t)z

)
ΨX

(
t,Y(t, x− w(t)z)

)
is of class

CF

({
t ∈ [0, T ]; V (t, ·, ·) ∈ C3,3(Dt)

})
× L

2
F

({
t ∈ [0, T ); Ξ(t, ·, ·) ∈ C2,2(Dt; Rd)

})
and satisfies on

{
(t, x, z); t ∈ [0, T ), (x, z) ∈ Dt

}
the stochastic Hamilton–Jacobi–

Bellman partial differential equation of dynamic programming

−dV(t, x, z) = ess sup
0≤c<∞
π∈R

d

{
1
2
‖σ∗(t)π‖2x2Vxx(t, x, z)

+
[
r(t)x − c+ π∗σ(t)ϑ(t)x

]
Vx(t, x, z)(7.20)

+
[
δ(t)c− α(t)z

]
Vz(t, x, z) + π∗σ(t)xΞx(t, x, z)

+ u(t, c− z)
}
dt− Ξ(t, x, z)dW (t)

as well as the boundary conditions (7.8) and (7.9).
Furthermore, the random fields Π(t, x, z), C(t, x, z) of (6.20), (6.21) provide the

optimal portfolio/consumption rules for the maximization in (7.20).
Proof. Differentiation of (6.16), (7.6), and (7.19), in combination with (7.13) and

(7.17), leads almost surely to

Xy
(
t,Y(t,x− w(t)z)

)
Yx

(
t, x− w(t)z

)
= 1,

Vx(t, x, z) = Y
(
t, x− w(t)z

)
, Vz(t, x, z) = −w(t)Y

(
t, x− w(t)z

)
,

Vxx(t, x, z) = Yx(t, x − w(t)z),Ξx(t, x, z)=−Yx

(
t, x− w(t)z

)
ΨX

(
t,Y(t, x− w(t)z)

)
for (x, z) ∈ Dt, 0 ≤ t < T . Using these formulae and (6.6), the right-hand side of
(7.20) becomes
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r(t)xY(t, x − w(t)z) + α(t)w(t)zY(t, x− w(t)z)

+ ess sup
0≤c<∞

{
u(t, c− z)− c μ(t)Y(t, x − w(t)z)

}

+ ess sup
π∈Rd

{
1
2
‖σ∗(t)π‖2x2 Yx(t, x− w(t)z) + π∗σ(t)x

[
ϑ(t)Y(t, x − w(t)z)

−Yx(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)]}]
dt

−
[
ΦG

(
t,Y(t, x − w(t)z)

)
−Y

(
t, x− w(t)z

)
ΨX

(
t,Y(t, x− w(t)z)

)]
dW (t).

The strict concavity and smoothness of both expressions to be maximized allow us
to differentiate and solve the resulting first-order equations, in order to obtain the
optimal values of c and π. These values turn out to coincide with (6.20) and (6.21),
respectively. Substituting them now into the latter expression, we are led to

[
r(t)xY

(
t, x− w(t)z

)
+ α(t)w(t)zY

(
t, x− w(t)z

)

+ u
(
t, I
(
t, μ(t)Y(t, x − w(t)z)

))

− μ(t)Y
(
t, x− w(t)z

)[
z + I

(
t, μ(t)Y(t, x− w(t)z)

)]

− 1
2Yx(t, x− w(t)z)

∥∥ϑ(t)Y(t, x − w(t)z)(7.21)

−Yx(t, x− w(t)z)ΨX
(
t,Y(t, x− w(t)z)

)∥∥2
]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)
−Y

(
t, x− w(t)z

)
ΨX

(
t,Y(t, x− w(t)z)

)]∗
dW (t).

On the other hand, couple (7.14) with (2.9), and apply the generalized Itô–
Kunita–Wentzell formula of Proposition 8.1, to derive the representation

dY(t, x − w(t)z)

=
[
ϑ∗(t)Σ(t, x− w(t)z)−Θ(t, x− w(t)z)− w′(t)zYx

(
t, x− w(t)z

)]
dt

+ Σ∗(t, x− w(t)z) dW (t).

Using this, we apply the Itô–Kunita–Wentzell formula a second time, now involving
(7.6) and (7.10), and obtain the left-hand side of (7.20) as
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− 1

2

[
‖Σ(t, x− w(t)z)‖2 − ‖ϑ(t)‖2Y2(t, x− w(t)z)

]
Gyy

(
t,Y(t, x − w(t)z)

)

−
[
r(t)Y(t, x − w(t)z) + ϑ∗(t)Σ(t, x − w(t)z)−Θ(t, x− w(t)z)

− w′(t)zYx

(
t, x− w(t)z

)]
Gy

(
t,Y(t, x− w(t)z)

)
−
[
Σ(t, x− w(t)z) + ϑ(t)Y(t, x− w(t)z)

]∗
ΦG
y

(
t,Y(t, x − w(t)z)

)

+ u
(
t, I
(
t, μ(t)Y(t, x − w(t)z)

))]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)
+ Gy

(
t,Y(t, x− w(t)z)

)
Σ(t, x− w(t)z)

]∗
dW (t),

which via (7.13) becomes[
− 1

2
‖Σ(t, x− w(t)z)‖2Xy

(
t,Y(t, x− w(t)z)

)

−Y(t, x− w(t)z)
{

1
2

[
‖Σ(t, x− w(t)z)‖2

− ‖ϑ(t)‖2Y2(t, x− w(t)z)
]
Xyy

(
t,Y(t, x− w(t)z)

)

−
[
r(t)Y(t, x − w(t)z) − 1

2
‖ϑ(t)‖2Y(t, x− w(t)z) + ϑ∗(t)Σ(t, x− w(t)z)

−Θ(t, x− w(t)z)− w′(t)zYx

(
t, x− w(t)z

)]
Xy
(
t,Y(t, x− w(t)z)

)}

−
[
Σ(t, x− w(t)z) + ϑ(t)Y(t, x − w(t)z)

]∗
ΦG
y

(
t,Y(t, x− w(t)z)

)

+ u
(
t, I
(
t, μ(t)Y(t, x − w(t)z)

))]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)
+ Y(t, x− w(t)z)Xy

(
t,Y(t, x− w(t)z)

)
Σ(t, x− w(t)z)

]∗
dW (t).

Finally, Lemmata 7.2 and 7.3 transform the latter to[[
r(t)

(
x− w(t)z

)
+ w′(t)z

]
Y(t, x − w(t)z) + u

(
t, I
(
t, μ(t)Y(t, x − w(t)z)

))

+
[
ϑ∗(t)ΨX

(
t,Y(t, x− w(t)z)

)
− μ(t)I

(
t, μ(t)Y(t, x − w(t)z)

)]
Y(t, x− w(t)z)
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− 1
2
‖ϑ(t)‖2 Y2(t, x− w(t)z)

Yx(t, x− w(t)z)
− 1

2
‖ΨX

(
t,Y(t, x− w(t)z)

)
‖2Yx(t, x − w(t)z)

]
dt

−
[
ΦG

(
t,Y(t, x− w(t)z)

)
−Y(t, x− w(t)z)ΨX

(
t,Y(t, x− w(t)z)

)]∗
dW (t).

Expanding the norm in (7.21) and recalling (6.7), we conclude that both sides of
(7.20) coincide almost surely.

Remark 7.5. Carrying out the maximization according to the proof of Theo-
rem 7.4, (7.20) takes the more conventional form

dV(t, x, z) + H
(
Vxx(t, x, z),Vx(t, x, z),Vz(t, x, z),Ξx(t, x, z), t, x, z

)
dt

− Ξ(t, x, z) dW (t) = 0,
(7.22)

where we denote by H the Hamiltonian

H(A, p, q,B, t, x, z) �− 1
2A
‖ϑ(t)p+ B‖2 +

[
r(t)x − z − I(t, p− δ(t)q)

]
p

+
[
(δ(t)− α(t))z + δ(t)I(t, p− δ(t)q)

]
q + u

(
t, I(t, p− δ(t)q)

)
for A < 0, p > 0, q < 0, and B ∈ R. Notice that we have obtained a closed-form solu-
tion of the strongly nonlinear stochastic Hamilton–Jacobi–Bellman equation (7.22),
by solving instead the two linear equations (6.14), (7.10) subject to the appropriate
initial and regularity conditions and then composing as in (7.6).

Remark 7.6. Theorem 7.4 provides a rare illustration of the Peng (1992) approach
to stochastic Hamilton–Jacobi–Bellman equations. More precisely, it formulates the
nonlinear SPDE satisfied by the value random field of the stochastic optimal control
problem (7.4). To our knowledge, this is the first concrete illustration of BSPDEs in a
stochastic control context beyond the classical linear/quadratic regulator worked out
in Peng (1992).

As a consequence, (7.20) provides a necessary condition that must be satisfied
by the value random field V of (7.4). Due to the absence of an appropriate growth
condition for V as each component of (x, z) ∈ Dt increases to infinity, (7.20) fails
to also be sufficient; in other words, we cannot claim directly that V is the unique
solution of (7.20) with boundary conditions (7.8), (7.9). We decide though to treat
this matter by establishing a necessary and sufficient condition for the convex dual of
V , defined as

(7.23) Ṽ(t, y) � ess sup
(x,z)∈Dt

{
V(t, x, z)−

(
x− w(t)z

)
y
}
, y ∈ R,

by analogy with (5.24). Doing so, we avoid investigating the solvability of the nonlinear
SPDE (7.20), since it turns out that Ṽ is equivalently characterized as the unique
solution of a linear parabolic BSPDE (cf. (7.29), (7.30)) and V can be easily recovered
by inverting the above Legendre–Fenchel transformation to have almost surely

V(t, x, z) = ess inf
y∈R

{
Ṽ(t, y) +

(
x− w(t)z

)
y
}
, (x, z) ∈ Dt.

We formalize these considerations as follows.
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Theorem 7.7 (convex dual of V(t, ·)). Under Assumptions 6.1 and 6.2, for each
given t ∈ [0, T ) the function V(t, ·, ·) is a generalized utility function, as defined in
Theorem 5.8, almost surely; also,

Vx(t, x, z) = Y
(
t, x− w(t)z

)
∀ (x, z) ∈ Dt,(7.24)

Vz(t, x, z) = −w(t)Y(t, x− w(t)z) ∀ (x, z) ∈ Dt.(7.25)

Furthermore, for (t, y) ∈ [0, T ]× R
+, we have

Ṽ(t, y) = G(t, y)− yX(t, y) = Et

[∫ T

t

ũ
(
s, yY (t,1)(s)

)
ds

]
,(7.26)

Ṽy(t, y) = −X(t, y),(7.27)

almost surely. Finally, the pair of random fields (Ṽ,Λ), where

(7.28) Λ(t, y) � ΦG(t, y)− yΨX(t, y), (t, y) ∈ [0, T ]× R
+,

belongs to CF

(
[0, T ]; L2(Ω;C3(R+))

)
×L

2
F

(
0, T ; L2(Ω;C2(R+; Rd))

)
and is the unique

solution of the following Cauchy problem for the linear BSPDE:

−dṼ(t, y) =

[
1
2
‖ϑ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y)− ϑ∗(t)yΛy(t, y)

+ ũ
(
t, yμ(t)

)]
dt− Λ∗(t, y)dW (t) on [0, T )× R

+,(7.29)

Ṽ(T, y) = 0 on R
+.(7.30)

Merging now (7.19) and (7.28), we notice that the random fields Ξ and Λ of the
martingale parts of V and Ṽ, respectively, are related via the almost sure expression

(7.31) Ξ(t, x, z) = Λ
(
t,Y(t, x− w(t)z)

)
, t ∈ [0, T ), (x, z) ∈ Dt.

Proof of Theorem 7.7. Setting claim (5.25) aside, the first two parts of this result
represent the dynamic, stochastic counterpart of Theorem 5.8. Thus, all the respective
assertions, including (7.24)–(7.27), can be proved through a similar methodology,
keeping in mind the new feature of conditional expectation. From Lemmata 6.6 and
7.1, (7.26), and (7.28), it is easy to verify the stated regularity for the pair (Ṽ,Λ),
while (7.29) and (7.30) are direct implications of (7.26), (7.10), (3.4), (6.14), and
(7.11) with (6.15).

Remark 7.8. In a Markovian framework with nonrandom model coefficients (cf.
Remark 6.10), the unique solutions (6.13), (7.7), (7.4), and (7.23) of the SPDEs of
Lemmata 6.6 and 7.1 and Theorems 7.4 and 7.7, respectively, are deterministic func-
tions. In particular, the stochastic integrals in these equations vanish, reducing them
to deterministic ones.

The example that follows illustrates the use of Theorem 7.7 as an alternative
method for characterizing, even computing, the value random field and the stochastic
feedback formulae of the optimal portfolio/consumption pair.
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Example 7.9 (logarithmic utility). Take u(t, x) = log x for all (t, x) ∈ [0, T ]×R
+;

thus, I(t, y) = 1/y, ũ(t, y) = − log y − 1 for (t, y) ∈ [0, T ]× R
+.

Case 1: Deterministic coefficients. The Cauchy problem (7.29) now takes the form

(7.32) Ṽt(t, y) +
1
2
‖ϑ(t)‖2y2Ṽyy(t, y)− r(t)yṼy(t, y) = −ũ(t, yμ(t)) on [0, T )× R

+.

Motivated by the nonhomogeneous term of (7.32), we seek appropriate functions ν,m :
[0, T ]→ R such that

(7.33) ṽ(t, y) � −ν(t) log(yμ(t)) −m(t)

satisfies (7.32), (7.30). Indeed, this is the case if and only if

(7.34) ν(t) = T − t, m(t) =
∫ T

t

[
1− (T − s)

(
1
2
‖ϑ(s)‖2 + r(s) − μ′(s)

μ(s)

)]
ds

for 0 ≤ t ≤ T , and then ṽ ∈ C([0, T ]×R
+)∩C1,3([0, T )×R

+). From Theorem 7.7, ṽ
is the unique solution of the Cauchy problem (7.32), (7.30); thus Ṽ ≡ ṽ,

X (t, y) =
ν(t)
y
, G(t, y) = ν(t)

[
1− log(yμ(t))

]
−m(t), (t, y) ∈ [0, T ]× R

+.

Therefore,

Y(t, x) =
ν(t)
x
, x ∈ R

+, V (t, x, z) = ν(t) log
(
x− w(t)z
ν(t)μ(t)

)
+ν(t)−m(t), (x, z) ∈ Dt,

and the feedback formulae (6.24), (6.25) for the optimal consumption and portfolio
are given, for every 0 ≤ t < T , by

C(t, x, z) = z +
x− w(t)z
ν(t)μ(t)

and Π(t, x, z) = (σ∗(t))−1
ϑ(t)

x− w(t)z
x

, (x, z) ∈ Dt.

Case 2: Random coefficients. Our goal is to find an F-adapted pair of random
fields that satisfies (7.29), (7.30). By analogy with (7.33)–(7.34), we introduce in this
case the F-adapted random field

ṽ(t, y) � −ν(t) log(yμ(t))−m(t)

for (t, y) ∈ [0, T ]× R
+, with ν(t) = T − t and

m(t) = Et

[∫ T

t

{
1− (T − s)

(
1
2
‖ϑ(s)‖2 + r(s) − μ′(s)

μ(s)

)}
ds

]
.

Moreover, the completeness of the market stipulates the existence of an R
d-valued,

F-progressively measurable, square-integrable process �(·), such that the Brownian
martingale

M(t) = Et

[∫ T

0

{
1− (T − s)

(
1
2
‖ϑ(s)‖2 + r(s)− μ′(s)

μ(s)

)}
ds

]

has the representation M(t) = M(0) +
∫ t
0
�∗(s) dW (s), 0 ≤ t ≤ T .
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It is verified directly that the pair (ṽ, �), where ṽ ∈ CF

(
[0, T ]; L2(Ω;C3(R+))

)
,

satisfies (7.29), (7.30). Therefore, Theorem 7.7 implies that (ṽ, �) agrees with (Ṽ,Λ),
and

X(t, y) =
ν(t)
y
, G(t, y) = ν(t)

[
1− log(yμ(t))

]
−m(t), (t, y) ∈ [0, T ]× R

+.

Consequently, for 0 ≤ t < T, it transpires that Y(t, x) = ν(t)/x, x ∈ R
+, and

V(t, x, z) = ν(t) log
(
x− w(t)z
ν(t)μ(t)

)
+ ν(t)−m(t), (x, z) ∈ Dt.

For this special choice of utility preference, X (and so Y) is deterministic, and the
feedback formulae (6.20), (6.21) for the optimal consumption and portfolio decisions
are the same as those of the previous case.

Remark 7.10. Within the Markovian context of nonrandom coefficients, Detemple
and Zapatero (1992) obtain a closed-form representation for the optimal portfolio via
an application of the Clark (1970) formula; this reduces to “feedback form” for the
logarithmic utility function. This feedback formula now becomes a special case of the
expression (6.25) (Example 7.9, Case 1) established in Remark 6.10 for an arbitrary
utility function.

Remark 7.11. When δ(·) = α(·) = 0 and z = 0, i.e., without habit formation, we
have μ(·) = 1 from (6.6), so the analysis remains valid for a random interest rate pro-
cess r(·) as well. Thus, this paper generalizes also the dynamic programming/partial
differential equation approach to classical utility optimization, developed by Karatzas,
Lehoczky, and Shreve (1987) in the special context of deterministic coefficients.

8. Appendix. In this section we provide a stochastic Feynman–Kac formula
and an equivalent FBSDE representation for the BSPDEs considered in Lemmata 6.6
and 7.1; our reasoning proceeds along the lines of Ma and Yong (1997).

Preparing the ground of our approach, we state the following implication of the
generalized Itô–Kunita–Wentzell formula (see, e.g., Kunita (1990), Section 3.3, pp. 92–
93). This enables us to carry out computations in a stochastically modulated dynamic
framework; see also Lemma 7.2, Theorem 7.4, and Proposition 8.3.

Proposition 8.1. Suppose that the random field F : [0, T ]× R
n × Ω → R is of

class C0,2([0, T ]× R
n) and satisfies

F(t, x) = F(0, x) +
∫ t

0

f(s, x)ds+
∫ t

0

g∗(s, x)dW (s) ∀ (t, x) ∈ [0, T ]× R
n,

almost surely. Here g =
(
g(1), . . . ,g(d)

)
, g(j) : [0, T ] × R

n × Ω → R, j = 1, . . . , d,
are C0,2([0, T ] × R

n), F-adapted random fields, and f : [0, T ] × R
n × Ω → R is a

C0,1([0, T ]× R
n) random field. Furthermore, let X =

(
X(1), . . . ,X(n)

)
be a vector of

continuous semimartingales with decompositions

X(i)(t) = X(i)(0) +
∫ t

0

b(i)(s)ds+
∫ t

0

(
h(i)(s)

)∗
dW (s), 0 ≤ t ≤ T,

for i = 1, . . . , n, where h(i) =
(
h(i,1), . . . ,h(i,d)

)
is an F-progressively measurable,

almost surely square integrable vector process, and b(i)(·) is an almost surely integrable
process. Then F(·,X(·)) is also a continuous semimartingale, with decomposition
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F
(
t,X(t)

)
=F

(
0,X(0)

)
+
∫ t

0

f
(
s,X(s)

)
ds+

∫ t

0

g∗(s,X(s)
)
dW (s)

+
n∑
i=1

∫ t

0

∂

∂xi
F
(
s,X(s)

)
b(i)(s)ds

+
n∑
i=1

∫ t

0

∂

∂xi
F
(
s,X(s)

)(
h(i)(s)

)∗
dW (s)

+
d∑
j=1

n∑
i=1

∫ t

0

∂

∂xi
g(j)

(
s,X(s)

)
h(i,j)(s) ds(8.1)

+
1
2

d∑
�=1

n∑
i=1

n∑
k=1

∫ t

0

∂2

∂xi∂xk
F
(
s,X(s)

)
h(i,�)(s)h(k,�)(s) ds, 0 ≤ t ≤ T.

By analogy with (6.9) and (6.11), for every (t, y) ∈ [0, T ] × R
+, we regard the

stochastic process

(8.2) Υ(t,y)(s) � y �(t) exp
{∫ s

t

[
m(v)− 1

2
‖ν(v)‖2

]
dv +

∫ s

t

ν∗(v)dW (v)
}

for t ≤ s ≤ T , which is the unique solution of the linear forward stochastic differential
equation (FSDE)

dΥ(t,y)(s) = Υ(t,y)(s)
[
m(s)ds+ ν∗(s)dW (s)

]
, t < s ≤ T,(8.3)

Υ(t,y)(t) = y�(t);(8.4)

we assume thatm(·), �(·), and ν(·) = (ν1(·), . . . , νd(·))∗ are F-progressively measurable
stochastic processes and satisfy the conditions

∫ T

0

|m(t)|dt <∞, �(·) ≥ 1,
∫ T

0

�(t)dt <∞, almost surely,

and E

∫ T

0

‖ν(t)‖2dt <∞.

We define also the random field L : [0, T ]× R
+ × Ω→ R by

(8.5) L(t, y) � Et

[∫ T

t

e
∫

s
t
ρ(v)dvq(s)N

(
s,Υ(t,y)(s)

)
ds

]
,

for a given jointly continuous function N : [0, T ]×R
+ → R, and given F-progressively

measurable stochastic processes ρ(·) and q(·), which satisfy the preceding conditions
imposed for m(·) and �(·), respectively. Notice that the random fields X and G of
(6.13) and (7.7), respectively, now become special cases of L for appropriate choices
of the probability measure, the processesm(·), ν(·), �(·), ρ(·), q(·), and the function N .

In order to comply with Assumptions 6.1 and 6.2 as well, we shall make the
following hypotheses and then state a unifying result for the BSPDEs of Lemmata 6.6
and 7.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UTILITY MAXIMIZATION WITH HABIT FORMATION 517

Assumption 8.2. The processes m(·), ν(·), ρ(·) are continuous, and q(·), �(·) are
differentiable. Additionally, for any t ∈ [0, T ], the function N(t, ·) is of class C4(R+)
and satisfies the polynomial growth condition posited in Remark 6.3 for u ◦ I.

Proposition 8.3. Under Assumption 8.2, there exists a random field ΨL : [0, T ]×
R

+ × Ω → R
d such that the pair (L,ΨL), where L is given by (8.5), belongs to the

class CF

(
[0, T ]; L2(Ω;C3(R+))

)
× L

2
F

(
0, T ; L2(Ω;C2(R+; Rd))

)
and is the almost sure

unique solution of the Cauchy problem

−dL(t, y) =

[
1
2
‖ν(t)‖2y2Lyy(t, y) +

(
m(t)− �′(t)

�(t)

)
yLy(t, y) + ρ(t)L(t, y)

+ ν∗(t)yΨL
y (t, y) + q(t)N(t, y�(t))

]
dt−

(
ΨL(t, y)

)∗
dW (t)

(8.6)

on [0, T )× R
+, subject to the terminal condition

(8.7) L(T, y) = 0 on R
+.

Furthermore, for every (t, y) ∈ [0, T ]× R
+, consider the stochastic processes

Q(t,y)(s) � L

(
s,

Υ(t,y)(s)
�(s)

)
, s ∈ [t, T ], and(8.8)

Z(t,y)(s) � ν(s)Υ(t,y)(s)
�(s)

Ly

(
s,

Υ(t,y)(s)
�(s)

)
+ ΨL

(
s,

Υ(t,y)(s)
�(s)

)
, s ∈ [t, T ],(8.9)

where Υ(t,y)(·) satisfies the FSDE of (8.3) and (8.4). Then the pair
(
Q(t,y),Z(t,y)

)
constitutes the unique F-adapted solution of the associated linear backward stochastic
differential equation (BSDE)

−dQ(t,y)(s) =
[
ρ(s)Q(t,y)(s) + q(s)N

(
s,Υ(t,y)(s)

)]
ds

−
(
Z(t,y)(s)

)∗
dW (s), t ≤ s < T,(8.10)

Q(t,y)(T ) = 0.(8.11)

Consequently, the FSDE of (8.3), (8.4) and the BSDE of (8.10), (8.11) constitute
an equivalent FBSDE formulation for the BSPDE of (8.6) and (8.7).

Proof of Proposition 8.3. For each (t, η) ∈ [0, T ]× R
+, we define the process

(8.12) R(t,η)(s) � η + log
(

Υ(t,1)(s)
�(t)

)
, t ≤ s ≤ T,

which, due to (8.3) and (8.4), satisfies the dynamics

dR(t,η)(s) =
[
m(s)− 1

2
‖ν(s)‖2

]
ds+

(
ν(s)

)∗
dW (s), t < s ≤ T,(8.13)

R(t,η)(t) = η.(8.14)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

518 NIKOLAOS ENGLEZOS AND IOANNIS KARATZAS

Moreover, from (8.5) we get the relationship

(8.15) L(t, y) = U
(
t, log(y�(t))

)
for (t, y) ∈ [0, T ]×R

+, in terms of the random field U : [0, T ]×R
+ ×Ω→ R given by

(8.16) U(t, η) � Et

[∫ T

t

e
∫

s
t
ρ(v)dvq(s)N

(
s, eR

(t,η)(s)
)
ds

]
.

According to Assumption 8.2, (8.13), (8.14), and the study of parabolic BSPDEs
by Ma and Yong (1997), Corollary 6.2, page 76, there exists a random field Ψ :
[0, T ] × R

+ × Ω → R
d such that the pair (U,Ψ), with U given by (8.16), is of class

CF

(
[0, T ]; L2(Ω;C3(R+))

)
× L

2
F

(
0, T ; L2(Ω;C2(R+; Rd))

)
and is, almost surely, the

unique solution of the parabolic BSPDE

−dU(t, η) =

[
1
2
‖ν(t)‖2Uηη(t, η) +

(
m(t)− 1

2
‖ν(t)‖2

)
Uη(t, η)

+ ρ(t)U(t, η) + ν∗(t)Ψη(t, η) + q(t)N(t, eη)

]
dt−

(
Ψ(t, η)

)∗
dW (t)

(8.17)

for η ∈ R, 0 ≤ t < T , with terminal condition

(8.18) U(T, η) = 0, η ∈ R.

For any (t, η) ∈ [0, T ]× R
+, Theorem 6.1 of the above citation (page 75) implies

also that the processes

S(t,η)(s) � U
(
s,R(t,η)(s)

)
, t ≤ s ≤ T, and(8.19)

H(t,η)(s) � ν(s)Uη
(
s,R(t,η)(s)

)
+ Ψ

(
s,R(t,η)(s)

)
, t ≤ s ≤ T,(8.20)

form the unique F-adapted solution pair
(
S(t,η),H(t,η)

)
of the linear BSDE

−dS(t,η)(s) =
[
ρ(s)S(t,η)(s) + q(s)N

(
s, eR

(t,η)(s)
)]
ds

−
(
H(t,η)(s)

)∗
dW (s), t ≤ s < T,(8.21)

S(t,η)(T ) = 0.(8.22)

Recalling (8.15), define the random field ΨL : [0, T ]× R
+ × Ω→ R

d by

(8.23) ΨL(t, y) � Ψ
(
t, log(y�(t))

)
.

Thanks to (8.15) and (8.23), the pair of random fields (L,ΨL) has the same regularity
as the pair (U,Ψ). Thus, the relationships (8.15) and (8.18), and an application of
the generalized Itô–Kunita–Wentzell formula (Proposition 8.1), in conjunction with
(8.17), yield that (L,ΨL) is the unique solution of the Cauchy problem (8.6), (8.7).
Finally, we couple (8.12) and (8.15) to obtain the equations

Q(t,y)(·) = S(t,log(y�(t)))(·) and Z(t,y)(·) = H(t,log(y�(t)))(·)

for (t, y) ∈ [0, T ]× R
+, and the second part of the proposition follows readily by the

F-adaptivity of
(
S(t,η),H(t,η)

)
and the BSDE of (8.21) and (8.22).
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9. Conclusion. We have studied various aspects of portfolio/consumption opti-
mization in the presence of addictive habits, in complete financial markets. The effec-
tive state space for the optimal wealth and standard of living processes was identified
as a random wedge, and the investor’s value function was shown to have properties
similar to those of a utility function. Of particular interest was the interplay between
dynamic programming principles and SPDE theory; this led to the characterization of
the value random field as a solution of a (highly nonlinear) Hamilton–Jacobi–Bellman
BSPDE. The convex dual of the value random field turned out to be the unique
solution of a parabolic BSPDE. A by-product of this analysis was an additional rep-
resentation for the optimal investment-consumption policies on the current level of
the optimal wealth and standard of living processes.

The existence of an optimal portfolio/consumption pair in an incomplete market
(that is, when the number of stocks is strictly smaller than the dimension of the
driving Brownian motion) is an open question. Following the duality methodology
developed in Karatzas et al. (1991), one can complete the market with fictitious stocks
by parametrizing a certain family of exponential local martingales, which includes
Z(·) of (2.6) and gives rise to an analogous class of state-price density processes.
An associated dual optimization problem can be defined in terms of the respective
parametrized “adjusted” state-price density processes, such that a possible minimizer
induces a null demand for the fictitious stocks. But in the context of habit formation,
the dual functional fails to be convex with respect to the dual parameter; thus, new
methodologies will most likely have to be developed to handle the problem. We leave
this issue as an open question for future research.
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Abstract. We present a regularity result for the HUM optimal control associated with the
interior control of linear waves. We use this analysis, together with Strichartz inequalities, to get
results on the exact controllability for subcritical nonlinear waves in a bounded domain of R

3.

Key words. HUM control operator, semilinear wave equation

AMS subject classifications. 35L20, 35L70, 74J30, 93B05, 93B07, 93C20

DOI. 10.1137/070712067

1. Introduction and statement of the results. The main goal of this paper
is to study the exact controllability of subcritical semilinear waves in bounded domains
of R

3 with Dirichlet boundary condition. We are able to show, using Littlewood–Paley
theory and the Strichartz inequalities obtained in [BLP07], that the control problem
can be understood frequency by frequency; in other words, the energy of each scale
of the control function depends (almost) only on the energy of the same scale in
the states one wants to control. This is made precise in Theorem 1.8 and its proof.
On the way, we observe that high frequencies (small scales) are entirely governed
by the linear part of the equation, a fact which comes clearly from the subcritical
nature of the problem. On the other hand, it turns out that low frequencies (large
scales) are much more difficult to analyze, since they clearly remain associated with
a nonlinear dynamic, and, for this reason, in Theorem 1.8, we will still assume a
smallness condition on the energy of the low frequency part of the states we want to
control.

In order to do this reduction to low frequency, we prove in Theorem 1.4 that
the optimal L2 control operator Λ associated with the linear wave equation almost
commutes with frequency localization. Moreover, in Theorem 1.3, we will prove that Λ
preserves all of the Sobolev spaces. (As an easy fact, we will also show in Theorem 4.1
that, in the case of a manifold without boundary, Λ is indeed a pseudodifferential
operator.)

The paper is organized as follows. We first recall some basic facts on optimal
linear control theory and the so-called HUM method. Then we recall the geometric
control condition of [BLR92]. We then state our main results in Theorems 1.3, 1.4,
and 1.8. In section 2, we prove Theorems 1.3 and 1.4, and, in section 3, we prove
Theorem 1.8. Finally, in the appendix, we first prove Theorem 4.1 on the properties
of the optimal L2 control operator on a manifold without boundary, and we prove
some useful lemmas on the action of a smooth multiplier in the case of bounded
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domains of R
d; then we recall what we need on Strichartz inequalities, and we prove

the composition theorem (Theorem 4.7), which is one of the ingredients of the proof
of Theorem 1.8.

The interested reader will find surprisingly good illustrations of the theoretical
results of this paper on the analytic structure of the optimal control operator in [LN08].

1.1. The HUM method. The problem of controllability for linear evolution
equations and systems has a long history (see the review of Russell in [Rus78]). Here
we recall briefly the so-called HUM method, for which we refer the reader to the book
[Lio88] of Lions, since we shall use in what follows some basic notation and facts in
controllability theory.

Let H be a Hilbert space, and let U(t) = eitA, t ≥ 0, be a continuous semigroup
of contractions on H , with generator A. Let B be a bounded operator on H . Then,
for any g(t) ∈ L1([0,∞[, H), the evolution equation

(1.1) (∂t − iA)f = Bg, f(0) = 0

admits a unique solution f = S(g) ∈ C0([0,∞[, H) given by the Duhamel formula

(1.2) f(t) =
∫ t

0

ei(t−s)ABg(s)ds.

Let T > 0 be given. Let RT be the reachable set at time T :

(1.3) RT = {f ∈ H, ∃g ∈ L2([0, T ], H), f = S(g)(T )}.

Then RT is a linear subspace of H , and is the set of states of the system that one
can reach in time T , starting at rest, with the action of an L2 source g filtered by the
control operator B. The control problem is to give an accurate description of RT ,
and exact controllability is equivalent to the equality RT = H . Let us recall some
basic facts.

Let H = L2([0, T ], H). Let F be the closed subspace of H spanned by solutions
of the adjoint evolution equation

(1.4) F = {h ∈ H, (∂t − iA∗)h = 0, h(T ) = hT ∈ H}.

Let B∗ be the adjoint of the operator g �→ S(g)(T ). Then B∗ is the bounded operator
from H into H, with values in B∗F :

(1.5) B∗(hT )(t) = B∗e−i(T−t)A∗
hT .

For any g ∈ L2([0, T ], H), one has, with fT = S(g)(T ) and h(s) = e−i(T−s)A∗
hT , the

fundamental identity

(1.6) (fT |hT )H =
∫ T

0

(Bg(s)|h(s))ds = (g|B∗(hT ))H.

From (1.6), one gets easily that the following holds true:

(1.7) RT is a dense subspace of H ⇐⇒ B∗ is an injective operator,

which shows that approximate controllability is equivalent to a uniqueness result on
the adjoint equation. Moreover, one gets from (1.6), using the Riesz and closed graph
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theorems, that the following holds true:

eiTAH ⊂ RT ⇐⇒ ∃C, ‖e−iTA∗
h‖H ≤ C‖B∗h‖H ∀h ∈ H,(1.8)

RT = H ⇐⇒ ∃C, ‖h‖H ≤ C‖B∗h‖H ∀h ∈ H.(1.9)

Both (1.8) and (1.9) are observability inequalities, and B∗ is called the observability
operator. The observability inequality (1.8) is used in the study of parabolic equations
like the heat equation. Since here we will work with wave equations, which are
reversible in time, U(t) = eitA will be a group of isometries, or at least a well-defined
group of isomorphisms, for all t ∈ R. In that case, (1.8) and (1.9) are equivalent,
and, from now on, we assume that D(A∗) = D(A) and A∗−A is a bounded operator
on H . We rewrite the observability inequality (1.9) in the more explicit form

(1.10) ∃C, ‖h‖2H ≤ C
∫ T

0

‖B∗e−isA
∗
h‖2Hds ∀h ∈ H.

Assuming that (1.10) holds true, then RT = H , Im(B∗) is a closed subspace of
H, and B∗ is an isomorphism of H onto Im(B∗). For any f ∈ H , let Cf be the set of
control functions g driving 0 to f in time T :

(1.11) Cf =
{
g ∈ L2([0, T ], H), f =

∫ T

0

ei(T−s)ABg(s)ds
}
.

From (1.6), one gets

(1.12) Cf = g0 + (ImB∗)⊥, g0 ∈ ImB∗ ∩ Cf ,

and g0 = B∗hT is the optimal control in the sense that

(1.13) min{‖g‖L2([0,T ],H), g ∈ Cf} is achieved at g = g0.

Let Λ : H → H, Λ(f) = hT be the control map, so that the optimal control g0 is equal
to g0(t) = B∗e−i(T−t)A∗

Λ(f). Then Λ is exactly the inverse of the map MT : H → H
with

(1.14)
MT =

∫ T

0

m(T − t)dt =
∫ T

0

m(s)ds,

m(s) = eisABB∗e−isA
∗
.

Then m(s) = m∗(s) is a bounded, self-adjoint, nonnegative operator on H , and
from (1.10) exact controllability is equivalent to

(1.15) ∃C > 0, MT =
∫ T

0

m(s)ds ≥ C Id.

The above discussion applies as well when the control operator B = B(t) in (1.1)
is a bounded family in t ∈ [0, T ] of bounded operators on H . In that case, exact
controllability is still equivalent to (1.15) with MT given by

(1.16) MT =
∫ T

0

ei(T−t)AB(t)B∗(t)e−i(T−t)A∗
dt.

In what follows, we will use a time dependent control operator B (see (1.19)).
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1.2. Geometry and the (GCC) assumption. Let M be either a compact,
connected, Riemannian manifold of dimension d without boundary or a bounded,
connected, and open subset Ω of R

d with smooth boundary. In the first case, Δ will
denote the Laplace–Beltrami operator on M and, if M = Ω, then Δ will denote the
usual Laplace operator on Ω ⊂ R

d with the Dirichlet boundary condition on ∂Ω; all of
our statements will be true in the more general case where Ω is a relatively compact
open regular subset of a Riemannian manifold.

We denote by (ω2
j ) the sequence of eigenvalues of −Δ and (ej) the orthonormal

basis of L2(M) constituted by the eigenvectors associated with (ω2
j ):

−Δej = ω2
jej , ‖ej‖L2(M) = 1.

We will have j ≥ 1 and ω1 > 0 in the case M = Ω, and j ≥ 0 and ω0 = 0, e0 =
(vol(M))−1/2 in the case M compact. For any s ∈ R, we denote by Hs(M) the usual
Sobolev space and by Hs(M,Δ) the Hilbert space defined by

(1.17) Hs(M,Δ) =
{
u =

∑
j

ajej ,
∑
j

(1 + ω2
j )
s |aj |2 <∞

}
.

When M is compact, Hs(M,Δ) = Hs(M) is the usual Sobolev space. When M = Ω,
Hs(Ω,Δ) is the domain of (1 − Δ)s/2, and we hope that this notation will not be
confusing for the reader; one has in that caseH1(Ω,Δ) = H1

0 (Ω). For s ≥ 0, Hs(Ω,Δ)
is a subset of Hs(Ω), and one has Hs(Ω,Δ) = Hs(Ω) for 0 ≤ s < 1/2, Hs(Ω,Δ) =
{u ∈ Hs(Ω), u|∂Ω = 0} for 1/2 < s < 5/2, Hs(Ω,Δ) = {u ∈ Hs(Ω), u|∂Ω =
Δu|∂Ω = 0} for 5/2 < s < 9/2, and so on. We will use the self-adjoint operator
λ = λ(x,Dx) =

√
|Δ|. One has λ2 + Δ = 0 and

(1.18) λ(x,Dx)
∑
j

ajej =
∑
j

ωjajej .

Moreover, if M is compact, then λ is a first order pseudodifferential operator on M.
On the other hand, we will deal in the whole work with a time dependent control

operator. More precisely, let T > 0 and define

(1.19) χ(t, x) = ψ(t)χ0(x),

where χ0 is a real C∞ function on M , ψ ∈ C∞([0, T ]) is flat at t = 0, T , and ψ(t) > 0
on ]0, T [. We will also denote by χ0 the function on T ∗M defined by χ0(x, ξ) = χ0(x).

Our controls vectors (see, for instance, system (4.1) or (1.21) below) will be of
the form χ(t, x)v, instead of the usual form χ(x)v. As we will see, with this slight
modification, the optimal control operator Λ is simpler and we get better results.
In particular, in the case of a compact manifold without boundary, we will show in
section 4.1 that Λ is a pseudodifferential operator. Let ω be the open subset of M :

(1.20) ω = {x ∈M,χ0(x) �= 0}.

We will always assume that the open set ω of M satisfies the geometric control con-
dition (GCC) of [BLR92] at time T .

(GCC) Every geodesic ray of M travelling with speed 1 and starting at t = 0
enters the open set ω in a time t < T.

Of course, for M = Ω, these geodesics have to be understood as the projection
onto the basis Ω of the generalized bicharacteristic rays of the wave operator, the
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so-called Melrose–Sjöstrand flow, for which we refer the reader to [Hör85]. We shall
denote by s → (γ(x,ξ)(s), t − sτ, τ), s ∈ R, the generalized bicharacteristic ray of the
wave operator, issued from (x, ξ, t, τ). In the case M = Ω, we will always assume that
there is no contact of infinite order between the boundary ∂Ω and the bicharacteristic
rays of the wave operator in the free space, so that γ(x,ξ)(s) is well defined.

1.3. Controllability of linear waves. As we have said, in this work, M will be
either a compact, connected, Riemannian manifold of dimension d without boundary
or a bounded, connected, and open subset Ω of R

d. In order to make the paper as clear
as possible, we have chosen to present as the main result the case of open subsets Ω
of R

d. The corresponding results in the case of a compact manifold without boundary
are simpler, and they will be stated and proved in section 4.1.

In the framework of the wave equation in a bounded regular open subset Ω of
R
d with boundary Dirichlet condition, and, for internal control, the problem of con-

trollability is stated in the following way. Let T be a positive time and χ(t, x) be
as in (1.19). For a given (u0, u1) ∈ H1

0 (Ω) × L2(Ω), the problem is to find a source
v(t, x) ∈ L2(0, T ;L2(Ω)) such that the solution of the system

(1.21)

⎧⎪⎨
⎪⎩
�u = χv in ]0,+∞[×Ω,

u|∂Ω = 0, t > 0,
(u|t=0, ∂tu|t=0) = (0, 0)

reaches the state (u(T ), Dtu(T )) = (u0, u1) at time T . The HUM method consists in
taking the control function v in (1.21) in the form v = χw, where w is a solution of
the dual problem

(1.22)

⎧⎪⎨
⎪⎩

�w = 0 in ]0,+∞[×Ω,
w|∂Ω = 0, t > 0,

(w0, w1) = w0 ∈ E−1 = L2(Ω)×H−1(Ω).

By the above discussion, exact controllability is equivalent to the invertibility
of the operator MT given by (1.16), and the optimal control map Λ is given by
Λ−1 = MT . In order to compute the operator MT , let us first make the obvious
algebraic reduction of the wave equation to a first order system like (1.1). Let A be
the matrix

(1.23) iA =

(
0 Id
� 0

)
.

Then A is an unbounded self-adjoint operator on H = H1
0 (Ω) × L2(Ω), where the

scalar product on H1
0 (Ω) is

∫
Ω∇u∇vdx and D(A) = {u ∈ H, A(u) ∈ H, u0|∂Ω = 0}.

Set as in (1.18)

(1.24) λ =
√
−�D,

where −�D is the canonical isomorphism from H1
0 (Ω) onto H−1(Ω). Then λ is an

isomorphism from H1
0 (Ω) onto L2(Ω). The operator B(t) given by

(1.25) B(t) =

(
0 0

χ(t, .)λ 0

)
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is bounded on H , and one has

(1.26) B∗(t) =

(
0 λ−1χ(t, .)
0 0

)
.

The system (1.21) is then equivalent to (1.1), with f = (u, ∂tu), g = (λ−1v, 0),
and we observe that the optimal control g0(t) = B∗e−i(T−t)A∗

Λ(f) is of the form
g0 = (λ−1χw, 0), where w ∈ L2([0, T ], L2(Ω)) is a solution of (1.22). Thus the exact
controllability condition (1.15) is exactly

(1.27) ∃C > 0, MT =
∫ T

0

ei(T−t)A
(

0 0
0 χ2(t, .)

)
e−i(T−t)Adt ≥ C Id.

Next, we recall the theorem of [BLR92].
Theorem 1.1. If ω and T are such that (GCC) holds true, then MT is an

isomorphism.
In the early literature, exact controllability was often reached by means of multi-

plier methods, under the Γ-condition of Lions. Then in [BLR92], the authors showed
that for the wave equation, exact controllability (with stability with respect to small
perturbations of ω, T ) is equivalent to (GCC). This is a microlocal condition (i.e., a
property in the cotangent bundle T ∗M), linking the couple (ω, T ) and the bicharac-
teristic rays of the wave operator. This then offered the possibility of establishing
it through microlocal tools, namely, the propagation of wave front sets or microlocal
defect measures (see [Gér91], [BG97], [Leb92]). In this paper, we answer two basic
questions.

(1) Regularity: If the target state uT belongs to Hs+1(Ω,Δ) ×Hs(Ω,Δ), s ≥ 0,
then in which space does the optimal control Λ(uT ) live? In other words, is the
regularity of the optimal control adjusted to the one of the data to be controlled?
When s > 0, the solution u of (1.21) attached to the HUM control is, à priori, in
C(0, T ;H1(Ω,Δ)), while we may expect it to be more regular. Hence, the process
seems to introduce a loss of smoothness, and this is not very satisfactory.

Remark 1.2. Notice that in [BLR92] the authors prove, for a boundary control
problem, observation estimates in each Sobolev spaceHs and the existence of a control
vector which satisfies the right regularity. This does not give an answer to the question
of the regularity of the optimal L2-control. Also we will see that for an interior control
problem the multiplier χ introduces extra difficulties at the boundary.

As already observed in [BLR92], in the boundary case, the right scales of spaces
concerning the regularity are the Hs(Ω,Δ) since they include the compatibility con-
ditions. The scale Hs(Ω) is inappropriate. For example, in the case Ω =]0, π[
and ω =]a, π − a[ with a > 0, exact controllability holds true for T > 2a. For
uT = (1, 0) ∈ H∞(Ω) ⊕ H∞(Ω), any control function v in (1.21) must be singu-
lar, since if v is smooth, then we will have u(T, x) ∈ H∞(Ω,Δ) and in particular
u(T, 0) = 0.

(2) Spectral analysis: Now, if we assume that the state uT is spectrally supported
in some dyadic set a2k ≤ ωj ≤ b2k, then how are the frequencies of the HUM control
Λ(uT )? Are they also almost localized in the same set if k is large? For instance, if
uT has only low frequencies, how are the high frequencies of Λ(uT )?

To conclude this discussion, we observe that the fact that the HUM control Λ(uT )
is the solution of a natural variational problem would suggest that the answer to these
questions could be affirmative.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEMILINEAR CONTROL 527

In order to separate waves with positive and negative frequencies, we introduce
the following obvious splitting. For g = (g0, g1) ∈ H = H1

0 (Ω)× L2(Ω), we set

(1.28)
g0 = λ−1(h+ + h−),

g1 = i(h+ − h−).

One has h± ∈ L2(Ω), and (1.28) gives an identification between H and L2(Ω)⊕
L2(Ω). Set U±(t) = e±itλ. Then the operators U±(t) are isometries on each Sobolev
space Hs(Ω,Δ), with inverses U±(−t), and, with this identification, eitA is equal to
the diagonal operator

(1.29) eitA = (U+(t),U−(t)).

Moreover, using (1.25), we get in the splitting (1.28) that the control operator B is
given by

(1.30) B =
1
2i

(
χ χ

−χ −χ

)
,

and we recall that the optimal control map Λ is equal to the inverse of the map MT :

(1.31) MT =
∫ T

0

m(s)ds, m(s) = eisAB(T − s)B∗(T − s)e−isA
∗
.

Hence, we obtain from (1.29), (1.30), with the notation (χ2) = χ2(T − s, x),

(1.32) m(s) =
1
2

(
U+(s)(χ2)U+(−s) −U+(s)(χ2)U−(−s)

−U−(s)(χ2)U+(−s) U−(s)(χ2)U−(−s)

)
.

Let Q± be the operators

(1.33) Q± =
∫ T

0

U±(s)(χ2)U±(−s)ds,

and let T be the operator

(1.34) T =
∫ T

0

U+(s)(χ2)U+(s)ds.

The following theorem gives the algebraic structure of the optimal control map Λ and
answers the question of regularity. We shall say that an operator R is smoothing if it
maps L2(Ω) into Hσ(Ω,Δ) for all σ ≥ 0.

Theorem 1.3. Under (GCC), the operators Q± are isomorphisms on each
Sobolev space Hs(Ω,Δ) for all s ≥ 0. The operator T and its adjoint T ∗ are smooth-
ing. Let L± be the inverses of the operators Q±. In the splitting (1.28), the HUM
control operator Λ is equal to

(1.35) Λ =

(
2L+ 0

0 2L−

)
+R,

where the operator R is smoothing. In particular, Λ is an isomorphism of Hs(Ω,Δ)⊕
Hs(Ω,Δ) for all s ≥ 0.
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Now we introduce the material needed for the Littlewood–Paley decomposition.
Let φ ∈ C∞([0,∞[), with φ(x) = 1 for |x| ≤ 1/2 and φ(x) = 0 for |x| ≥ 1. Set
ψ(x) = φ(x) − φ(2x). Then ψ ∈ C∞

0 (R∗), ψ vanishes outside [1/4, 1], and one has

φ(s) +
∞∑
k=1

ψ(2−ks) = 1 ∀s ∈ [0,∞[.

Set ψ0(s) = φ(s) and ψk(s) = ψ(2−ks) for k ≥ 1. We then define the spectral
localization operators ψk(D), k ∈ N, in the following way: for u =

∑
j ajej, we define

(1.36) ψk(D)u =
∑
j

ψk(ωj)ajej .

One has
∑

k ψk(D) = Id and ψi(D)ψj(D) = 0 for |i−j| ≥ 2. In addition, we introduce

(1.37) Sk(D) =
k∑
j=0

ψj(D) = ψ0(2−kD), k ≥ 0.

Our spectral localization result reads as follows.
Theorem 1.4. With the previous notation and under (GCC), there exists C > 0

such that for every k ∈ N the following inequality holds true:

(1.38)
‖ψk(D)Λ− Λψk(D)‖L2 ≤ C2−k,

‖Sk(D)Λ− ΛSk(D)‖L2 ≤ C2−k.

Remark 1.5. What Theorem 1.4 states is that the HUM control operator Λ, up
to a lower order term, acts individually on each frequency block of the solution. For
instance, if en is the nth vector of the L2(Ω)-orthonormal basis of eigenvectors of �
and if one drives the data (en, en) to (en+1, en+1), then the solution will essentially
live at frequency ωn for n large.

Remark 1.6. The estimates (1.38) still remain valid if we replace the d’Alembertian
� by the �+ first order self-adjoint operator; in particular, they are valid for �+ c,
c ∈ R.

1.4. Controllability of subcritical nonlinear waves. In this section, we
state in Theorem 1.8 our result concerning the exact controllability of the subcrit-
ical semilinear wave equation, which constitutes the second main goal of this paper.
All of the functions here will take real values. We still denote by Ω an open and
regular subset of R

3. Let f be a function from R to R, of class C3, satisfying the
following conditions:

f(0) = 0, sf(s) ≥ 0 ∀s ∈ R,(1.39) ∣∣∣f (j)(s)
∣∣∣ ≤ C(1 + |s|)p−j for j = 1, 2, 3(1.40)

with C > 0 and p a real number such that 1 ≤ p < 5. We first recall the theorem
of [BLP07] on the well posedness of the semilinear wave equation with boundary
Dirichlet condition in Ω.

Theorem 1.7. For every T > 0, E0 > 0, and g ∈ L1(]0, T [, L2(Ω)) the semilinear
and defocusing wave equation

(1.41)

{
�u+ f(u) = g in ]0,+∞[×Ω, u|∂Ω = 0,

‖(u|t=0, ∂tu|t=0)‖H1
0×L2 ≤ E0
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admits in the space C0(0, T ;H1
0 (Ω)) ∩ C1(0, T ;L2(Ω)) a unique solution u satisfying

(1.42) ‖u‖
L5(0,T ;W

3
10 ,5
0 (Ω))

≤ C

for some positive constant C = C(T,E0, ‖g‖L1(0,T ;L2(Ω))). In particular, for every
q ∈ [5,+∞], and r with 1/q + 1/r = 1/2, there exists a positive constant C′ =
C′(T, q, E0, ‖g‖L1(0,T ;L2(Ω))) such that

(1.43) ‖u‖Lq(0,T ;L3r(Ω)) ≤ C′.

With F (u) =
∫ u
0
f(s)ds ≥ 0, the nonlinear energy of the solution u of (1.41) is

equal to

(1.44) E(u)(t) =
1
2

∫
M

((∂tu(t))2 + |∇xu(t)|2)dx+
∫
M

F (u(t))dx.

Our result reads as follows.
Theorem 1.8. Assume that (GCC) holds true. For any given E0 > 0, there

exist r > 0 small and k ∈ N large, such that for every initial and final data u0, u1 in
H1

0 (Ω)× L2(Ω) satisfying

(1.45)
‖u0‖H1

0×L2 ≤ E0, ‖u1‖H1
0×L2 ≤ E0,

‖Sk(D)u0‖H1
0×L2 ≤ r, ‖Sk(D)u1‖H1

0×L2 ≤ r

there exists a function g ∈ L1(0, T ;L2(Ω)) which exactly controls the semilinear wave
equation at time T ; namely, the unique solution of the system

(1.46)

{
�u+ f(u) = χ(t, x)g in ]0,+∞[×Ω, u|∂Ω = 0,

(u|t=0, ∂tu|t=0) = u0 ∈ H1
0 (Ω)× L2(Ω)

satisfies u1 = (u|t=T , ∂tu|t=T ).
Remark 1.9. The estimate on the values of r and k are deduced from formula

(3.22). In particular, one obtains a condition of the form

(1.47) 2−kμ + r ≤ A(1 + E0)−B

with μ = 5−p
4p and where the constants A,B > 0 depend only on Ω and T .

We also have the following corollary.
Corollary 1.10. Assume that (GCC) holds true. If (un0 ) and (un1 ) are two

sequences of initial and final data weakly converging to 0 in H1
0 (Ω) × L2(Ω), then

there exists a sequence of functions gn ∈ L1(0, T ;L2(Ω)) which exactly controls the
semilinear wave equation at time T . More precisely, for n ≥ n0, n0 large enough, the
unique solution of the system

(1.48)

{
�un + f(un) = χ(t, x)gn in ]0,+∞[×Ω, un|∂Ω = 0,

(un|t=0, ∂tun|t=0) = un0

satisfies un1 = (un|t=T , ∂tun|t=T ).
Indeed, there exists E0 such that ‖un0‖H1

0×L2 ≤ E0 and ‖un1 ‖H1
0×L2 ≤ E0. For

every k ∈ N, it is clear that the dyadic sums Sk(D)un0 and Sk(D)un1 strongly con-
verge to 0. Therefore, with the integer k and the real r provided by Theorem 1.8,
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condition (1.45) is fulfilled for n ≥ n0, for n0 large enough. In particular, the above
corollary means that any highly oscillating perturbation of the zero state can be ex-
actly controlled to zero in the time T given by (GCC).

Remarks.
1. Besides (GCC), we assume that the low frequencies of the initial data u0 and

those of the target u1 are small enough in the energy space H1
0 × L2. We

have to notice that it is an open question to know if the result of Theorem 1.8
holds true without the condition (1.45). The important fact here is that this
control is achieved in uniform time, namely, the time T of (GCC). In other
words, the control time is the same as the one spent for the control of the
linear equation.

2. Concerning the control problem for semilinear wave equations, numerous
works are available in the literature (see [Zua90], [Zua93]). Most of them
assume the initial data to be small enough in the energy space, and the
proofs are then built on a fixed point process. The control time is the one
of the linear equation, but, clearly, the general setting is nothing more than
a perturbation of the linear case. Another approach is to first dampen the
equation in order to decrease the solution energy and then to come back to
the previous method. But, in this case, the control time is no longer uniform
(see [DLZ03]). Finally, what Theorem 1.8 states is that the semilinear nature
of the equation is governed by separation between low and high frequencies.
For instance, using again the example of Remark 1.5, for n large enough,
(en, en) can be driven to (en+1, en+1) in time T .

2. Linear waves.

2.1. A proof of Theorem 1.3. The proof is achieved in several steps.
Step 1: Q+ is an isomorphism of L2. Since (GCC) holds true, we know (see,

for example, [BLR92]) that there exists C such that for any solution u of the wave
equation �u = 0 the following observability inequality holds true:

(2.1) ‖u(0, .)‖2L2 + ‖∂tu(0, .)‖2H−1 ≤ C
∫ T

0

‖χu(t, x)‖2L2 dt.

Let H = L2 and B = χ. Then Q+ is exactly the operator MT associated in section 1.1
with the evolution problem (∂t − iλ)f = Bg. Thus Q+ is an isomorphism of H iff the
observability inequality (1.10) holds true. With the notation of (1.10), u = e−isλh is
an L2 solution of the wave equation, and thus (1.10) follows from (2.1).

Step 2: By Lemma 4.2, we know that Q+ is bounded on Hs(Ω,Δ) for all s ≥ 0.
Next we define the operator

(2.2) As = λsQ+λ
−s −Q+ = λs[Q+, λ

−s].

We claim that, for all s ≥ 0, As maps H0(Ω,Δ) = L2 into H1/2(Ω,Δ) and therefore
is compact on L2. Indeed, by Lemma 4.3, we know that this holds true for s ∈ [0, 2[.
For s ≥ 2, set s = 2N + σ with σ ∈ [0, 2[. By integration by parts, one gets

(2.3)

As = λsQ+λ
−s −Q+ =

∫ T

0

(−∂2
t )
N (eitλ)λσχ2λ−σ−2Ne−itλdt−Q+

= (−1)N
2N−1∑
j=0

∫ T

0

eitλPj,Ne
−itλdt+ λσQ+λ

−σ −Q+
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with Pj,N = Cj2Nλ
σ(∂2N−j

t χ2)λ−2N−σ(−iλ)j . Then the result follows since, by (4.20),
Pj,N is bounded from L2 into Ha(Ω,Δ) for any a < min(1, 5/2− σ).

Step 3: Q+ is an isomorphism on Hs(Ω,Δ). Since we know that Q+ is an
isomorphism on L2, it remains to show the following regularity result for s ≥ 0:

(2.4) u ∈ L2 and Q+u ∈ Hs(Ω,Δ)⇒ u ∈ Hs(Ω,Δ).

Set Fs = {u ∈ L2 and Q+u ∈ Hs(Ω,Δ)}. Then Fs is a Hilbert space, one has
Hs(Ω,Δ) ⊂ Fs, and (2.4) is equivalent to Hs(Ω,Δ) = Fs. Since As is a compact
operator on L2, there exists C such that for all u ∈ Hs(Ω,Δ) one has

(2.5) ‖u‖Hs(Ω,Δ) ≤ C(‖Q+u‖Hs(Ω,Δ) + ‖u‖L2).

In fact, if (2.5) does not hold true, then there exists a sequence vn ∈ L2, ‖vn‖ = 1
such that ‖λsQ+λ

−svn‖L2 + ‖λ−svn‖L2 → 0. Then vn converges weakly to 0, and,
since As is compact, ‖Q+vn‖L2 → 0. This contradicts ‖vn‖ = 1 since Q+ is an
isomorphism on L2. Thus Hs(Ω,Δ) is a closed subspace of Fs. Set Jε = (1 + ελ)−1.
Then [Q+, Jε] = εJε[λ,Q+]Jε and, by Lemma 4.3, the operator [λ,Q+] is bounded
on L2. For s < 1 and u ∈ Fs, one has Jεu ∈ Hs(Ω,Δ) and we get

‖Q+Jεu−Q+u‖Hs(Ω,Δ) ≤ ‖(Jε − 1)λsQ+u‖L2 + ‖λs[Q+, Jε]u‖L2 → 0 (ε→ 0).

Thus Hs(Ω,Δ) is dense in Fs for s < 1, and (2.4) holds true for s < 1.
To conclude, we proceed by induction on s. Assume that (2.4) holds true on

[0, σ]. Let 0 < s < 1/2. Then Q+u ∈ Hs+σ(Ω,Δ) implies v = λσu ∈ L2. Then
λσQ+λ

−σv ∈ Hs(Ω,Δ) gives Q+v+Aσv ∈ Hs(Ω,Δ), and one has Aσv ∈ H1/2(Ω,Δ)
by Step 2. Thus we get Q+v ∈ Hs(Ω,Δ). Since s < 1, this implies v ∈ Hs(Ω,Δ),
which gives u ∈ Hs+σ(Ω,Δ). Thus (2.4) holds true for any s ≥ 0.

To conclude the proof, we now have to verify that the operators T and T ∗ are
smoothing. We proceed by a complex deformation. Take N large and set θ(t+is, x) =∑

0≤j≤N
(is)j

j! ∂jt (χ2(t, x)). Let c be a complex path connecting 0 to T in Im(z) > 0,
with small and no zero angles with the real axis at 0 and T, and let U be the open set
in C with boundary [0, T ]∪ c. Let α(z, x) = eizλθ(z, x)eizλdz. By the Stokes formula,
one has

(2.6) T =
∫
U

dα+
∫
c

α.

Let a > 0 be given. For Im(z) > 0, eizλ maps L2 into Ha(Ω,Δ) with norm ≤
C Im(z)−a. Since the smooth function χ2(t, x) is flat at t = 0 and t = T , for any
M > 0, there exists a constant CM such that one has |θ(z)| ≤ CMdist(z, {0, T })M for
any z ∈ U . Since Im(z) ≥ Cdist(z, {0, T }) on the complex path c, we get that

∫
c
α

maps L2 into Ha(Ω,Δ). On the other hand, dα = eizλ∂zθ(z, x)eizλdzdz and one has∣∣∂zθ(z, x)∣∣ ≤ CN |Im(z)|N for z ∈ U, and therefore
∫
U dα maps L2 into Ha(Ω,Δ) for

a ≤ N. Thus T is smoothing, and the same argument using a complex deformation in
Im(z) < 0 shows that T ∗ is smoothing. Finally, (1.35) is now an obvious consequence
of (1.31), (1.32), and Λ = M−1

T . The proof of Theorem 1.3 is complete.

2.2. A proof of Theorem 1.4. The proof of Theorem 1.4 is an easy by-product
of the proof of Theorem 1.3. One has, with h = 2−k, ψk(D) = ψ(h|Δ|1/2) = Ah, with
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ψ ∈ C∞
0 and supported in [1/4, 1]. Thus there exists C such that one has for all

h ∈]0, 1]

(2.7)
∀u ∈ L2 ‖Ahu‖H−1(Ω,Δ) ≤ Ch‖u‖L2,

∀u ∈ H1(Ω,Δ) ‖Ahu‖L2 ≤ Ch‖u‖H1(Ω,Δ)

and by (4.37)

(2.8) ‖[Ah, χ2
0]u‖L2 ≤ Ch‖u‖L2.

The first line of (1.38) is equivalent to the estimate

(2.9) ∀h ∈]0, 1] ‖[Ah,Λ]‖L2 ≤ Ch.

Since [Ah,Λ] = Λ[MT , Ah]Λ and since Λ is an isomorphism on L2, we have to
prove ‖[MT , Ah]‖L2 ≤ Ch. Let B be an operator bounded from L2 into H1(Ω,Δ) and
from H−1(Ω,Δ) into L2. Then by (2.7) one has ‖BAh‖L2 ≤ Ch and ‖AhB‖L2 ≤ Ch.
Observe that, thanks to (1.31) and (1.32), MT is given by formula

(2.10) MT =
1
2

(
Q+ −T
−T ∗ Q−

)
.

The operators T and T ∗ are of type B by Theorem 1.3. Thus it remains to show that

(2.11) ∀h ∈]0, 1] ‖[Ah, Q±]‖L2 ≤ Ch,

which is obvious by definition (1.33) of Q±, (2.8), and [λ,Ah] = 0. We get the second
line of (1.38) from the first line since by (1.37) one has Sk(D) = 1 −

∑
j>k ψj(D).

The proof of Theorem 1.4 is complete.

3. Semilinear waves. This section is devoted to the proof of Theorem 1.8.
Without loss of generality, in what follows we may assume that 4 ≤ p < 5 since the
hypothesis (1.40) on the nonlinearity f is monotone in p. First, we decompose the
semilinear term

f(u) = f ′(0)u+ θ(u),

where θ is of class C3 and satisfies for some c > 0

(3.1) |θ(s)| ≤ c(|s|2 + |s|p).

In the proof of Theorem 1.8, we will use the fact that the problem is subcritical and
therefore close to a linear control problem thanks to the hypothesis (1.45). Therefore,
we will choose the control function g in (1.46) in the form g = χ(t, x)(g1 + g2), where
both g1 and g2 are solutions of the linear equation

(3.2)
�g1 + f ′(0)g1 = 0, g1|∂Ω = 0 and (g1|t=0, ∂tg1|t=0) ∈ L2 ×H−1,

�g2 + f ′(0)g2 = 0, g2|∂Ω = 0 and (g2|t=0, ∂tg2|t=0) ∈ L2 ×H−1.

We choose for g1 the linear HUM control associated with the operator � + f ′(0)
and with the initial data u0 and the final data u1, so our unknown will be g

2
=

(g2|t=0, ∂tg2|t=0).
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Now consider the system

(3.3)

{
�u+ f(u) = χ2(t, x)g1 + χ2(t, x)g2 , u|∂Ω = 0,

(u|t=0, ∂tu|t=0) = u0 ∈ H1
0 × L2.

For every g2 ∈ L1(0, T ;L2(Ω)), system (3.3) admits a unique solution u in the
space C0(0, T ;H1

0 (Ω)). Moreover, u satisfies the Strichartz estimates (1.42), (1.43).
We split u into u = v + w with

(3.4) �v + f ′(0)v = χ2(t, x)g1, v|∂Ω = 0 and (v|t=0, ∂tv|t=0) = u0.

Clearly, by our choice of g1, we have (v|t=T , ∂tv|t=T ) = u1, and thus w must satisfy
(w|t=T , ∂tw|t=T ) = 0 and

(3.5) �w + f ′(0)w = −θ(u) + χ2(t, x)g2 , w|∂Ω = 0 and (w|t=0, ∂tw|t=0) = 0.

Let h be the solution of

(3.6) �h+ f ′(0)h = θ(u), h|∂Ω = 0 and (h|t=T , ∂th|t=T ) = 0.

We denote by N the map from L2 ×H−1 into H1
0 × L2 defined by

(3.7) N (g
2
) = (h|t=0, ∂th|t=0),

where h is the solution of (3.6) and u is the solution of (3.2). The function k = w+ h
solves the system

(3.8) �k + f ′(0)k = χ2(t, x)g2 , k|∂Ω = 0 and (k|t=0, ∂tk|t=0) = (h|t=0, ∂th|t=0).

If there exists g
2
∈ L2 × H−1 such that N (g

2
) = (h|t=0, ∂th|t=0)(k|t=0, ∂tk|t=0) =

Λ−1(g
2
), where Λ is the linear HUM control associated with the operator � + f ′(0)

(except that we have exchanged the role of 0 and T ), then by formulae (3.3), (3.4),
(3.5), (3.6), and (3.8) the control g = χ(t, x)(g1 + g2) in (1.46) will drive the initial
state u0 to the final state u1.

Hence, we are looking for a fixed point for the operator

L = ΛN .

Actually, we will prove that, under the conditions of Theorem 1.8, L reproduces a
small ball Bρ centered at the origin of L2 × H−1 and is contracting on Bρ. In fact,
taking advantage of the regularity of the composition f(u), we easily see that L is
compact; thus, we could argue as in the proof of Theorem 3 of [DLZ03] and use a
Schauder fixed point result. But keeping in mind the fact that the present result could
have numerical applications, we will instead run a classical Picard fixed point theorem.

We denote by C(E0) constants which depend only on E0 and by c various con-
stants independent of u0, u1. To begin, take g

2
∈ Bρ (ρ < 1), k ∈ N, and let Sk(D)

be the spectral localization defined in (1.37). One has∥∥∥Lg
2

∥∥∥
L2×H−1

≤ c
∥∥∥N g

2

∥∥∥
H1

0×L2
= c ‖(h|t=0, ∂th|t=0)‖H1

0×L2 .

Thanks to the hyperbolic energy estimate applied to (3.6), one has

‖(h|t=0, ∂th|t=0)‖H1
0×L2 ≤ c

∫ T

0

(∫
Ω

|θ(u)|2 dx
)1/2

dt.
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Or, equivalently,

(3.9) ‖(h|t=0, ∂th|t=0)‖H1
0×L2 ≤ c

∫ T

0

‖u(t)‖2L4 dt+ c

∫ T

0

‖u(t)‖pL2p dt.

We split u into

u = uL + uH ,

where

uL = Sk(D)u and uH = (1− Sk(D))u

are, respectively, the low and high frequency parts of u. This gives

(3.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ T

0

(∫
Ω

|θ(u)|2 dx
)1/2

dt ≤ c
∫ T

0

‖uH(t)‖2L4 dt+ c

∫ T

0

‖uH(t)‖pL2p dt

+ c

∫ T

0

‖uL(t)‖2L4 dt+ c

∫ T

0

‖uL(t)‖pL2p dt.

We will successively estimate these integrals.
First, applying (1− Sk(D)) to (3.3), we obtain

�uH = (1− Sk(D))
[
−f(u) + χ2(g1 + g2)

]
∈ L1(0, T ;L2(Ω)).

Consequently, ‖uH‖
L5(0,T ;W

3
10 ,5
0 )

and ‖uH‖L∞(0,T ;H1
0 ) are bounded by C(E0) as well

as all of the Strichartz norms ‖uH‖La(0,T ;L3r) , a ≥ 5. (Notice that the same fact
holds for uL.) In particular, one has, for all t ∈ [0, T ], ‖uH‖L2 ≤ C(E0)2−k and
‖uH‖L5(0,T ;L10) ≤ C(E0). For q ∈ [1, 5[, one has ‖uH(t)‖L2q ≤ ‖uH(t)‖θL2‖uH(t)‖1−θL10

with θ = 5−q
4q , and thus we get

‖uH(t)‖qL2q ≤ 2−k(
5−q
4 )‖uH(t)‖

5
4 (q−1)

L10 ,

and this yields

(3.11)
∫ T

0

‖uH(t)‖qL2q dt ≤ C(E0)2−k(
5−q
4 ).

Thus we obtain with μ = 5−p
4p

(3.12)
∫ T

0

‖uH(t)‖2L4 dt+
∫ T

0

‖uH(t)‖pL2p dt ≤ C(E0)2−kpμ.

It remains to estimate the last two integrals of (3.10), which are the contribution of
the low frequencies of u. For this purpose, we examine the system satisfied by uL.

Applying Sk(D) to (3.3), we obtain

(3.13)

{
�uL + f(uL) = [θ(uL)− Sk(D)θ(u)] + Sk(D)[χ2g1 + χ2g2],

(uL(0), ∂tuL(0)) = Sk(D)u0 ∈ H1
0 × L2.
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Now, writing θ(u) − θ(uL) = uHθ
′(uL + αuH), 0 < α < 1, and taking into account

assumption (1.40), we get

|θ(u)− θ(uL)| ≤ c |uH | (|uL|+ |uH |+ |uL|p−1 + |uH |p−1).

We just estimate the term |uH | |uL|p−1
, the others being simpler. By the Holder

inequality, we have ∫
Ω

|uH |2 |uL|2(p−1)
dx ≤ ‖uH‖2L2p ‖uL‖2(p−1)

L2p

and we deduce that

∫ T

0

(∫
Ω

|uH |2 |uL|2(p−1)
dx

)1/2

dt ≤
(∫ T

0

‖uH(t)‖5L2p dt

)1/5

.

(∫ T

0

‖uL(t)‖
5
4 (p−1)

L2p dt

)4/5

.

By Strichartz estimates, the second integral of the right-hand side is bounded by
C(E0) since 5

4 (p− 1) < p. Moreover, arguing as in (3.11), we get

‖uH‖L5(0,T ;L2p) ≤ C(E0)2−kμ.

This yields

θ(uL) = θ(u) + 0(2−kμ).

Here we denote by 0(2−kμ) any function g such that

∫ T

0

(∫
Ω

|g|2 dx
)1/2

dt ≤ C(E0)2−kμ.

Consequently,

θ(uL)− Sk(D)θ(u) = (1− Sk(D))θ(u) + 0(2−kμ).

Extending u by zero outside Ω and using the regularity of the composition (Theo-
rem 4.7), one gets θ(u) ∈ L1(0, T ; H

3
10 (5−p)). Since θ(u)|∂Ω = 0, 3

10 (5 − p) > μ, and
μ < 1, we get θ(u) ∈ L1(0, T ;Hμ(�,Ω)). Thus we conclude that the bracket in the
right-hand side of (3.13) satisfies

(3.14) θ(uL)− Sk(D)θ(u) = 0(2−kμ).

On the other hand, inequality (1.38) of Theorem 1.4 and (4.37) give for every t ∈ [0, T ]∥∥Sk(D)(χ2(t, x)g1(t))
∥∥
L2 ≤

∥∥χ2(t, x)Sk(D)g1(t)
∥∥
L2 +

∥∥[Sk(D), χ2(t, x)]g1(t)
∥∥
L2

≤ c
∥∥∥Sk(D)g

1

∥∥∥
L2×H−1

+ c2−k
∥∥∥g

1

∥∥∥
L2×H−1

≤ c
(
‖Sk(D)u0‖H1×L2 + ‖Sk(D)u1‖H1×L2

)
+ c2−k

(
‖u0‖H1×L2 + ‖u1‖H1×L2

)
.
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Hence, by hypothesis (1.45) of Theorem 1.8, we get

(3.15)
∥∥Sk(D)(χ2(t, x)g1)

∥∥
L1(0,T ;L2)

≤ cr + cE02−k.

And obviously, since g2 satisfies (3.2),

(3.16)
∥∥Sk(D)(χ2(t, x)g2)

∥∥
L1(0,T ;L2)

≤
∥∥χ2(t, x)g2

∥∥
L1(0,T ;L2)

≤ cρ.

Summarizing (3.14), (3.15), (3.16), using hypothesis (1.45) and μ < 1, we obtain the
hyperbolic energy estimate

sup
0≤t≤T

(EuL(t))1/2 ≤ (EuL(0))1/2 + C(E0)(r + 2−kμ + ρ) ≤ C(E0)(r + 2−kμ + ρ),

and this gives, in particular,

(3.17) sup
0≤t≤T

‖uL(t)‖H1
0
≤ C(E0)(r + 2−kμ + ρ).

On the other hand, thanks to assumption (1.40), we have

‖f(uL)‖L1(0,T ;L2) ≤ c ‖uL‖L1(0,T ;L2) + c ‖|uL|p‖L1(0,T ;L2) .

Combined with (3.17), (3.13), and (4.56), this yields the Strichartz inequality

(3.18) ‖uL‖
L5(0,T ;W

3
10 ,5)

≤ C(E0)(r + 2−kμ + ρ) + C(E0) ‖uL‖p
L5(0,T ;W

3
10 ,5)

.

Of course, in this estimate we can replace the time T by any value t ∈ [0, T ]. Thus,
applying the boot-strap lemma, we infer that

(3.19) ‖uL‖
L5(0,T ;W

3
10 ,5)

≤ 2C(E0)(r + 2−kμ + ρ)

if

(3.20) (r + 2−kμ + ρ) < (2C(E0))−
p

p−1 .

Then we deduce that

(3.21)

∫ T

0

‖uL(t)‖2L4 dt+
∫ T

0

‖uL(t)‖pL2p dt

≤ C(E0) ‖uL‖2
L5(0,T ;W

3
10 ,5)

≤ C′(E0)(r + 2−kμ + ρ)2.

Finally, plugging (3.12) and (3.21) into (3.10), we conclude that∥∥∥Lg
2

∥∥∥
L2×H−1

≤ c ‖(h|t=0, ∂th|t=0)‖H1×L2 ≤ C′(E0)(r + 2−kμ + ρ)2 + C(E0)2−kpμ.

Thus there exists a constant C(E0) such that

(3.22)
∥∥∥Lg

2

∥∥∥
L2×H−1

≤ C(E0)(r + 2−kμ + ρ)2.

Then one can easily check that there exists a constant ρ(E0) > 0 such that, for any
ρ ≤ ρ(E0) and any r, k such that r + 2−kμ ≤ ρ, condition (3.20) is satisfied and∥∥∥Lg

2

∥∥∥
L2×H−1

≤ ρ.
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Now it remains to prove that, if ρ is small enough, L is contracting on Bρ. For
that, we examine the systems

�uj + f(uj) = χ2(t, x)g1 + χ2(t, x)gj2,

uj|∂Ω = 0 and (uj |t=0, ∂tuj |t=0) = u0 ∈ H1
0 × L2,

�hj + f ′(0)hj = θ(uj), hj|∂Ω = 0 and (hj |t=0, ∂thj |t=0) = 0

for j = 1, 2, where the data g1
2
, g2

2
are in the ball Bρ of L2 ×H−1. We have

(3.23)

{
�(h1 − h2) + f ′(0)(h1 − h2) = θ(u1)− θ(u2),

((h1 − h2)(T ), ∂t(h1 − h2)(T )) = (0, 0)

and

(3.24)

{
�(u1 − u2) + f(u1)− f(u2) = χ2(t, x)(g1

2 − g2
2),

((u1 − u2)(0), ∂t(u1 − u2)(0)) = (0, 0).

We estimate

(3.25)

∥∥∥Lg1
2
− Lg2

2

∥∥∥
L2×H−1

≤ c ‖(h1|t=0, ∂th1|t=0)− (h2|t=0, ∂th2|t=0)‖H1×L2

≤ c
∫ T

0

‖θ(u1)− θ(u2)‖L2 dt.

Writing θ(u1)− θ(u2) = (u1 − u2) θ′(u1 + αu2), 0 < α < 1, we get∥∥∥Lg1
2
− Lg2

2

∥∥∥
L2×H−1

(3.26)

≤ c
∫ T

0

(∫
Ω

|u1 − u2|2 (|u1|2 + |u2|2 + |u1|2(p−1) + |u2|2(p−1))dx
)1/2

dt.

As before, we just examine the integral corresponding to the term |u1 − u2|2 |u1|2(p−1)
.

We have
∫ T

0

(∫
M

|u1 − u2|2 |u1|2(p−1)
dx

)1/2

dt ≤ ‖u1 − u2‖L5(0,T ;L2p) . ‖u1‖(p−1)

L
5
4 (p−1)(0,T ;L2p)

≤ ‖u1 − u2‖
L5(0,T ;W

3
10 ,5)

. ‖u1‖(p−1)

L
5
4 (p−1)(0,T ;L2p)

.

Moreover,

(3.27) ‖u1‖(p−1)

L
5
4 (p−1)(0,T ;L2p)

≤ C(T ) ‖u1‖p−1
Lp(0,T ;L2p) .

We decompose u1 = u1L + u1H , and, following the arguments of the beginning of the
proof, we obtain an estimate similar to (3.12)

(3.28) ‖u1H‖Lp(0,T ;L2p) ≤ C(E0)2−kμ ≤ C(E0)ρ
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and a second one similar to (3.19)

(3.29) ‖u1L‖Lp(0,T ;L2p) ≤ C(T ) ‖u1L‖
L5(0,T ;W

3
10 ,5)

≤ C(T,E0)ρ.

Therefore, we get from (3.26)

(3.30)
∥∥∥Lg1

2
− Lg2

2

∥∥∥
L2×H−1

≤ C(T,E0)ρ ‖u1 − u2‖
L5(0,T ;W

3
10 ,5)

.

On the other hand, the hyperbolic energy estimate applied to system (3.24) gives

sup
0≤t≤T

‖(u1 − u2)(t)‖H1 ≤ c
∫ T

0

‖θ(u1)− θ(u2)‖L2 dt+ c

∫ T

0

∥∥χ2(g1
2 − g2

2)
∥∥
L2 dt

≤ C(T,E0)ρ‖u1 − u2‖
L5(0,T ;W

3
10 ,5)

+ c

∫ T

0

∥∥χ2(g1
2 − g2

2)
∥∥
L2 dt.

Combining then with the Strichartz inequality applied to (3.24), we obtain

‖u1 − u2‖
L5(0,T ;W

3
10 ,5)

≤ c
∫ T

0

‖f(u1)− f(u2)‖L2 dt+ c

∫ T

0

∥∥χ2(g1
2 − g2

2)
∥∥
L2 dt

≤ C(T,E0)ρ ‖u1 − u2‖
L5(0,T ;W

3
10 ,5)

+ c

∫ T

0

∥∥χ2(g1
2 − g2

2)
∥∥
L2 dt,

which, in turn, gives

‖u1 − u2‖
L5(0,T ;W

3
10 ,5)

≤ c
∫ T

0

∥∥χ2(g1
2 − g2

2)
∥∥
L2 dt

for ρ small enough. Plugging this estimate into (3.30), we finally get

∥∥∥Lg1
2
− Lg2

2

∥∥∥
L2×H−1

≤ C(T,E0)ρ
∫ T

0

∥∥χ2(g1
2 − g2

2)(t)
∥∥
L2 dt

≤ C(T,E0)ρ
∥∥∥g1

2
− g2

2

∥∥∥
L2×H−1

.

This shows that the operator L is contracting on Bρ for a suitable choice of ρ and
concludes the proof of Theorem 1.8.

4. Appendix.

4.1. The case of a compact manifold. In this section, we study the case of
internal control on a compact manifold M without boundary. The situation here is
much simpler, and we will get that the optimal control map Λ is a zero order elliptic
pseudodifferential operator in Theorem 4.1.

Let us recall that the problem of controllability is stated in the following way.
Let T be a positive time and χ(t, x) be as in (1.19). For a given (u0, u1) ∈ H =
H1(M)× L2(M), the problem is to find a source v(t, x) ∈ L2(0, T ;L2(M)) such that
the solution of the system

(4.1)

{
�u = (∂2

t −Δ)u = χv in ]0,+∞[×M,

(u(0), ∂tu(0)) = (0, 0)
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reaches the state (u(T ), Dtu(T )) = (u0, u1) at time T . As before, the HUM method
consists in taking the control function v in (4.1) in the form v = χw, where w is a
solution of the dual problem

(4.2)

{
�w = 0 in ]0,+∞[×M,

(w(0), ∂tw(0)) = (w0, w1) ∈ L2 ×H−1.

In this geometry, the situation is slightly different from the one we have previously
studied in the case M = Ω, since the usual scalar product on H1(M) is

∫
M (∇u∇v +

uv)dx, and so the operator A given by (1.23) and D(A) = {u ∈ H, A(u) ∈ H} is not
self-adjoint. Moreover, λ =

√
−Δ is no longer an isomorphism since λ(1) = 0. Thus,

we will work with a more convenient and natural scalar product as follows. Let

(4.3)

L2
+ =

⎧⎨
⎩
∑
j≥1

ajej , (aj) ∈ l2
⎫⎬
⎭ =

{
f ∈ L2(M),

∫
M

f = 0
}
,

Π0(f) =
1√

vol(M)

∫
M

f = (f |e0), Π+(f) = f −Π0(f)e0.

Let λ be the isomorphism of H1
+ onto L2

+ given by formula (1.18) restricted to
the indices j ≥ 1. We set

(4.4)
H = H1(M)× L2(M) = H+ ⊕ C

2,

H+ = H1
+(M)× L2

+(M).

Then A is diagonal in the splitting H+ ⊕ C
2, and one has

(4.5) A =

(
A+ 0
0 A0

)
, iA+ =

(
0 Id

−λ2 0

)
, iA0 =

(
0 1
0 0

)
.

Then we choose on H = H1(M) × L2(M) the scalar product given by the split-
ting (4.4), which gives a norm equivalent to the usual one and is such that A+ is
self-adjoint as in the case M = Ω. One has

(4.6) eitA =

(
eitA+ 0

0 eitA0

)
, eitA0 =

(
1 t

0 1

)
.

In the splitting H1(M) = H1
+(M)⊕ C, let λ̃ be the operator

(4.7) λ̃ =

(
λ 0
0 1

)
.

Then λ̃ is an isomorphism fromH1(M) onto L2(M), and our scalar product onH1(M)

is given by (u|v) =
∫
M λ̃(u)λ̃(v). Thus, if we set as in (1.25)

(4.8) B =

(
0 0

χλ̃ 0

)
,
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then we still get that the optimal control g0(t) = B∗e−i(T−t)A∗
Λ(f) is of the form

g0 = (λ̃−1χw, 0), where w is a solution of (4.2) since, by (4.6), (eitA− eitA∗
)f belongs

to the kernel of � and ∂2
t . Thus, with this choice of scalar product, we get also in

the case where M is compact that the optimal control operator Λ is the inverse of the
map MT given in (1.27). For g = (g0, g1) ∈ H, set

(4.9)
g0 = λ−1(h+ + h−) + c0e0,

g1 = i(h+ − h−) + c1e0.

One has h± ∈ L2
+(M), (c0, c1) ∈ C

2, and (4.9) gives an identification by an elliptic
pseudodifferential operator between the two Hilbert spaces H and L2

+(M)⊕L2
+(M)⊕

C
2.

Set U±(t) = e±itλ. Then the operators U±(t) are isometries on each Sobolev
space Hs

+(M), with inverses U±(−t). With this identification, one can easily derive
the following:

(4.10) eitA =

(
U+(t),U−(t),

(
1 t

0 1

))
.

Moreover, with the notation χ = Π+χΠ+, the control operator B is given by

B

⎛
⎜⎜⎜⎝

h+

h−
c0

c1

⎞
⎟⎟⎟⎠ =

(
A C′

C D

)⎛⎜⎜⎜⎝
h+

h−
c0

c1

⎞
⎟⎟⎟⎠ ,(4.11)

A = 1
2i

(
χ χ

−χ −χ

)
, C =

(
0 0

Π0χ Π0χ

)
,

C′ =

(
a 0
−a 0

)
, D =

(
0 0
b 0

)(4.12)

with a(t, .) = 1
2iΠ+(χ(t, .)e0) ∈ L2

+, and b(t, .) = (χ(t, .)e0|e0) ∈]0,∞[. Of course,
A contains all of the infinite-dimensional part of the control operator B. One has
a ∈ C∞(Rt, Hs

+(M)) for all s, and thus C′(t, .) maps C
2 into H∞

+ (M)⊕H∞
+ (M).

In this splitting, the optimal control map Λ is the inverse of the map MT given
by

MT =
∫ T

0

m(s)ds, m(s) = eisAB(T − s)B∗(T − s)e−isA
∗
.

Let us denote by R = R(t) any smooth in t family of operators which maps
Hσ

+(M,Δ) into Hs
+(M,Δ) for all σ, s ∈ R. From (4.11) and (4.12), one has

(4.13) m(s) =
1
2
Π+

(
U+(s)(χ)2U+(−s) −U+(s)(χ)2U−(−s)
−U−(s)(χ)2U+(−s) U−(s)(χ)2U−(−s)

)
Π+ +R.

Let Q± be the operators

(4.14) Q± =
∫ T

0

U±(s)(χ)2U±(−s)ds,
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and let T be the operator

(4.15) T =
∫ T

0

U+(s)(χ)2U+(s)ds.

Let s → (γ(x,ξ)(s), t − sτ, τ), s ∈ R, be the bicharacteristic ray of the wave operator,
issued from (x, ξ, t, τ = |ξ|x) ∈ T ∗M\0. Let α(x, ξ) be the symbol of order 0 on
T ∗M\0:

(4.16) α(x, ξ) =

(∫ T

0

χ2(T − s, γ(x,ξ)(s))ds

)−1

.

Obviously, (GCC) guarantees that it is well defined. Moreover, it is homogeneous of
degree 0, positive, and elliptic. We will also use the symbol

(4.17) β(x, ξ) = α(x,−ξ) =

(∫ T

0

χ2(T − s, γ(x,−ξ)(s))ds

)−1

.

Observe that under (GCC) and thanks to the Egorov theorem the operators Q±
defined by (4.14) are elliptic pseudodifferential operators on M, with principal symbol
σ(Q±) = (α(x,±ξ))−1.

Theorem 4.1. Assume that the (GCC) holds true. Then the operators Q± are
invertible. Let L± be their inverses. Then, in the splitting (4.9), the HUM control
operator Λ is the pseudodifferential operator of order 0 equal to

(4.18) Λ = Π+

(
2L+ 0

0 2L−

)
Π+ +R,

where R is smoothing. In particular, Λ is an isomorphism of Hs(M)⊕Hs(M) for all
s ∈ R, and one has the equality of wave-front sets

WF s(Λf) = WF s(f).

Proof. Since we know that MT is invertible, by (4.13), we just have to verify that
the operators Q± are invertible and the operators T and T ∗ are smoothing. Since
Q± are elliptic self-adjoint pseudodifferential operators, we just have to verify that
Q±h = 0 implies h = 0. Using (GCC), we get that (2.1) holds true, and we are
reduced to show that if h ∈ L2

+ is such that Π+χ0e
−isλh|]0,T [ = 0, then h = 0. Since

Π+(f(x)) = 0 is equivalent to f(x) independent of x, there exists a function g(s) such
that χ0(x)e−isλh|]0,T [ = g(s). If there exists x0 such that χ0(x0) = 0, then g = 0 and
we get e−isλh|(]0,T [×ω) = 0, and therefore h = 0 since (GCC) holds true. Otherwise,
χ0 never vanishes, and g(s)

χ0(x) is a solution of the wave equation. This is possible only
if χ0(x) = 1/φ(x) with φ an eigenvector of Δ, and, since χ0 is smooth, this implies
χ0 = Cte; thus e−isλh is independent of x, and h = 0 follows from h ∈ L2

+.
It remains to verify that the operators T and T ∗ are smoothing. Since χ depends

on t and is flat at t = 0, T, an integration by parts gives

T =
∫ T

0

eisλ(χ(T − s, x))2eisλds,

2iλT = −
∫ T

0

eisλ
(
∂s(χ)2 − [iλ, (χ)2]

)
eisλds.(4.19)
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Since A(s, x,Dx) =
(
∂s(χ)2 − [iλ, (χ)2]

)
is a smooth family in s of zero order of

pseudodifferential operators on M, flat at t = 0, T, we can iterate this integration by
parts, and this shows that T is smoothing.

4.2. The boundary calculus. In this section we first look at the action of
the multiplier χ2

0(x) on the spaces Hs(Ω,Δ). We then study some aspects of the
Littlewood–Paley theory at the boundary. Finally, we deduce from this study some
useful lemmas.

To begin, we introduce the regularity index s0 ∈ [1/2,+∞[, associated with the
multiplier χ2

0. It is chosen so that

(4.20)
χ2

0 maps Hs(Ω,Δ) in Hs(Ω,Δ) ∀s ∈ [0, s0 + 2[,
the commutator [Δ, χ2

0] maps Hs+1(Ω,Δ) in Hs(Ω,Δ) ∀s ∈ [0, s0 + 2[.

One can take s0 =∞ if χ0 is constant near any connected component of the boundary
∂Ω. For arbitrary χ0, we take s0 = 1/2, and if χ0 satisfies the additional condition
∂nχ0|∂Ω = 0, then we take s0 = 5/2.

Since Ω is regular, F = ∂Ω is a smooth subvariety of R
d, and in geodesic normal

coordinates (x, y) ∈ R × F one has near the boundary Ω =]0, r[×F for some r > 0.
Moreover, in these coordinates, the metric is given by(

1 0
0 g(x, y)

)

and the Laplace operator Δ = (det g)−1/2
∑
∂i(gi,j(det g)1/2∂j) is equal to

(4.21) Δ = ∂2
x + a(x, y)∂x +Rg(x, y, ∂y)

with a = ∂x log(det g)1/2, and Rg(x0, y, ∂y) is equal to the Laplace operator on the
subvariety x = x0. Thus, with e = (det g)−1/4 > 0, one has Δ′ = e−1Δe = ∂2

x +
R(x, y, ∂y), where R and Rg have the same principal symbol. Therefore, with u = ev,
one has Δju|x=0 = 0 iff Δ′jv|x=0 = 0, and one gets near the boundary

(4.22)

Hs(Ω,Δ) = {v ∈ Hs(Ω), v|x=0 = 0} for 1/2 < s < 5/2,

Hs(Ω,Δ) = {v ∈ Hs(Ω), v|x=0 = ∂2
xv|x=0 = 0} for 5/2 < s < 9/2,

Hs(Ω,Δ) = {v ∈ Hs(Ω), v|x=0 = ∂2
xv|x=0∂

4
xv|x=0 + 2(∂xR)∂xv|x=0 = 0}

for 9/2 < s < 13/2.

Since with χ2 = χ2
0, χ2u = eχ2v, one gets easily from (4.22) that χ2 maps Hs(Ω,Δ)

into itself for all s ∈ [0, 5/2[, and, under the additional condition ∂xχ2(0, y) = 0, χ2

maps Hs(Ω,Δ) into itself for all s ∈ [0, 9/2[. Observe that it is impossible in general
to get a better result: for 9/2 < s < 13/2, and with ∂xχ2(0, y) = 0, by the third line
of (4.22), χ2 maps Hs(Ω,Δ) into itself iff one has

(4.23)
N(∂xv(0, y)) = 0 ∀v ∈ Hs(Ω,Δ),

N(y, ∂y) = 4∂3
xχ2(0, y) + 2[∂xR(0, y, ∂y), χ2(0, y)].
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Obviously, this implies that the first order operator N(y, ∂y) on the bound-
ary is identically 0. But its principal symbol is proportional to the vector field∑
ki,j(y)∂yjχ2(0, y)∂yi , where k = ∂xg

−1|x=0. In general, the second fundamental
form k is for almost all y ∈ ∂Ω nondegenerate, so this implies that χ2(0, y) is constant
on any connected component of the boundary.

Let us now look at the commutator [Δ, χ2]. One has

(4.24) [Δ′, χ2] = 2∂xχ2∂x + ∂2
xχ2 + [R,χ2].

From (4.24) and (4.22), one gets easily that [Δ, χ2] maps Hs+1(Ω,Δ) into Hs(Ω,Δ)
for all s ∈ [0, 1/2[, and, under the additional condition ∂xχ2(0, y) = 0, χ2 maps
Hs+1(Ω,Δ) into Hs(Ω,Δ) for all s ∈ [0, 5/2[. As above, it is impossible to have a
better result in general, except if χ2 satisfies a strong global geometric hypothesis,
for example, if one assumes that χ2 is constant near any connected component of the
boundary.

We shall now study the Littlewood–Paley theory at the boundary. For z ∈ C \
[0,∞[, we denote by Rz the resolvent of the Laplace operator with Dirichlet boundary
condition

(4.25)
Rz(g) = f iff

(z + Δ)f = g and f |∂Ω = 0.

Then, for any s > −3/2, Rz maps Hs(Ω) into Hs+2(Ω). Of course, one has

(4.26) Rz

⎛
⎝∑

j

ajej

⎞
⎠ =

∑
j

aj
z − ω2

j

ej .

Therefore, for j = 0, 1, 2, if Q is a compact subset of C, then there exists Cj such that
Rz satisfies the estimates

(4.27) ‖h−2Rzh−2(f)‖Hj(Ω,Δ) ≤
Cjh

−j

|Im(z)| ‖f‖L2 ∀h ∈ ]0, 1], ∀z ∈ Q.

We denote by Kz the Poisson operator

(4.28)
Kz(g) = f iff

(z + Δ)f = 0 and f |∂Ω = g.

Then, for any s, Kz maps Hs(∂Ω) into Hs+1/2(Ω). Finally, we denote by γ0 the trace
operator γ0(f) = f |∂Ω; for any s > 1/2, γ0 maps Hs(Ω) into Hs−1/2(∂Ω). Obviously,
one has

(4.29)
(z + Δ)Rz(g) = g ∀g ∈ Hs(Ω), s > −3/2,

Rz(z + Δ)(f) = f −Kzγ0(f) ∀f ∈ Hs(Ω), s > 1/2.

In particular, one must take care of the fact that Δ and Rz do not commute, since
from (4.29) one has

(4.30) [Rz,Δ] = −Kzγ0.
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More generally, let A = A(x, ∂x) be a differential operator with smooth coefficients
on Ω. Then the following commutation relation holds true:

(4.31) [Rz, A] = Rz[A,Δ]Rz −Kzγ0ARz.

This follows from the fact that for [Rz, A]f = g one has (z+Δ)g = Af−(z+Δ)ARzf ,
g|∂Ω = −γ0ARzf , and (z + Δ)ARzf = [Δ, A]Rzf +Af .

Let θ ∈ C∞
0 (R), h ∈]0, 1], and let θ(h2|Δ|) be the operator

(4.32) θ(h2|Δ|)
(∑

j

ajej

)
=
∑
j

θ(h2ω2
j )ajej.

Then θ(h2|Δ|) maps Hs(Ω,Δ) into H∞(Ω,Δ) for all s ∈ R. Let θ̃ ∈ C∞
0 (C) be

an almost analytic extension of θ. This means that θ̃(x) = θ(x) for all x ∈ R and
∂θ̃(z) ∈ O(|Im(z)|∞). Almost analytic extensions have been introduced in a lecture
seminar by Hörmander in [Hör68], and one can take

(4.33) θ̃(x+ iy) =
∞∑
k=0

θ(k)(x)
k!

(iy)kχ(aky)

with χ ∈ C∞
0 (R) equal to 1 near 0 and the sequence ak tending to +∞ sufficiently

fast when k → ∞. From ∂( 1
πz ) = δ0, one gets that the following formula, which is

called the Helffer–Sjöstrand formula, holds true:

(4.34) θ(h2|Δ|) =
−1
π

∫
C

∂θ̃(z)
z − h2|Δ|L(dz) =

−h−2

π

∫
C

∂θ̃(z)Rh−2zL(dz),

where L(dz) is the Lebesgue measure on C. For j = 0, 1, let Aj be a differential
operator of order j such that γ0f = 0 implies γ0Ajf = 0. This is always true if j = 0,
and if j = 1, then it holds if the coefficient of the normal derivative ∂n in A1 vanishes
at the boundary. Then we get from (4.31), since γ0AjRz = 0,

(4.35) [θ(h2|Δ|), Aj ] =
h2

π

∫
C

∂θ̃(z)
1

z + h2Δ
[Δ, Aj ]

1
z + h2Δ

L(dz).

Since [Δ, Aj ] is a differential operator of order j + 1 ≤ 2, we get from (4.27)

(4.36)

∥∥∥∥[Δ, Aj ] 1
z + h2Δ

(f)
∥∥∥∥
L2

≤ Cjh
−j−1

|Im(z)| ‖f‖L2,

∥∥∥∥ 1
z + h2Δ

[Δ, Aj ]
1

z + h2Δ
(f)
∥∥∥∥
L2

≤ Cjh
−j−1

|Im(z)|2 ‖f‖L2.

Therefore, one gets from (4.35) and (4.36) the estimate

(4.37) ‖[θ(h2|Δ|), Aj ]‖L2 ≤ Cjh1−j .

Let us now study the operator Q+, where (χ)2(t, x) = ψ2(T − t)χ2
0(x):

(4.38) Q+ =
∫ T

0

eitλ(χ)2e−itλdt.
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By the definition of the regularity index s0 given in (4.20), the self-adjoint operator
Q+ obviously maps Hs(Ω,Δ) into itself for all s ∈ ]−s0 − 2, s0 + 2[. The following
lemma shows that the integration in time in (4.38) induces a better result.

Lemma 4.2. The operator Q+ is bounded on Hs(Ω,Δ) for all s.
Proof. Since Q+ is self-adjoint on L2 we may assume s ≥ 0. We set

(4.39) Q+ =
∑
i,j

Ci,j , Ci,j =
∫ T

0

eitλψi(D)(χ)2ψj(D)e−itλdt.

We have to check that the matrix 2is‖Ci,j‖L22−js is bounded on l2(N). Take M ≥ 2.
For |i− j| ≤M one obviously has ‖Ci,j‖L2 ≤ C, so the near diagonal terms contribute
to an operator which is bounded on Hs(Δ) for all s. For the case i > j + M , by
integration by parts in (4.39) we get

Ci,j =
∫ T

0

eitλλ−1ψi(D)
(
i∂t(χ)2 + (χ)2λ

)
ψj(D)e−itλdt.

Using N iterations of this integration by parts, we get for i > M + j

(4.40) ‖Ci,j‖L2 ≤ CN2−N(i−j).

Since the adjoint on L2 of Ci,j is Cj,i, we get for |i− j| > M

(4.41) ‖Ci,j‖L2 ≤ CN2−N |i−j|.

Thus we obtain that for all N there exists CN such that for all i, j

(4.42) 2is‖Ci,j‖L22−js ≤ CN2−(N−s)|i−j|.

This matrix is bounded on l2 for N large, and thus the self-adjoint operator Q+ is
bounded on Hs(Ω,Δ) for all s. The proof of our lemma is complete.

Lemma 4.3. The operator [Q+, λ
−s] is bounded from L2 into Hs+1(Ω,Δ) for any

s ∈ [0, 2[. Moreover, the operator [Q+, λ] is bounded on L2.
Proof. One has

(4.43) [Q+, λ
−s] =

∑
i,j

Di,j , Di,j =
∫ T

0

eitλψi(D)[(χ)2, λ−s]ψj(D)e−itλdt.

Obviously, for each i, j, the operator Di,j is bounded on L2, and, by the Littlewood–
Paley theory, we have to check that for s ∈ [0, 2[ the matrix

(4.44) 2i(s+1)‖Di,j‖L2

is bounded on l2(N). We shall prove that for all N ≥ 0 there exists CN such that

(4.45) 2i(s+1)‖Di,j‖L2 ≤ CN2−N |i−j| ∀i, j.

We fix M ≥ 2 and study separately the two cases |i− j| ≤ M (near diagonal terms)
and |i− j| > M (off-diagonal terms). Let us first look at the case |i− j| ≤M . Let γ
be a contour in Re(z) > 0 which is the union of two half lines with end point ω2

1/2 and
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with angle ±π/4 with the real axis. We take the up-down orientation on γ. Then, by
the Cauchy formula, one has

(4.46) λ−s =
1

2iπ

∫
γ

z−s/2

z + Δ
dz.

Thus we get from (4.31), since γ0(χ)2Rz = 0,

(4.47) [(χ)2, λ−s] =
1

2iπ

∫
γ

z−s/2

z + Δ
[Δ, (χ)2]

1
z + Δ

dz.

Let A1 = [Δ, (χ)2]. Then from (4.47) we get

(4.48) Di,j =
∫ T

0

eitλ
(

1
2iπ

∫
γ

z−s/2
ψi(D)
z + Δ

A1
ψj(D)
z + Δ

dz

)
e−itλdt.

For z ∈ γ, one has ‖ψi(D)
z+Δ ‖L2 ≤ C

|z|+22i , and, since A1 is a first order operator,∥∥∥∥A1
ψj(D)
z + Δ

f

∥∥∥∥
L2

≤ C
∥∥∥∥ψj(D)
z + Δ

f

∥∥∥∥
H1(Ω,Δ)

≤ C 2j

|z|+ 22j
‖f‖L2.

Thus we get that (4.45) holds true from the estimate for s < 2:

(4.49)
∫
γ

|z|−s/2 2k

(|z|+ 22k)2
|dz| ≤ C2−k(1+s).

For |i− j| > M we write Di,j = D1
i,j −D2

i,j with

(4.50)

D2
i,j =

∫ T

0

eitλλ−sψi(D)(χ)2ψj(D)e−itλdt,

D1
i,j =

∫ T

0

eitλψi(D)(χ)2ψj(D)λ−se−itλdt,

and we bound each of these two terms.
Since |i− j| ≥M , one has, with ψ̃ ∈ C∞

0 (]1/8, 2[) equal to 1 near the support of
ψ, ψi(D)(χ)2ψj(D) = ψi(D)[(χ)2, ψj(D)]ψ̃j(D)ψ̃i(D)[ψi(D), (χ)2]ψj(D). Thus, for
i ≥ j +M , one has for all N ≥ 0

(4.51)

D2
i,j =

∫ T

0

eitλλ−s−N ψ̃i(D)(i∂t)N
(
[ψi(D), (χ)2]ψj(D)e−itλ

)
dt,

D1
i,j =

∫ T

0

eitλλ−N ψ̃i(D)(i∂t)N
(
[ψi(D), (χ)2]ψj(D)λ−se−itλ

)
dt,

and from (4.37) we get 2i(s+1)‖D2
i,j‖L2 ≤ CN2−N(i−j), and 2i(s+1)‖D2

i,j‖L2 ≤ CN
2−(N−s)(i−j). Thus we get that (4.45) holds true in that case. For j ≥ i + M , we
write

(4.52)

D2
i,j =

∫ T

0

(−i∂t)N
(
eitλλ−sψi(D)[(χ)2, ψj(D)]

)
ψ̃j(D)λ−Ne−itλdt,

D1
i,j =

∫ T

0

(−i∂t)N
(
eitλψi(D)[(χ)2, ψj(D)]

)
ψ̃j(D)λ−s−Ne−itλdt,
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and from (4.37) we get 2i(s+1)‖D2
i,j‖L2 ≤ CN2−(N+1)(j−i), and 2i(s+1)‖D2

i,j‖L2 ≤
CN2−(N+s+1)(j−i).

Thus we get that (4.45) holds true. Finally, one has [Q+, λ] = λ[λ−1, Q+]λ, and,
since B = [λ−1, Q+] is skew-adjoint, it follows from the previous result that B is
bounded from L2 into H2(Ω,Δ) and from H−2(Ω,Δ) into L2. Hence B is bounded
from H−1(Ω,Δ) into H1(Ω,Δ). The proof of our lemma is complete.

4.3. Strichartz inequalities. Here we recall the Strichartz inequalities for the
linear wave equation, which play a key role in section 3. The interested reader can
find them, for example, in [Str77], [GV85], [Gér96], in [Kap94] for compact manifolds
without boundary, and in [BLP07] for the open subdomain of R

3. Consider the linear
wave equation on a three-dimensional compact manifold M without boundary:

(4.53)

{
�u = F ∈ L1([0,+∞[, L2(M)),

(u(0), ∂tu(0)) ∈ H1(M)× L2(M).

Then the usual Strichartz inequality reads as follows.
Lemma 4.4. Let r ∈ [2,+∞[ and q be given by 1/q+1/r = 1/2. For every T > 0,

there exists C = C(T ) > 0 such that for every solution u of (4.53) one has
(4.54)
‖u‖Lq([0,T ],L3r(M)) ≤ C

[
‖F‖

L1([0,T ],L2(M))
+ ‖∂tu(0)‖L2(M) + ‖∇xu(0)‖

L2(M)

]
.

Now concerning the wave equation on a bounded open subset of R
3, with smooth

boundary, the situation is more delicate. Such estimates as well as the global well
posedness were not known before the very recent work [BLP07] by Burq, the second
author, and Planchon. More precisely, they prove the following.

Lemma 4.5. For every T > 0, there exists C > 0 such that every solution u of

(4.55)

{
�u = F in ]0,+∞[×Ω,

u|∂Ω = 0, (u(0), ∂tu(0)) = (u0, u1)

satisfies

(4.56)
‖u‖

L5(0,T ;W
3
10 ,5
0 (Ω))

+ ‖u‖C0(0,T ;H1
0 (Ω)) + ‖∂tu‖C0(0,T ;L2(Ω))

≤ C(‖u0‖H1
0 (Ω) + ‖u1‖L2(Ω) + ‖F‖L1(0,T ;L2(Ω))).

4.4. Regularity of the composition. In this section we study the regularity of
the composition f(u) representing the semilinear term of (1.40). We give an analogous
result to Theorem 8 of [DLZ03], with a slightly different proof.

For a tempered distribution u on R
3, we denote by (uq)q≥−1 its dyadic decom-

position: u = u−1 +
∑

q≥0 uq. It is the usual Littlewood–Paley decomposition. The
interested reader can find a good exposition of it, for example, in [AG91], [Mey90],
or [Che95]. Here we give an abstract multiplier lemma that will be the basis of the
composition theorem below.

Lemma 4.6 (Meyer’s multipliers). Let α ∈]5/4, 5/3], and let (mq){q≥−1} be a
sequence of C∞ functions such that

∑
|μ|=l ‖∂μmq‖L2α ≤ Cl2ql for l = 0, 1, 2. Then

the operator

(4.57) M : u =
∑
q≥−1

uq �−→Mu =
∑
q≥−1

mquq
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is continuous from W
3
10 ,5(R3) into Hσ(R3), where σ = 3

10α (4α− 5). More precisely,

(4.58) ‖Mu‖Hσ(R3) ≤ C ‖u‖W 3
10 ,5(R3)

with C ≤ Const.
∑
l≤2

Cl.

Proof. The proof is similar word by word to the proof of Lemma 7 in [DLZ03].
We sketch it for the convenience of the reader. The principal material is borrowed
from [AG91, Lemma 2.2].

Let u = u−1+
∑
q≥0 uq be the Littlewood–Paley decomposition of u.The spectrum

of uq is contained in the ring 2q−1 ≤ |ξ| ≤ 2q+1. On the other hand, we decompose
mq as mq = mq,−1 +

∑
k≥0mq,k, where the spectrum of mq,−1 is contained in a ball

of radius 2q, and those of mq,k for k ≥ 0 are contained in rings of order 2q+k. We
set Mku =

∑
q≥−1mq,kuq, k ≥ −1. We will show that each Mk is continuous from

W
3
10 ,5(R3) to Hσ(R3) and that the corresponding operator series converges normally.
For k ≥ 0, the terms in Mku have their spectra in annulae of the order of 2q+k.

We have

||mq,kuq||L2 ≤ ||mq,k||L2α ||uq||L2β

with 1/α+ 1/β = 1. Thanks to the imbedding W
3
10 ,5(R3) ↪→W σ,2β(R3) with

σ =
3

10β
(5 − β) =

3
10α

(4α− 5) ∈]0, 3/10]

we estimate

||uq||L2β ≤ cq2−σq||u||Wσ,2β ≤ cq2−σq||u||
W

3
10 ,5 ,

where
∑
c2q <∞. Moreover,

(4.59) ‖mq,k‖L2α ≤ Cl2−2k.

This is true, indeed, since, by hypothesis,

‖mq,k‖L2α ≤ C
∑
|μ|=2

‖∂μmq‖L2α 2−2(q+k) ≤ Cl2−2k.

Thus

‖mq,kuq‖L2 ≤ Cl2−2kcq2−σq||u||
W

3
10 ,5 ≤ Cl2−k(2−σ)cq2−(q+k)σ ||u||

W
3
10 ,5 .

Applying then the synthesis lemma (Lemma 2.1) in [AG91], we deduce that Mk is
continuous from W

3
10 ,5(R3) to Hσ(R3), with a norm of the order of Cl2−k(2−σ). The

terms in M−1u are treated in a similar way and give the same estimate. Finally, it
is obvious that the operator series M =

∑
Mk converges normally in the space of

continuous operators from W
3
10 ,5(R3) to Hσ(R3) and satisfies estimate (4.58).

Now we study the regularity of the function f(u).
Theorem 4.7. Let p ∈ [4, 5[. Let v be a function in L5([0, T ],W

3
10 ,5(R3)) and

f a function satisfying conditions (1.39) and (1.40). Then f(v) ∈ L1([0, T ], Hr(R3)),
with r = 3

10 (5− p).
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Remark 4.8. This theorem states the same result as Theorem 8 in [DLZ03],
except that, in the present work, only the Strichartz norms ‖v‖Lq(0,T ;L3r) with q ≥ 5
and 1/q + 1/r = 1/2 are supposed to be finite.

Proof. As in [DLZ03], we follow [Mey90] and [AG91] and write

f(v) = f(S0v) + f(S1v)− f(S0v) + · · ·+ f(Sq+1v)− f(Sqv) + · · · ,

where

Sqv = v−1 + v0 + · · ·+ vq.

First, we will work with a fixed s in [0, T ]. Then we will examine the integrability in
time of the Hr-norms. The first term f(S0v) has the regularity of f, so it is easy to
treat. For q ≥ 0, we write f(Sq+1v)− f(Sqv) = mqvq, with mq =

∫ 1

0
f

′
(Sqv + tvq)dt,

and we show that the mq’s are Meyer’s multipliers in the sense of the previous lemma.
More precisely, following line by line the proof of [DLZ03], we establish the estimate

(4.60)
∑
|μ|=l
‖∂μmq‖L2α ≤ C(1 + ‖v‖p−1

L10 )2ql for l ≤ 2

with α = 5
p−1 ∈]5/4, 5/3]. This implies

∫ T

0

‖f(v)‖Hr ds ≤ C
∫ T

0

(1 + ‖v(s)‖p−1
L10 ) ‖v(s)‖

W
3
10 ,5 ds

≤ C
∫ T

0

(1 + ‖v(s)‖p−1

W
3
10 ,5

) ‖v(s)‖
W

3
10 ,5 ds

≤ C
∫ T

0

(‖v(s)‖
W

3
10 ,5 + ‖v(s)‖p

W
3
10 ,5)ds,

and this is finite since p < 5.
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A PROOF OF THE SMOOTHNESS OF THE FINITE TIME HORIZON
AMERICAN PUT OPTION FOR JUMP DIFFUSIONS∗

ERHAN BAYRAKTAR†

Abstract. We give a new proof of the fact that the value function of the finite time horizon
American put option for a jump diffusion, when the jumps are from a compound Poisson process, is
the classical solution of a free boundary equation. We also show that the value function is C1 across
the optimal stopping boundary. Our proof, which uses only the classical theory of parabolic partial
differential equations of [A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–
Hall, Englewood Cliffs, NJ, 1964] and [A. Friedman, Stochastic Differential Equations and Appli-
cations, Dover, Mineola, NY, 2006], is an alternative to the proof that uses the theory of viscosity
solutions (see [H. Pham, Appl. Math. Optim., 35 (1997), pp. 145–164]). This new proof relies on
constructing a monotonous sequence of functions, each of which is a value function of an optimal
stopping problem for a geometric Brownian motion, converging to the value function of the American
put option for the jump diffusion uniformly and exponentially fast. This sequence is constructed by
iterating a functional operator that maps a certain class of convex functions to classical solutions
of corresponding free boundary equations. On the other hand, since the approximating sequence
converges to the value function exponentially fast, it naturally leads to a good numerical scheme.

Key words. optimal stopping, Markov processes, jump diffusions, American options, integro-
differential equations, parabolic free boundary equations

AMS subject classifications. 60G40, 62L15, 60J75

DOI. 10.1137/070686494

1. Introduction. Let (Ω,F ,P) be a complete probability space hosting a Wiener
process W = {Wt; t ≥ 0} and a Poisson random measure N on R+ × R+, with mean
measure λν(dx)dt (in which ν is a probability measure on R+), independent of the
Wiener process. We will consider a Markov process S = {St; t ≥ 0} of the form

(1.1) dSt = μStdt+ σStdWt + St−
∫

R+

(z − 1)N(dt, dz).

In this model, if the stock price jumps at time t, then it moves from St− to St = ZSt−,
in which Z is a positive random variable whose distribution is given by ν. Note that
when Z < 1 the stock price jumps down and when Z > 1 the stock price jumps
up. In the Merton jump diffusion model Z = exp(Y ), in which Y is a Gaussian
random variable. We will take μ = r+ λ− λξ, in which ξ =

∫
R+
xv(dx) <∞, so that

(e−rtSt)t≥0 is a martingale; i.e., P is a risk neutral measure. The constant r ≥ 0 is
the interest rate, and the constant σ > 0 is the volatility. We assume the risk neutral
pricing measure P, and hence the parameters of the problem, are fixed as a result of a
calibration to historical data. The value function of the American put option pricing
problem is

(1.2) V (x, T ) := sup
τ∈S̃0,T

E
x{e−rτ (K − Sτ )+},
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in which S̃0,T is the set of stopping times (of the filtration generated by W and N)
that take values in [0, T ], and E

x is the expectation under the probability measure P,
given that S0 = x.

We will show that V is the classical solution of a free boundary equation and that
it satisfies the smooth fit principle; i.e., V is continuously differentiable with respect to
its first variable at the optimal stopping boundary. We argue these facts by showing
that V is the fixed point of an operator, which we will denote by J , that maps a
given function to the value function of an optimal stopping problem for a geometric
Brownian motion. This operator acts as a regularizer: As soon as the given function
f has some certain regularity properties, we show that Jf is the unique classical
solution of a corresponding free boundary equation and that it satisfies the smooth
fit principle. The proof of the main result concludes once we show that V has these
certain regularity properties. In this last step we make use of a sequence (which is
constructed by iterating J starting with the pay-off function of the put option) that
converges to V uniformly and exponentially fast. Incidentally, this sequence yields a
numerical procedure, whose accuracy versus speed characteristics can be controlled.
Each element of this sequence is an optimal stopping problem for geometric Brownian
motion and can be readily calculated using classical finite difference methods (see, e.g.,
[18] for the implementation of these methods). An alternative proof of the regularity
of V was given in [14]. This proof used a combination of the results in [8] and the
theory of viscosity solutions. In particular the proof of Proposition 3.1 in [14] is carried
out (details are not provided but hinted) using arguments similar to those used in the
proof of Proposition 5.3 in [15]. The latter proof uses the uniqueness results of [9] for
viscosity solutions.

The infinite horizon American put options for jump diffusions were analyzed in
[3] using the iterative scheme we describe here. The main technical difficulty in the
current paper stems from the fact that each element in the approximating sequence
solves a parabolic rather than an elliptic problem. In fact, in the infinite horizon
case one can obtain a closed form representation for the value function, which is not
possible in the finite horizon case. We make use of the results of [8] and Chapter 2 of
[10] (also see Chapter 7 of [13]) to study the properties of the approximating sequence.
For example, we show that the approximating sequence is bounded with respect to
the Hölder seminorm (see page 61 in [7] for a definition), which is used to argue
that the limit of the approximating sequence (which is a fixed point of J) solves a
corresponding free boundary equation.

Somewhat similar approximation techniques to the one we employ were used
to solve optimal stopping problems for diffusions ; see, e.g., [2] for perpetual optimal
stopping problems with nonsmooth pay-off functions and [6], [5] for finite time horizon
American put option pricing problems for geometric Brownian motion. On the other
hand, [1] and [11] consider the smooth fit principle for the infinite horizon American
put option pricing problems for one-dimensional exponential Lévy processes using
the fluctuation theory. Also see [4] for the analysis of the smooth fit principle for a
multidimensional infinite horizon optimal stopping problem.

The next two sections prepare the proof of our main result, Theorem 3.1, in a
sequence of lemmas and corollaries. In the next section, we introduce the functional
operator J , which maps a given function to the value function of an optimal stopping
problem for a geometric Brownian motion. We then analyze the properties of J . For
example, J preserves convexity with respect to the first variable; the increase in the
Hölder seminorm after the application of J can be controlled; J maps certain classes
of functions to the classical solutions of free boundary equations. In section 3, we
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construct a sequence of functions that converge to the smallest fixed point of the
operator J . We show that the sequence is bounded in the Hölder norm and satisfies
certain regularity properties using results of section 2. We eventually arrive at the fact
that the smallest fixed point of J is equal to V . As a result the regularity properties
of V follow.

2. A functional operator and its properties. Let us define an operator J
through its action on a test function f : R+ × R̄+ → R+: The operator J takes the
function f to the value function of the following optimal stopping problem:

(2.1)

Jf(x, T ) = sup
τ∈S0,T

E
x

{∫ τ

0

e−(r+λ)tλ · Pf(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}
,

in which

(2.2) Pf(x, T − t) =
∫

R+

f(xz, T − t)ν(dz), x ≥ 0.

We will extend T → Jf(x, T ) onto [0,∞] by letting

(2.3) Jf(x,∞) = lim
T→∞

Jf(x, T ).

Here, S0 = {S0
t ; t ≥ 0} is the solution of

(2.4) dS0
t = μS0

t dt+ σS0
t dWt, S0

0 = x,

whose infinitesimal generator is given by

(2.5) A :=
1
2
σ2x2 d

2

dx2
+ μx

d

dx
.

In (2.1), S[0,T ] denotes the set of stopping times of S0 which take values in [0, T ].
Note that

(2.6) S0
t = xHt,

where

(2.7) Ht = exp
{(

μ− 1
2
σ2

)
t+ σWt

}
.

The next remark characterizes the optimal stopping times of (2.1) using the Snell
envelope theory.

Remark 2.1. Let us denote

(2.8) Yt :=
∫ t

0

e−(r+λ)sλ · Pf(S0
t , T − s)ds+ e−(r+λ)t(K − S0

t )
+.

Using the strong Markov property of S0, we can determine the Snell envelope of Y as

ξt := sup
τ∈St,T

E {Yτ |Ft}(2.9)
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= e−(λ+r)tJf(S0
t , T − t) +

∫ t

0

e−(r+λ)sλ Pf(S0
s , T − s)ds, t ∈ [0, T ].

Theorem D.12 in [10] implies that the stopping time

(2.10) τx := inf{t ∈ [0, T ) : ξt = Yt}∧T = inf{t ∈ [0, T ] : Jf(S0
t , T−t) = (K−S0

t )
+}

satisfies

(2.11) Jf(x, T ) = E
x

{∫ τx

0

e−(r+λ)tλ · Pf(S0
t , T − t)dt+ e−(r+λ)τx(K − S0

τx
)+
}
.

Moreover, the stopped process (e−(r+λ)(t∧τx)Jf(S0
t∧τx

, T − t ∧ τx) +
∫ t∧τx

0 e−(r+λ)sλ ·
Pf(S0

s , T − s)ds)t≥0 is a martingale. The second infimum in (2.10) is less than T
because Jf(S0

T , 0) = (K − S0
T )+.

When f is bounded, it follows from the bounded convergence theorem that (using
the results of [3] and arguments similar to the ones used in Corollary 7.3 in Chapter 2
of [10])

(2.12) Jf(x,∞) = sup
τ∈S0,∞

E
x

{∫ τ

0

e−(r+λ)tλ · Pf(S0
t ,∞)dt+ e−(r+λ)τ (K − S0

τ )
+

}
.

The next three lemmas on the properties of J immediately follow from the defi-
nition in (2.1). The first lemma states that J preserves monotonicity.

Lemma 2.1. Let T → f(x, T ) be nondecreasing and x → f(x, T ) be nonincreas-
ing. Then T → Jf(x, T ) is nondecreasing and x→ Jf(x, T ) is nonincreasing.

The operator J preserves boundedness and order.
Lemma 2.2. Let f : R+ × R̄+ → R+ be a bounded function. Then Jf is also

bounded. In fact,

(2.13) 0 ≤ ‖Jf‖∞ ≤ K +
λ

r + λ
‖f‖∞.

Lemma 2.3. For any f1, f2 : R+ × R̄+ → R+ that satisfy f1(x, T ) ≤ f2(x, T ), we
have that Jf1(x, T ) ≤ Jf2(x, T ) for all (x, T ) ∈ R+ × R̄+ .

As we shall see next, the operator J preserves convexity (with respect to the first
variable).

Lemma 2.4. If f : R+ × R̄+ → R+ is a convex function in its first variable, then
so is Jf : R+ × R̄+ → R+.

Proof. Note that Jf can be written as

(2.14)

Jf(x, T ) = sup
τ∈S0,T

E

{∫ τ

0

e−(r+λ)tλ · Pf(xHt, T − t)dt+ e−(r+λ)τ(K − xHτ )+
}
.

Since f(·, T − t) is convex, so is Pf(·, T − t). As a result the integral with respect to
time in (2.14) is also convex in x. On the other hand, note that (K − xHτ )+ is also
a convex function of x. Taking the expectation does not change the convexity with
respect to x. Since the upper envelope (supremum) of convex functions is convex, the
result follows.
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Remark 2.2. Since x = 0 is an absorbing boundary for the process S0, for any
f : R+ × R̄+ → R+,

Jf(0, T ) = sup
t∈{0,T}

{∫ t

0

e−(r+λ)sλf(0, T − s)ds+ e−(λ+r)tK

}

= max

{
K,

∫ T

0

e−(r+λ)sλf(0, T − s)ds+ e−(λ+r)TK

}
, T ≥ 0.

(2.15)

If we further assume that f ≤ K, then Jf(0, T ) = K, T ≥ 0.
Lemma 2.5. Let us assume that f : R+× R̄+ → R+ is convex in its first variable

and ‖f‖∞ ≤ K. Then x→ Jf(x, t) satisfies

(2.16) |Jf(x, T )− Jf(y, T )| ≤ |x− y|, (x, y) ∈ R+ × R̄+,

and all T ≥ 0.
Proof. First note that a positive convex function that is bounded from above

has to be nonincreasing. Therefore f is nonincreasing. As a result of Lemma 2.1,
x→ Jf(x, t) is nonincreasing. This function is convex (by Lemma 2.4), and it satisfies

(2.17) Jf(x, T ) ≥ (K − x)+, Jf(0, T ) = K.

Consequently, the left and right derivatives of Jf satisfy

(2.18) −1 ≤ Dx
−Jf(x, T ) ≤ Dx

+Jf(x, T ) ≤ 0, x > 0, T ≥ 0.

Now, the result follows since the derivatives are bounded by 1 (also see Theorem 24.7
(on page 237) in [17]).

Remark 2.3. Let T0 ∈ (0,∞) and denote

(2.19) F (x, T ) = sup
τ∈S0,T

E

{
e−(r+λ)τ (K − xHτ )+

}
, x ∈ R+, T ∈ [0, T0].

Then for S ≤ T ≤ T0

(2.20) F (x, T )− F (x, S) ≤ C · |T − S|1/2

for all x ∈ R+ and for some C that depends only on T0. See, e.g., equation (2.4)
in [14].

The next lemma, which is very crucial for our proof of the smoothness of the
American option price for jump diffusions, shows that the increase in the Hölder
seminorm that the operator J causes can be controlled.

Lemma 2.6. Let us assume that for some L ∈ (0,∞)

(2.21) |f(x, T )− f(x, S)| ≤ L|T − S|1/2, (T, S) ∈ [S0, T0]× [S0, T0],

for all x ∈ R+ and for 0 ≤ S0 < T0 <∞. Then

(2.22) |Jf(x, T )− Jf(x, S)| ≤ (aL+ C) |T − S|1/2, (T, S) ∈ [S0, T0]× [S0, T0],

for some a ∈ (0, 1) whenever

(2.23) |T − S| <
(

r

r + λ

L

λK

)2

.

Here, C ∈ (0,∞) is as in Remark 2.3.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

556 ERHAN BAYRAKTAR

Proof. Without loss of generality we will assume that T > S. Then we can write

Jf(x, T )− Jf(x, S)

≤ sup
τ∈S0,T

[
E

{∫ τ

0

e−(r+λ)tλ Pf(xHt, T − t)dt+ e−(r+λ)τ (K − xHτ )+
}

− E

{∫ τ∧S

0

e−(r+λ)tλ Pf(xHt, S − t)dt+ e−(r+λ)(τ∧S)(K − xHτ∧S)+
}]

= sup
τ∈S0,T

[
E

{∫ τ

0

e−(r+λ)tλ (Pf(xHt, T − t)− Pf(xHt, S − t)) dt

+ 1{S<τ}

[∫ τ

S

e−(r+λ)tλPf(xHt, S − t)dt

+
(
e−(r+λ)τ (K − xHτ )+ − e−(r+λ)S(K − xHS)+

) ]}]

≤ λ

r + λ
L (T − S)1/2 +

λ

r + λ
K
(
e−(r+λ)S − e−(r+λ)T

)

+ sup
τ∈SS,T

E

{
e−(r+λ)τ (K − xHτ )+

}
− E

{
e−(r+λ)S(K − xHS)+

}

≤ λ

r + λ
L (T − S)1/2 + λK (T − S) + e−(r+λ)S (F (HS , T − S)− F (HS , 0))

≤
(

λ

r + λ
L+ C

)
(T − S)1/2 + λK (T − S),

(2.24)

in which F is given by (2.19). To derive the second inequality in (2.24), we use the
fact that

|Pf(xHt, T − t)− Pf(xHt, S − t)| ≤
∫

R+

ν(dz)|f(xzHt, T − t)

− f(xzHt, S − t)| ≤ L |T − S|1/2,
(2.25)

which follows from the assumption in (2.21), and that

E

{
1{S<τ}

∫ τ∧S

0

e−(r+λ)tλ Pf(xHt, S − t)dt
}

(2.26)

≤ λKE

{∫ T

S

e−(r+λ)tdt

}
≤ λK

λ+K

(
e−(r+λ)S − e−(r+λ)T

)
.

To derive the third inequality in (2.24), we use

(2.27) e−(r+λ)S − e−(r+λ)T ≤ e−(r+λ)S(r + λ)(T − S) ≤ (r + λ)(T − S).
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The last inequality in (2.24) follows from (2.20). Equation (2.22) follows from (2.24)
whenever T and S satisfy (2.23).

Let us define the continuation region and its sections by

CJf := {(T, x) ∈ (0,∞)2 : Jf(x, T ) > (K − x)+},(2.28)

CJfT := {x ∈ (0,∞) : Jf(T, x) > (K − x)+},

T > 0, respectively.
Lemma 2.7. Suppose that f : R+ × R̄+ → R̄+ is such that x → f(x, T ) is a

positive convex function, T → f(x, T ) is nondecreasing, and ‖f‖∞ ≤ K. Then for
every T > 0 there exists cJf (T ) ∈ (0,K) such that CJfT = (cJf (T ),∞). Moreover,
T → cJf (T ) is nonincreasing.

Proof. Let us first show that if x ≥ K, then x ∈ CJfT for all T ≥ 0. Let
τε := inf{0 ≤ t ≤ T : S0

t ≤ K− ε}. Since P{0 < τε < T } > 0 for x ≥ K, for all T > 0,
we have that

(2.29) E
x

{∫ τε

0

e−(r+λ)tλ Pf(S0
t , T − t)dt+ e−(r+λ)τε(K − S0

τε
)+
}
> 0,

which implies that x ∈ CJfT . On the other hand, it is clear that

(2.30) (K − x)+ ≤ Jf(x, T ) ≤ Jf(x,∞), (x, T ) ∈ R+ × R̄+.

Thanks to Lemma 2.6 of [3], there exist lf ∈ (0,K) such that

(2.31) Jf(x,∞) = (K − x)+, x ∈ [0, lf ]; Jf(x,∞) > (K − x)+, x ∈ (lf ,∞).

Since x→ Jf(x,∞) and x→ Jf(x, T ), T ≥ 0, are convex functions (from Lemma 2.2
in [3] and Lemma 2.4, respectively), (2.29), (2.30), and (2.31) imply that there exists
a point cJf (T ) ∈ (lf ,K) such that

(2.32) Jf(x) = (K −x)+, x ∈ [0, cJf (T )]; Jf(x, T ) > (K −x)+, x ∈ (cJf (T ),∞),

for T > 0. This proves the first statement of the lemma. The fact that T → c(T ) is
nonincreasing follows from the fact that T → Jf(x, T ) is nondecreasing.

In the following lemma we will argue that if f has certain regularity properties,
then Jf is the classical solution of a parabolic free boundary equation.

Lemma 2.8. Let us assume that f : R+× R̄+ → R+ is convex in its first variable,
‖f‖∞ ≤ K, and T → f(x, T ) is nonincreasing. Moreover, we will assume that f
satisfies

(2.33) |f(x, T )− f(x, S)| ≤ A |T − S|1/2 whenever |T − S| < B

for all x ∈ R+, where A,B are strictly positive constants that do not depend on x.
Then the function Jf : R+×R+ → R+ is the unique bounded solution (in the classical
sense) of

Au(x, T )− (r + λ) · u(x, T ) + λ · (Pf)(x, T )− ∂

∂T
u(x, T ) = 0, x > cJf (T ),(2.34)

u(x, T ) = (K − x), x ≤ cJf (T ),(2.35)
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in which A is as in (2.5) and cJf is as in Lemma 2.7. Moreover,

(2.36) AJf(x, T )−(r+λ)·Jf(x, T )+λ·(Pf)(x, T )− ∂

∂T
Jf(x, T ) ≤ 0, x < cJf (T ).

Proof. The proof is motivated by Theorem 2.7.7 of [10]. Equation (2.35) is clearly
satisfied by Jf . In what follows, we will first show that Jf satisfies (2.34). Let us
take a point in (t, T ) ∈ CJf and consider a bounded rectangle R = (t1, t2) × (x1, x2)
containing this point. We will let

(2.37) t2 − t1 < B ∧
(

rA

(r + λ)λK

)2

.

Let ∂0R be the parabolic boundary of R and consider the parabolic partial differential
equation

Au(x, T )− (r + λ) · u(x, T ) + λ · (Pf)(x, T )− ∂

∂T
u(x, T ) = 0 inR,

u(x, T ) = Jf(x, T ) on ∂0R.

(2.38)

As a result of Lemmas 2.5 and 2.6, Jf satisfies the uniform Lipschitz and Hölder
continuity conditions, which implies that Jf is continuous. On the other hand, for
any (T, x) ∈ R

(2.39)
|Pf(x, T )− Pf(y, S)| ≤ |Pf(x, T )− Pf(x, S)|+ |Pf(x, S)− Pf(y, S)|

≤
∫

R+

ν(dz) (|f(xz, T )− f(xz, S)|+ |f(xz, S)− f(yz, S)|)

≤ A |T − S|1/2 + ξ |x− y|.

Now, Theorem 5.2 in [8] implies that (2.38) has a unique classical solution. We will
show that this unique solution coincides with Jf using the optional sampling theorem.
Let us introduce the stopping time

(2.40) τ := inf{θ ∈ [0, t0 − t1) : (t0 − θ, x0Hθ ∈ ∂0R} ∧ (t0 − t1),

which is the first time S0 hits the parabolic boundary when S0 starts from (x0, t0). Let
us also define the processNθ := e−(r+λ)θu(x0Hθ, t0−θ)+

∫ θ
0 e

−(r+λ)tλ·Pf(S0
t , t0−t)dt,

θ ∈ [0, t0− t1]. From the classical Itô formula it follows that the stopped process Nθ∧τ
is a bounded martingale. As a result

u(x0, t0) = N0 = E
x {Nτ}(2.41)

= E

{
e−(r+λ)τJf(xHτ , t0 − τ)) +

∫ τ

0

e−(r+λ)tλ · Pf(S0
t , t0 − t)dt

}
.

Clearly τ ≤ τx. Since the stopped process (e−(r+λ)(t∧τx)Jf(S0
t∧τx

, t0 − t ∧ τx) +∫ t∧τx

0
e−(r+λ)tλ ·Pf(S0

s , t0− s)ds)t≥0 is a bounded martingale, another application of
the optional sampling theorem yields
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(2.42)

E

{
e−(r+λ)τJf(x0Hτ , t0 − τ) +

∫ τ

0

e−(r+λ)tλ · Pf(S0
t , t0 − t)dt

}
= Jf(x0, t0).

Combining (2.41) and (2.42), we see that (2.34) is satisfied in the classical sense since
the choice of (x0, t0) ∈ CJf is arbitrary.

We still need to show uniqueness among bounded functions. Fix x > cJf (T ).
Let u be a bounded function satisfying (2.34) and (2.35). Let us define Mt :=
e−(r+λ)tu(xHt, T − t) +

∫ t
0 e

−(r+λ)tλ · Pf(S0
s , T − s)ds. Using the classical Itô for-

mula it can be seen that Mt∧τx is a bounded martingale. Since τx is optimal (see
(2.11)), by the optional sampling theorem, we have

(2.43)
u(x, T ) = M0 = E

x{Mτx}

= E

{
e−(r+λ)τu(xHτx , T − τx) +

∫ τx

0

e−(r+λ)tλ · Pf(S0
s , T − s)ds

}

= E

{
e−(r+λ)τ (K − xHτx)+ +

∫ τx

0

e−(r+λ)tλ · Pf(S0
s , T − s)ds

}
= Jf(x, T ).

Next, we will prove (2.36). To this end, let x < cJf (t). Let U be a closed interval
centered at x such that U ⊂ (0, cJf (T )). Let τU = {t ≥ 0 : xHt /∈ U}. Since
(e−(r+λ)tJf(S0

t , T − t) +
∫ t
0
e−(r+λ)sλ · Pf(S0

s , T − s)ds)t≥0 is a supermartingale, we
can write

E

[
e−(r+λ)(τU∧t)Jf(xHτU∧t, T − τU ∧ t))(2.44)

+
∫ τU∧t

0

e−(r+λ)uλPf(xHu, T − u)du
]
≤ Jf(x, T )

for all t ≥ 0. Since Jf(x, t) = K − x when (T, x) ∈ R
2
+ − CJf , we can apply Itô’s

formula to obtain that

lim
t→0

E

[
1
t

∫ τU∧t

0

e−(r+λ)u

((
A− (r + λ) · − ∂

∂T

)
(2.45)

Jf(xHu, t− u) + λPf(xHu, T − u)
)
du

]
≤ 0.

Now, (2.36) follows thanks to the dominated convergence theorem, which allows us
to exchange the limit and the expectation. We can apply the dominated convergence
theorem thanks to the fact that U is a compact domain.

Lemma 2.9. For a given T > 0, let x → f(x, T ) be a convex and nonincreasing
function. Then the convex function x→ Jf(x, T ) is of class C1 at x = c(T ), i.e.,

(2.46)
∂

∂x
Jf(x, T )

∣∣∣∣
x=c(T )

= −1.
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Proof. The proof is similar to the proof of Lemma 7.8 on page 74 of [10], but we
will provide it here for the sake of completeness. If we let x = c(T ), then

Jf(x+ ε, T )

= E

{∫ τx+ε

0

e−(r+λ)tλ · Pf((x+ ε)Ht, T − t)dt+ e−(r+λ)τx+ε(K − (x+ ε)Hτx+ε)
+

}

= E

{∫ τx+ε

0

e−(r+λ)tλ · Pf(xHt, T − t)dt+ e−(r+λτx+ε)(K − xHτx+ε)
+

}

+ E

{∫ τx+ε

0

e−(r+λ)tλ · [Pf((x+ ε)Ht, T − t)− Pf(xHt, T − t)] dt
}

+ E

{
e−(r+λ)τx+ε

[
(K − (x+ ε)Hτx+ε)

+ − (K − xHτx+ε)
+
]}

≤ Jf(x, T ) + E

{
1{τx+ε<T}e−(r+λ)τx+ε

[
(K − (x+ ε)Hτx+ε)− (K − xHτx+ε)

]}

+ E

{
1{τx+ε=T}e−(r+λ)τx+ε

[
(K − (x+ ε)Hτx+ε)

+ − (K − xHτx+ε)
+
]}

≤ Jf(x, T )− εEx
{
1{τx+ε<T}e−(r+λ)τx+εHτx+ε

}

= Jf(x, T )− εEx
{
e−(r+λ)τx+εHτx+ε

}
+ εEx

{
1{τx+ε=T}e−(r+λ)THT

}
.

(2.47)

The first inequality follows since τx+ε is not optimal when S0 starts at x and x →
Pf(x, T ) is a decreasing function for any T ≥ 0. From (2.47) it follows that

(2.48) Dx
+Jf(x+, T ) ≤ −1,

since e−(r+λ)tHt is a uniformly integrable martingale and τx+ε ↓ 0. Convexity of
Jf(t, x) (Lemma 2.4) implies that

(2.49) −1 = Dx
−Jf(x−, t) ≤ Dx

+Jf(x+, t) ≤ −1,

which yields the desired result.

3. A sequence of functions approximating V . Let us define a sequence of
functions by the following iteration:

(3.1)
v0(x, T ) = (K − x)+, vn+1(x, T ) = Jvn(x, T ), n ≥ 0, for all (x, T ) ∈ R+ × R+.

We extend these functions onto R+ × R̄+ by letting

(3.2) vn(x,∞) = lim
T→∞

vn(x, T ).

This sequence of functions is a bounded sequence, as the next corollary shows.
Corollary 3.1. For all n ≥ 0,

(3.3) (K − x)+ ≤ vn(x, T ) ≤
(

1 +
λ

r

)
K, (x, T ) ∈ R+ × R̄+.
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Proof. The first inequality follows since it may not be optimal to stop immedi-
ately. Let us prove the second inequality using an induction argument: Observe that
v0(x, T ) = (K−x)+, (x, T ) ∈ R+× R̄+, satisfies (3.3). Let us assume that (3.3) holds
for n and show that it holds for n+ 1. Using (2.13), we get that

(3.4) ‖vn+1‖∞ = ‖Jvn‖∞ ≤ K +
λ

r + λ

(
1 +

λ

r

)
K =

(
1 +

λ

r

)
.

As a corollary of Lemmas 2.3 and 2.4 we can state the following corollary, whose
proof can be carried out by induction.

Corollary 3.2. The sequence (vn(x, T ))n≥0 is increasing for all (x, T ) ∈ R+ ×
R̄+. For each n, the function x→ vn(x, T ), x ≥ 0, is convex for all T ∈ R̄+.

Remark 3.1. Let us define

(3.5) v∞(x, T ) := sup
n≥0

vn(x, T ), (x, T ) ∈ R+ × R̄+.

This function is well defined as a result of (3.3) and Corollary 3.2. In fact, it is
convex, because it is the upper envelope of convex functions, and it is bounded by the
right-hand side of (3.3).

Corollary 3.3. For each n ≥ 0 and t ∈ R+, x → vn(x, T ) is a decreasing
function on [0,∞). Moreover, T → vn(x, T ) is nondecreasing. The same statements
hold for x→ v∞(x, T ) and T → v∞(x, T ), respectively.

Proof. The behavior with respect to the first variable is a result of Corollary 3.2
and Remark 3.1 since any positive convex function that is bounded from above is
decreasing. For each n, the fact that T → vn(x, T ) is nondecreasing is a corollary
of Lemma 2.1. On the other hand, for any T ≥ S ≥ 0, we have that v∞(x, T ) =
supn vn(x, T ) ≥ supn vn(x, S) = v∞(x, S).

Next, we will sharpen the upper bound in Corollary 3.1. This improvement has
some implications for the continuity of x → vn(x, T ), n ≥ 1, and x → v∞(x, T ) at
x = 0.

Remark 3.2. The upper bound in (3.1) can be sharpened using Corollary 3.3 and
Remark 2.2. Indeed, we have

(K − x)+ ≤ vn(x, T ) < K, for each n, and(3.6)

(K − x)+ ≤ v∞(x, T ) < K, (x, T ) ∈ (0,∞)2.

It follows from this observation that for every T ∈ R̄+, x → vn(x, T ), for every n,
and x→ v∞(x, T ) are continuous at x = 0 since vn(0, T ) = v∞(0, T ) = K and these
functions are convex. (Note that convexity already guarantees continuity for x > 0.)

Lemma 3.1. The function v∞ is the smallest fixed point of the operator J .
Proof.

(3.7)
v∞(x, T − t)

= sup
n≥1

vn(x, T − t)

= sup
n≥1

sup
τ∈S0,T

E
x

{∫ τ

0

e−(r+λ)tλ · Pvn(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}
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= sup
τ∈S0,T

sup
n≥1

E
x

{∫ τ

0

e−(r+λ)tλ · Pvn(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}

= sup
τ∈S0,T

E
x

{∫ τ

0

e−(r+λ)tλ · P (sup
n≥1

vn)(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}

= Jv∞(x, T − t),

in which the fourth equality follows by applying the monotone convergence theorem
three times. Let w : R+× R̄+ → R+ be another fixed point of the operator J . We will
argue by induction that w ≥ v∞. For (x, t) ∈ R+ × R̄+, w(x, T − t) = Jw(x, T − t),
which implies that w(x, T − t) = Jw(x, T − t) ≥ (K − x)+ = v0(·). If we assume
that w(x, T − t) ≥ vn(x, T − t), then w(x, T − t) = Jw(x, T − t) ≥ Jvn(x, T − t) =
vn+1(x, T − t). Consequently w(x, T − t) ≥ vn(x, T − t) for all n ≥ 0. As a result
w(x, T − t) ≥ supn≥0 vn(x, T − t) = v∞(x, T − t).

Lemma 3.2. The sequence {vn(·, ·)}n≥0 converges uniformly to v∞. In fact, the
rate of convergence is exponential:

(3.8) vn(x, T ) ≤ v∞(x, T ) ≤ vn(x, T ) +
(

λ

λ+ r

)n
K, (x, T ) ∈ R+ × R̄+.

Proof. The first inequality follows from the definition of v∞. The second inequality
can be proved by induction. The inequality holds when we set n = 0 by Remark 3.2.
Assume that the inequality holds for n > 0. Then

v∞(x, T ) = sup
τ∈S0,T

E
x

{∫ τ

0

e−(r+λ)tλ · Pv∞(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}

≤ sup
τ∈S0,T

E
x

{∫ τ

0

e−(r+λ)tλ · Pvn(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}

+
∫ ∞

0

dt e−(λ+r)tλ

(
λ

λ+ r

)n
K

= vn+1(x, T ) +
(

λ

λ+ r

)n+1

K.

(3.9)

Remark 3.3. Note that, for a fixed T0 > 0,

vn(x, T ) ≤ v∞(x, T )(3.10)

≤ vn(x, T ) +
(
1− e−(r+λ)T0

)n( λ

λ+ r

)n
K, x ∈ R+, T ∈ (0, T0).

This can be derived using an induction argument similar to the one used in the proof
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of Lemma 3.2. We simply replace (3.9) by

v∞(x, T ) ≤ sup
τ∈S0,T

E
x

{∫ τ

0

e−(r+λ)tλ · Pvn(S0
t , T − t)dt+ e−(r+λ)τ (K − S0

τ )
+

}

+
∫ T0

0

dt e−(λ+r)t
(
1− e−(r+λ)T0

)n
λ

(
λ

λ+ r

)n
K

= vn+1(x, T ) +K
(
1− e−(r+λ)T0

)n+1
(

λ

λ+ r

)n+1

.

(3.11)

Observe that one can replace K in (3.10) by ‖v∞− v0‖∞. Note that the convergence
rate in (3.10) is fast. This will lead to a numerical scheme, whose error versus accuracy
characteristics can be controlled, for pricing American options.

Remark 3.4. Let T0 ∈ (0,∞). It can be shown using similar arguments to the
ones used in the proof of Lemma 2.6 that

(3.12) |v1(x, T )− v1(x, S)| ≤ λK |T − S|+ C |T − S|1/2, T, S ∈ (0, T0],

for all x ∈ R+, in which C ∈ (0,∞) is as in Remark 2.3. In fact,

(3.13) |v1(x, T )− v1(x, S)| ≤ L |T − S|1/2

for all x ∈ R+ and for some L that depends only on T0.
The next lemma shows that the functions vn, n ≥ 0, and v∞ are locally Hölder

continuous with respect to the time variable.
Lemma 3.3. Let T0 ∈ (0,∞) and L ∈ (0,∞) be as in Remark 3.4 and C ∈ (0,∞)

be as in Remark 2.3. Then, for T, S ∈ (0, T0), we have that

(3.14)

|vn(x, T )− vn(x, S)| ≤
(
L+

C

1− a

)
|T − S|1/2 whenever |T − S| ≤

(
r

r + λ

L

λK

)2

for all x ∈ R+ and for all n ≥ 1. Here, a ∈ (0, 1) is as in Lemma 2.6. Moreover,

(3.15)

|v∞(x, T )− v∞(x, S)| ≤
(
L+

C

1− a

)
|T − S|1/2 whenever |T − S| ≤

(
r

r + λ

L

λK

)2

for all x ∈ R+.
Proof. The proof of (3.14) will be carried out using an induction argument.

Observe from Remark 3.4 that (3.14) holds for n = 1. Let us assume that (3.14)
holds for n and show that it holds for n+ 1. Using Lemma 2.6, we have that

(3.16) |vn+1(x, T )− vn+1(x, S)| ≤
(
a

(
L+

C

1− a

)
+ C

)
|T − S|1/2

for |T − S| ≤
(

r
r+λ

L+C/(1−a)
λK

)2. It is clear that the right-hand side of (3.16) is less
than that of (3.14), and

(3.17)
r

r + λ

L+ C/(1− a)
λK

≥ r

r + λ

L

λK
,
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from which the first statement of the lemma follows. Now, let us prove (3.15). To
this end observe that

|v∞(x, T )− v∞(x, S)|

≤ |v∞(x, T )− vn(x, T )|+ |vn(x, T )− vn(x, S)|+ |v∞(x, S) − vn(x, S)|

≤ 2
(

λ

λ+ r

)n
K +

(
L+

C

1− a

)
|T − S|1/2

(3.18)

for any n > 1, which follows from (3.14) and Lemma 3.2. The result follows since n
on the right-hand side of (3.18) is arbitrary.

Lemma 3.4. For n ≥ 0, |vn(x, T )−vn(y, T )| ≤ |x−y|, and |v∞(x, T )−v∞(y, T )| ≤
|x− y|, (x, y) ∈ R+ × R̄+, for all T ≥ 0.

Proof. It follows from Remark 3.2 that ‖vn‖∞ ≤ K, for all n ≥ 0, and ‖v∞‖∞ ≤
K. Moreover, for each n ≥ 0, vn(·, T ) is convex (for all T ∈ R̄+) as a result of
Corollary 3.2. On the other hand, it was pointed out in Remark 3.1 that v∞(·, T ) is
convex for all T ∈ R+. Since

(3.19) vn+1(x, T ) = Jvn(x, T ) and v∞(x, T ) = Jv∞(x, T ),

the statement of the lemma follows from Lemma 2.5.
Lemma 3.5. For all T ≥ 0 and n ≥ 0, Cvn+1

T = (cvn+1(T ),∞) for some
cvn+1(T ) ∈ (0,K) and Cv∞T = (cv∞(T ),∞) for some cv∞ ∈ (0,K). The function
vn+1 is the unique bounded solution (in the classical sense) of

Avn+1(x, T )− (r + λ) · vn+1(x, T ) + λ · (Pvn)(x, T )

− ∂

∂T
vn+1(x, T ) = 0, x > cvn+1(T ),

vn+1(x, T ) = (K − x), x ≤ cvn+1(T ),

(3.20)

and it satisfies

(3.21)
∂

∂x
vn+1(x, T )

∣∣∣∣
x=cvn+1(T )

= −1, T > 0.

Moreover, v∞ is the unique bounded solution (in the classical sense) of

Av∞(x, T )− (r + λ) · v∞(x, T ) + λ · (Pv∞)(x, T )− ∂

∂T
v∞(x, T ) = 0, x > cv∞(T ),

v∞(x, T ) = (K − x), x ≤ cv∞(T ),

(3.22)

and it satisfies

(3.23)
∂

∂x
v∞(x, T )

∣∣∣∣
x=cv∞(T )

= −1, T > 0.

On the other hand,

(3.24)

Av∞(x, T )− (r + λ) · v∞(x, T ) + λ · (Pv∞)(x, T )− ∂

∂T
v∞(x, T ) ≤ 0, x < cv∞(T ).
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Proof. The fact that Cvn+1 = (cvn+1 ,∞) and Cv∞ = (cv∞ ,∞) for some cvn+1 ∈
(0,K) and cv∞ ∈ (0,K) follows from Lemma 2.7 since the assumptions in that lemma
hold thanks to Corollaries 3.2 and 3.3; Remarks 3.1 and 3.2; and Lemma 3.1.

The partial differential equations (3.20), (3.22) and the inequality in (3.24) are
satisfied as a corollary of Lemma 2.8; Corollaries 3.2 and 3.3, Remarks 3.1 and 3.2;
and Lemmas 3.1 and 3.3.

Observe that since vn is convex (Corollary 3.2) and nonincreasing (Corollary 3.3)
with respect to its first variable, vn+1 (= Jvn) satisfies the smooth fit condition in
(3.21) as a result of Lemma 2.9. The smooth fit condition in (3.23) holds for v∞
as a result of Lemma 2.9 since v∞ (= Jv∞) (Lemma 3.1) and x → v∞(x, T ) is
nonincreasing and convex.

The next lemma will be used to verify the fact that V = v∞. The classical Itô
rule cannot be applied to the process t → v∞(St, T − t) since the function v∞ may
fail to be C2,1 at T → cv∞(T ). As a result, the semimartingale decomposition of the
process t → v∞(St, T − t) may contain an extra term due to the local time of the
process S at the free boundary.

Lemma 3.6. Let X = {Xt; t ≥ 0} be a semimartingale and b : R+ → R be
a continuous function of bounded variation. Let F : R × R+ → R be a continuous
function that is C2,1 on C̄ and D̄ (it may not necessarily be C1,2 across the boundary
curve b), in which

C � {(x, t) ∈ R× R+ : x < b(t)}, D � {(x, t) ∈ R× R+ : x > b(t)}.

That is, there exist two functions F 1, F 2 : R×R+ → R, that are C2,1 on R×R+, and
F (x, t) = F 1(x, t) when (x, t) ∈ C and F (x, t) = F 2(x, t) when (x, t) ∈ D. Moreover,
F 1(b(t), t) = F 2(b(t), t). Then the following generalization of Itô’s formula holds:

F (Xt, t) = F (X0, 0) +
∫ t

0

1
2

[Ft(Xs−+, s) + Ft(Xs−−, s)] ds

+
1
2

∫ t

0

[Fx(Xs−+, s) + Fx(Xs−−, s)] dXs

+
1
2

∫ t

0

1{Xs− 	=b(s)}Fxx(Xs−, s)d 〈X,X〉cs

+
∑

0<s≤t

{
F (Xs, s)− F (Xs−, s)−

1
2
ΔXs [Fx(Xs−−, s) + Fx(Xs−+, s)]

}

+
1
2

∫ t

0

[Fx(Xs−+, s)− Fx(Xs−−, s)] 1{Xs−=b(s)}dLbt ,

(3.25)

where Lbt is the local time of the semimartingale Xt − b(t) at zero (see the definition
on page 216 in [16]).

Lemma 3.6 was stated in Theorem 2.1 of [12] for continuous semimartingales. The
generalization for the case when the underlying process is not necessarily continuous
is intuitively clear and just technical, but we will prove it in the appendix for the sake
of completeness. We are now ready to state the main result.

Theorem 3.1. The value function V is the unique bounded solution (in the clas-
sical sense) of the integro-partial differential equation in (3.22). Moreover, it satisfies
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the smooth fit condition at the optimal stopping boundary, i.e., ∂
∂xV (x, T )

∣∣
x=cv∞(T )

=
−1, T > 0.

Proof. The proof is a corollary of the optional sampling theorem and the gener-
alized Itô formula given above. Let T ∈ (0,∞) and define

(3.26) M̃t = e−rtv∞(St, T − t) and τ̃x := T ∧ inf{t ∈ [0, T ] : St ≤ cv∞(T − t)}.

It follows from (3.22) and the classical Itô lemma that {M̃t∧τ̃x
}0≤t≤T is a bounded

P-martingale. Using the optional sampling theorem, one obtains

v∞(x, T ) = M̃0 = E
x
{
M̃τ̃x

}
= E

x
{
e−rτ̃xv∞(Sτ̃x

, T − τ̃x)
}

(3.27)

= E
x
{
e−rτ̃x(K − Sτ̃x

)+
}
≤ V (x, T ).

In the rest of the proof we will show that v∞(x, T ) ≥ V (x, T ). Since v∞ satisfies
the smooth fit principle across the free boundary, when we apply the generalized Itô
formula to v∞(St, T − t), the local time term drops. Thanks to (3.22) and (3.24),
v∞(St, T − t) is a positive P-supermartingale. Again, using the optional sampling
theorem, for any τ ∈ S̃0,T

(3.28)

v∞(x, T ) = M̃0 ≥ E
x
{
M̃τ

}
= E

x
{
e−rτv∞(Sτ , T − τ)

}
≥ E

x
{
e−rτ (K − Sτ )+

}
.

As a result v∞(x, T ) ≥ V (x, T ).
Remark 3.5. We have that

(3.29) Cv∞T = {x ∈ (0,∞) : v∞ > (K − x)+} = (cv∞(T ),∞).

On the other hand, v∞ = K − x for x ≤ cv∞ . Since V = v∞, by Theorem 3.1, it
follows that

(3.30) CVT = {x ∈ (0,∞) : V > (K − x)+} = (cv∞(T ),∞).

Appendix. Proof of Lemma 3.6. As in [12] we will define Z1
t = Xt ∧ b(t),

Z2
t = Xt ∨ b(t), and observe that

(A.1) F (Xt, t) = F 1(Z1
t , t) + F 2(Z2

t , t)− F (b(t), t).

On the other hand, applying the Meyer–Itô formula (see Theorem 70 in [16]) to the
semimartingale Xt − b(t), we obtain

|Xt − b(t)| = |X0 − b(0)|+
∫ t

0

sign(Xs− − b(s))d(Xs − b(s))

+ 2
∑

0<s≤t

[
1{Xs−>b(s)}(Xs − b(s))− + 1{Xs≤b(s)}(Xs − b(s))+

]
+ Lbt .

(A.2)

Since Z1
t = 1

2 (Xt + b(t)− |Xt − b(t)|) and Z2
t = 1

2 (Xt + b(t) + |Xt − b(t)|), using
(A.2), we get

dZ1
t =

1
2
{
(1− sign(Xt− − b(t)))dXt + (1 + sign(Xt− − b(t)))db(t) − dLbt

}
−
[
1{Xt−>b(t)}(Xt − b(t))− + 1{Xt≤b(t)}(Xt − b(t))+

]
,

(A.3)
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dZ2
t =

1
2
{
(1 + sign(Xt− − b(t)))dXt + (1 + sign(Xt− − b(t)))db(t) − dLbt

}
+
[
1{Xt−>b(t)}(Xt − b(t))− + 1{Xt≤b(t)}(Xt − b(t))+

]
.

(A.4)

It follows from the dynamics of Zi, i ∈ {1, 2}, that

(A.5)

d
〈
Zi, Zi

〉c
t

=
(

1{Xt−<b(t)} +
1
4
1{Xt−=b(t)}

)
d 〈X,X〉ct = 1{Xt−<b(t)}d 〈X,X〉

c
t ,

where the second equality follows from the occupation density formula; see, e.g.,
Corollary 1 on page 219 of [16]. Applying the classical Itô formula to F 1(Z1

t , t) and
F 2(Z2

t , t) and using the dynamics of Z1 and Z2, we get

(A.6)

F 1(Z1
t , t) = F 1(Z1

0 , 0) +
∫ t

0

F 1
t (Z1

s−, s)ds+
∫ t

0

F 1
x (Z1

s−, s)dZ
1
s

+
1
2

∫ t

0

F 1
xx(s, Z

1
s−)d

〈
Z1, Z1

〉c
s

+
∑
0s≤t

[
F 1(Z1

s , s)− F 1(Z1
s−, s)−ΔZ1

sF
1
x (Z1

s−, s)
]

= F 1(Z1
0 , 0) +

∫ t

0

F 1
t (Z1

s−, s)ds

+
1
2

∫ t

0

(1− sign(Xs− − b(s)))F 1
x (Z1

s−, s)dXs

+
1
2

∫ t

0

(1 + sign(Xs− − b(s)))F 1
x (Z1

s−, s)db(s)

−
∑

0<s≤t

[
1{Xs−>b(s)}(Xs − b(s))− + 1{Xs≤b(s)}(Xs − b(s))+

]
F 1
x (Z1

s−, s)

− 1
2

∫ t

0

F 1
x (Z1

s−, s)dL
b
t +

1
2

∫ t

0

1{Xs−<b(s)}F
1
xx(Z

1
s−, s)d 〈Xc, Xc〉s

∑
0<s≤t

[
F 1(Z1

s , s)− F (Z1
s−, s)−ΔZ1

sF
1
x (Z1

s−, s)]
]
,
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(A.7)

F 2(Z2
t , t) = F 2(Z2

0 , 0) +
∫ t

0

F 2
t (Z2

s−, s)ds+
∫ t

0

F 2
x (Z2

s−, s)dZ
2
s

+
1
2

∫ t

0

F 2
xx(s, Z

2
s−)d

〈
Z2, Z2

〉c
s

+
∑
0s≤t

[
F 2(Z2

s , s)− F 2(Z2
s−, s)−ΔZ2

sF
1
x (Z2

s−, s)
]

= F 2(Z2
0 , 0) +

∫ t

0

F 2
t (Z2

s−, s)ds

+
1
2

∫ t

0

(1 + sign(Xs− − b(s)))F 2
x (Z2

s−, s)dXs

+
1
2

∫ t

0

(1− sign(Xs− − b(s)))F 2
x (Z2

s−, s)db(s)

+
∑

0<s≤t

[
1{Xs−>b(s)}(Xs − b(s))− + 1{Xs≤b(s)}(Xs − b(s))+

]
F 2
x (Z2

s−, s)

− 1
2

∫ t

0

F 2
x (Z2

s−, s)dL
b
t +

1
2

∫ t

0

1{Xs−<b(s)}F
2
xx(Z

2
s−, s)d 〈Xc, Xc〉s

+
∑

0<s≤t

[
F 2(Z2

s , s)− F (Z2
s−, s)−ΔZ2

sF
2
x (Z2

s−, s)
]
.

By splitting each term into its respective values on the sets {Xs− < b(s)}, {Xs− =
b(s)}, and {Xs− > b(s)}, it can be seen that the following four equations are satisfied:

F 1(Z1
0 , 0) + F 2(Z2

0 , 0) = F (X0, 0) + F (b(0), 0),(A.8)

∫ t

0

F 1
t (Zs−, s)ds+

∫ t

0

F 2
t (Z2

s−, s)ds =
1
2

∫ t

0

Ft(Xs−+, s) + Ft(Xs−−, s)ds

+
∫ t

0

[
Ft(b(s)+, s)1{Xs−<b(s)} +

1
2
(Ft(b(s)−, s)

+Ft(b(s)+, s))1{Xs−=b(s)} + Ft(b(s)−, s)1{Xs−>b(s)}

]
ds,

(A.9)

1
2

∫ t

0

(1− sign(Xs− − b(s)))F 1
x (Z1

s−, s)dXs

+
1
2

∫ t

0

(1 + sign(Xs− − b(s)))F 2
x (Z2

s−, s)dXs

=
1
2

∫ t

0

[Fx(Xs−+, s) + Fx(Xs−−, s)] dXs,

(A.10)
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1
2

∫ t

0

(1 + sign(Xs− − b(s)))F 1
x (Z1

s−, s)db(s)

+
1
2

∫ t

0

(1− sign(Xs− − b(s)))F 2
x (Z2

s−, s)db(s)

=
∫ t

0

[
Fx(b(s)+, s)1{Xs−<b(s)}

+
1
2

[Fx(b(s)+, s) + Fx(b(s)−, s)] 1{Xs−=b(s)} + Fx(b(s)−, s)1{Xs−>b(s)}

]
db(s).

(A.11)

On the other hand, equation (3.15) of [12] still holds:

F (b(t), t) = F (b(0), 0) +
∫ t

0

[
Ft(b(s)+, s)1{Xs−<b(s)}

+
1
2
[
Ft(b(s)−, s) + Ft(b(s)+, s)1{Xs−=b(s)}

]

+ Ft(b(s)−, s)1{Xs−>b(s)}

]
ds

∫ t

0

[
Fx(b(s)+, s)1{Xs−<b(s)} +

1
2
[
Fx(b(s)−, s) + Fx(b(s)+, s)1{Xs−=b(s)}

]

+ Fx(b(s)−, s)1{Xs−>b(s)}

]
db(s),

(A.12)

whose proof is carried out by using the uniqueness of finite measures on p-systems.
Let us analyze the jump terms in (A.6) and (A.7). We will denote

A := −
[
1{Xs−>b(s)}(Xs − b(s))− + 1{Xs≤b(s)}(Xs − b(s))+

]
F 1
x (Z1

s−, s)

+
[
F 1(Z1

s , s)− F (Z1
s−, s)−ΔZ1

sF
1
x (Z1

s−, s)
]
,

(A.13)

B :=
[
1{Xs−>b(s)}(Xs − b(s))− + 1{Xs≤b(s)}(Xs − b(s))+

]
F 2
x (Z2

s−, s)

+
∑

0<s≤t

[
F 2(Z2

s , s)− F (Z2
s−, s)−ΔZ2

sF
2
x (Z2

s−, s)
]
.(A.14)

Depending on the whereabouts of Xs− and Xs with respect to the boundary curve b,
A and B take four different values:

1. Xs− > b(s) and Xt ≥ b(t). In this case

A = 0, B = F 2(Xs, s)− F 2(Xs−, s)−ΔXsF
2
x (Xs−, s),(A.15)

A+ B = F (Xs, s)− F (Xs−, s)−ΔXsFx(Xs−+, s).(A.16)

2. Xs− > b(s) and Xs < b(s). In this case

A = −(b(s)−Xs)F 1
x (b(s), s) + F 1(Xs, s)

− F 1(b(s), s)− (Xs − b(s))F 1
x (b(s), s)

= F 1(Xs, s)− F 1(b(s), s),

(A.17)
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B = (b(s)−Xs)F 2
x (b(s), s) + F 2(b(s), s)− F 2(Xs−, s)

− (b(s)−Xs−)F 2
x (Xs−, s)

= F 2(b(s), s)− F 2(Xs−, s)−ΔXsF
2
x (Xs−, s),

(A.18)

A+B = F (Xs, s)− F (Xs−, s)−ΔXsFx(Xs+, s).(A.19)

3. Xs− ≤ b(s) and Xs ≥ b(s). We have that

A = −(Xs − b(s))F 1
x (Xs−, s) + F 1(b(s), s)

− F 1(Xs−, s)− (b(s)−Xs−)F 1
x (Xs−, s)

= F 1(b(s), s)− F 1(Xs−, s)−ΔXsF
1(Xs−, s),

(A.20)

B = (Xs − b(s))F 2
x (b(s), s) + F 2(Xs, s)

− F 2(b(s), s)− (Xs − b(s))F 2
x (b(s), s)

= F 2(Xs, s)− F 2(b(s), s).

(A.21)

As a result

(A.22) A+ B = F (Xs, s)− F (Xs−, s)−ΔXsFx(Xs−−, s).

4. Xs− ≤ b(s) and Xs < b(s). Clearly,

(A.23) A = F 1(Xs, s)− F 1(Xs−, s)−ΔXsF
1
x (Xs−, s) and B = 0.

As a result

(A.24) A+B = F (Xs, s)− F (Xs−, s)−ΔXsFx(Xs−, s).

Now, combining (A.1), (A.5), (A.6), (A.7), (A.8), (A.9), (A.10), (A.11), (A.12),
(A.16), (A.19), (A.22), and (A.24), we obtain

F (Xt, t) = F (X0, 0) +
1
2

∫ t

0

[Ft(Xs−+, s) + Ft(Xs−−, s)] ds

+
1
2

∫ t

0

[Fx(Xs−+, s) + Fx(Xs−−, s)]dXs

+
1
2

∫ t

0

1{Xs−≤b(s)}Fxx(s,Xs−)d 〈X,X〉cs−

+
∑

0<s≤t

[
F (Xs, s)− F (Xs−, s)−ΔXsFx(Xs−−, s)1{Xs−≤b(s)}

−ΔXsFx(s,Xs−+)1{Xs−>b(s)}

]

+
1
2

∫ t

0

[
F 2
x (Z2

s−, s)− F 1(Z1
s−, s)

]
dLbt .

(A.25)
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The last term on the right-hand side of (A.25) can be written as

1
2

∫ t

0

[
F 2
x (Z2

s−, s)− F 1(Z1
s−, s)

]
dLbt(A.26)

=
1
2

∫ t

0

[
Fx(Xs−+, s)− Fx(Xs−−, s)

]
1{Xs−=b(s)}dLbt ,

using Theorem 69 of [16]. On the other hand, the jump term in (A.25) can be written
as

∑
0<s≤t

[
F (Xs, s)− F (Xs−, s)−ΔXsFx(Xs−−, s)1{Xs−≤b(s)}

−ΔXsFx(s,Xs−+)1{Xs−>b(s)}

]

=
∑

0<s≤t

[
F (Xs, s)− F (Xs−, s)−

1
2
ΔXs [Fx(Xs−−, s) + Fx(Xs−+, s)]

]
.

(A.27)

This completes the proof.
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DYNAMIC OUTPUT FEEDBACK CONTROL OF DISCRETE-TIME
MARKOV JUMP LINEAR SYSTEMS THROUGH LINEAR

MATRIX INEQUALITIES∗
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Abstract. This paper addresses the H2 and H∞ dynamic output feedback control design
problems of discrete-time Markov jump linear systems. Under the mode-dependent assumption,
which means that the Markov parameters are available for feedback, the main contribution is the
complete characterization of all full order proper Markov jump linear controllers such that the H2

or H∞ norm of the closed loop system remains bounded by a given prespecified level, yielding the
global solution to the corresponding mode-dependent optimal control design problem, expressed in
terms of pure linear matrix inequalities. Some academic examples are solved for illustration and
comparison. As a more consequent practical application, the networked control of a vehicle platoon
using measurement signals transmitted in a Markov channel, as initially proposed in [P. Seiler and
R. Sengupta, IEEE Trans. Automat. Control, 50 (2005), pp. 356–364], is considered.

Key words. linear systems, discrete-time systems, stochastic systems, Markov jump linear
systems, linear matrix inequalities

AMS subject classifications. 93C05, 93C55, 93E03, 93E25

DOI. 10.1137/080715494

1. Introduction. In recent years, parameter-dependent dynamic systems have
received a great amount of attention due to their flexibility to represent with preci-
sion real world situations with practical appeal. In this framework, linear parameter-
varying and gain scheduling design problems appeared in the deterministic and sto-
chastic contexts. The latter class is composed of control systems where the open
loop model presents sudden changes on their structures or parameters, which being
modeled as Markovian processes become decisive for the increasing interest in the
so-called Markov jump linear systems (MJLS) in both continuous- and discrete-time
domains. An important assumption to consider for MJLS design is if the Markov
chain state, often called mode, is available or not to the controller at every instant
of time. Based on that information the design is said to be either mode-dependent
or mode-independent, respectively. In this paper only the first case is considered
for the following main reasons: First, in many practical situations, the system pa-
rameters are measurable; see [9], [22], [23], and [24]. Second, as a limitation of the
proposed design method based on linear matrix inequalities (LMIs), only full order
mode-dependent linear controllers may be handled without introducing any kind of
conservatism. The mode-independent version of the output feedback control problem
needs further research effort towards its complete solution.

One of the first works in the literature dealing with this class of models was
presented in [1]. After that, a large number of theory and design procedures have been
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do Estado de São Paulo (FAPESP), Brazil.

http://www.siam.org/journals/sicon/48-2/71549.html
†DSCE/School of Electrical and Computer Engineering, UNICAMP, CP 6101, 13081 - 970 Cam-

pinas, SP, Brazil (geromel@dsce.fee.unicamp.br, alimped@dsce.fee.unicamp.br).
‡Institut National de Recherche en Informatique et en Automatique, Domaine de Voluceau, BP

105, 78153 Le Chesnay Cedex, France (andre.fioravanti@inria.fr).

573



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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developed in order to extend the concepts of the deterministic systems to this special
class, namely stability concepts and testable conditions [6], [19], [17]; optimal state
feedback control [18]; state feedback H2 optimization via convex programming [5];
state feedback H2 optimization via LMIs [13]; state feedback H∞ optimization and
robustness via LMIs [8], [14], [12]; state feedback H∞ via Riccati equations [2]; and
H2 filtering [7].

A problem of theoretical and practical importance in this area is the dynamic
output feedback design. For the continuous-time case, many results are available in
the literature related to the complete solution of the associatedH2 and H∞ problems;
see [10] and, more recently, [20]. However, the same is not true for discrete-time
systems for which only a few results are available; see [9], [22], and [24]. Indeed, in [9]
an important result is reported, extending to MJLS the validity of the separation
principle in the case of H2 norm and strictly proper linear controllers. The output
feedback control problem with H∞ criterion has been treated in [22] but restricting
the attention to strictly proper linear controllers and, in addition, treating exclusively
a very particular Markov chain characterized by the transition probability matrix with
identical rows. Finally, [24] proposes handling the problem by a relaxation technique
applied to bilinear matrix inequalities (BMIs).

In this paper, both H2 and H∞ are considered, and, contrary to what has been
done in [22], we do not make any assumption about the probability transitions of the
Markov chain. We believe that the present paper innovates in the following directions:

• The set of all full order, proper, and mode-dependent Markov jump linear
controllers imposing a prespecified H2 or H∞ norm level to the controlled
output of the closed loop system is provided. As a consequence, from the
solution of convex problems expressed in terms of pure LMIs, the global
optimal H2 or H∞ controllers of this class are determined in only one shot,
avoiding an iterative process and convergence difficulties to get the global
solution [3].
• The controllers are parameterized by LMIs whose dimensions depend upon

the dimension of the open loop system state variable and not on the number
of modes of the Markov chain. This contributes decisively to decrease the
computational burden involved.

The paper is organized as follows. In the next section, classical results such as
stability and H2 and H∞ norm calculations using LMIs are presented. In the same
section a one-to-one change of variables used throughout for the linearization of the
previously mentioned norms nonlinear dependence with respect to the matrices of the
controller state space realization is also introduced. In section 3 the H2 norm control
design problem is solved. In section 4 the same is done for the H∞ norm. Notice that
in the last two sections all results are necessary and sufficient for the class of controllers
(full order, proper, linear, and mode-dependent) considered. Section 5 is devoted to
presenting a practical application of the theoretical results obtained so far. It consists
of networked control of a vehicle platoon using measurement signals transmitted in
a Markov channel modelled in [22] but, in our opinion, with a more realistic, from
the practical viewpoint, transition probability matrix. Section 6 presents the main
conclusions of the paper and brief considerations on further works. Finally, Appendix I
in section 7 is used to introduce some mathematical properties on matrix inequalities,
and in Appendix II in section 8 the detailed proofs of the two main results are provided.

The notation used throughout is standard. Capital letters denote matrices and
small letters denote vectors. For scalars, small Greek letters are used. For real
matrices or vectors, (′) indicates transpose. For square matrices, Tr(X) denotes the
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trace function ofX being equal to the sum of its eigenvalues and, for the sake of easing
the notation of partitioned symmetric matrices, the symbol (•) denotes generically
each of its symmetric blocks. The set of natural numbers is denoted by N, while
K = {1, . . . , N}. The unitary simplex in R

N composed of all nonnegative vectors
μ ∈ R

N such that μ1 + · · · + μN = 1 is denoted by Λ. Given N2 nonnegative real
numbers pij satisfying pi1+ · · ·+piN = 1 for all i ∈ K and N positive definite matrices
Xj ∈ R

n×n for all j ∈ K, the convex combination of these matrices with weights pij is
denoted by Xpi =

∑N
j=1 pijXj for all i ∈ K. Similarly, for positive definite matrices,

the inverse of the convex combination of inverses is denoted as

(1) Xqi =

⎛
⎝ N∑
j=1

pijX
−1
j

⎞
⎠

−1

.

Clearly, Xpi depends linearly on matrices X1, . . . , XN , while the dependence of Xqi

with respect to the same matrices is highly nonlinear. The same mathematical
manipulations are adopted for positive definite matrices depending on two indices
i, j ∈ K × K. The symbol E{·} denotes mathematical expectation of {·}. For
any stochastic signal ξ(k), defined in the discrete-time domain k ∈ N, the quan-
tity ‖ξ‖22 =

∑∞
k=0 E{ξ(k)′ξ(k)} is its squared norm. The class of all signals ξ(k) ∈ R

r,
k ∈ N such that ‖ξ‖22 is finite is denoted Lr2.

2. Problem formulation and basic results. A discrete-time MJLS is de-
scribed by the following stochastic equations:

(2) G :

⎧⎪⎨
⎪⎩

x(k + 1) = A(θk)x(k) +B(θk)u(k) + J(θk)w(k),
z(k) = Cz(θk)x(k) +Dz(θk)u(k) + Ez(θk)w(k),
y(k) = Cy(θk)x(k) + Ey(θk)w(k),

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the control, w(k) ∈ R
p is the exter-

nal perturbation, z(k) ∈ R
r is the controlled output, and y(k) ∈ R

q is the mea-
sured output. The state space matrices (2) depend upon a Markov chain taking
values in the finite set K with the associated transition probability matrix given by
pij = Prob(θk+1 = j | θk = i), which clearly satisfies the normalized constraints
pij ≥ 0 and

∑N
j=1 pij = 1 for each i ∈ K. To ease the presentation, the notations

A(θk) := Ai, B(θk) := Bi, J(θk) := Ji, Cz(θk) := Czi, Dz(θk) := Dzi, Ez(θk) := Ezi,
Cy(θk) := Cyi, and Ey(θk) := Eyi whenever θk = i ∈ K are adopted. The first im-
portant concept related to the model (2) is stability. In the context of MJLS, there
are several equivalent forms to define stability as summarized in the next definition;
see [19].

Definition 2.1. Consider the model (2) with null control u(k) ≡ 0, null external
input w(k) ≡ 0 for all k ∈ N, and initial conditions x(0) = x0 ∈ R

n, θ0 ∈ K. The
system G is

(a) mean square stable if for every initial state (x0, θ0)

(3) lim
k→∞

E{x(k)′x(k)|x0, θ0} = 0,

(b) stochastically stable if for every initial state (x0, θ0)

(4) E
{ ∞∑
k=0

x(k)′x(k)|x0, θ0

}
<∞,
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(c) exponentially mean square stable if for every initial state (x0, θ0) there exist
constants 0 < α < 1 and β > 0 such that for all k ∈ N

(5) E{x(k)′x(k)|x0, θ0} < βαkx′0x0.

It has been shown in [19] that the above definitions of stability are actually equiv-
alent for an MJLS being referred to as second-moment stability (SMS). The next
proposition [6], [18] presents a method to check stability from the existence of a pos-
itive definite solution of a set of coupled Lyapunov-like inequalities.

Lemma 2.2. The following statements are equivalent:
(i) System G is stable.
(ii) There exist Pi = P ′

i > 0 such that

(6) A′
iPpiAi − Pi < 0

for all i ∈ K.
Although the inequalities (6) are already in the form of LMIs, as will be clear in

what follows, they present some difficulties to be circumvented. Basically, the main
technical difficulty is the way the summations that take the jump probabilities into
account appear in the inequalities, involving the system dynamics and preventing one
from using the standard transformations available in the literature to linearize the
controller formulas. For the sake of comparison, recall that in continuous-time MJLS
these summations appear as additive terms to the standard inequalities and never
involve products with the dynamic matrices [10].

The following lemma provides an alternative characterization of stability for
discrete-time MJLS. As will be shown later, these inequalities are more appropri-
ate for dynamic output feedback control design.

Lemma 2.3. The following statements are equivalent:
(i) System G is stable.
(ii) There exist Pi = P ′

i > 0 such that

(7)
[
Pi A′

i

Ai P−1
pi

]
> 0

for all i ∈ K.
The nonlinear inequalities in Lemma 2.3 have several formal advantages over the

linear ones appearing in Lemma 2.2. The notation used in Lemma 2.3 puts into
evidence that the inequalities required for testing stability involve only matrices of
the same index i ∈ K and the coupling between the indices can be dealt with by
the linear equality constraint Ppi =

∑N
j=1 pijPj , which does not involve the dynamic

system matrices Ai, for all i ∈ K. Such a feature will be of extreme importance
in deriving simple and effective formulas for an adequate parameterization of the
controller state space matrices. The next definition is the generalization of the H2

norm from linear time invariant (LTI) systems to the stochastic Markovian jump case
under consideration.

Definition 2.4. The H2 norm of a stable system G from the input w to the
output z is given by

(8) ‖G‖22 :=
N∑
i=1

p∑
s=1

μi‖zs,i‖22,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMIC OUTPUT FEEDBACK OF DISCRETE-TIME MJLS 577

where μi = Prob(θ0 = i) and zs,i represents the controlled output z(0), z(1), . . . ob-
tained from the input w(k) = esδ(k), where es ∈ R

p is the sth column of the p × p
identity matrix, δ(k) is the discrete impulse function, x(0) = 0, and θ0 = i ∈ K.

It is interesting to observe that in the deterministic case characterized by N = 1
the previous definition reduces to the usual H2 norm of the LTI discrete-time system
G. Moreover, in the general case, we have

‖G‖22 =
N∑
i=1

p∑
s=1

μi‖zs,i‖22

≤ max
μ∈Λ

N∑
i=1

p∑
s=1

μi‖zs,i‖22

≤ sup
θ0∈K

p∑
s=1

‖zs,θ0‖22,(9)

which shows that for an adequate choice of the initial probabilities μi, i ∈ K, the
H2 norm of G equals the worst case norm (9) corresponding to the fact that no
information about the initial state θ0 ∈ K is available. Of course, to determine the
worst case norm the initial probability should be included in the optimization process
as an additional variable to be determined. This point will be addressed in what
follows with more details. For the moment, the next proposition shows how the H2

norm can be calculated [5].
Lemma 2.5. Assume that G is stable. The H2 norm of system G defined in (8)

is given by

(10) ‖G‖22 =
N∑
i=1

μi Tr (J ′
iPpiJi + E′

ziEzi) ,

where Pi = P ′
i > 0 solve Pi = A′

iPpiAi + C′
ziCzi for all i ∈ K.

From this result, there is no difficulty in calculating ‖G‖22 using a standard LMI
solver. The key observation is that if the matrix equality is replaced by inequalities,
then the right-hand side of (10) is still an upper bound whose minimization provides
‖G‖22. Hence, we have

(11) ‖G‖22 = inf
(Wi,Pi)∈Φ

N∑
i=1

μi Tr (Wi) ,

where Φ is the set of all matrices (Wi, Pi) for i ∈ K such that the LMIs

(12)

⎡
⎣ Wi J ′

iPpi E′
zi

• Ppi 0
• • I

⎤
⎦ > 0

and

(13)

⎡
⎣ Pi A′

iPpi C′
zi

• Ppi 0
• • I

⎤
⎦ > 0
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are satisfied for all i ∈ K. From the numerical point of view the determination of ‖G‖22
using LMIs appears to be adequate and efficient. Indeed, we have to handle 2N LMIs
with 2N matrix variables and the coupling terms Ppi =

∑N
j=1 pijPj for all i ∈ K.

In addition, the global optimal solution of the convex programming problem (11) is
calculated in only one shot.

Problem (11) can be slightly modified for the determination of the worst case
norm defined in (9). Actually, keeping in mind that the maximum of N numbers
equals the minimum upper bound we have

sup
θ0∈N

p∑
s=1

‖zs,θ0‖22 = max
μ∈Λ

inf
(Wi,Pi)∈Φ

N∑
i=1

μi Tr (Wi)

= inf
(Wi,Pi)∈Φ

max
μ∈Λ

N∑
i=1

μi Tr (Wi)

= inf
σ,(Wi,Pi)∈Φ

{σ : Tr(Wi) < σ ∀i ∈ K} ,(14)

which shows that the worst case norm can be determined with a little additional effort
corresponding to increasing the number of variables by only one and the number of
LMIs by N . It is important to stress that the second equality in (14) is due to
the fact that all constraints are convex and the objective function is convex (linear)
with respect to the minimization variables and concave (linear) with respect to the
maximization variables. Finally, the last equality follows from duality relations.

We now move our attention to the H∞ norm of the MJLS G with state space
realization given in (2). The formal definition of this important concept is as follows.

Definition 2.6. The H∞ norm of a stable system G from the input w to the
output z is given by

(15) ‖G‖2∞ = sup
0�=w∈Lp

2 , θ0∈K

‖z‖22
‖w‖22

.

Once again, it is interesting to observe that in the deterministic case characterized
by N = 1 the previous definition reduces to the usual H∞ norm of the LTI discrete-
time system G. The next lemma shows how the H∞ norm of the MJLS (2) can be
calculated [4], [21].

Lemma 2.7. The system G is stable and satisfies the norm constraint ‖G‖2∞ < γ
if and only if there exist matrices Pi = P ′

i > 0 such that

(16)
[
Ai Ji
Czi Ezi

]′ [
Ppi 0
0 I

] [
Ai Ji
Czi Ezi

]
−
[
Pi 0
0 γI

]
< 0

holds for all i ∈ K.
Lemma 2.7 is a bounded real lemma for the MJLS (2). It can be obtained from

the conditions derived in [4]; see also [22], [21] and the references therein. Notice that,
as we have already mentioned, (16) reduces to the deterministic H∞ norm condition
for N = 1 and to be feasible it requires the existence of positive definite matrices Pi
such that A′

iPpiAi − Pi +C′
ziCzi < 0 for all i ∈ K. This is possible if and only if G is

stable; see [19].
From this result, there is no difficulty in calculating the norm ‖G‖2∞ from the op-

timal solution of a convex programming problem expressed by LMIs. Indeed, applying
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the Schur complement to (16) it is seen that

(17) ‖G‖2∞ = inf
(γ,Pi)∈Ψ

γ,

where Ψ is the set of all positive definite matrices Pi and γ ∈ R such that the LMI

(18)

⎡
⎢⎢⎣
Pi 0 A′

iPpi C′
zi

• γI J ′
iPpi E′

zi

• • Ppi 0
• • • I

⎤
⎥⎥⎦ > 0

is satisfied for all i ∈ K. As before, from the numerical point of view the same
conclusions can be drawn. The determination of ‖G‖2∞ using LMIs appears to be
adequate and efficient. Indeed, we have to handle N LMIs with N matrix variables
and the coupling terms Ppi =

∑N
j=1 pijPj for all i ∈ K. In addition, the calculation of

the global optimal solution of the convex programming problem (17) does not need
iterations, and, consequently, no convergence condition has to be verified.

We are now in position to state the dynamic output feedback control design
problems to be dealt with in the rest of this paper. Associated with (2) consider the
full order proper mode-dependent Markov jump linear controller

(19) C :

{
xc(k + 1) = Ac(θk)xc(k) +Bc(θk)y(k),

u(k) = Cc(θk)xc(k) +Dc(θk)y(k),

where xc(k) ∈ R
n, xc(0) = 0, and the matrices Aci, Bci, Cci, and Dci for all i ∈ K

are of compatible dimensions. The goal is to determine these matrices in such a way
that the H2 or the H∞ norm of the closed loop system is minimized. Connecting the
controller (19) to the system (2) the controlled output is given by

(20) F :

{
x̃(k + 1) = Ã(θk)x̃(k) + J̃(θk)w(k),

z(k) = C̃(θk)x̃(k) + Ẽ(θk)w(k),

where the indicated matrices are

Ãi :=
[
Ai +BiDciCyi BiCci

BciCyi Aci

]
, J̃i :=

[
Ji +BiDciEyi

BciEyi

]
,(21)

C̃i :=
[
Czi +DziDciCyi DziCci

]
, Ẽi := Ezi +DziDciEyi;(22)

hence, the problem to be solved is written in the final form

(23) min
Aci,Bci,Cci,Dci

‖F‖2h,

where h = 2 or h = ∞. It is important to make clear that the above formulation of
the dynamic output feedback control design problem is highly nonconvex and difficult
to solve; that is, in this form, it is not possible to calculate its global optimal solution.
The reason is that the calculation of the objective function ‖F‖2h depends upon a
set of auxiliary variables (see problems (11) and (17)) which multiply the controller
variables producing, consequently, a nonconvex problem. The way to circumvent this
difficulty is to introduce a one-to-one change of variables able to linearize the nonlinear
constraints to be handled.
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From the previous determination of H2 and H∞ norms, it can be seen that the
full order controller C imposes a closed loop system F twice the order of the plant
G. Hence the H2 and H∞ norm calculations need auxiliary symmetric matrices
P̃i ∈ R

2n×2n for all i ∈ K. Accordingly, let P̃i be 2n× 2n real matrices partitioned as
follows:

(24) P̃i =
[
Xi Ui

U ′
i X̂i

]
, P̃−1

i =
[
Yi Vi

V ′
i Ŷi

]
, T̃i =

[
Yi I

V ′
i 0

]
,

where all blocks are n× n real matrices. It is immediately verified that

(25) T̃ ′
i P̃iT̃i =

[
Yi I

I Xi

]

for all i ∈ K. It is a well known fact (see Appendix I in section 7 for a more detailed
discussion) that if the matrix in (25) is constrained to be definite positive, then it
is always possible to determine the matrix blocks in (24) in order to get P̃i > 0.
Moreover, this can be accomplished even if matrix Ui or Vi for each i ∈ K is arbitrarily
(nonsingular) fixed. Now, we proceed by considering P̃i > 0 and adopting a similar
reasoning to the convex combination of these matrices. From (24), the same partition
yields

(26) P̃pi =
N∑
j=1

pijP̃j =

[
Xpi Upi

U ′
pi X̂pi

]
,

and denoting

(27) P̃−1
pi =

[
R1i R2i

R′
2i R3i

]
, Q̃i =

[
I Xpi

0 U ′
pi

]
,

it is verified that

(28) Q̃′
iP̃

−1
pi Q̃i =

[
R1i I

I Xpi

]
.

It is important to stress that the four block matrices which define the inverse P̃−1
pi

depend nonlinearly on the four block matrices of P̃pi. However, since R−1
1i = Xpi −

UpiX̂
−1
pi U

′
pi, setting Ui such that Ui = −X̂i the partitioned matrix in (28) becomes

(29) Q̃′
iP̃

−1
pi Q̃i =

[
(Xpi + Upi)−1 I

I Xpi

]
.

From the above discussion, we mention again that the particular choice Ui = −X̂i

can be made without loss of generality and constrains matrix Ui to be symmetric and
negative definite. Furthermore, (24) provides Ui = −X̂i = Y −1

i −Xi, which enables
us to rewrite (29) in the final form

(30) Q̃′
iP̃

−1
pi Q̃i =

[
Yqi I

I Xpi

]
.

Moreover, in the general case, that is, without the particular choice Ui = −X̂i, the
equality R1i = Yqi does not hold any longer, but matrices R1i given by

(31) R−1
1i = Xpi − UpiX̂−1

pi U
′
pi
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satisfy the inequalities

R−1
1i ≥

N∑
j=1

pij(Xj − UjX̂−1
j U ′

j)

≥
N∑
j=1

pijY
−1
j

≥ Y −1
qi(32)

for all i ∈ K. The relations (30) and (32) are the key results to be used afterwards
for dynamic output feedback control synthesis.

Additionally, the results to be presented in what follows are based on the lin-
earization of the matrix inequalities involved in the norm calculations. Hence, let us
introduce the following one-to-one change of variables:

(33)
[
Aci Bci
Cci Dci

]
=
[
Upi XpiBi
0 I

]−1 [
Mi −XpiAiYi Fi

Li Ki

] [
V ′
i 0

CyiYi I

]−1

,

which from matrices (Mi, Fi, Li,Ki) uniquely determine the dynamic output feedback
controller matrices (Aci, Bci, Cci, Dci) and vice versa for each i ∈ K. Indeed, notice
that in (33) the inverses exist whenever matrices Ui and Vi are nonsingular for all
i ∈ K. The importance of this change of variables is that it allows one to convert
the H2 and H∞ output feedback control design problems stated before into convex
programming problems expressed in terms of LMIs.

3. H2 mode-dependent control design. Based on the previous results our
main purpose in this section is to calculate the global optimal solution of the H2

mode-dependent dynamic output feedback control design problem (11) which can be
stated as

(34) inf
N∑
i=1

μiTr (Wi) ,

where the infimum is taken with respect to the matrix variables P̃i, Wi, Aci, Bci, Cci,
and Dci for all i ∈ K satisfying the inequalities

(35)

⎡
⎢⎣ Wi J̃ ′

i Ẽ′
i

• P̃−1
pi 0

• • I

⎤
⎥⎦ > 0

and

(36)

⎡
⎢⎣ P̃i Ã′

i C̃′
i

• P̃−1
pi 0

• • I

⎤
⎥⎦ > 0,

where the closed loop system state space matrices are given in (21), (22) and P̃i is
partitioned as indicated in (24) for each i ∈ K. It is important to stress that these
nonlinear matrix inequalities are expressed equivalently in terms of the inverse P̃−1

pi ,
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which is essential to get a linearized version from the change of variables introduced
before.

Lemma 3.1. There exist a mode-dependent output feedback linear controller of
the form (19) and symmetric matrices Wi, P̃i > 0 satisfying the inequalities (35) for
all i ∈ K if and only if there exist symmetric matrices Wi, Xi, Yi, Zij and matrices
Fi,Ki, Hi of compatible dimensions satisfying the LMIs

(37)

⎡
⎢⎢⎣
Wi J ′

i + E′
yiK

′
iB

′
i J ′

iXpi + E′
yiF

′
i E′

zi + E′
yiK

′
iD

′
zi

• Hi +H ′
i − Zpi I 0

• • Xpi 0
• • • I

⎤
⎥⎥⎦ > 0

and

(38)
[
Zij H ′

i

• Yj

]
> 0

for all i, j ∈ K×K. Furthermore, whenever (37)–(38) are satisfied, a suitable solution
for (35) is provided by (33) with Ui = Y −1

i −Xi and Vi = Yi for all i ∈ K.
Proof. See Appendix II in section 8.
As we can see in Appendix II in section 8, the proof of Lemma 3.1 strongly

depends upon the inequality Yqi ≥ R1i and on the existence of a particular choice of
matrices Ui for all i ∈ K such that the equality holds. In addition, it is to be noticed
that the linear matrix function Hi +H ′

i −Zpi appearing in the second element of the
main diagonal of the LMI (37) is used to successfully linearize the nonlinear matrix
function Yqi (as already commented, recall the notation Zpi :=

∑N
j=1 pijZij). This

aspect is also present in the next lemma, where the remaining constraint needed to
calculate the H2 norm of the closed loop system is treated.

Lemma 3.2. There exist a mode-dependent output feedback linear controller of the
form (19) and symmetric matrices P̃i > 0 satisfying the inequalities (36) for all i ∈ K

if and only if there exist symmetric matrices Xi, Yi, Zij and matrices Mi, Li, Fi,Ki, Hi

of compatible dimensions satisfying the LMIs

(39)

⎡
⎢⎢⎢⎢⎢⎣

Yi I YiA
′
i + L′

iB
′
i M ′

i YiC
′
zi + L′

iD
′
zi

• Xi A′
i + C′

yiK
′
iB

′
i A′

iXpi + C′
yiF

′
i C′

zi + C′
yiK

′
iD

′
zi

• • Hi +H ′
i − Zpi I 0

• • • Xpi 0
• • • • I

⎤
⎥⎥⎥⎥⎥⎦ > 0

and

(40)
[
Zij H ′

i

• Yj

]
> 0

for all i, j ∈ K×K. Furthermore, whenever (39)–(40) are satisfied, a suitable solution
for (36) is provided by (33) with Ui = Y −1

i −Xi and Vi = Yi for all i ∈ K.
Proof. See Appendix II in section 8.
We want to stress that this lemma has a very interesting aspect as far as the

nonlinear nature of inequality (36) is concerned. From the adequate definition of
matrices T̃i and Q̃i the mentioned inequality, which depends on two different variables
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P̃i and P̃−1
pi , has been successfully linearized. Furthermore, since both lemmas make

use of the same change of variables the following result is immediate.
Theorem 3.3. There exists a mode-dependent output feedback linear controller

of the form (19) such that ‖F‖22 < γ if and only if there exists a feasible solution of
LMIs (37), (38), and (39) satisfying

(41)
N∑
i=1

μiTr(Wi) < γ.

In the affirmative case, a suitable mode-dependent Markov jump linear output feedback
controller is defined by the state space matrices Aci, Bci, Cci, and Dci, provided in (33)
with Ui = Y −1

i −Xi and Vi = Yi for all i ∈ K.
Proof. This theorem follows from the results of Lemmas 3.1 and 3.2 together

with the fact that ‖F‖22 <
∑N

i=1 μiTr(Wi) for all feasible solutions of LMIs (37), (38),
and (39).

The most important consequence of Theorem 3.3 is that the optimal global solu-
tion of the H2 control design problem (23) can be alternatively determined from

(42) inf
X∈Ω

N∑
i=1

μi Tr (Wi) ,

where X = (Wi, Xi, Yi, Zij ,Mi, Fi, Li,Ki, Hi) for all i, j ∈ K × K are the matrix
variables and Ω is the set of all feasible solutions of LMIs (37), (38), and (39). In other
words, the mode-dependent output feedback design problem under consideration has
been converted into a convex programming problem expressed in terms of LMIs, which
enables the use of efficient numerical methods for its solution. Moreover, Theorem 3.3
admits another interpretation. It provides the set of all mode-dependent proper full
order Markov jump linear controllers such that the closed loop system satisfies the
constraint ‖F‖22 < γ for some prespecified H2 norm level γ > 0. To the best of our
knowledge, a similar result was not available in the literature to date.

Finally, it is interesting to see that the worst case norm (14) can be treated with
no additional difficulty. Actually, from duality, the convexity of the primal design
problem (42) enables us to conclude that

(43) max
μ∈Λ

inf
X∈Ω

N∑
i=1

μiTr (Wi) = inf
σ,X∈Ω

{σ : Tr (Wi) < σ},

making clear that the right-hand side of (43) provides the optimal mode-dependent
Markov jump linear output feedback controller associated with the worst case norm.

3.1. Example. The following example was borrowed from [15]. It consists of
two masses coupled with a spring and a damper. The first mass is attached to a
fixed end point through another spring. The problem is to control the position and
velocity of the second mass by applying a horizontal force on it. It is assumed that
the position and velocity of the first mass are measured and that this information
is delivered to the controller through a Markovian channel, which can insert error
into the transmitted information package. Furthermore, it is also assumed that the
controller can detect but not correct each of these defected packages by means of an
adequate protocol, in which case it discards them. The force is applied directly on the
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Fig. 1. H2 norm versus pR,R for different values of κ.

mass; i.e., it is not directly affected by the errors that may occur in the transmission
channel.

The probability that a good package is received right after a good one is given
by pR,R, whereas the probability that a bad package is received after a bad one is
given by pL,L. Hence, the ratio between the mean length of good and bad package
sequences is simply given by

(44) κ =
1− pL,L
1− pR,R

.

Moreover, since pL,L and pR,R are probabilities for each fixed value of κ we must have
1− κ−1 ≤ pR,R ≤ 1 and pL,L = (1− κ) + κpR,R. In practice, both probabilities pR,R
and pL,L are expected to be high and pR,R > pL,L, which naturally yields κ > 1.

On the other hand, the state space realization of this continuous-time stochastic
system is described as usual, with two modes (N = 2) and specific data given by

(45)

⎡
⎢⎢⎣

Ai Bi Ji
Czi Dzi Ezi
Cy1 Dy1 Ey1
Cy2 Dy2 Ey2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0
0 0 0 1 0 1 0

−30.0 10.0 −0.36 0.36 0 0 0
5.0 −5.0 0.18 −0.18 1 0 0

0 50.0 0 0 0 0 0
0 0 0 1.8 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0.1
0 0 1 0 0 0 0.125

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for i ∈ K = {1, 2}. Notice that only the output matrices Cyi and Eyi for i ∈ K depend
upon the Markov state in order to cope with the transmission error introduced by the
Markov channel. The final discrete-time system of the form (2) is determined from
discretization with sample time Ts = 0.5s and a zero order hold placed on each input.
Considering μ1 = 0 and μ2 = 1, that is, the initial mode is the one corresponding
to transmission without failure, the H2 mode-dependent proper controllers for a grid
of the transition probability pR,R have been calculated, and in Figure 1 the closed
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loop system H2 performance provided by the optimal solution of problem (42) for
κ ∈ {1, 2, 4, 8, 16} is shown. Notice that for all values of pR,R as κ increases the
minimumH2 norm decreases. Moreover, for the same κ, increasing pR,R the minimum
H2 norm may also increase due to the fact that to keep κ constant the probability
pL,L has to increase as well.

4. H∞ mode-dependent control design. The main purpose of this section is
to present similar results for the H∞ norm. Connecting the full order linear controller
C defined in (19) to the open loop system G, the problem to be dealt with can be
expressed as

(46) inf γ,

where the infimum is taken with respect to the scalar γ and the matrix variables P̃i,
Aci, Bci, Cci, and Dci for all i ∈ K satisfying the inequality

(47)

⎡
⎢⎢⎢⎣
P̃i 0 Ã′

i C̃′
i

• γI J̃ ′
i Ẽ′

i

• • P̃−1
pi 0

• • • I

⎤
⎥⎥⎥⎦ > 0,

where the closed loop system state space matrices are given in (21), (22) and P̃i is
partitioned as indicated in (24) for each i ∈ K. Comparing to the H2 mode-dependent
control design analyzed in the previous section, the reader can verify that the same
linearization strategy also works in the present context as summarized in the next
theorem.

Theorem 4.1. There exist a mode-dependent output feedback linear controller
of the form (19), a scalar γ > 0, and symmetric matrices P̃i > 0 satisfying the
inequalities (47) for all i ∈ K if and only if there exist a scalar γ > 0, symmetric ma-
trices Xi, Yi, Zij, and matrices Mi, Li, Fi,Ki, Hi of compatible dimensions satisfying
the LMIs

(48)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Yi I 0 YiA
′
i + L′

iB
′
i M ′

i YiC
′
zi + L′

iD
′
zi

• Xi 0 A′
i + C′

yiK
′
iB

′
i A′

iXpi + C′
yiF

′
i C′

zi + C′
yiK

′
iD

′
zi

• • γI J ′
i + E′

yiK
′
iB

′
i J ′

iXpi + E′
yiF

′
i E′

zi + E′
yiK

′
iD

′
zi

• • • Hi +H ′
i − Zpi I 0

• • • • Xpi 0
• • • • • I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
> 0

and

(49)
[
Zij H ′

i

• Yj

]
> 0

for all i, j ∈ K×K. Furthermore, whenever (48)–(49) are satisfied, a suitable solution
for (47) is provided by (33) with Ui = Y −1

i −Xi and Vi = Yi for all i ∈ K.
Proof. The proof follows from similar arguments and mathematical relations

already adopted in the proofs of Lemmas 3.1 and 3.2 as well; therefore it is being
omitted.

Defining the set of matrix variables Y = (Xi, Yi, Zij ,Mi, Fi, Li,Ki, Hi) for all
i, j ∈ K ×K and the convex set Ξ of all feasible solutions of the LMIs (48) and (49),
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Fig. 2. Performance ratio of optimal controllers for different values of κ.

the optimal solution of problem (46) is determined from

(50) inf
γ,Y∈Ξ

γ.

Hence, as in the H2 norm case, the mode-dependent output feedback design problem
under consideration has been converted into a convex programming problem expressed
in terms of LMIs.

The result reported in Theorem 4.1 outperforms the previous results available
in the literature dealing with this class of control design problems; see [22] and [24].
First, to the contrary of [22], where the very restrictive constraint on the transition
probability matrix is imposed, namely, pij = pj for all i, j ∈ K× K and only strictly
proper linear controllers are considered, we do not make any assumption about the
structure of the transition probability matrix, and general proper controllers are de-
signed. Moreover, comparing to [24], where an iterative method to solve BMIs is
needed, here the problem is solved in one shot by any LMI solver.

4.1. Example. The data used in the example in section 3.1 is again considered
to compare optimal performances of proper and strictly proper linear controllers. The
H∞ output feedback control problem (50) has also been solved in order to demonstrate
how performance can be improved by allowing the controller to be proper instead of
strictly proper. Figure 2 shows the performance ratio produced by strictly proper
and proper optimal controllers for H∞ norm optimization. As can be seen, the im-
provement is more expressive for bigger values of the transition probability pR,R and
moderate values of pL,L. This effect becomes more expressive whenever κ increases.
Clearly, for pR,R and pL,L close to one the optimal controller becomes strictly proper.

5. Practical application. Consider the vehicle following problem described
in [22]. Let x0 denote the position of the leading car and xi denote the position
of the ith follower. The reference trajectory for the lead vehicle is denoted r0 and the
tracking error for the lead vehicle is e0 = r0 − x0. The other vehicle spacing errors
are ei = xi−1 − xi − δi, where δi is the desired vehicle spacing. The control objective
is to enforce all tracking errors ei to zero.

Following [22], although the dynamic behavior for an individual vehicle is non-
linear, the use of a two-layered control scheme [16] allows us to consider a reasonable
third order model for the vehicle dynamics according to
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(51)
d

dt

⎡
⎣ xi(t)
vi(t)
ai(t)

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
0 0 − 1

τ

⎤
⎦
⎡
⎣ xi(t)
vi(t)
ai(t)

⎤
⎦+

⎡
⎣ 0

0
1
τ

⎤
⎦ ui(t),

where xi(t), vi(t), and ai(t) are the position, velocity, and acceleration of the ith
vehicle, and τ = 100ms is the time constant of the first order lag. The system
is discretized with a Ts = 20ms sample rate, considering a zero order hold on the
control input.

It is assumed that the measurement used to control the system is transmitted
using a wireless network protocol such that errors can be detected but not corrected.
At every sample time, a vehicle communicates its measurements to the network. If
the received package is corrupted, then the controller discards it and waits for the
next package. We assume that all communicated measurements from the vehicles
are either received or corrupted and the Markov chain can be modelled with two
modes {L,R} for lost and received packages, respectively. It is further assumed that
the statistics of the network are known so that we have both the probability of the
next broadcasted package being correct after a good one is received pR,R and the
probability of a package being lost by error after a bad one is received pL,L. The data
communicated through the network is modelled as follows:

(52) ŷc(k) =

{
yc(k) if θ(k) = R,

∅ if θ(k) = L,

where ∅ denotes a corrupted package of information and yc is the vector of commu-
nicated measurements available for feedback. All cars in the platoon have on board
sensors to capture the measurements from their particular motions. Those measure-
ments are denoted as yo, which leads to the following output available to the controller
in every time instant:

(53) y(k) :=
[
yo(k)
ŷc(k)

]
.

As in [22], for the controller design a model with two cars is considered. However,
the important difference from the approach proposed in [22] is that we are able to cal-
culate with the results reported in this paper the optimal linear controller associated
with any value of the transition probability matrix and not only for those satisfying
pR,R = 1− pL,L. Figure 3 shows the grid with the H∞ norm of the controlled system
for all possible values of the package loss rates.

It is interesting to notice, although it is not intuitive, that the H∞ norm does not
change very much with respect to pR,R whenever pL,L is kept constant. However, if
one takes two points on Figure 3 with different pR,R and the same pL,L, even though
the H∞ norm might be the same, the designed controllers are in general different.
That cannot be accomplished by the control designed from [22] because it can be
calculated only for systems such that pL,L = 1− pR,R. Figure 3 shows spikes in some
points due to lack of numerical precision.

Finally, we compare the Markov jump linear controller proposed by this design
with the deterministic H∞ optimal output feedback controller. For both systems a
Monte Carlo simulation was run with 5 × 103 iterations. The probability matrix for
the package error rates

(54)
[
pL,L pL,R
pR,L pR,R

]
=
[

0.92 0.08
0.02 0.98

]
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Fig. 3. H∞ norm versus package loss rate.
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Fig. 4. Mean square error for deterministic and Markovian controllers.

has been considered, corresponding to the ratio κ = 4. The input has been calculated
in order to impose that the lead vehicle should start with a constant acceleration of
3m/s2 for 5 seconds, should remain with constant speed for the next 7.5 seconds,
and should brake with an acceleration of −6m/s2 for the remaining 2.5 seconds; after
that, acceleration should be zero. The parameters used for the controlled output z, the
spacing error e1, and the weighted control effort were the same as those used in [22].
The mean square error can be seen in Figure 4 against t = kTs for k ∈ [0, 1.5× 103],
where the better performance of the Markovian controller (solid line) when compared
to the deterministic one (dashed line) is clear.

6. Conclusion. In this paper a new approach to the dynamic output feedback
control design of discrete-time MJLS is proposed. The set of all full order proper
mode-dependent Markov jump linear output feedback controllers imposing on the
closed loop system a prespecified H2 or H∞ norm level is parameterized by convex
constraints expressed by means of pure LMIs, likewise of what has been done in the
continuous-time case [10]. The linear controllers are obtained without any additional
constraints (as, for instance, to be strictly proper), a fact that is particularly im-
portant since Figure 2 makes clear the impact of this control structure as far as the
H∞ norm minimization is concerned. Furthermore, in that case, the performance
is enhanced by the possibility of dealing with optimal control problems where the
transition probability matrix is not restricted to having the same rows as considered
in [22]. The controller is always obtained from the solution of a convex programming
problem, assuming that it has access to the system modes for all k ∈ N. This assump-
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tion is of practical appeal if one considers the application for networked control, where
transmission protocols can easily include package error detection. The inclusion of
the system statistics and the correspondent models to obtain the closed loop linear
controller has a computational cost. Considering again the networked control with
two possible modes as an example, the design of an optimal H2 controller will imply
solving eight coupled LMIs against one for the deterministic case. Nonetheless, we
believe it is a worthy cost to pay, given the better performance illustrated in Figure 4.

As a further research subject, we believe that the results reported in this paper
can be applied to networked control problems where the Markov channel is described
by more accurate models yielding higher order MJLS systems. Moreover, in our
opinion, additional research efforts towards the generalization of the present results
to the mode-independent versions of the H2 and H∞ optimal control problems are of
great theoretical and practical interest.

7. Appendix I. This appendix provides a series of basic results largely used in
this paper. The following simple property involving square matrices has been applied
with success to the solution of several problems in the literature to date (see [11] and
the references therein).

Lemma 7.1. Consider P = P ′ > 0. The inequality

(55) G′P−1G ≥ G+G′ − P

holds for any square matrix G of compatible dimensions.
Proof. It follows trivially from the fact that (G− P )′P−1(G− P ) ≥ 0.
Let a set of nonnegative real numbers pij for i, j ∈ K ×K satisfying the normal-

ization constraints

(56)
N∑
j=1

pij = 1, i ∈ K,

and a set of positive definite matrices Xj ∈ R
n×n for all j ∈ K be given. The convex

combination of these matrices with weights pij is defined as

(57) Xpi =
N∑
j=1

pijXj , i ∈ K.

Similarly, the inverse of the convex combination of inverses of the same matrices is
defined as

(58) Xqi =

⎛
⎝ N∑
j=1

pijX
−1
j

⎞
⎠

−1

, i ∈ K.

The next lemma gives a relationship between these two convex combinations that is
exhaustively used in the present paper.

Lemma 7.2. Let X1, . . . , XN ∈ R
n×n be positive definite matrices. The inequality

Xpi ≥ Xqi holds for all i ∈ K.
Proof. Notice that each inequality

(59)
[
Xj I

I X−1
j

]
≥ 0, j ∈ K,
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holds from the Schur complement and due to the fact that all matrices X1, . . . , XN

are positive definite. Hence, multiplying (59) by pij and summing up for all j ∈ K,
using (57) and (58) we obtain

(60)
[
Xpi I

I X−1
qi

]
≥ 0, i ∈ K,

yielding, by the Schur complement, the desired result.
Clearly, Xpi depends linearly upon matrices X1, . . . , XN , while the dependence

of Xqi with respect to the same matrices is highly nonlinear. The importance of
Lemma 7.2 is that it provides a linear upper bound to the nonlinear matrix function
Xqi for all i ∈ K.

We now move our attention to positive definite matrices with square partitions.
Lemma 7.3. Let the symmetric matrices X ∈ R

n×n, Y ∈ R
n×n such that

(61)
[
Y I

I X

]
> 0

be given. It is always possible to determine symmetric matrices X̂ ∈ R
n×n, Ŷ ∈ R

n×n

and matrices U ∈ R
n×n, V ∈ R

n×n satisfying

(62)
[
X U

U ′ X̂

]−1

=
[
Y V

V ′ Ŷ

]
> 0.

Proof. Take U ∈ R
n×n nonsingular. The equality in (62) holds if and only if

the following four matrix constraints simultaneously hold. First, XY + UV ′ = I,
which gives V = (I − Y X)U ′−1. Second, XV + UŶ = 0, yielding to the symmetric
matrix Ŷ = U−1X(Y − X−1)XU ′−1. Third, U ′Y + X̂V ′ = 0, which provides X̂ =
U ′(X − Y −1)−1U . Finally, with these solutions we verify that

U ′V + X̂Ŷ = U ′(I − Y X)U ′−1 + U ′(X − Y −1)−1X(Y −X−1)XU ′−1

= U ′((I − Y X)− (X − Y −1)−1X(I − Y X))U ′−1

= U ′(I − (X − Y −1)−1X)(I − Y X)U ′−1

= U ′(X − Y −1)−1(−Y −1)(I − Y X)U ′−1

= I,(63)

which proves the equality in (62). On the other hand, since any feasible solution
of (61) provides I − Y X nonsingular, the same is true for matrix V given above and,
consequently, for the 2n× 2n real matrix

(64) T =
[
Y I

V ′ 0

]
.

Hence, from the fact that

(65) T ′
[
X U

U ′ X̂

]
T =

[
Y I

I X

]

the inequality in (62) follows immediately from (61).
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An interesting point arising from the proof of Lemma 7.3 is that (62) can be
solved even though U ∈ R

n×n is arbitrarily fixed as any nonsingular matrix. In other
words, given symmetric matrices X and Y satisfying the positivity constraint (61),
then, to solve (62), the nonsingular matrix U can be arbitrarily fixed without loss of
generality. Simple verification puts into evidence that similar results hold for matrix
V ∈ R

n×n.

8. Appendix II. In this appendix we provide the proofs for Lemmas 3.1 and 3.2,
which are central for the H2 output feedback control design problem.

8.1. Proof of Lemma 3.1. For the necessity, assume that (35) holds. Parti-
tioning P̃−1

pi as in (24) and multiplying (35) to the right by diag[I, Q̃i, I] and to the
left by its transpose we obtain

(66)

⎡
⎢⎢⎣
Wi J ′

i + E′
yiK

′
iB

′
i J ′

iXpi + E′
yiF

′
i E′

zi + E′
yiK

′
iD

′
zi

• R1i I 0
• • Xpi 0
• • • I

⎤
⎥⎥⎦ > 0,

where Fi = UpiBci +XpiBiDci and Ki = Dci. Taking into account that (32) implies
Yqi ≥ R1i, for Hi = Yqi and Zij = YqiY

−1
j Yqi + εI with ε > 0 we see that (38) is

verified and we obtain

Hi +H ′
i − Zpi = Yqi − εI

≥ R1i − εI;(67)

hence, taking ε > 0 sufficiently small, inequality (66) implies that (37) holds and the
claim follows.

For the sufficiency, assume that (37) and (38) hold. From (38) we have Zij >
H ′
iY

−1
j Hi, and, consequently, multiplying these inequalities by pij and summing up

for all j ∈ K we obtain

Hi +H ′
i − Zpi = Hi +H ′

i −
N∑
j=1

pijZij

≤ Hi +H ′
i −H ′

iY
−1
qi Hi

≤ Yqi − (Hi − Yqi)′Y −1
qi (Hi − Yqi)

≤ Yqi,(68)

which implies that (37) remains valid if the diagonal term in the second column
and row is replaced by Yqi and consequently Xpi > Y −1

qi > 0. Hence, imposing
Ui = Y −1

i −Xi we get Vi = Yi and it is verified that the matrix Upi = Y −1
qi −Xpi is

nonsingular, which enable us to determine the matrices Bci and Dci from the change
of variables (33). On the other hand, taking into account that this choice provides

(69) P̃pi =

[
Xpi Y −1

qi −Xpi

• Xpi − Y −1
qi

]
> 0

it is immediately verified that (30) holds and that R−1
1i = Y −1

qi . The conclusion is that
inequality (37) with the diagonal term in the second column and row replaced by Yqi
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can be rewritten as

(70)

⎡
⎢⎣ Wi J̃ ′

iQ̃i Ẽ′
i

• Q̃′
iP̃

−1
pi Q̃i 0

• • I

⎤
⎥⎦ > 0,

which multiplied to the right by diag[I, Q̃−1
i , I] and to the left by its transpose provides

the inequality (35), and the proof is concluded.

8.2. Proof of Lemma 3.2. Along general lines, it follows the same pattern of
the proof of Lemma 3.1.

For the necessity, assume that the inequality (36) holds. Partitioning P̃i and
P̃−1
pi as indicated in (24) and (26), respectively, multiplying (36) to the right by

diag[T̃i, Q̃i, I] and to left by its transpose, and adopting the inverse change of vari-
ables (33), we get the LMI (39) with R1i at the place of Hi +H ′

i − Zpi in the third
row and third column block. As before, the necessity follows from (67), making ε > 0
sufficiently small.

The sufficiency follows from the particular choice of matrix Ui = Y −1
i −Xi imply-

ing from (24) that Vi = Yi. Moreover, taking into account that this choice provides
P̃pi > 0 as in (30) and that R1i = Yqi ≥ Hi + H ′

i − Zpi, the change of variables
proposed enables us to get

(71)

⎡
⎢⎣ T̃ ′

i P̃iT̃i T̃ ′
i Ã

′
iQ̃i T̃ ′

i C̃
′
i

• Q̃′
iP̃

−1
pi Q̃i 0

• • I

⎤
⎥⎦ > 0,

which provides (36) after multiplication to the right by diag[T̃−1
i , Q̃−1

i , I] and to the
left by its transpose. This concludes the proof of the proposed lemma.
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SMOOTH FIT PRINCIPLE FOR IMPULSE CONTROL OF
MULTIDIMENSIONAL DIFFUSION PROCESSES∗
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Abstract. Value functions of impulse control problems are known to satisfy quasi-variational
inequalities (QVIs) [A. Bensoussan and J.-L. Lions, Impulse Control and Quasivariational Inequali-
ties, Heyden & Son, Philadelphia, 1984; translation of Contrôle Impulsionnel et Inéquations Quasi
Variationnelles, Gauthier-Villars, Paris, 1982]. This paper proves the smooth-fit C1 property of the
value function for multidimensional controlled diffusions, using a viscosity solution approach. We
show by examples how to exploit this regularity property to derive explicitly optimal policy and
value functions.

Key words. stochastic impulse control, viscosity solution, quasi-variational inequality, smooth
fit, controlled diffusion
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1. Introduction. This paper considers the following impulse control problem for
an n-dimensional diffusion process X(t). In the absence of control, X(t) is governed
by an Itô’s stochastic differential equation,

(1.1) dX(t) = μ(X(t))dt+ σ(X(t))dW (t), X(0) = x,

where W is a standard Brownian motion in a filtered probability space (Ω,F ,P). If
a control policy V = (τ1, ξ1; τ2, ξ2; . . .) is adopted, then X(t) evolves as

(1.2) dX(t) = μ(X(t−))dt+ σ(X(t−))dW (t) +
∑
i

δ(t− τi)ξi,

where δ(·) denotes the Dirac delta function. Here the control V = (τ1, ξ1; τ2, ξ2; . . .)
is of an impulse type such that τ1, τ2, . . . is an increasing sequence of stopping times
with respect to Ft (the natural filtration generated by W ), and ξi is an R

n-valued,
Fτi-measurable random variable.

The problem is to choose an appropriate impulse control (τ1, ξ1; τ2, ξ2; . . .) so that
the following objective function is minimized:

(1.3) Ex

(∫ ∞

0

e−rtf(X(t))dt+
∞∑
i=1

e−rτiB(ξi)

)
.

Here f is a running cost function, B is a transaction cost function, and r > 0 is a
discount factor.

This multidimensional control problem has been proposed and studied in vari-
ous forms in different contexts of risk management, including optimal cash manage-
ment [7] and inventory controls [16, 15, 39, 38]. More recent papers in the literature
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of mathematical finance include those on transaction cost in portfolio management
[2, 21, 22, 10, 29, 32], insurance models [18, 5], liquidity risk [25, 4], optimal control
of exchange rates [19, 30, 6], and finally, real options [40, 27].

Compared to regular controls, impulse control provides a more natural mathe-
matical framework when the state space is discontinuous. It is a more general version
of singular control allowing for nonzero fixed cost [15] and therefore harder to ana-
lyze. Indeed, in contrast to the singular/regular control theory, which enjoys a vast
literature in financial engineering (see, for instance, Merton [28] and Karatzas and
Shreve [20] among others), impulse control is less well understood, especially in terms
of the structure of the optimal policy and regularity properties of the value function.
In fact, regarding optimal policy, the best known work is perhaps still due to [7], which
characterized the (u, U, d,D) form of the optimal policy for an inventory system. Al-
though there have been various extensions of this structural result [16, 15, 39, 38, 34],
most were derived through the verification theorem approach and by assuming a pri-
ori the smooth-fit property through the action/continuation regions. In the end, this
approach usually amounts to solving complex algebraic equations that are hard to
verify without a priori knowledge of the regularity property; thus the correctness of
the “solution” is dubious. Indeed, there are (see, e.g., [41] and [3]) a few examples of
singular control and stopping problems with explicit solutions, where value functions
are not C2, or even C1, and only recently (see [26, 14], and [35]) the smooth-fit prin-
ciple for one-dimensional singular control and the closely related switching control
problems were established. In [1] value functions were shown to be the solutions of
quasi-variational inequalities (QVIs) and the regularity properties were established for
the case when the control is strictly positive and the state space is in a bounded re-
gion. However, to the best of our knowledge, regularity properties for value functions
involving all-direction controls have not been fully established. This is an important
omission in light of the wide range of applications mentioned earlier.

Our work. This paper studies regularity properties of the impulse control prob-
lem (1.3) on multidimensional diffusions in (2.1) subject to our conditions (A1)–(A4).
Unlike the approach in [1], where the regularity was established through studying
the corresponding QVIs, we first prove the value function to be the unique viscosity
solution to the corresponding Hamilton–Jacobi–Bellman (HJB) equation. The main
difficulties in proving the uniqueness of the viscosity solution are the unusual nonlocal
property of the associated operator in the HJB equation and the unboundedness of the
state space. We overcome these by exploiting and clarifying the definition of viscosity
solutions in a local sense and by relating the problem to an optimal stopping problem
(see also Remark 1). Next, we establish the regularity property of the value function,
and in particular, the smooth-fit C1 property through the boundaries between action
and continuation regions. The existing technique in [1] does not apply here as it
relies on a certain smoothness assumption that fails in our case (see also Remark 2).
Finally, we show how to exploit this smooth-fit property to explicitly derive the form
of optimal policy and the action/continuation regions for special cases that were first
studied and analyzed in [7].

2. Formulation and assumptions.

2.1. Model formulation. Let us first define precisely the family of admissible
controls. An admissible impulse control V consists of a sequence of stopping times
τ1, τ2, . . . with respect to Ft (the natural filtration generated by W ) and a correspond-
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ing sequence of R
n-valued random variables ξ1, ξ2, . . . satisfying the conditions{

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τi ≤ · · · ,
τi →∞ almost surely as i→∞,

and ξi ∈ Fτi ∀i ≥ 1.
As explained in the introduction, given an initial state x ∈ R

n and an admis-
sible control V = (τ1, ξ1; τ2, ξ2; . . .), the underlying process X(t) is governed by the
stochastic differential equation

(2.1)

⎧⎨
⎩
dX(t) = μ(X(t−))dt+ σ(X(t−))dW (t) +

∑
i

δ(t− τi)ξi,

X(0) = x,

where δ(·) denotes the Dirac delta function. Here the coefficients μ(·) and σ(·) satisfy
the Lipschitz conditions to ensure the existence and uniqueness of (1.1) (see, for
instance, [37, Chapter V, Theorem 11.2]). Equation (2.1) is interpreted in a piecewise
sense as in [1].

The associated total expected cost (objective function) is given by

(2.2) Jx[V ] := Ex

(∫ ∞

0

e−rtf(X(t))dt+
∞∑
i=1

e−rτiB(ξi)

)
,

where f is the “running cost,” B is the “transaction cost,” and r > 0 is the discount
factor. We will specify the conditions on f and B in section 2.2 below.

The goal is to find the admissible Ṽ and the associated control sequence (τi, ξi)
to minimize the total cost, i.e.,

Jx[Ṽ ] ≤ Jx[V ] for any admissible V.

We define the value function

(2.3) u(x) = inf
V
Jx[V ],

where the infimum is taken over all admissible control policies.

2.2. Assumptions and notations. Throughout this paper, we shall impose
the following standing assumptions:

(A1) Lipschitz conditions on μ, σ : R
n → R: there exist constants Cμ, Cσ > 0 such

that

(2.4)

{
|μ(x) − μ(y)| ≤ Cμ|x− y|
|σ(x) − σ(y)| ≤ Cσ|x− y|

∀x, y ∈ R
n.

(A2) Lipschitz condition on the running cost f ≥ 0: there exists a constant Cf > 0
such that

(2.5) |f(x)− f(y)| ≤ Cf |x− y| ∀x, y ∈ R
n.

(A3) Conditions on the transaction cost function B : R
n → R:

(2.6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
ξ∈Rn

B(ξ) = K > 0,

B ∈ C(Rn\{0}),
|B(ξ)| → ∞ as |ξ| → ∞, and
B(ξ1) +B(ξ2) ≥ B(ξ1 + ξ2) +K ∀ξ1, ξ2 ∈ R

n.
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(A4) r > 2Cμ + C2
σ.

We will also use the following notations for the operators:

Mϕ(x) = inf
ξ∈Rn

(ϕ(x + ξ) +B(ξ)),(2.7)

Lϕ(x) = − tr
[
A ·D2ϕ(x)

]
− μ(x) ·Dϕ(x) + rϕ(x),(2.8)

where the matrix A = (aij)n×n = 1
2σ(x)σ(x)T.

Denote by Ξ(x) the set of all the points ξ for which Mu achieves the minimum
value, where u is the value function, i.e.,

(2.9) Ξ(x) := {ξ ∈ R
n :Mu(x) = u(x+ ξ) +B(ξ)}.

We also adopt the following standard notations for function spaces:

UC(Rn) = space of all uniformly continuous functions on R
n,

UCbb(Rn) = {f ∈ UC(Rn) : f is bounded below},
W k,p(U) = space of all Lp functions with βth weak partial

derivatives belonging to Lp ∀|β| ≤ k,
C∞
c (U) = {f ∈ C∞(U) : f has compact support in U},

Ck,α(D) =
{
f ∈ Ck(D) : sup

x,y∈D

{
|Dβf(x)−Dβf(y)|

|x− y|α

}
<∞∀|β| ≤ k

}
.

2.3. Preliminary results. We first establish some preliminary results about
the value function, as well as the operatorM, under the standing assumptions.

Lemma 2.1. The value function u(x) defined by (2.3) is Lipschitz.
The proof of this lemma is a standard argument using Itô’s formula and Gronwall’s

inequality. (See [23] and Theorem 10.1 in [12] for similar results and techniques.)
Lemma 2.2 (basic properties ofM).

(1) M is concave: for any ϕ1, ϕ2 ∈ C(Rn) and 0 ≤ λ ≤ 1,

M(λϕ1 + (1− λ)ϕ2) ≥ λMϕ1 + (1− λ)Mϕ2.

(2) M is increasing: for any ϕ1 ≤ ϕ2 everywhere,

Mϕ1 ≤Mϕ2.

(3) The operatorM maps C(Rn) into C(Rn). In particular,Mu(·) is continuous.
Moreover, M maps UC(Rn) into UC(Rn) and maps a Lipschitz function to
a Lipschitz function.

Proof. (1) and (2) are obvious.
(3) Suppose ϕ ∈ C(Rn). Then for any x ∈ R

n, ξ ∈ R
n, ε > 0,

−ε < ϕ(x+ ξ + y)− ϕ(x+ ξ) < ε,

provided that |y| < δ sufficiently small. Hence

ϕ(x+ ξ) +B(ξ)− ε < ϕ(x+ ξ + y) +B(ξ) < ϕ(x+ ξ) +B(ξ) + ε.

This holds for arbitrary ξ, so by taking the infimum we get

Mϕ(x) − ε ≤Mϕ(x + y) ≤Mϕ(x) + ε,
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provided |y| < δ is small enough.
The last statement regarding Lipschitz functions can be proved similarly.
Lemma 2.3. u and Mu defined as above satisfy u(x) ≤Mu(x)∀x ∈ R

n.
Proof. Suppose x ∈ R

n, ξ ∈ R
n, and V = (τ1, ξ1; τ2, ξ2; . . .) is an admissible

control policy. Then V ′ = (0, ξ; τ1, ξ1; τ2, ξ2; . . .) is also admissible. Moreover,

u(x) ≤ Jx[V ′] = Jx+ξ[V ] +B(ξ).

Taking the infimum over V and then the infimum over ξ ∈ R
n, we get u(x) ≤

Mu(x).
Now define the continuation region C and the action region A as follows:

C := {x ∈ R
n : u(x) <Mu(x)},(2.10)

A := {x ∈ R
n : u(x) =Mu(x)}.(2.11)

Then, since u and Mu are continuous, we have the following.
Proposition 1. C is open.
Proposition 2. Suppose x ∈ A; then
(1) the set

Ξ(x) := {ξ ∈ R
n :Mu(x) = u(x+ ξ) +B(ξ)}

is nonempty; i.e., the infimum is in fact a minimum;
(2) moreover, for any ξ(x) ∈ Ξ(x), we have

u(x+ ξ(x)) ≤Mu(x+ ξ(x)) −K,

in particular,

x+ ξ(x) ∈ C.

Proof. (1) Given x ∈ A, take sequence {ξn} such that

Mu(x) ≤ u(x+ ξn) +B(ξn) ≤Mu(x) +
1
n
.

Then {ξn} is bounded since |B(ξ)| → ∞ as |ξ| → ∞. Extract a convergent subse-
quence {ξnk

} that converges to ξ∗.
Claim. ξ∗ �= 0 andMu(x) = u(x+ ξ∗) +B(ξ∗). Suppose ξ∗ = 0. Since

u(x+ ξnk
) +K ≤ u(x+ ξnk

) +B(ξnk
) ≤Mu(x) +

1
nk
,

by sending k →∞, we deduce that u(x)+K ≤Mu(x) = u(x). This is a contradiction.
Now that ξ∗ �= 0, clearly ξ∗ ∈ Ξ(x) since B(·) is also continuous at ξ∗ �= 0.

(2) Recall that B(ξ1) +B(ξ2) ≥ K + B(ξ1 + ξ2); hence

Mu(x) = inf
ξ∈R

(u(x+ ξ) +B(ξ))

= inf
η∈R

(u(x+ ξ(x) + η) +B(ξ(x) + η))

≤ inf
η∈R

[u(x+ ξ(x) + η) +B(η)] +B(ξ(x)) −K

=Mu(x+ ξ(x)) + B(ξ(x)) −K.

On the other hand,Mu(x) = u(x+ ξ(x)) +B(ξ(x)). We get the desired result.
Here we need K > 0 (assumption (A3)) to deduce u(x+ ξ(x)) <Mu(x+ ξ(x)).
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3. Value function as viscosity solution. We show in this section that under
certain conditions, the value function of the impulse control problem is the unique
viscosity solution of the corresponding HJB equation

(HJB) max(Lu− f, u−Mu) = 0.

3.1. Definition of viscosity solutions. First, recall (see [24]) the following
definition of viscosity subsolutions (supersolutions, resp.):

(a) If ϕ ∈ C2(Rn), u − ϕ has a global maximum (minimum, resp.) at x0 and
u(x0) = ϕ(x0), then

(3.1) max(Lϕ(x0)− f(x0), ϕ(x0)−Mϕ(x0)) ≤ 0 (≥ 0 resp.).

However, note that the operator M is nonlocal; i.e., Mϕ(x0) is not determined by
values of ϕ in a neighborhood of x0, and Mϕ(x0) might be very small if ϕ is small
away from x0. Therefore, one has no control over Mϕ(x0) by simply requiring that
u−ϕ have a local maximum (minimum, resp.) at x0. In light of this, one can modify
the definition of viscosity subsolutions (supersolutions, resp.) as follows: Suppose
u ∈ UC(Rn).

(b) If ϕ ∈ C2(Rn), u − ϕ has a local maximum (minimum, resp.) at x0 and
u(x0) = ϕ(x0), then

(3.2) max(Lϕ(x0)− f(x0), u(x0)−Mu(x0)) ≤ 0 (≥ 0 resp.).

In fact, one can show the following.
Theorem 3.1. The above two definitions of viscosity subsolutions (supersolu-

tions, resp.) are equivalent.
Proof. We will prove only the equivalence of subsolutions.
(b) ⇒ (a). Suppose ϕ ∈ C2(Rn), u − ϕ has a global maximum at x0, and

u(x0) = ϕ(x0). Then u ≤ ϕ globally, and by Lemma 2.2,

ϕ(x0) = u(x0) ≤Mu(x0) ≤Mϕ(x0).

(a)⇒ (b). Suppose ϕ ∈ C2(Rn), u− ϕ has a local maximum at x0, and u(x0) =
ϕ(x0). For any ε > 0, take r > 0 so small that

u ≤ ϕ ≤ u+ ε in B̄2r(x0) := {x ∈ R
n : |x− x0| ≤ 2r}.

There also exists a function ϕ̃ ∈ C∞(Rn) such that

u ≤ ϕ̃ ≤ u+ ε in R
n.

(For instance, the usual mollification ϕ̃ = u ∗ ηδ + ε, with δ > 0 small enough.) Take
a cutoff function ζ(x) such that

0 ≤ ζ(x) ≤ 1; ζ ≡ 1 on B̄r(x0); ζ ≡ 0 off B̄2r(x0).

Now define

ψ(x) = ζ(x)ϕ(x) + (1− ζ(x))ϕ̃(x).

Then clearly by construction,

u(x) ≤ ψ(x) ≤ u(x) + ε,
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and ψ attains a global maximum at x0. Thus

Lψ(x0)− f(x0) ≤ 0, ψ(x0) ≤Mψ(x0).

Note that by ψ(x0) = ϕ(x0) = u(x0), Dψ(x0) = Dϕ(x0), D2ψ(x0) = D2ϕ(x0), we
have

Lϕ(x0)− f(x0) ≤ 0, u(x0) ≤Mψ(x0) ≤Mu(x0) + ε.

Finally, since ε > 0 is arbitrary, by sending it to 0, we have (3.2).
In light of Theorem 3.1, throughout the paper we shall adopt the following defi-

nition of viscosity solution.
Definition 1. The function u is called a viscosity solution of (HJB) if the

following hold:
(1) (subsolution property.) For any ϕ ∈ C2(Rn), if u − ϕ has a local maximum

at x0 and u(x0) = ϕ(x0), then we have

(3.3) max(Lϕ(x0)− f(x0), u(x0)−Mu(x0)) ≤ 0.

(2) (supersolution property.) For any ϕ ∈ C2(Rn), if u−ϕ has a local minimum
at x0 and u(x0) = ϕ(x0), then we have

(3.4) max(Lϕ(x0)− f(x0), u(x0)−Mu(x0)) ≥ 0.

Then we have the following known result [33]. (For the reader’s convenience, we
provide the proof in Appendix A.)

Theorem 3.2. The value function defined by (2.3) is a viscosity solution of the
HJB equation

(HJB) max{Lu− f, u−Mu} = 0.

3.2. Uniqueness of viscosity solution. In this section we shall show that the
viscosity solution for (HJB) is unique in UCbb(Rn).

The key idea is to relate the impulse control problem to an optimal stopping
problem via the following operator T , as in Bensoussan and Lions [1] and Ramaswamy
and Dharmatti [36]. More precisely, given φ ∈ UC(Rn), consider the following optimal
stopping time problem:

(3.5) T φ(x) := inf
τ

E

(∫ τ

0

e−rtf(X(t))dt+ e−rτMφ(x(τ))
)

subject to (1.1) and with the infimum taken over all Ft stopping times.
We shall first prove the uniqueness of the viscosity solution to the HJB equation

(3.7) associated with this optimal stopping problem (3.5). We then exploit the prop-
erties of the operator T to establish the uniqueness of the viscosity solution to (HJB)
for the impulse control problem.

3.2.1. Related optimal stopping problems. Now given (1.1), consider the
following more generic optimal stopping problem with a terminal (nonnegative) cost
g(·):

(3.6) v(x) = inf
τ

E

(∫ τ

0

e−rtf(X(t))dt+ e−rτg(x(τ))
)
,
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where f is the same as before, and the infimum is taken over all Ft stopping times.
First, the following result is well known [31].
Proposition 3. Assume that g ∈ C(Rn). Then the value function v(x) defined

by (3.6) is a continuous viscosity solution of the HJB equation

(3.7) max{Lw − f, w − g} = 0 in R
n,

where L is defined in (2.8).
Next, we show the following.
Theorem 3.3 (unique viscosity solution for optimal stopping). Suppose g ∈

UC(Rn) and suppose there are some constants C,Λ > 0 such that

(3.8)

{
|μ(x)| ≤ C ∀x ∈ R

n,

aij(x)ξiξj ≤ Λ|ξ|2 ∀x, ξ ∈ R
n,

where (aij(x))n×n = 1
2σ(x)σ(x)T . Then (3.7) has only one viscosity solution in

UC(Rn).
To prove Theorem 3.3, the following observation is useful.
Lemma 3.4. w is a viscosity solution of max{Lw − f, w − g} = 0 if and only if

it is a viscosity solution of

(3.9) F (x,w(x), Dw(x), D2w(x)) = 0, 1

where F : R
n × R× R

n × Sn → R is defined by

F (x, t, p,X) = rt+ max{G(x, p,X),−rg(x)},(3.10)
G(x, p,X) = − tr [AX ]− μ(x) · p− f(x).(3.11)

The key to proving Theorem 3.3 is the following comparison result.
Lemma 3.5. Let D ⊂ R

n be a bounded open set f, g ∈ UC(Rn), let v∗ ∈ C(D) be
a subsolution, and let v∗ ∈ C(D) be a supersolution of

max{Lw − f, w − g} = 0 in D.

Assume also that v∗ ≤ v∗ on ∂D. Then v∗ ≤ v∗ in D.
The proof of Lemma 3.5 is based on the classical comparison theorem of second

order degenerate elliptic differential equations in bounded domains (cf. [8]), and we
defer it to Appendix B.

The following lemma (see Theorem 1 and the remarks on the fully nonlinear case
in [9]) extends the above comparison result from bounded domains to an unbounded
domain.

Lemma 3.6. Suppose F (x, t, p,X) is elliptic in X such that there exist constants
α,C,Λ > 0 satisfying

(3.12) F (x, t+ s, p+ q,X + Y ) ≥ F (x, t, p,X) + αs− C|q| − Λ tr(Y )

∀x, p, q ∈ R
n, t ∈ R, s ≥ 0, X,Y ∈ Sn, Y ≥ 0. Suppose also that we have a

comparison result for the equation F = 0 in bounded domains. If v∗ and v∗ are the

1When there is no risk of confusion, we will also abbreviate (3.9) as F = 0.
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continuous sub- and supersolution, respectively, of F (x,w(x), Dw(x), D2w(x)) = 0 in
R
n with at most polynomial growth, then

v∗ ≤ v∗ in R
n.

Now we can return to the following.
Proof of Theorem 3.3. By Lemmas 3.5 and 3.6, and noticing also

w ∈ UC(Rn)⇒ sup
x∈Rn

|w(x)|
1 + |x| <∞,

it remains to show that F , defined by (3.10), satisfies (3.12) as follows:

F (x, t+ s, p+ q,X + Y )− F (x, t, p,X)
= rs+ max{G(x, p+ q,X + Y ),−rg(x)} −max{G(x, p,X),−rg(x)}

≥
{
rs if G(x, p,X) ≤ −rg(x),
rs +G(x, p+ q,X + Y )−G(x, p,X) otherwise.

If Y ≥ 0, using (3.8), we have

G(x, p+ q,X + Y )−G(x, p,X) = − tr(AY ) + μ(x)q
≥ −C|q| − Λ tr(Y ),

since tr(AY ) = tr(STAS) ≤ C tr(STS) = Λ tr(Y ), where A = 1
2σσ

T, Y = SST. This
completes the proof.

3.2.2. Uniqueness for impulse control problems. Now we are ready to
prove the following.

Theorem 3.7 (unique viscosity solution for impulse controls). Assume that there
are some constants C,Λ > 0, such that

(3.8)

{
|μ(x)| ≤ C ∀x ∈ R

n,

aij(x)ξiξj ≤ Λ|ξ|2 ∀x, ξ ∈ R
n,

and r > Cf . Then the value function for the impulse control problem defined by (2.3)
is a unique viscosity solution in UCbb(Rn) for the HJB equation.

The proof relies on the following properties of the operator T .
Lemma 3.8.

(1) T : UC(Rn)→ UC(Rn).
(2) If w ≤ v in R

n, then T w ≤ T v in R
n.

(3) T is concave on UC(Rn).
Lemma 3.8 is immediate by the monotone and concave properties ofM in Lemma

2.2, and by a direct application of Itô’s formula and Gronwall’s inequality.
Proof of Theorem 3.7. Suppose w, v ∈ UCbb(Rn) are two solutions of (HJB).

Without loss of generality, we can assume w, v ≥ 0. Otherwise if −C is a lower
bound, then w + C, v + C are nonnegative solutions to (HJB) of the same structure
with f replaced by f + rC.

First, by definition of T together with Proposition 3 and Theorem 3.3, T w is the
unique viscosity solution of

max{L(T w) − f, T w −Mw} = 0 in R
n.
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On the other hand, w is also a viscosity solution of

max{Lw − f, w −Mw} = 0 in R
n.

By uniqueness, w = T w. Similarly, v = T v.
Next, it suffices to show that if w, v satisfies w− v ≤ γw for some γ ∈ [0, 1], then

there exists some constant ν ∈ (0, 1) such that

w − v ≤ γ(1− ν)w.(3.13)

Indeed, if this claim holds, then note that w − v ≤ w since v ≥ 0, and we have
w − v ≤ (1− ν)w. Repeating the argument, we have

w − v ≤ (1− ν)nw.

Sending n → ∞, we get w ≤ v. Switching the roles of w and v, we get w = v as
desired.

Now it remains to check the claim (3.13). First, by concavity of T , we have

T v ≥ T [(1 − γ)w] ≥ (1− γ)T w + γT 0.

Since f is at most with a linear growth, we deduce that

w = T w = inf
τ

E

(∫ τ

0

e−rtf(X(t))dt+ e−rτMw(x(τ))
)

≤ E

∫ ∞

0

e−rtf(X(t))dt ≤ C
∫ ∞

0

e−rt(1 + E|X(t)|)dt

≤ C(1 + |x|)
∫ ∞

0

e−rteCtdt =: w0 <∞.

Here, the last line follows from Gronwall’s inequality.
Thus,Mw(x) = inf(w(x + ξ) +B(ξ)) ≤ w0 +K = K/ν, where

ν :=
K

K + w0
∈ (0, 1).

Note that sinceM0 = K, we obtain

T 0 = inf
τ

E

(∫ τ

0

e−rtf(X(t))dt+ e−rτK
)

≥ ν inf
τ

E

(∫ τ

0

e−rtf(X(t))dt+ e−rτMw(X(t))
)

= νT w.

Therefore,

T v ≥ (1 − γ)T w + γT 0 ≥ (1− γ)T w + γνT w.

The claim (3.13) is now clear by plugging in T w = w, T v = v.
Remark 1. It is worth noting that in [4] the uniqueness of the viscosity solution

was characterized for the value function of a finite horizon impulse control problem
with execution delay involving the liquidity risk. However, the technique of [4] relies
on the particular setup of a positive delay parameter and cannot be reduced to our
case.
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4. Regularity of value function. We shall show in this section that the value
function u is in the Sobolev space W 2,p(O) for any open bounded region O and for
any p < ∞, and in particular, u ∈ C1(Rn). Throughout this section, we assume the
operator L to be strictly elliptic: there exists a contant c > 0, such that aij(x)ξiξj ≥
c|ξ|2 ∀x, ξ ∈ Rn.

Recall

C := {x ∈ R
n : u(x) <Mu(x)},

A := {x ∈ R
n : u(x) =Mu(x)}.

First, u(·) is clearly C2 in the continuation region C.
Lemma 4.1 (C2-regularity in C). (1) The value function u(·) ∈ C2(C), and it

satisfies the following differential equation in the classical sense:

(4.1) Lu(x) − f(x) = 0, x ∈ C.

(2) For any set D � C,2

u ∈ C2,α(D)

for some α > 0.
Proof. Recall that from Theorem 3.2, u satisfies (4.1) in C in a viscosity sense.
Now for any open ball B ⊂ C, consider the Dirichlet problem{

Lw − f = 0 in B,
w = u on ∂B.

Classical Schauder estimates (cf. [13, Theorem 6.13]) ensure that such a solution w
exists and belongs to C2,α(B) because f ∈ C0,α(B) for some α > 0. Thus w satisfies
the differential equation in a viscosity sense, whencew = u inB by classical uniqueness
results of the viscosity solution of a linear PDE in a bounded domain (cf. [8]). Hence,

u ∈ C2,α(B).

Finally, if D � C, then D can be covered by finitely many open balls contained in C,
and hence

u ∈ C2,α(D).

Now we are are ready to establish the main regularity theorem.
Theorem 4.2 (W 2,p

loc -regularity). Assume that

(4.2) σ ∈ C1,1(D) for any compact set D ⊂ R
n.

Then for any bounded open set O ⊂ R
n, and p <∞, we have

u ∈W 2,p(O).

In particular, u ∈ C1(Rn), by the Sobolev embedding.

2D � C means that D is compactly contained in C; i.e., there exists a compact set F such that
D ⊂ F ⊂ C.
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Proof. Given any bounded open set O, we denote by C′ (A′, resp.) the restriction
of the continuation (action, resp.) region within O.

Our approach is to prove, for some constant C depending on O,

(4.3) −C ≤ Lu ≤ C,

in the sense of distribution. That is, for any smooth test function ϕ ∈ C∞
c (O) with

ϕ ≥ 0, we have

(4.4) −C
∫
O
ϕdx ≤

∫
O

(
aijuxiϕxj + biuxiϕ+ ruϕ

)
dx ≤ C

∫
O
ϕdx.

First, by (4.2), we can write the differential operator L in divergence form

(4.5) Lu = −(aijuxi)xj − biuxi + ru,

with aij ∈ C1,1(O) and bi Lipschitz. Note also that the first weak derivatives uxi are
well defined since u is Lipschitz (u ∈W 1,∞(O)).

Observe that u is a viscosity subsolution of Lu = f in O since it is a viscosity
solution of (HJB). Thus u is also a distribution subsolution according to Ishii [17,
Theorem 1]. Hence we have

Lu ≤ C

in the sense of distribution, with C = supO |f |.
Next, we show that

(4.6) Luε(x0) ≥ −C ∀x0 ∈ O,

where uε = u ∗ ηε ∈ C∞ is the mollification of u, ηε = η(x/ε)/εn, and η(·) is the
standard mollifier. This is proved according to three different cases.

Case 1. x0 ∈ C′. Then by Lemma 4.1, Lu(x0) = f(x0) in the classical sense.
Hence

|Luε(x0)| = |fε(x0)| ≤ C,

where C = supO |f |, which does not depend on x0.
Case 2. x0 ∈ ∂A′. Then there exists a sequence {xn} ⊂ C′ converging to x0.

Since |Luε(xn)| ≤ C ∀n by the proof in Case 1, we obtain (4.6) by taking the limit
as n→∞.

Case 3. x0 ∈ IntA′, the interior of A′. Since A′ ⊂ O is bounded, and |B(ξ)| → ∞
as |ξ| → ∞, we can find an open ball O′ ⊃ O so that ξ(y) ∈ O′ ∀ y ∈ A′ and
ξ(y) ∈ Ξ(y), because

B(ξ(y)) =Mu(y)− u(y + ξ(y)) ≤Mu(y) ≤ sup
O′
Mu.

Now we define the set

(4.7) D :=
{
y ∈ O′ : u(y) <Mu(y)− K

2

}
.

Clearly, D � C. From Lemma 4.1,

u ∈ C2,α(D).
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For any x ∈ IntA′, suppose Bρ1(x) ⊂ IntA′. Let us take ξ(x) ∈ Ξ(x); then
y := x+ ξ(x) satisfies

u(y)−Mu(y) ≤ K

by Proposition 2. Hence y ∈ D.
On the other hand, since u −Mu is uniformly continuous on O′, there exists

ρ2 > 0 such that

|y − y′| ≤ ρ2 ⇒ |u(y′)−Mu(y′)− (u(y)−Mu(y))| ≤ K

4
.

Therefore, for any constant λ ∈ [−1, 1] and any unit vector χ ∈ R
n, y′ = y + λρ2χ

satisfies

u(y′)−Mu(y′) ≤ u(y)−Mu(y) +
K

4
< −K

2
.

Hence, if we let 0 < ρ ≤ ρ1 ∧ ρ2, then ∀λ ∈ [−1, 1], χ ∈ R
n, with |χ| = 1, we have

y = x+ ξ(x) ∈ D, y′ = y + λρχ ∈ D,
x ∈ IntA′, x+ λρχ ∈ IntA′.

By definition, we obtain

u(x) =Mu(x) = u(x+ ξ(x)) +B(ξ(x)),
u(x± ρχ) =Mu(x± ρχ) ≤ u(x± ρχ+ ξ(x)) +B(ξ(x)),

and hence the second difference quotient at x is

1
ρ2

[u(x+ ρχ) + u(x− ρχ)− 2u(x)]

≤ 1
ρ2

[u(y + ρχ) + u(y − ρχ)− 2u(y)]

=
1
|ρ|

∫ 1

0

[Du(y + λρχ)−Du(y − λρχ)] · χdλ

≤ CD,

where CD = supx∈D |D2u(x)| ≤ ‖u‖C2,α(D).
Now, with x0 ∈ IntA′ given, suppose Bθ(x0) ⊂ IntA′; then for any 0 < ε < θ

2 ,
ρ1 = θ

2 , z ∈ Bε(0), we have Bρ1(x0 − z) ⊂ IntA′. Therefore, for 0 < ρ ≤ ρ1 ∧ ρ2 and
unit vector χ ∈ R

n,

1
ρ2

[uε(x0 + ρχ) + uε(x0 − ρχ)− 2uε(x0)]

=
1
ρ2

∫
Bε(0)

[u(x0 − z + ρχ) + u(x0 − z − ρχ)− 2u(x0 − z)]ηε(z) dz

≤ CD
∫
Bε(0)

ηε(z) dz = CD.

Sending ρ→ 0 we get

χTD2uε(x0)χ ≤ CD.
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Hence,

tr(σ(x0)σ(x0)TD2uε(x0)) = tr(σT(x0)D2uε(x0)σ(x0))

=
∑
k

σT
kD

2uεσk

≤ CD
∑
i,j

|σij(x0)|2

≤ C,

where σk is the kth column of the matrix σ, σij is the (i, j)th element of σ, and the
last inequality is due to continuity of σ.

Note that |uε(x0)|+ |Duε(x0)| ≤ ‖u‖W 1,∞(O) and μ(x) bounded; we deduce

Luε(x0) = −1
2

tr
(
σ(x0)σ(x0)TD2uε(x0)

)
− μ(x0) ·Duε(x0) + ruε(x0) ≥ −C,

where C is independent of x0.
Finally, (4.6) implies that for any smooth test function ϕ ∈ C∞

c (O), ϕ ≥ 0,

(4.8)
∫
O

(
aiju

ε
xi
ϕxj + biu

ε
xi
ϕ+ ruεϕ

)
dx ≥ −C

∫
O
ϕdx.

Since u ∈ W 1,2(O), uε → u in L2(O), and uεxi
→ uxi in L2(O). Sending ε→ 0 in the

above inequality, we obtain (4.3). Therefore,

Lu ∈ L∞(O).

By the Calderón–Zygmund estimate (see, e.g., [13]),

u ∈ W 2,p(O) ∀p <∞.

Remark 2. Compared to the regularity results of Bensoussan and Lions [1], we
deal with a control which is unbounded and not necessarily positive. Moreover, we
prove the regularity property for the value function as a viscosity solution of the HJB
equation as opposed to their weak solutions of QVIs with u ∈ H1

0 satisfying{
a(u, v − u) ≥ 〈f, v − u〉 ∀v ∈ H1

0 , v ≤Mu,

0 ≤ u ≤Mu,

where a(φ, ψ) = 〈Lφ, ψ〉 and 〈·, ·〉 is the paring between the Hilbert space H1
0 and its

dual space. (See Lemmas 2.3–2.4 and Theorem 2.2 of Chapter 4 in [1]). In addition,
their key lemma, Lemma 2.3, requires, in our notation, γ(x) := infx+ξ∈∂OB(ξ) ∈
W 2,∞(O), and therefore C1. However, this condition fails in our case; see our example
in section 5, where the corresponding γ has a corner.

5. Structure of the value function. Having obtained the regularity results
for the value function, in this section we shall characterize the structure of the value
function as well as the continuation/action regions for the following special case: n = 1
and the cost functions f and B are given by

f(x) =

{
hx if x ≥ 0,
−px if x ≤ 0,

(5.1)

B(ξ) =

{
K+ + k+ξ if ξ ≥ 0,
K− − k−ξ if ξ < 0,

(5.2)
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where h, p, k+, k−,K+,K− are positive constants. Moreover, we assume that μ and
σ are all constant:

(5.3) σ(x) ≡ σ, μ(x) ≡ μ.

In addition, we will impose the following condition to rule out triviality:

(5.4) h− rk− > 0, p− rk+ > 0.

This case was first characterized in [7] with a verification-type argument. Here we
provide an alternative derivation by exploiting the regularity property established
earlier. We shall show directly the following.

Theorem 5.1 (characterization of the solution structure). Assuming (5.1), (5.2),
(5.3), and (5.4),

(1) there exist constants −∞ < q < s <∞ such that

C := {x ∈ R : u(x) <Mu(x)} = (q, s),
A := {x ∈ R : u(x) =Mu(x)} = (−∞, q] ∪ [s,+∞);

(2) the value function u defined in (2.3) satisfies⎧⎪⎨
⎪⎩
Lu(x) = f(x), q < x < s,

u(x) = u(s) + k−(x − s), x ≥ s,
u(x) = u(q) + (q − x)k+, x ≤ q;

(3) there are points Q,S ∈ (q, s) such that

u′(q) = u′(Q) = −k+, u(q) = u(Q) +K+ + k+(Q− q),
u′(s) = u′(S) = k−, u(s) = u(S) +K− − k−(S − s),

as shown in Figure 5.1.
The proof of Theorem 5.1 is based on a series of lemmas.
Lemma 5.2. Under assumptions (5.1) and (5.2), for any x0 ∈ A and

ξ0 ∈ Ξ(x0) := {ξ ∈ R :Mu(x0) = u(x0 + ξ) +B(ξ)},

we have

(5.5) u′(x0) = u′(x0 + ξ0) =

{
−k+, ξ0 > 0,
k−, ξ0 < 0.

Proof. First, such a ξ0 exists and ξ0 �= 0 by Proposition 2. By definition, u(x0) =
Mu(x0) = u(x0 + ξ0) + B(ξ0), which means ξ0 is a global minimum of the function
u(x0 + ·) +B(·). Also, ξ0 �= 0 implies that B is also differentiable at ξ0, and hence

u′(x0 + ξ0) = −B′(ξ0) =

{
−k+, ξ0 > 0,
k−, ξ0 < 0.

Now, for any δ �= 0, we have

u(x0 + δ) ≤Mu(x0 + δ) ≤ u(x0 + δ + ξ0) +B(ξ0).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMPULSE CONTROL OF DIFFUSIONS 609

y

x

−k+

k−

qq sSQ

K−K+

Fig. 5.1. The value function u.

Thus,

u(x0 + δ)− u(x0)
δ

≤ u(x0 + ξ0 + δ)− u(x0 + ξ0)
δ

, δ > 0,

u(x0 + δ)− u(x0)
δ

≥ u(x0 + ξ0 + δ)− u(x0 + ξ0)
δ

, δ < 0.

Taking the limit as δ → 0+ (δ → 0−, resp.), we conclude that

u′(x0) = u′(x0 + ξ0).

Lemma 5.3. Assume (5.1), (5.2), and (5.3). For any x0 ∈ A and ξ0 ∈ Ξ(x0),
(1) if x0 > 0, then ξ0 < 0 and u′(x0) = k−;
(2) if x0 < 0, then ξ0 > 0 and u′(x0) = −k+.
Proof. (1) Suppose not; then there exists a ξ0 ∈ Ξ(x0) with ξ0 > 0 and

u(x0) =Mu(x0) = u(x0 + ξ0) +B(ξ0).

First, take an ε-optimal strategy V = (τ1, ξ1; τ2, ξ2; . . .) for the initial level x0 + ξ0,
i.e.,

Jx0+ξ0 [V ] ≤ u(x0 + ξ0) + ε,

where ε > 0 is arbitrarily small, to be chosen later.
Construct a strategy for x0,

V1 = (0, ξ0; τ1, ξ1; τ2, ξ2; . . .).

Then by definition,

(5.6) Jx0 [V1] = Jx0+ξ0 [V ] +B(ξ0) ≤ u(x0 + ξ0) + ε+B(ξ0) = u(x0) + ε.
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On the other hand, we can construct another strategy for x0,

V2 = (τ, ξ0; τ1, ξ1; τ2, ξ2; . . .),

where

τ = inf{t : x(t;x0, V ) < 0}.

Here, we use x(t;x0, V ) to denote the solution of (2.1) with initial value x0 and
strategy V .

Since the system is linear by (5.3), we have

x(t;x0, V2) =

{
x(t;x0, V1)− ξ0 > 0, t < τ ;
x(t;x0, V1), t ≥ τ.

It follows that f(x(t;x0, V2)) ≤ f(x(t;x0, V1))∀ t. So

Jx0 [V2]− Jx0 [V1]

= E

(∫ ∞

0

[f(x(t;x0, V2))− f(x(t;x0, V1))]e−rtdt+ e−rτB(ξ0)−B(ξ0)
)

≤ B(ξ0)(Ee−rτ − 1) =: −ν.(5.7)

It remains to show that ν > 0.
Claim. τ > 0 a.s. if ε is sufficiently small.
Clearly, τ ≥ τ1 ∧ inf{t : x0 + μt + σW (t) < 0} and obviously inf{t : x0 + μt +

σW (t) < 0} > 0 a.s., since x0 > 0. Now we need to prove τ > 0 a.s. Suppose not;
then

Jx0+ξ0 [V ] = E {Jx0+ξ0+ξ1 [V \ (τ1, ξ1)] +B(ξ1)}
≥ E{u(x0 + ξ0 + ξ1) +B(ξ1)}
≥ Mu(x0 + ξ0).

However, since x0 + ξ0 ∈ C by Proposition 2, if we take 0 < ε ≤ (Mu(x0 + ξ0) −
u(x0 + ξ0))/2, we have

Jx0+ξ0 [V ] ≤ u(x0 + ξ0) + ε =Mu(x0 + ξ0)− ε.

This is a contradiction. Thus we proved the claim, and it follows that ν = −B(ξ0)(Ee−rτ−
1) > 0.

Combining (5.6) and (5.7) and taking ε < ν/2,

Jx0 [V2] ≤ Jx0 [V1]− ν ≤ u(x0) + ε− ν < u(x0)− ν/2.

This is a contradiction, and we have ξ0 > 0. It follows from Lemma 5.2 that u′(x0) =
k−.

The proof of (2) is exactly the same.
Recall C is an open set, i.e., a union of open intervals. The following lemma rules

out the possibility that C contains unbounded intervals.
Lemma 5.4. Under assumption (5.4), C does not contain any of the intervals

(a,+∞) or (−∞, b), with a ≥ −∞, b ≤ +∞.
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Proof. Suppose C ⊃ (a,+∞). Then we have, for c > max{a, 0},

−1
2
σ2u′′ − μu′ + ru = hx, x ∈ (c,+∞).

The ODE has a general solution

u(x) = C1e
λ1x + C2e

λ2x +
hx

r
+
μh

r2
,

where λ1 = −μ−
√
μ2+2σ2r

σ2 < 0, λ2 = −μ+
√
μ2+2σ2r

σ2 > 0. Note that C2 = 0; otherwise
u′(x) = C1λ1e

λ1x+C2λ2e
λ2x+ h

r is unbounded, approaching +∞ or −∞ as x→ +∞,
which contradicts the fact that u is Lipschitz.

Now, for any x > c > 0,

C1e
λ1x +

hx

r
+
μh

r2
= u(x) <Mu(x) ≤ u(c) +K− − k−(c− x)

or (
h

r
− k−

)
x+ C1e

λ1x < u(c) +K− − k−c− μh

r2
.

As x→ +∞, we get a contradiction, noticing that h− rk− > 0.
p−rk+ > 0 will ensure that C cannot contain intervals of (−∞, b) type. Therefore,

we prove the lemma.
Finally, we see the following.
Lemma 5.5. Assume (5.1), (5.2), (5.3), and (5.4). Then C is connected.
Proof. Suppose not. We prove by contradiction through the following steps.
Step 1. By assumption, there are points y1 < y2 < y3 so that y1, y3 ∈ C while

y2 ∈ A. Define

x1 := inf{x ∈ A : x ≤ y2, [x, y2] ⊂ A},
x2 := sup{x ∈ A : x ≥ y2, [y2, x] ⊂ A}.

Clearly, x1, x2 exist and are finite, with [x1, x2] ⊂ A. (We do not rule out the
possibility that x1 = x2 here.)

By Lemma 5.2, u′(x) = k− or −k+, for any x ∈ A. Since u ∈ C1(R), u′ is a
constant on [x1, x2]. Assume u′(x) = k− ∀x ∈ [x1, x2], and consider u at the point x2.
(The other case u′ = −k+ is similar. In that case we consider the point x1 instead.)

Step 2. We show that

(5.8) u(x) ≤ u(x2) + k−(x− x2) ∀x ≥ x2,

and the inequality is strict if x > x2 and x ∈ C.
Let ξ2 ∈ Ξ(x2). Then ξ2 < 0 by Lemma 5.3, and hence B(ξ2) = K− − k−ξ2 =

B(ξ2 − y)− k−y for y = x− x2 ≥ 0. Therefore,

u(x) ≤ (or < if x ∈ C)Mu(x) ≤ u(x2 + ξ2) +B(x2 + ξ2 − x)
= u(x2 + ξ2) +B(ξ2) + k−(x− x2) = u(x2) + k−(x− x2).

Step 3. We show that

(5.9) −μk− + ru(x2) ≤ hx2.
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Fig. 5.2. Proof of Lemma 5.5.

Since x2 ∈ A, u′(x2) = k−, Lemma 5.3 implies that x2 ≥ 0. However, (5.8) implies
that x2 is a local maximum of u− φ, where φ(x) = u(x2) + k−(x − x2) is linear. By
the viscosity subsolution property, we have Lφ(x2) ≤ f(x2) = hx2, which is (5.9).

Step 4. There exists a point x3 > x2 such that

(5.10) −μk− + ru(x3) ≥ hx3.

Suppose (x2, c) is an open interval component of C. Then by Lemma 5.4, c <∞ and
thus c ∈ A. Lemma 5.3 implies that u′(c) = k− since c > x2 ≥ 0. Take d ∈ (x2, c)
such that u′(d) < k−. Such a d exists since u(x) < u(x2) + k−(x− x2) for x ∈ (x2, c).
(See Figure 5.2.) Let

x3 = inf{d ≤ x ≤ c : u′(x) = k−},

which is well defined, since c is in this set. Clearly x3 > d > x2. Moreover, u′(x) <
k− = u′(x3) for d ≤ x < x3 by definition. So

u′′(x3) ≥ 0.

Thus hx3 = − 1
2σ

2u′′(x3)− μu′(x3) + ru(x3) ≤ −μk− + ru(x3).
Step 5. From (5.9) and (5.10), it follows that

u(x3)− u(x2) ≥ h/r(x3 − x2) > k−(x3 − x2),

by (5.4). This is a contradiction to (5.8).
Proof of Theorem 5.1. (1) Since C is connected, by Lemma 5.4, C = (q, s) for

some −∞ < q < s <∞.
(2) Suppose x ≥ s and ξ ∈ Ξ(x). Because x + ξ ∈ C = (q, s), we have ξ < 0,

whence u′(x) = k− by Lemma 5.2. Thus, u(x) = u(s)+k−(x−s) for x ≥ s. A similar
argument shows that u(x) = u(q) + (q − x)k+, for x ≤ q.

(3) Let ξ ∈ Ξ(s) and S = s+ ξ. Then S ∈ (q, s), u′(s) = u′(S) = k−, and

u(s) =Mu(s) = u(S) +B(S − s) = u(S) +K− − k−(S − s).

The remaining statement is similar.
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Appendix.

Appendix A. Proof of Theorem 3.2.
Proof. (1) (subsolution property.) Suppose ϕ ∈ C2(Rn), u − ϕ has a local maxi-

mum at x0, and u(x0) = ϕ(x0). By Lemma 2.3, it suffices to prove

Lϕ(x0)− f(x0) ≤ 0.

For any admissible control V = {τ1, ξ1; τ2, ξ2; . . .} and τ > 0, the control V ′ =
{τ1 + τ, ξ1; τ2 + τ, ξ2; . . .} is also admissible, and thus

u(x0) ≤ Jx0 [V
′] = E

(∫ τ

0

f(X(t))e−rtdt+ e−rτJx(τ)[V ]
)
,

which implies

(A.1) u(x0) ≤ E

(∫ τ

0

f(X(t))e−rtdt+ e−rτu(x(τ))
)
,

where X(t) is the solution of

(A.2)

{
dX(t) = μ(X(t))dt+ σ(X(t))dW (t),
X(0) = x0.

Meanwhile, Dynkin’s formula gives

(A.3) E
(
e−rτϕ(x(τ))

)
− ϕ(x0) = −E

(∫ τ

0

e−rtLϕ(X(t))dt
)
.

Noting that u ≤ ϕ near x0 and u(x0) = ϕ(x0), combining (A.1) and (A.3), and
sending τ → 0+, we have Lϕ− f ≤ 0 at x0.

(2) (supersolution property.) Suppose ϕ ∈ C2(Rn), u − ϕ has a local minimum
at x0, and u(x0) = ϕ(x0). If u(x0) = Mu(x0), then (3.4) is trivially true. Thus we
assume u(x0) <Mu(x0). By continuity ofM, there exist constants δ > 0, ρ > 0 such
that

(A.4) ϕ(x) ≤ u(x), u(x)−Mu(x) < −δ whenever |x− x0| < ρ.

Define

τρ := inf{t > 0 : |X(t)− x0| ≥ ρ}.

For any ε > 0, choose an ε-optimal control V = (τ1, ξ1; τ2, ξ2; . . .), i.e.,

Jx0 [V ] ≤ u(x0) + ε.

Then for any stopping time τ ≤ τ1 a.s.,

(A.5) u(x0) + ε ≥ Jx0 [V ] = E

(∫ τ

0

f(X(t))e−rtdt+ e−rτJx(τ−)[V ′]
)
,

where V ′ = (τ1 − τ, ξ1; τ2 − τ, ξ2; . . .) is admissible.
Fix R > 0 and let τ̄ = τρ ∧R.
Claim. P{τ1 < τ̄} → 0 as ε→ 0.
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Consider (A.5) with τ = τ1. On the set {τ1 < τ̄},

Jx(τ−
1 )[V

′] = E

(
Jx(τ−

1 )+ξ1
[Ṽ ] +B(ξ1)

)
≥ E

(
u(x(τ−1 ) + ξ1) +B(ξ1)

)
≥Mu(x(τ−1 ))

≥ u(x(τ−1 )) + δ,

because of (A.4). Otherwise, we still have Jx(τ−
1 )[V

′] ≥ u(x(τ−1 )). Thus,

u(x0) + ε ≥ E

(∫ τ1

0

f(X(t))e−rtdt+ e−rτ1Jx(τ−
1 )[V

′′]
)

≥ E

(∫ τ1

0

f(X(t))e−rtdt+ e−rτ1u(x(τ−1 ))
)

+ e−rRδ · P{τ1 < τ̄}

≥ u(x0) + e−rRδ · P{τ1 < τ̄}.

This proves the claim.
Take τ = τ̄ ∧ τ1; by sending ε→ 0 in (A.5), we get

u(x0) ≥ E

(∫ τ̄

0

f(X(t))e−rtdt+ e−rτ̄u(x(τ̄−))
)
.

Note that ϕ(x(τ̄−)) ≤ u(x(τ̄−)) and ϕ(x0) = u(x0), and that the above inequality
together with Dynkin’s formula (A.3) gives

E

(∫ τ̄

0

e−rt(Lϕ − f)(X(t))dt
)
≥ 0.

Dividing by E(τ̄ ) and sending ρ→ 0, we obtain the desired result (3.4).

Appendix B. Proof of Lemma 3.5. To prove this lemma, we first recall a
well-known comparison theorem on elliptic PDEs.

Theorem B.1 (Theorem 3.3 in [8]). Let U be a bounded open subset of R
n, and

let F ∈ C(U × R× R
n × Sn) satisfy the following:

(1) F (x, t, p,X) ≤ F (x, s, p, Y ) whenever t ≤ s, Y ≤ X.
(2) There exists some γ > 0 such that, for r ≥ s and (x, p,X) ∈ Ū × R

n × Sn,

γ(r − s) ≤ F (x, r, p,X)− F (x, s, p,X).

(3) There is a function ω : [0,∞]→ [0,∞] with ω(0+) = 0 such that

F (y, r, α(x− y), Y )− F (x, r, α(x − y), X) ≤ ω(α|x− y|2 + |x− y|)

whenever x, y ∈ U , r ∈ R, X,Y ∈ Sn, and

−3α
(
I 0
0 I

)
≤
(
X 0
0 Y

)
≤ 3α

(
I −I
−I I

)
.

Let u ∈ C(Ū) be a viscosity subsolution, and let v ∈ C(Ū) be a viscosity supersolution
of F = 0 in U with u ≤ v on ∂U . Then u ≤ v in Ū .

Here Sn is the collection of n×n real symmetric matrices equipped with the usual
ordering and I is the identity matrix.
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Proof of Lemma 3.5. In view of Lemmas 3.4 and 3.5, it suffices to verify that F ,
defined by (3.10), satisfies the conditions of Theorem B.1. Clearly, F is continuous,
and

F (x, t, p,X) ≤ F (x, s, p, Y ) whenever t ≤ s, Y ≤ X.

F (x, t, p,X)− F (x, s, p,X) = r(t− s).

Finally, we are to prove that there exists a function ω : [0,∞] → [0,∞] satisfying
ω(0+) = 0 such that if x, y ∈ D, t ∈ R, and X,Y are symmetric and satisfying for
some α > 0,

−3α
(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
,

then

F (y, t, α(x− y), Y )− F (x, t, α(x − y), X) ≤ ω(α|x− y|2 + |x− y|).(B.1)

It is easy to check that G(x, p,X) and −rg(x) satisfy (B.1), since f, g ∈ UC(Rn)
(cf. Example 3.6 in [8]). Hence

F (y, t, α(x− y), Y )− F (x, t, α(x − y), X)
= max{G(y, α(x− y), Y ),−rg(y)} −max{G(x, α(x − y), X),−rg(x)}

≤
{
−r(g(y)− g(x)) if G(y, α(x − y), Y ) ≤ −rg(y),
G(y, α(x − y), Y )−G(x, α(x − y), X) otherwise

≤ ω(α|x− y|2 + |x− y|).

Appendix C. Sobolev embedding. We summarize here some relevant results
concerning embeddings of various Sobolev spaces (cf. [11]).

Theorem C.1 (general Sobolev inequalities). Let U be a bounded open subset of
R
n, with C1 boundary. Assume u ∈W k,p(U).

(1) If

k <
n

p
,

then u ∈ Lq(U), where

1
q

=
1
p
− k

n
.

In addition,

‖u‖Lq(U) ≤ C‖u‖Wk,p(U).

Here the constant C depends only on k, p, n, and U .
(2) If

k >
n

p
,
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then u ∈ Ck−[ n
p ]−1γ(Ū), where

γ =

{
[np ] + 1− n

p if n
p is not an integer,

any positive number < 1 if n
p is an integer.

In addition,

‖u‖
C

k−[n
p

]−1,γ
(Ū)
≤ C‖u‖Wk,p(U),

where the constant C depends only on k, p, n, γ, and U .
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OSCILLATORITY OF NONLINEAR SYSTEMS WITH STATIC
FEEDBACK∗
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Abstract. New Lyapunov-like conditions for oscillatority of dynamical systems in the sense
of Yakubovich are proposed. Unlike previous results these conditions are applicable to nonlinear
systems and allow for consideration of nonperiodic, e.g., chaotic modes. Upper and lower bounds for
oscillations amplitude are obtained. The relation between the oscillatority bounds and excitability
indices for the systems with the input are established. Control design procedure providing nonlinear
systems with oscillatority property is proposed. Examples illustrating proposed results for Van der
Pol system, Lorenz system, and Hindmarsh–Rose neuron model as well as computer simulation
results are given.
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1. Introduction. Most works on analysis or synthesis of nonlinear systems are
devoted to studying stability-like behavior. Their typical results show that the mo-
tions of a system are close to a certain limit motion (limit mode) that either exists in
the system or it is created by a controller. Evaluating deflection of the system tra-
jectory from the limit mode, one may obtain quantitative information about system
behavior [10, 27].

During recent years an interest in studying more complex dynamical systems be-
havior including oscillatory and, particularly, chaotic modes has grown significantly.
Most authors deal with relaxed stability properties (orbital stability, Zhukovsky sta-
bility, partial stability) of some periodic limit modes [16, 19]. However, in order to
study irregular, chaotic behavior the development of analysis and design methods for
nonperiodical oscillations is needed. One such method based on the concept of ex-
citability index (limit oscillation amplitude) for the systems excited with a bounded
control was proposed in [7, 8].

It is worth noting that there exist many definitions for the term “oscillation”
[11, 16]. For example, oscillation is understood as “any effect that varies in a back-
and-forth or reciprocating manner” [6]. Otherwise, oscillation is the behavior of a
sequence or a function, that does not converge, but also does not diverge to +∞ or
-∞; that is, oscillation is the failure to have a limit [29]. Geometrically, an oscillating
function of real numbers follows some path in a space, without settling into ever-
smaller regions. In more simple cases the path might look like a loop coming back on
itself, that is, periodic behavior; in more complex cases it may be a quite irregular
movement covering a whole region [29]. Existing approaches based on Lyapunov
stability theory [17, 23] or relaxed stability properties (orbital stability, Zhukovsky
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stability, partial stability) [16, 19, 24] are not completely suitable for study of complex
oscillations. Indeed, these approaches require information on some limit modes, which
stability should be investigated (that is not suitable for chaotic or irregular oscillations,
for example). Besides, these approaches are not suitable for distinguishing between
simple bounded behavior and oscillating one (a trajectory can converge to a steady-
state solution that is a stable behavior from any kind of stability definition, but
it is not an oscillation). Despite significant success in study of regular oscillations
[4, 5, 12, 18, 20], comprehensive solutions for generic irregular oscillations have not
been obtained yet.

An important and useful concept for studying irregular oscillations is that of “os-
cillatority” introduced by V.A.Yakubovich in 1973 [31]. Frequency domain conditions
for oscillatority were obtained for Lurie systems, and split in linear and nonlinear
parts [16, 31, 32]. However, when studying physical and biological systems in many
cases it is hard to decompose the system into two parts: Linear nominal system plus
nonlinear feddback. Mechanical systems (where energy plays a role of Lyapunov func-
tion) serve as a widespread example of such systems. Extension of analysis and design
methods to oscillations in such class of systems is still to appear.

In this paper an approach to detection of oscillations and design of oscillatory
systems for a class of nonlinear systems is suggested. New conditions for oscillatority
of dynamical systems in the sense of Yakubovich are proposed. These conditions
are applicable to nonlinear systems, and they are formulated in terms of Lyapunov
functions existence. As a result upper and lower bounds for oscillations amplitude
are obtained. A variant of converse Lyapunov theorem for strictly unstable systems
is proposed. The relation between the oscillatority bounds and excitability indices for
the systems with input are established. Design procedure for oscillations excitation
is presented. Potentiality of the proposed technique is illustrated by four examples of
analytical computations and computer simulations.

The main advantage of the obtained solution consists in possibility of application
to a wide range of oscillation analysis and design problems. The proposed conditions
are applicable even in the cases when other existing solutions cannot be used due to
complexity of oscillations or system models [5, 18, 20].

Section 2 contains auxiliary statements and definitions (two preliminary results
are placed in Appendix). Main definitions and oscillation existence conditions are
presented in section 3. Section 4 deals with the task of static feedback design, which
ensures oscillations appearance in closed loop system with desired bounds on ampli-
tude. Conclusion is given in section 5. Examples illustrating proposed results for
Van der Pol system, Lorenz system, and Hindmarsh–Rose neuron model as well as
computer simulation results are presented in the text.

2. Preliminaries. Let us consider a general model of nonlinear dynamical sys-
tem:

ẋ = f(x,u ); y = h(x ),(1)

where x ∈ Rn is the state space vector; u ∈ Rm is the input vector; y ∈ Rp is the
output vector; f and h are locally Lipschitz continuous functions on Rn, h( 0 ) = 0,
and f( 0, 0 ) = 0. For initial condition x0 ∈ Rn and Lebesgue measurable input
u the solution x(x0,u, t ) of the system (1) is defined at least locally for t ≤ T ,
y(x0,u, t ) = h (x(x0,u, t ) ) (further we will simply write x( t ) or y( t ) if all other
arguments are clear from the context). If for all initial conditions x0 ∈ Rn and inputs
u the solutions are defined for all t ≥ 0, then such system is called forward complete.
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In this work we will consider feedback connection of system (1) with static system
u = k(y ).

As usual, it is said that a continuous function ρ : R+ → R+ belongs to class
K, if it is strictly increasing and ρ ( 0) = 0; ρ ∈ K∞ if ρ ∈ K and ρ ( s) → ∞
for s → ∞; Lebesgue measurable function x : R+ → Rn is essentially bounded, if
‖x ‖ = ess sup { |x( t ) | , t ≥ 0 } < +∞, where | · | denotes usual Euclidean norm,
R+ = { τ ∈ R : τ ≥ 0 }. Notation DV (x )F( · ) stands for directional derivative of
function V with respect to vector field F if function V is differentiable and for Dini
derivative in the direction of F

DV (x )F(·) = lim
t→0+

inf
V (x + tF(·) )− V (x )

t

if function V is Lipschitz continuous. In what follows we need the standard dissipa-
tivity property [30] and some its modifications. Function f(x1, . . . , xn ) defined on
Rn is called monotone if the condition x1 ≤ x′1,. . . , xn ≤ x′n implies that everywhere
either f(x1, . . . , xn ) ≤ f(x′1, . . . , x

′
n ) or f(x1, . . . , xn ) ≥ f(x′1, . . . , x

′
n ) everywhere.

Definition 1. The system (1) is dissipative if there exists continuous function
V : Rn → R+ and a function � : Rn+m+p → R such that for all x0 ∈ Rn and
Lebesgue measurable and locally essentially bounded u : R+ → Rm the following
inequality is satisfied:

V (x( t ) ) ≤ V (x0) +
∫ t

0

� (x( τ ),y( τ ),u( τ ) ) dτ, t ≥ 0.(2)

The functions � and V are called supply rate and storage functions of the system
(1).

In the case when storage function is continuously differentiable, inequality (2) can
be rewritten in a simple form:

V̇ (x ,u ) = Lf(x,u )V (x ) ≤ � (x, u, y ) .

Definition 2. Dissipative system (1) is called
– passive if � (x,y,u ) = yTu−β(x ), where β is a continuous function reflecting

the dissipation rate in the system; if β (x ) ≥
�

β ( |x | ) ,
�

β ∈ K, then system (1) is
called strictly passive [13];

– h-dissipative, if it has continuously differentiable storage function V and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , ω(y,u ) = −α ( |y | ) + σ ( |u | ) ,
σ ∈ K, α, α, α ∈ K∞;

– input-output-to-state stable (IOSS), if it has continuously differentiable storage
function W and [26]

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) , α1, α2 ∈ K∞,

ω(x,y,u ) = −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ,

α3 ∈ K∞, σ1, σ2 ∈ K [26];
– input-to-state stable (ISS), if it has continuously differentiable storage function

U and [21]

α4 ( |x |) ≤ U(x ) ≤ α5 ( |x |) , α4, α5 ∈ K∞;

ω(x,y,u ) = −α6 ( |x | ) + δ ( |u | ) , α6 ∈ K∞, δ ∈ K.
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If inequality sign in (2) for the case � (x,y,u ) = yTu − β(x ) can be replaced
with equality, then it is said that the system possesses passivity property with known
dissipation rate β.

Term h-dissipativity was introduced with minor differences in [2]. An important
example of such kind of systems is y-strictly passive systems [13]. Also, passive system
(1) can be transformed to h-dissipative under suitable feedback transformation.

Storage functions for IOSS and ISS systems are called Lyapunov functions [23, 26].
Existence of corresponding Lyapunov functions is the equivalent characterization of
ISS and IOSS properties [21, 26].

The interrelations of the properties introduced in Definition 2 are established
in the Lemma A.1 (see Appendix), which was proved in [1] with a more restrictive
requirement for h-dissipativity storage function:

α7 ( |x |) ≤ V (x ) ≤ α8 ( |x |) , α7, α8 ∈ K∞.

General result in this direction was obtained in [15], where it was proven that input-
to-output stability (this property is closely connected with h-dissipativity; see also
[24] for more details) and IOSS are equivalent to ISS property for the system (1).

3. Oscillatority conditions. At first it is necessary to give a precise definition
of the term “oscillatority” placed in the title of this section and the paper. There are
several approaches to define oscillation phenomena for nonlinear dynamical systems
[16]. Perhaps, the most general one is the concept introduced by Yakubovich [31, 32].
Here we recover definitions from [31, 32] with some mild modifications [11, 16] dealing
with high dimension and general form of the system.

Definition 3. Solution x(x0, 0, t ) with x0 ∈ Rn of system (1) is called [π−, π+ ]-
oscillation with respect to output ψ = η(x ) (where η : Rn → R is a continuous
monotone function) if the solution is defined for all t ≥ 0 and

lim
t→+∞

ψ( t ) = π−; lim
t→+∞ ψ( t ) = π+; −∞ < π− < π+ < +∞.

Solution x(x0, 0, t ) with x0 ∈ Rn of system (1) is called oscillating, if there ex-
ist some output ψ and constants π−, π+ such that x(x0, 0, t ) is [π−, π+ ]-oscillation
with respect to the output ψ. Forward complete system (1) with u( t ) ≡ 0, t ≥ 0 is
called oscillatory, if for almost all x0 ∈ Rn solutions of the system x(x0, 0, t ) are
oscillating. Oscillatory system (1) is called uniformly oscillatory, if for almost all
x0 ∈ Rn for corresponding solutions x(x0, 0, t ) there exist output ψ and constants
π−, π+ not depending on initial conditions.

In other words, the solution x(x0, 0, t ) is oscillating if output ψ( t ) = η(x(x0, 0, t))
is asymptotically bounded and there is no single limit value of ψ( t ) for t→ +∞ that
is close to definition of oscillatority from [29].

Note that the term “almost all solutions” is used to emphasize that generally
system (1) for u( t ) ≡ 0, t ≥ 0 has a nonempty set of equilibrium points; thus,
there exists a set of initial conditions with zero measure such that corresponding
solutions are not oscillations. It is worth stressing that constants π− and π+ are exact
asymptotic bounds for output ψ. Therefore, in order to compute these values the exact
estimates for the system solutions should be known, which is a hard task for general
nonlinear system (1). Fortunately, information on approximate estimates of constants
π− and π+ is sufficient to obtain estimates on system amplitude oscillations. The
oscillation property introduced in Definition 3 is defined for zero input and any initial
conditions of system (1). The following property is a closely related characterization
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of the system behavior, which develops the proposed above property for the case of
nonzero input but for specified initial conditions [8].

Definition 4. Let u : R+ → Rm be Lebesgue measurable and essentially bounded
function and x0 ∈ Rn be given such that x(x0,u, t ) be defined for all t ≥ 0. The
functions χ−

ψ,x0
( γ ), χ+

ψ,x0
( γ ) defined for ||u|| ≤ γ, γ ∈ R+ are called lower and

upper excitation indices of system (1) in point x0 with respect to the output ψ = η(x )
(where η : Rn → R is a continuous monotone function), if(

χ−
ψ,x0

( γ ), χ+
ψ,x0

( γ )
)

= arg max
( a,b )∈E( γ )

{ b− a } ,

E( γ ) =
{

( a, b ) :
(

a = limt→+∞ η (x(x0,u, t ) ) ,
b = limt→+∞ η (x(x0,u, t ) )

)}
‖u ‖≤γ

.

Lower and upper excitation indices of a forward complete system (1) with respect to
the output ψ are

χ−
ψ ( γ ) = inf

x0∈Rn
χ−
ψ,x0

( γ ), χ+
ψ ( γ ) = sup

x0∈Rn

χ+
ψ,x0

( γ ).

In the same way it is possible to introduce indices for a vector output ψ = η(x ),
in this case indices would be vectors of the same dimension as the output ψ.

Excitation indices characterize ability of system (1) to exhibit forced or control-
lable oscillations caused by bounded inputs. It is clear that properties π− = χ−

ψ ( 0 )
and π+ = χ+

ψ ( 0 ) are satisfied. For nonzero inputs the excitability indices char-
acterize maximum (over specified set of inputs ‖u ‖ ≤ γ) asymptotic amplitudes
χ+
ψ ( γ )− χ−

ψ ( γ ) of ψ.
Note that it is useful to calculate or estimate values of χ−

ψ ( γ ) and χ+
ψ ( γ ) for all

0 ≤ γ < +∞ due to the following reason. Let oscillation amplitude be an inverse
function of input amplitude, then the maximum oscillation amplitude be reached
for some γ∗ and for all γ ≥ γ∗ the amplitude decreases. The indices χ−

ψ ( γ ) and
χ+
ψ ( γ ) preserve their values for γ ≥ γ∗. Hence, to catch the critical value γ∗ of

input amplitude providing maximum output amplitude for ψ, it is necessary to build
full graphics of functions χ−

ψ ( γ ) and χ+
ψ ( γ ). The obtained characteristics will be

closely related with the Cauchy gain recently investigated in [22] (in fact, π+− π− or
χ+
ψ,x0

( γ ) − χ−
ψ,x0

( γ ) are asymptotic amplitudes of ψ( t ) in the sense of [22] for zero
or nonzero input u, while χ+

ψ ( γ ) reflects the Cauchy gain of the system (1)).
On the other hand, excitation indices from Definition 4 describe robustness of the

oscillations property proposed in Definition 3. Conditions of oscillations existence in
the system are summarized in the following theorem.

Theorem 1. Let system (1) with u( t ) ≡ 0, t ∈ R+, i.e.,

ẋ = f (x, 0 ) ,(3)

have two continuous and locally Lipschitz Lyapunov functions V1 and V2 satisfying
for all x ∈ Rn the following inequalities:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ1, υ2, υ3, υ4 ∈ K∞,

and for some 0 < X1 < υ−1
1 ◦ υ2 ◦ υ−1

3 ◦ υ4(X2 ) < +∞:
DV1(x ) f(x, 0 ) > 0 for 0 < |x | < X1 and x /∈ Ξ,
DV2(x ) f(x, 0 ) < 0 for |x | > X2 and x /∈ Ξ,
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where Ξ ⊂ Rn is a set with zero Lebesgue measure, which contain all equilibriums of
the system, and

Ω ∩ Ξ = ∅,

where Ω =
{
x : υ−1

2 ◦ υ1(X1 ) < |x | < υ−1
3 ◦ υ4(X2 )

}
.

Then the system (3) is oscillatory.
Proof. Consider set Ξ0 ⊂ Rn of initial conditions not containing equilibrium

points (which belong to set Ξ) of system (3). Then the solutions of the system
starting from Ξ0 are globally bounded, due to V̇2 < 0 for |x | > X2, and defined
for all t ≥ 0. Since the trajectory x(x0, 0, t ), x0 ∈ Ξ0, t ≥ 0 is bounded, it has
a nonempty closed, invariant, and compact ω-limit set, which belongs to the set
Ω. Indeed, V2( t ) asymptotically enters into the set where V2( t ) < υ4(X2 ), then
|x( t ) | < υ−1

3 ◦ υ4(X2 ). In the same way function V1( t ) is upper bounded and its
limit values fall into the set where V1( t ) > υ1(X1 ); i.e., again |x( t ) | > υ−1

2 ◦υ1(X1 ).
As it was supposed, Ω does not contain equilibrium points of the system. Hence,

ω-limit set also does not include such invariant solutions. Then for each x0 ∈ Ξ0

there exists an index i, 1 ≤ i ≤ n such that the solution is [π−, π+ ]-oscillation with
respect to output xi with −υ−1

3 ◦ υ4(X2 ) ≤ π− < π+ < υ−1
3 ◦ υ4(X2 ). Suppose

that there is no such output. It means that for all 1 ≤ i ≤ n for output xi equality
π− = π+ holds. However, the latter could be true only in equilibrium points, which
are excluded from the set Ω by the theorem conditions. Therefore, for almost all
initial conditions the system solutions have such oscillating output and system (3) is
oscillatory by Definition 3. Note that for different x0 ∈ Ξ0 oscillating outputs xi may
exist for different i, 1 ≤ i ≤ n.

Remark 1. The set Ω determines lower and upper bounds for the values of π−

and π+.
Like in [32] one can consider the Lyapunov function candidate for linearized near

the origin system (3) as a function V1 to prove local instability of the system. Instead
of existence of storage function V2, one can require just boundedness of the system
solution x( t ) with a known upper bound. It can be obtained using another approach
not dealing with time derivative of Lyapunov function analysis. In this case Theorem
1 is transforming into Theorem 3.4 from [11]; see also [33].

Corollary 1. Define Ξ as the set of the system (3) equilibriums, i.e., Ξ = {x ∈
Rn : f(x, 0 ) = 0 }, which consists in isolated points, and A(x0 ) = d f(x, 0 )/dx|x=x0

is the matrix of the system (3) linearization in point x0 ∈ Rn. Let the following
conditions be valid:

1. For all x0 ∈ Ξ the matrices of the system (3) linearization A(x0 ) have eigen-
values with positive real parts.

2. There exists R > 0 such that for almost all initial conditions x0 ∈ Rn:

lim
t→+∞ |x(x0, 0, t )| ≤ R.

Then the system (3) is oscillatory.
Proof. By conditions of the corollary for almost all initial conditions the ω-limit

set is compact and it does not contain the equilibriums of the system. Further the
proof is similar to the proof of Theorem 1.

Conditions of Theorem 1 are rather general and define the class of systems, which
oscillatory behavior can be investigated by the approach, namely systems which have
an attracting compact set in state space containing oscillatory movements of the
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systems. For such systems Theorem 1 or Corollary 1 give useful tools for testing their
oscillating behavior and obtaining estimates for amplitude of oscillations.

Theorem 1 presents the sufficient conditions for system (1) to be oscillating in the
sense of Yakubovich. It is possible to show that for a subclass of uniformly oscillating
systems these conditions are also necessary. To prove this result we need the following
two lemmas.

Lemma 1. Let there exist constant r > 0 such that for solutions of systems (3)
the following property is satisfied:

0 < |x0| < r ⇒ |x(x0, 0, t )| > r

for all t ≥ Tx0 , where 0 < Tx0 < +∞. Then there exists a continuous and locally
Lipschitz–Lyapunov function V1(x ) such that for all x ∈ Rn

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ1, υ2 ∈ K∞,

additionally for all 0 < |x| < r it holds:

DV1(x ) f(x, 0 ) > 0.

Proof. For |x0| < r let us introduce the function:

v(x0 ) = inf
0≤t≤Tx0

|x(x0, 0, t )|.

According to conditions of the lemma this function admits the following properties:
(i) v( 0 ) = 0 and v(x ) > 0 for 0 < |x| < r;
(ii) v(x0 ) = inf0≤t≤Tx0+Δ |x(x0, 0, t )| for any Δ ≥ 0.
Additionally for 0 < |x| < r the property |v( 0 )−v(x )| = v(x ) ≤ |x| = |0−x|

holds, which means continuity of function v at the origin. In the set |x| < r the
relation δ( |x| ) ≤ v(x ) ≤ |x| holds, where δ( s ) = s ( 1 + s )−1 inf |x| =s v(x ) is a
continuous and strictly increasing function, δ( 0 ) = 0. The locally Lipschitz property
of function v in the set 0 < |x| < r follows from the following series of inequalities
satisfied for any x1, x2 belonging to this set and some constants L > 0, M > 0,
T = max{Tx1, Tx2 }:

|x(x1, 0, t )− x(x2, 0, t )| ≤M |x1 − x2|, t ≤ T ;

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2|, t ≤ T ;

|v(x1 )− v(x2 )| = | inf
0≤t≤T

|x(x1, 0, t )| − inf
0≤t≤T

|x(x2, 0, t )||

≤ sup
0≤t≤T

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2| .

By construction for initial conditions |x0| < r the relation v(x(x0, 0, t ) ) ≥ v(x(x0,
0, 0 ) ), t ≤ Tx0 holds, then Dv(x ) f(x, 0 ) ≥ 0 for all |x| < r and function v( t ) is
not decreasing. To design a strictly increasing function let us introduce for |x0| < r
the function:

V1(x0 ) = inf
0≤t≤Tx0

k( t ) v(x(x0, 0, t ) ),

where k : R+ → R+ is a continuously differentiable function with the following
properties for all t ∈ R+:

κ1 ≤ k( t ) ≤ κ2, 0 < κ1 < κ2 < +∞; ∂ k/∂ t < 0.
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As an example of such function k it is possible to choose the following one:

k( t ) = κ1 + (κ2 − κ1 ) e−t, k̇( t ) = (κ1 − κ2 ) e−t.

By construction V1( 0 ) = 0 and V1(x ) > 0 for 0 < |x| < r. In the set |x| < r the
relation κ1 δ( |x| ) ≤ v(x ) ≤ κ2|x| holds. The locally Lipschitz continuity of function
V1 in the set 0 < |x| < r follows from the same arguments, since the following series
of inequalities are satisfied for any x1, x2 belonging to this set and some constants
L > 0, M > 0, T = max{Tx1, Tx2 }:

|x(x1, 0, t )− x(x2, 0, t )| ≤M |x1 − x2|, t ≤ T ;

|v(x1 )− v(x2 )| ≤ L |x1 − x2|;

|v(x(x1, 0, t ))− v(x(x2, 0, t ))| ≤M L |x1 − x2|, t ≤ T ;

|V1(x1)− V1(x2)| = | inf0≤t≤Tx1
k( t ) v(x(x1, 0, t ))− inf0≤t≤Tx2

k( t ) v(x(x2, 0, t ) )|
≤ sup0≤t≤T k( t )|v(x(x1, 0, t )− v(x(x2, 0, t )| ≤ κ2M L |x1 − x2|.

For |x| ≥ r extend function V1 : Rn → R+ in such a way that for all x ∈ Rn function
V1 is continuous and locally Lipschitz and there exist two functions υ1, υ2 ∈ K∞ such
that for all x ∈ Rn:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) ,

where υ1( s ) ≤ κ1 δ( s ), κ2 s ≤ υ2( s ) for s < r. By construction for initial conditions
0 < |x0| < r the following relations hold:

V1(x(x0, 0, t ) ) = inf
0≤τ≤Tx(x0,0,t )

k( τ ) v(x[x(x0, 0, t ), 0, τ ] )

> inf
0≤τ≤Tx0

k( τ ) v(x[x0, 0, τ ] ) = V1(x0 ) , 0 < t ≤ Tx0 , Tx(x0,0,t ) < Tx0 ,

then DV1(x ) f(x, 0 ) > 0 for all 0 < |x| < r.
Under conditions of Lemma 1 solutions x(x0, 0, t ) of the system (3) are locally

unstable for initial conditions x0 which belong to the sphere 0 < |x0| < r. According
to the result of the lemma in this case the system (3) has corresponding Lyapunov
function with positive time derivative for 0 < |x| < r. It is possible to say that
Lemma 1 presents a variant of necessary conditions of a Lyapunov function existence
for a subclass of strictly unstable systems, which is a new result.

Lemma 2. Let there exist constants R > 0 and 0 < TR,x0 < +∞ such that for
solutions of the system (3) the following property is satisfied:

|x0| > R ⇒ |x(x0, 0, t )| < R, t ≥ TR,x0 .

Then there exists a continuous and locally Lipschitz–Lyapunov function V2(x ) such
that for all x ∈ Rn

υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ3, υ4 ∈ K∞,

and for all |x| > R it holds that

DV2(x ) f(x, 0 ) < 0.
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Proof. For |x0| > R let us introduce the function

v(x0 ) = sup
t≥0
|x(x0, 0, t )| = sup

TR,x0≥t≥0
|x(x0, 0, t )|.

Under conditions of the lemma the property v(x ) > R for |x| > R is satisfied.
Additionally due to continuity of solutions of the system (3) with respect to initial
conditions for each ε > 0 there exists δ > 0 such that

x1 ∈ Rn, x2 ∈ Rn,
|x1 − x2| ≤ δ ⇒ |x(x2, 0, t)− x(x1, 0, t)| ≤ ε, t ≤ tmax, tmax = max{TR,x1 , TR,x2}.

Note that for solutions of the system the equality suptmax≥t≥0 |x(xi, 0, t )| = supt≥0 |
x(xi, 0, t)|, i = 1, 2 is satisfied. Then for any initial conditions under constrain |x1 −
x2| ≤ δ, |x1| > R, |x2| > R it holds that

|v(x1 )− v(x2 )|

=
∣∣∣∣ sup
tmax≥t≥0

|x(x1, 0, t )| − sup
tmax≥t≥0

|x(x2, 0, t )|
∣∣∣∣

≤ sup
tmax≥t≥0

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ ε ,

which means continuity of function v for |x| > R. In the set |x| > R for function v
the following relation also holds:

|x| ≤ v(x ) ≤ δ( |x| ),

where δ( s ) = s +sup|x| =s v(x ) is a continuous and strictly increasing function. The
locally Lipschitz continuity of function v into set |x| > R follows from the series of
inequalities satisfied for any x1, x2 from the set and some L > 0:

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L|x1 − x2|, t ≤ tmax,

|v(x1 )− v(x2 )|

=
∣∣∣∣ sup
tmax≥t≥0

|x(x1, 0, t )| − sup
tmax≥t≥0

|x(x2, 0, t )|
∣∣∣∣

≤ sup
tmax≥t≥0

||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ L |x1 − x2|.

By construction for all initial conditions with |x0| > R it holds that

v( t ) = v(x(x0, 0, t ) ) ≤ v(x(x0, 0, 0 ) ) = v( 0 ),

then Dv(x ) f(x, 0 ) ≤ 0 for |x| > R and function v is not increasing. To design a
strictly decreasing function, consider the following one for |x0| > R:

V2(x0 ) = sup
TR,x0≥t≥0

k( t ) v(x(x0, 0, t ) ),

where k : R+ → R+ is a continuously differentiable function with properties for all
t ∈ R+:

κ3 ≤ k( t ) ≤ κ4, 0 < κ3 < κ4 < +∞; ∂ k/∂ t > 0.
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For example, it is possible to choose as a function k( t ) the following one:

k( t ) =
κ3 + κ4 t

1 + t
, k̇( t ) =

κ4 − κ3

( 1 + t )2
.

Under conditions of the lemma in the set |x| > R for function V2 the relation κ3|x| ≤
V2(x ) ≤ κ4 δ( |x| ) holds. For any initial conditions under constrain |x1 − x2| ≤ δ,
|x1| > R, |x2| > R it holds that

|V2(x1 )− V2(x2 )|

=

∣∣∣∣∣ sup
TR,x1≥t≥0

k( t ) v(x(x1, 0, t ) )− sup
TR,x2≥t≥0

k( t ) v(x(x2, 0, t ) )

∣∣∣∣∣
≤ sup

tmax≥t≥0
k( t )||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ κ4 ε,

which means continuity of function V2 for |x| > R. The locally Lipschitz continuity
of function V2 into set |x| > R follows from the same inequalities satisfied for any
x1, x2 from the set and some L > 0:

|V2(x1 )− V2(x2 )|

=

∣∣∣∣∣ sup
TR,x1≥t≥0

k( t ) v(x(x1, 0, t ) )− sup
TR,x2≥t≥0

k( t ) v(x(x2, 0, t ) )

∣∣∣∣∣
≤ sup

tmax≥t≥0
k( t )||x(x1, 0, t )| − |x(x2, 0, t )|| ≤ κ4L|x1 − x2 |.

For |x| ≤ R we extend the definition of function V2 such that for all x ∈ Rn function
V2 : Rn → R+ would be continuous and locally Lipschitz and for all x ∈ Rn:

υ3 ( |x |) ≤ V2(x, t ) ≤ υ4 ( |x |) ,

where υ3, υ4 ∈ K∞ and κ4 s ≥ υ3( s ), υ4( s ) ≥ κ3 δ( s ) for s > R. By construction
for all initial conditions with |x0| > R, it holds that

V2( t ) = V2(x(x0, 0, t ) ) = sup
TR,x( x0,0,t )≥τ≥0

k( τ ) v(x[x(x0, 0, t ), 0, τ ] )

< sup
TR,x0≥τ≥0

k(τ)v(x[x0 , 0, τ ]) = V2(x0) = V2(0), 0 < t ≤ TR,x0 , TR,x(x0,0,t) < TR,x0,

and then DV2(x ) f(x, 0 ) < 0 for |x| > R.
Under conditions of the lemma set, A = {x : |x| < R } is a globally attractive

invariant set for solutions of system (3) with zero input; see also [17] for other converse
Lyapunov theorems for set stability. Contrarily to the case considered in this paper,
the Lyapunov functions W : Rn → R+ proposed in [17] possess for all x ∈ Rn the
properties

α1( |x|A ) ≤W (x ) ≤ α2( |x|A ), α1, α2 ∈ K∞,

where |x|A is the distance from point x to the set A, which stability is investigated.
Now we are ready to substantiate the necessary conditions of oscillatority.
Theorem 2. Let system (3) be uniformly oscillatory with respect to the output

ψ = η(x ) (where η : Rn → R is a continuous function), and for all x ∈ Rn the
following relations are satisfied:

χ1( |x| ) ≤ η(x ) ≤ χ2( |x| ), χ1, χ2 ∈ K∞;
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the set of initial conditions for which the system is not oscillating consists in just
one point Ξ = {x : x = 0 }. Then there exist two continuous and locally Lipschitz
Lyapunov functions V1 : Rn → R+ and V2 : Rn → R+ such that for all x ∈ Rn the
inequalities hold:

υ1 ( |x |) ≤ V1(x ) ≤ υ2 ( |x |) , υ3 ( |x |) ≤ V2(x ) ≤ υ4 ( |x |) , υ1, υ2, υ3, υ4 ∈ K∞;

DV1(x )f(x, 0 ) > 0 for 0 < |x| < χ−1
2 (π− );

DV2(x )f(x, 0 ) < 0 for |x| > χ−1
1 (π+ ).

Proof. Since system (3) is uniformly oscillatory with respect to output ψ = η(x ),
then for almost all initial conditions (except the origin) there exists constants −∞ <
π− < π+ < +∞ such that

lim
t→+∞

η(x(x0, 0, t ) ) = lim
t→+∞

ψ( t ) = π−;

lim
t→+∞ η(x(x0, 0, t ) ) = lim

t→+∞ ψ( t ) = π+.

By radial unboundedness and positive definiteness of function η it means that all
solutions of the system converge to the invariant set Ω = {x : χ−1

2 (π− ) ≤ x ≤
χ−1

1 (π+ ) }. Then there exist constants X1 < χ−1
2 (π− ) and X2 > χ−1

1 (π+ ) such
that conditions of Lemmas 1 and 2 hold for r = X1 and R = X2. Based on these
facts, the existence of Lyapunov functions V1 and V2 follows.

For uniformly oscillatory systems with single equilibrium point at the origin, The-
orems 1 and 2 give necessary and sufficient conditions of oscillations existence (Van
der Pol or Hindmarsh and Rose systems (see below) are examples of uniformly oscilla-
tory systems). The oscillatority concept introduced by Yakubovich covers situations
of periodic and chaotic oscillations. That allows one to analyze behavior of wide
spectrum of oscillating dynamical systems using common approach. Note that for
chaotic systems constants π− and π+ evaluate geometrical size of strange attractor.
Let us demonstrate on examples the efficiency of the proposed approach for analysis
of oscillation phenomena in nonlinear systems.

Example 1. Consider the Van der Pol system:

ẋ1 = x2; ẋ2 = −x1 + ε ( 1− x2
1 )x2,

where ε > 0 some parameter. To detect presence of oscillations in this system, it is
required (according to Theorem 1) to find two Lyapunov functions, which establish
local instability of equilibrium ( 0, 0 ) and global boundedness of the system solutions.
Since the system has only one equilibrium point in the origin, the set Ω from the
theorem does not contain the point ( 0, 0 ). Let us consider the following Lyapunov
functions for 0 < ε ≤ 1:

V1(x ) = 0.5
(
(1− ε+ ε−1)x2

1 + (1 + ε−1)x2
2 + ε (x2 − ε x1 )2

)
;

V2(x ) = 0.5
(
ε−1x2 − 2 x1 + 1/3 x3

1

)2
+ 1/12 x4

1,

V̇1 = ε x2
2 + (x2 − ε x1 )2 +

[
ε3x1 − ( 1 + ε+ ε2 )x2

]
x2

1 x2;

V̇2 = −
[
0.5
√
ε
(
2− ε−2

)
x1 − ε−0.5x2

]2 − 1/3 ε−1x4
1

+
[
0.25 ε

(
2− ε−2

)2 + 2 ε−1
]
x2

1 .
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Fig. 1. Trajectories and set Ω for Van der Pol system.

Function V̇1 is strictly positive in the set 0 < |x | < X1, where X1 = X1( ε ) > 0
(the same conclusion was obtained in [12] for ε = 1, X1 =

√
3). Instability of the

system also can be verified for a linearized version of the system, which eigenvalues
λ1,2 = 0.5

(
ε±
√
ε2 − 4

)
are always positive for ε > 0. Analyzing function V̇2 it is

possible to obtain X2 ≤
√

3 [ 0.25 ε2 ( 2− ε−2 )2 + 2 ]. Results of the set Ω calculation
and computer simulation of the system for ε = 1 are presented in Figure 1, where the
set Ω is bounded by solid ellipses.

Example 2. Let us consider Lorenz model:

ẋ = σ ( y − x ),
ẏ = r x− y − x z,
ż = −b z + x y ,

where parameters σ = 10, r = 28, and b = 8/3. With such choice of parameter
values the system is chaotic, which is a good example of complex nonlinear oscillation
processes. To apply the result of Theorem 1 here let us note that the system has three
equilibriums with coordinates

x1
e = ( 0 0 0 )T , x2

e = (
√

72
√

72 27 )T , x3
e = (−

√
72 −

√
72 27 )T .

The matrix of linear approximation of this system at the equilibriums

A(xe ) =

⎡
⎣ −σ σ 0
r − xe,3 −1 −xe,1
xe,2 xe,1 −b

⎤
⎦

has for the given values of parameters eigenvalues with positive real parts for all
equilibriums. Therefore the system is locally unstable. Lyapunov function

V (x, y, z ) = 0.5
(
σ−1x2 + y2 + ( z − r )2

)
for this system has the following time derivative:

V̇ = −x2 + x y − y2 − b z2 + r b z
≤ −0.5 x2 − 0.5 y2 − 0.5 b z2 + 0.5 b r2 ,
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Fig. 2. Trajectory of Lorenz system.

which implies global boundedness of all trajectories of Lorenz system. All conditions
of Corollary 1 are satisfied and system is oscillatory in the sense of Definition 3. An
example of state space trajectory of the system is presented in Figure 2 (blue dots
correspond to coordinates of equilibriums xie).

Example 3. A Hindmarsh and Rose model neuron is defined by the following
system of differential equations [14]:

ẋ = −a x3 + b x2 + y − z + u,
ẏ = c− d x2 − y,
ż = ε [ s (x− x0 )− z ] ,

where x ∈ R+ is the membrane potential, y ∈ R+ is recovery variable, and z ∈ R+ is
adaptation variable. External stimulation is given by input u ∈ R. It is a well-known
fact that this model demonstrates complex oscillatory behavior for the following values
of the model parameters a = 1, b = 3, c = 1, d = 5, s = 4, x0 = 0.795, ε = 0.001 with
input u = 0. Let us investigate oscillatority property of the model for the case u = 0
applying the proposed approach.

As the first let us compute the number of equilibriums in the system which coor-
dinates are solutions of the following system of nonlinear equations:

−a x3
e + ( b− d )x2

e − s xe + s x0 + c = 0 ;
ye = c− d x2

e ;
ze = s (xe − x0 ) .

As in the first example we are interested in a situation when the model has a single
equilibrium. This is the case when the first cubic equation above has only one real
solution and two complex solutions. Under conditions

n ≥ 0,
m

6 a
+

2
3

3 s a− ( b− d )2

a u
�= 0,

n = 4 s3 a− s2 ( b− d )2 +
[
27 a2 ( s x0 + c )− 18 s a ( b− d ) + 4 ( b− d )3

]
( s x0 + c ),

m = 3
√

12 a
√

3n− 36 s a ( b− d ) + 108 a2 ( s x0 + c ) + 8 ( b− d )3,

the model has the following single equilibrium

xe = a−1 (m/6− 2/3 [ 3 s a− ( b− d )2 ]/m+ ( b− d )/3 ) ;
ye = c− d x2

e ;
ze = s (xe − x0 ) .
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Fig. 3. Trajectories of Hindmarsh and Rose neuron model.

To prove global boundedness of the system solutions, it is possible to use the following
Lyapunov function:

V2 = 0.5
(
s x2 + ε−1z2 + s a y2/d2

)
,

in which the time derivative for the model admits inequality:

V̇2 ≤ s x
(
−0.5 a x3 + b x2 + 8 d2x/a

)
−0.25 s a y2/d2−0.5 z2+8 s a c2/d2 +0.5 s2 x2

0.

To prove local instability of the equilibrium, consider linearization of the system with
matrix

A(xe, ye, ze ) =

⎡
⎣ −3 a x2

e + 2 b xe 1 −1
−2 d xe −1 0
ε s 0 −ε

⎤
⎦ .

According to Hurwitz criteria matrix A has eigenvalues with positive real parts if at
least one from the following inequalities is satisfied:

3 a x2
e − 2 b xe + 1 + ε ≤ 0, 3 a x2

e + 2 ( d− b )xe + s ≤ 0,

3 a ( ε+ 1 )x2
e + 2 ( d− ( ε+ 1 ) b )xe + ε ( s+ 1 ) ≤ 0,

9a2(ε+ 1)x4
e + a[6d− 12(ε+ 1)b]x3

e +
[
4b[(ε+ 1)b− d] + 3a[ε2 + (2 + s)ε+ 1]

]
x2
e

+ 2
[
d− [ε2 + (s+ 2)ε+ 1]b

]
xe + (s+ 1)ε2 + ε ≤ 0.

Thus we obtain all set of restrictions on admissible values of the model parameters
under which the system is uniformly oscillatory. The proposed values in [14] of the
model parameters admit all these conditions (there exists single unstable equilibrium
with globally bounded solutions). The result of the model simulation is shown in
Figure 3, where z̃ = 10 z is a scaled adaptation variable.

A link between oscillatority and excitation indices is established in the following
corollary.
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Corollary 2. Let for initial condition x0 ∈ Rn the solution x(x0,k(x ), t ) of
system (1) with control u = k(x ), k( 0 ) = 0 be [π−, π+ ]-oscillation with respect to
output

ψ = η(x ), α1 ( |x| ) ≤ η(x ), α1 ∈ K∞.

Then excitation indices of system (1) satisfy inequality

π+ − π− ≤ χ+
ψ,x0

( γ )− χ−
ψ,x0

( γ ),

for γ ≥ γ∗, where γ∗ = sup|x | ≤α−1
1 (π+ ) |k(x ) |.

Proof. From oscillatority property with respect to output ψ, the solutions of the
closed by feedback k system (1) are asymptotically bounded:

|x( t ) | ≤ α−1
1 (π+ ), t ≥ 0.

Therefore input u = k(x ) is upper bounded by γ ≥ γ∗ and the statement follows
from Definitions 3 and 4 (excitation indices are not decreasing functions of γ).

Hence, to compute estimates on excitation indices it is enough to find some control
k for system (1), which ensures oscillations existence in closed loop system.

In the proof of Theorem 1 a component of state space vector was proposed as an
oscillating output. However, such output does not discover all features of oscillation
processes in the system and it does not restrict the possible set of oscillating variables
of the system. To avoid this obstacle we formulate the same conclusion for output
oscillations of system (3) rewriting conditions of the theorem with respect to y:

υ1(|y| ) ≤ V1(x ) ≤ υ2(|y| ), υ3(|y| ) ≤ V2(x ) ≤ υ4(|y| ),

DV1(x )f(x, 0 ) > 0 for 0 < |y | < Y1;

DV1(x )f(x, 0 ) > 0 for |y | > Y2,

Y1 < υ−1
1 ◦ υ2 ◦ υ−1

3 ◦ υ4(Y2 ).

Then the set Ω =
{
y : υ−1

2 ◦ υ1(Y1 ) < |y | < υ−1
3 ◦ υ4(Y2 )

}
and the system is oscil-

latory if set Ω does not contain equilibrium points of closed loop system ẋ = f (x, 0 ).
A more constructive result, which points out on oscillating variables, can be presented
as follows.

Lemma 3. Let system (1) have IOSS Lyapunov function W and h-dissipative
storage function V as in Definition 2 and lims→+∞ α( s )−1σ2( s ) < +∞ (conditions
of Lemma A.1 hold). Suppose that u = k(x ) and

(i) α6 ( |x | ) > δ ( |k(x ) | ) for |x | > X ≥ 0 and x /∈ Ξ,
(ii) Lf(x,k(x ) )V (x ) > 0 for 0 < |h(x ) | ≤ Y and x /∈ Ξ,

for some positive constants X and Y with Y < α−1◦α◦α−1
4 ◦α5(X ) (where functions

α4, α5, α6 and δ defined in Lemma A.1), set Ξ has zero Lebesgue measure. If set Ω ={
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5(X )
}

does not contain equilibrium points of
closed loop system ẋ = f (x,k(x ) ), then the system is oscillatory.

Proof. First of all note that from point (i) the system satisfies all conditions
from Lemma A.1 to be ISS with respect to input u and it also has bounded (i.e.,
defined for all t ≥ 0) solutions due to property (i). As before, x( t ) and y( t ) have
nonempty closed and compact ω-limit sets, which are upper bounded by estimate
|x | ≤ α−1

4 ◦ α5(X ).
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From point (ii) of the lemma it is possible to conclude that V̇ > 0 for small enough
0 < |y | ≤ Y . Then the set of ω-limit trajectories for function V ( t ) belongs to the
set Ω. Now the result immediately follows similarly to the final steps of Theorem 1
proof.

Generically function V depends on part of variables only, which helps to define a
subset of oscillating variables in the system. Additionally, Lemma 3 points out a way
to find functions V1 and V2 (V1(x ) = V (x ) and V2(x ) = U(x ) from Appendix). Re-
sults of proposed theorems and Lemma 3 do not deal with feedback k design problem.
Now let us continue with the task of control design that ensures desired oscillation
parameters for passive systems.

4. Stabilization of oscillation regimes. In this section the problem of feed-
back design for passive system is considered, and the proposed feedback ensures os-
cillatority of closed loop system. Section 4 is based on result of Lemma A.2, although
conditions imposed on feedback k in the Lemma A.2 look complex and hardly veri-
fied, they are very natural and can be easily resolved. For example, if σ1 and σ2 are
quadratic functions of their arguments, then control k with linear growth rate with
respect to y satisfies all proposed conditions.

Theorem 3. Let system (1) be passive with known dissipation rate β and IOSS
in the sense of Definition 2 and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , α, α ∈ K∞.

Consider control u = k(x ) + d, which possesses the following properties for all x ∈
Rn :

(1) for some 0 < K < +∞,

|k(x ) | ≤ λ ( |y | ) +K;

(2) decreasing of storage function V for large values of the output, i.e., inequality
holds

β(x ) − yTk(x ) + μ ( |d | ) + μ(K ) ≥ κ ( |y | ) + yTd;

(3) yTk(x ) > β(x ) for 0 < |y | < Y < +∞, Y < α−1◦α◦α−1
4 ◦α5◦α−1

6 ◦δ(K ),
lims→+∞

σ2( s )+σ1◦λ( s )
κ( s ) < +∞, where λ ∈ K, κ ∈ K∞, μ ∈ K (functions α4, α5, α6

and δ obtained in Lemma A.2) and d ∈ Rm is new input (Lebesgue measurable and
essentially bounded function of time). Then

(i) system solutions are bounded;
(ii) if set Ω =

{
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5 ◦ α−1
6 ◦ δ(K )

}
does not

contain equilibrium points of system ẋ = f (x,k(x ) ) then for d( t ) ≡ 0, t ≥ 0 closed
loop system is an oscillatory one.

Proof. Introduce partition of control input:

u = k(x ) = −k1(x ) + k2(x ),

such that

|k1(x ) | ≤ λ ( |y | ) , |k2(x ) | ≤ K;

yTk1(x ) + β(x ) + μ ( |d | ) ≥ κ ( |y | ) + yTd;

yTk2(x ) > β(x ) + yTk1(x ) for 0 < |y | < Y < +∞.
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This separation is possible due to conditions of Theorem 3. Introduce auxiliary
input d̃ = d + k2(x ) (essentially bounded by conditions of the theorem ‖ d̃ ‖ ≤
K + ‖d ‖). For system (1) all conditions of Lemma A.2 are satisfied for the feedback
u = −k1(x )+d̃ and system is ISS with respect to input d̃. According to ISS property
[21] and boundedness of d̃, boundedness of system solution immediately follows and
statement (i) of Theorem 3 is proven. To justify statement (ii) note that the conditions
of Lemma 3 also hold.

Theorem 3 extends the result from [3] and [28] to the case of general nonlinear
dynamical systems. Additional special attention is given to the lower estimate of the
oscillation amplitude for d( t ) ≡ 0, t ≥ 0.

Exciting part k2 of feedback k defines the size of set Ω (due to constants Y and K
are prescribed by k2) and, hence, it regulates the gap between values of π− and π+.

Remark 2. It is worth stressing that the control in Theorem 3 is proposed to
satisfy some sector condition with respect to output y. For design of such controls in
practical application it is possible to use speed-gradient approach [9, 10], e.g., choose
u = ϕ(y ), where ϕ(y )Ty > 0 for 0 < |y | < Y1 and ϕ(y )Ty < 0 for |y | > Y2 > Y1.

Example 4. Let us consider controlled linear oscillator:

ẋ1 = x2; ẋ2 = −x1 + u,

which is passive with storage function

V (x ) = 0.5
(
x2

1 + x2
2

)
, V̇ = x2 u,

and IOSS with corresponding Lyapunov function

W (x ) = 0.5
(
x2

1 + (x1 + x2 )2
)
,

Ẇ ≤ −0.5
(
x2

1 + x2
2

)
+ x2

2 + u2

with output y = x2 (σ1( s ) = σ2( s ) = s2). Then control u = −k1(x ) + k2(x ) with
k1(x ) = a x2, a > 0.5 and k2(x ) = K sign(x2 ) admits all condition of Theorem 3
with λ( s ) = a s, κ( s ) = ( a − 0.5 ) s2, μ( s ) = 0.5 s2. All functions σ2, σ1 ◦ λ and κ
are square-law and, hence,

lim
s→+∞

σ2( s ) + σ1 ◦ λ( s )
κ( s )

< +∞;

inequality x2 k2(x ) > x2 k1(x ) holds for 0 < |x2 | < Y , Y = K/a. This system is
ISS for control u = −k1(x ) + d with ISS Lyapunov function:

U(x ) = W (x ) +
1 + 2 a2

a− 0.5
V (x ),

U̇ ≤ −0.5
(
x2

1 + x2
2

)
+
(

2 +
0.5 + a2

a− 0.5

)
d2.

Then set

Ω =

{
x : K/a ≤ |x | ≤

√
1 +

1.5 a− 0.75
a2 + 0.5

√
4 +

1 + 2 a2

a− 0.5
K

}

is always nonempty. Simulation results and bounds of set Ω are shown in Figure 4
for a = 1 and K = 1/3.
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Fig. 4. Trajectories of linear oscillator under nonlinear feedback.

Based on the results of Theorem 3 and Corollary 2 it is possible to obtain the esti-
mates of excitation indices of closed loop system for the case of nonvanishing signal d.

Corollary 3. Let all conditions of Theorem 3 hold. Then for ‖d ‖ ≤ γ < +∞

0 ≤ χ−
V ( γ ) ≤ χ+

V ( γ ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K + γ ),

if additionally

y( t )Td( t ) ≥ 0 for all t ≥ 0, (3),

then

α(Y ) ≤ χ−
V ( γ ) < χ+

V ( γ ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K + γ ).

Proof. Upper estimate on excitation indices follows from ISS property of the
system with respect to input d̃ (asymptotic gain property in [25]). Now let us consider
time derivative of storage function V :

V̇ = yT (−k1(x ) + k2(x ) + d )− β(x )
≥
[
yT (−k1(x ) + k2(x ) )− β(x )

]
+ yTd .

From conditions of Theorem 3, the expression in square brackets is positive for 0 <
|y | < Y < +∞, but the presence of sign-varying term yTd allows one to claim only
0 ≤ χ−

V ( γ ) ≤ χ+
V ( γ ) in common case. But if y( t )Td( t ) ≥ 0 for all t ≥ 0, then

[yT (−k1(x ) + k2(x ) )− β(x ) ] + yTd
≥ yT (−k1(x ) + k2(x ) )− β(x ),

and the desired result follows by the same line of consideration as in Theorem 3.
Further let us suppose that it is possible a situation χ−

V ( γ ) = χ+
V ( γ ) for some γ. But

according to Definition 4, excitation indices admit conditions:

γ1 ≤ γ2 ⇒ χ−
V ( γ2 ) ≤ χ−

V ( γ1 ) and χ+
V ( γ1 ) ≤ χ+

V ( γ2 ).
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Applying the same arguments as in Corollary 2 for the results of Theorem 3 it is
possible to obtain

0 < χ+
V ( 0 )− χ−

V ( 0 ) ≤ α ◦ α−1
4 ◦ α5 ◦ α−1

6 ◦ δ(K )− α(Y ),

therefore, χ+
V ( γ )− χ−

V ( γ ) > 0 for any γ ≥ 0.
According to the corollary index χ+

V ( γ ) is always bounded, that is more, it can
not be equal to χ−

V ( γ ) for any γ ∈ R+ with (3). Thus, system can not lose its
oscillation ability for any large enough input disturbance possessing “coordination”
condition (3) and such input d does not provide new equilibrium points into set
Ω =

{
V (x ) : α(Y ) ≤ V (x ) ≤ α ◦ α−1

4 ◦ α5(K + γ )
}

for system ẋ = f(x,k1(x) +
k2(x) + d). Also it is worth to note, that the requirement (3) can be satisfied for
t ≥ T only, where 0 ≤ T < +∞.

5. Conclusion. In this paper conditions for oscillatority in the sense of
Yakubovich applicable to nonlinear systems are proposed. Upper and lower bounds
for oscillation amplitude are evaluated. Presented conditions are also necessary for
some special class of uniformly oscillating systems. Relation between the oscillatority
bounds and excitability indices for the systems with input is established. An impor-
tant advantage of the results of the paper is their applicability to complex nonperiodic
(e.g., chaotic) oscillations. Such an advantage is achieved due to using the concept
of oscillatority in the sense of Yakubovich as the starting point of the whole study.
The results are illustrated by examples: Evaluation of oscillations for Van der Pol and
Hindmarsh–Rose neuron systems. As a side result a smooth nonquadratic Lyapunov
function providing boundedness of Van der Pol system solutions has been found.

Appendix.
Lemma A.1. Let system (1) have IOSS Lyapunov function W and h-dissipative

storage function V as in Definition 2. If

lim
s→+∞

σ2( s )
α( s )

< +∞,

then system (1) is ISS with ISS Lyapunov function

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) ,

ρ( r ) =
∫ r

0

q( s ) ds, q( s ) =
α ◦ σ−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

,

α4( s ) = ρ ◦ α1( s ), α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

Lf(x,u )U(x ) ≤ −α6 ( |x | ) + δ ( |u | ) , δ( s ) = σ( s ) + 2χ ( 2 σ1( s ) ) σ1( s ),

χ ( 2 σ2( s ) ) = α( s ) [ 1 + 2 σ2( s ) ]−1.

Proof. According to conditions of the lemma and Definition 2, the following series
of inequalities holds for all x ∈ Rn and u ∈ Rm:

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) ; Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ;

α ( |y |) ≤ V (x ) ≤ α ( |x |) ; Lf(x,u )V (x ) ≤ −α ( |y | ) + σ ( |u | ) ,

where α, α1, α2, α3, α, α ∈ K∞ and σ, σ1, σ2 ∈ K. Let us consider a new IOSS Lya-
punov function

W̃ (x ) = ρ (W (x ) ) , ρ( r ) =
∫ r

0

q( s ) ds,
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where q is some function from class K (that will be defined later). Clearly function W̃
is again continuously differentiable, positive definite, and radially unbounded provided
that ρ ∈ K∞. Its time derivative admits an estimate:

Lf(x,u )W̃ (x ) ≤ q (W (x ) ) [−α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ] .

To disclose the above inequality let us analyze consequently three situations:
(a) If 0.5α3 ( |x | ) ≥ σ1 ( |u | ) + σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −0.5 q (W (x ) ) α3 ( |x | ) ;

(b) If 0.5α3 ( |x | ) < σ1 ( |u | ) + σ2 ( |y | ) and σ1 ( |u | ) ≤ σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −q (W (x ) ) α3 ( |x | ) + 2 q (W (x ) ) σ2 ( |y | )
≤ −q (W (x ) ) α3 ( |x | ) + 2χ ( 2 σ2 ( |y | ) ) σ2 ( |y | ) ,

where χ( s ) = q ◦ α2 ◦ α−1
3 ( 2 s );

(c) If 0.5α3 ( |x | ) < σ1 ( |u | ) + σ2 ( |y | ) and σ1 ( |u | ) > σ2 ( |y | ), then

Lf(x,u )W̃ (x ) ≤ −q (W (x ) ) α3 ( |x | ) + 2 q (W (x ) ) σ1 ( |u | )
≤ −q (W (x ) ) α3 ( |x | ) + 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) .

Thus, the time derivative of function W̃ calculated for system (1) can be rewritten in
the form:

Lf(x,u )W̃ (x ) ≤ −0.5 q (W (x ) ) α3 ( |x | )
+ 2χ ( 2 σ2 ( |y | ) ) σ2 ( |y | ) + 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) .

Let function χ be taken to possess the following equality:

χ ( 2 σ2( s ) ) =
α( s )

1 + 2 σ2( s )
,

such choice of χ is possible due to

lim
s→+∞

σ2( s )
α( s )

< +∞

with q( s ) =
α◦σ−1

2 ( 0.25α3◦α−1
2 ( s ) )

1+0.5α3◦α−1
2 ( s )

from class K. Then system (1) is ISS with ISS

Lyapunov function U(x ) = V (x ) + W̃ (x ) (α4( s ) = ρ ◦ α1( s ), α5( s ) = α( s ) + ρ ◦
α2( s )), indeed:

Lf(x,u )U(x ) ≤ −0.5 q (W (x ) ) α3 ( |x | ) + σ ( |u | )
+ 2χ ( 2 σ1 ( |u | ) ) σ1 ( |u | ) ≤ −α6 ( |x | ) + δ ( |u | ) ,

where α6( s ) = 0.5 q (α1( s ) ) α3( s ) and δ( s ) = σ( s ) + 2χ ( 2 σ1( s ) ) σ1( s ).
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The next lemma is a corollary of Lemma A.1 presenting a variant of ISS stabilizing
control law for a passive system.

Lemma A.2. Let system (1) be passive and IOSS in the sense of Definition 2 and

α ( |y |) ≤ V (x ) ≤ α ( |x |) , α, α ∈ K∞.

Then control

u = −k(x ) + d, |k(x ) | ≤ λ ( |y | ) , λ ∈ K;

yTk(x ) + β(x ) ≥ κ ( |y | ) + 0.5 |y |2 , κ ∈ K∞;

lim
s→+∞

σ2( s ) + σ1 ◦ λ( s )
κ( s )

< +∞,

where d ∈ Rm is new input (Lebesgue measurable and essentially bounded function of
time), and provides for the system ISS property with ISS Lyapunov function:

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) , ρ( r ) =
∫ r

0

q( s ) ds,

q( s ) =
κ ◦ σ̃−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

, α4( s ) = ρ ◦ α1( s ),

α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

δ( s ) = 0.5 s2 + 2χ ( 2 σ1( 2 s ) ) σ1( 2 s ).

Proof. From Definition 2 the following conditions hold for all x ∈ Rn and u ∈ Rm:

α1 ( |x |) ≤W (x ) ≤ α2 ( |x |) ;

Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |u | ) + σ2 ( |y | ) ;

α ( |y |) ≤ V (x ) ≤ α ( |x |) ; Lf(x,u )V (x ) ≤ −β ( |x | ) + yTu

with α1, α2, α3, α, α ∈ K∞, σ1, σ2 ∈ K and β some nonnegative definite function.
Substituting control in these inequalities, it is possible to obtain

Lf(x,u )W (x ) ≤ −α3 ( |x | ) + σ1 ( |d− k(x ) | ) + σ2 ( |y | )
≤ −α3 ( |x | ) + σ1 ( 2 |d | ) + σ1 ( 2λ ( |y | ) ) + σ2 ( |y | ) ;

Lf(x,u )V (x ) ≤ −β ( |x | ) + yT (d− k(x ) ) ≤ −κ ( |y | ) + 0.5 |d |2 .

Thus, such control provides for closed loop system IOSS property and h-dissipativity
with respect to new input d. If

lim
s→+∞

σ̃2( s )
κ( s )

< +∞, σ̃2( s ) = σ2( s ) + σ1 ◦ λ( s ),

then all conditions of Lemma A1 are satisfied and the system is ISS with ISS Lyapunov
function

U(x ) = V (x ) + W̃ (x ), W̃ (x ) = ρ (W (x ) ) , ρ( r ) =
∫ r

0

q( s ) ds,

q( s ) =
κ ◦ σ̃−1

2

(
0.25α3 ◦ α−1

2 ( s )
)

1 + 0.5α3 ◦ α−1
2 ( s )

, α4( s ) = ρ ◦ α1( s ),

α5( s ) = α( s ) + ρ ◦ α2( s ), α6( s ) = 0.5 q (α1( s ) ) α3( s ),

δ( s ) = 0.5 s2 + 2χ ( 2 σ1( 2 s ) ) σ1( 2 s ).
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APPROXIMATE TRACKING AND DISTURBANCE REJECTION
FOR STABLE INFINITE-DIMENSIONAL SYSTEMS USING

SAMPLED-DATA LOW-GAIN CONTROL∗

ZHENQING KE† , HARTMUT LOGEMANN† , AND RICHARD REBARBER‡

Abstract. In this paper we solve tracking and disturbance rejection problems for stable infinite-
dimensional systems using a simple low-gain controller suggested by the internal model principle. For
stable discrete-time systems, it is shown that the application of a low-gain controller (depending on
only one gain parameter) leads to a stable closed-loop system which asymptotically tracks reference

signals r of the form r(k) =
∑N

j=1 λ
k
j rj , where rj ∈ C

p and λj ∈ C with |λj | = 1 for j = 1, . . . , N .
The closed-loop system also rejects disturbance signals which are asymptotically of this form. The
discrete-time result is used to derive results on approximate tracking and disturbance rejection for
a large class of infinite-dimensional sampled-data feedback systems, with reference signals which are
finite sums of sinusoids, and disturbance signals which are asymptotic to finite sums of sinusoids.
The results are given for both input-output systems and state-space systems.

Key words. discrete-time systems, disturbance rejection, infinite-dimensional systems, internal
model principle, low-gain control, sampled-data control, tracking
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1. Introduction. The synthesis of low-gain integral controllers for uncertain
stable continuous-time plants has received considerable attention in the last thirty
years. Let G be a stable proper rational continuous-time transfer function matrix.
The main existence result for robust low-gain integral control states that if all of the
eigenvalues of G(0) have positive real parts, then there exists ε∗ > 0 such that for all
ε ∈ (0, ε∗), the controller (ε/s)I stabilizes G. Moreover, the resulting closed-loop sys-
tem asymptotically tracks arbitrary constant reference signals. This result has been
proved by Davison [2] using state-space methods and Morari [11] using frequency-
domain methods. This low-gain controller allows stabilization and tracking with very
little information about the plant, and it is not based on system identification. The
above regulator result has been extended to various classes of (abstract) infinite-
dimensional continuous-time systems: in [12] for exponentially stable parabolic sys-
tems, in [7] for systems in the Callier–Desoer algebra (CD-algebra), and in [9] for
exponentially stable regular systems.

In the case that the reference and disturbance signals are of the form

N∑
j=1

eiωjtwj , ωj ∈ R , wj ∈ C
m ,

Hämäläinen and Pohjolainen [3] solved the tracking and disturbance rejection problem
for stable infinite-dimensional systems in the CD-algebra. (In their paper, reference
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and disturbance signals are more general, containing polynomial parts.) Rebarber
and Weiss [13] proved similar results for the more general class of exponentially stable
well-posed systems.

In this paper, we consider low-gain control for infinite-dimensional discrete-time
and sampled-data feedback systems. In section 2, we give preliminary technical re-
sults. In section 3, we develop a frequency-domain approach to discrete-time low-gain
control. We consider a feedback controller of the form

(1.1) ε

⎛
⎝K0(z) +

N∑
j=1

Kj

z − λj

⎞
⎠ ,

where K0 has impulse response in �1(Z+,C
m×p), Kj ∈ C

m×p, and λj ∈ C with
|λj | = 1. We assume that the plant has a transfer function G which has impulse
response in �1(Z+,C

p×m). We show that the application of this controller to the
plant will result in an �q-stable closed-loop system for 1 ≤ q ≤ ∞, provided that

(i) all the eigenvalues of λ̄jG(λj)Kj have positive real parts;
(ii) lim supz→λj |z|>1 ‖(G(z)−G(λj))/(z − λj)‖ <∞;
(iii) the gain parameter ε is sufficiently small.

Moreover, the closed-loop system achieves asymptotic tracking and disturbance rejec-
tion for reference signals r of the form r(k) :=

∑N
j=1 λ

k
j rj and disturbance signals d

satisfying limk→∞(d(k) −
∑N
j=1 λ

k
j dj) = 0, where rj ∈ C

p and dj ∈ C
m. The results

are first proved for input-output systems, and then for state-space systems. Our re-
sults are an extension of results by Logemann and Townley [10]. In their paper, the
reference and disturbance signals are constants.

In section 4, the discrete-time results in section 3 are used to derive results
on approximate tracking and disturbance rejection for input-output and state-space
sampled-data systems. The input-output operator G of the continuous-time plant is
assumed to be a convolution operator of the form Gu = μ � u, where μ is a C

p×m-
valued Borel measure such that

∫
R+
e−αt|μ|(dt) < ∞ for some α < 0, where |μ| is

the total variation of μ. The discrete-time controller underlying the sampled-data
feedback scheme is given by (1.1) with λj = eξjτ , where ξj ∈ iR for j = 1, . . . , N and
τ > 0 is the sampling period. The reference signals r are given by r(t) =

∑N
j=1 e

ξjtrj ,
where rj ∈ C

p. Invoking both time-domain and frequency-domain methods, we prove
that if all the eigenvalues of G(ξj)Kj have positive real parts, then, for every δ > 0,
there exists τδ > 0 such that, for every sampling period τ ∈ (0, τδ), there exists ετ > 0
such that, for every ε ∈ (0, ετ ), the output y of the closed-loop sampled-data system
satisfies

lim sup
t→∞

‖y(t)− r(t)‖ ≤ δ

in the presence of disturbance signals d satisfying limt→∞(d(t) −
∑N

j=1 e
ξjtdj) = 0,

where dj ∈ C
m. At the end of the section we give an application to a heat equation.

To the best of our knowledge, the main results in sections 3 and 4 are new even
for finite-dimensional systems.

Notation. Let X and Y be Banach spaces. The set of all bounded linear op-
erators from X to Y is denoted by B(X,Y ); we write B(X) for B(X,X). Moreover,
F (Z+, X) denotes all X-valued sequences defined on Z+, and Lb(R+, X) denotes the
set of bounded X-valued Lebesgue measurable functions with the sup-norm ‖ · ‖∞.
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The z-transform of v ∈ F (Z+, X) is denoted by Z (v). Sometimes we write v̂ for Z (v).
For α > 0 and β ∈ R, define Eα := {z ∈ C : |z| > α} and Cβ := {z ∈ C : Re z > β}.

Let Ω ⊂ C be open. We define

H∞(Ω,Cp×m) := {f : Ω→ C
p×m | f is holomorphic and bounded} ,

H∞
< (E1,C

p×m) :=
⋃

0<γ<1

H∞(Eγ ,Cp×m) .

We write H∞(Ω) := H∞(Ω,C). Let Q denote the quotient field of H∞(E1), i.e.,
Q = {n/d : n, d ∈ H∞(E1), d �= 0}. Furthermore, let Rs denote the ring of discrete-
time stable proper complex rational functions, i.e., rational functions with complex
coefficients which are bounded at ∞ and have all their poles in {z ∈ C : |z| < 1}.

For α > 0, define the weighted �1-space �1α(Z+,C
p×m) by

�1α(Z+,C
p×m) := {v ∈ F (Z+,C

p×m) : (v(k)α−k)k∈Z+ ∈ �1(Z+,C
p×m)}

and set

�̂1α(Cp×m) := {Z (g) : g ∈ �1α(Z+,C
p×m)} ⊂ H∞(Eα,Cp×m) .

We write �̂1(Cp×m) := �̂11(Cp×m). For A ∈ B(X), let σ(A) denote the spectrum of
A. For N ∈ N, set N := {1, 2, . . . , N}. Finally, throughout, the symbol � denotes
convolution (in discrete and continuous time).

2. Preliminaries. Let F(G,K) denote the (discrete-time) feedback system
shown in Figure 2.1, where G ∈ Qp×m and K ∈ Qm×p. For (G,K) ∈ Qp×m ×Qm×p

such that det(I + GK) �= 0, we set

(2.1) F (G,K) :=
(

(I + GK)−1 G(I + KG)−1

K(I + GK)−1 (I + KG)−1

)
.

The feedback system F(G,K) is called �q-stable (where 1 ≤ q ≤ ∞) if there exists
M ≥ 0 such that, for all r, d2 ∈ �q(Z+,C

p) and all d1 ∈ �q(Z+,C
m),

‖yp‖
q + ‖yc‖
q ≤M(‖r‖
q + ‖d1‖
q + ‖d2‖
q) .

It is easy to see that F(G,K) is �q-stable if F (G,K) ∈ �̂1(C(m+p)×(m+p)),
and it is a standard result that F(G,K) is �2-stable if and only if F (G,K) ∈
H∞(E1,C

(m+p)×(m+p)).

�
� �

d̂1

+
+

�ûp
G �ŷp

�

+
�+ d̂2

�ŷ
•

���
−

r̂

+
� ûc

K
ŷc

Fig. 2.1. Discrete-time closed-loop system F(G,K).
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Definition 2.1. A left-coprime factorization of G ∈ Qp×m (over H∞(E1)) is a
pair (D,N) ∈ H∞(E1,C

p×p)×H∞(E1,C
p×m) such that detD �= 0, G = D−1N and

D and N are left coprime; i.e., there exist X ∈ H∞(E1,C
p×p), Y ∈ H∞(E1,C

m×p)
satisfying DX + NY = I.

A right-coprime factorization of G ∈ Qp×m (over H∞(E1)) is a pair (N,D) ∈
H∞(E1,C

p×m)×H∞(E1,C
m×m) such that detD �= 0, G = ND−1 and N and D are

right coprime; i.e., there exist X ∈ H∞(E1,C
m×p), Y ∈ H∞(E1,C

m×m) satisfying
XN + YD = I.

Remark 2.2. It follows from [14] that G and K admit left- and right-coprime
factorizations (over H∞(E1)) if F(G,K) is �2-stable.

An application of a standard result in fractional representation theory (see [17,
Lemma 3.1]) gives the following necessary and sufficient algebraic condition for closed-
loop stability in terms of coprime factors.

Proposition 2.3. Let G ∈ Qp×m and K ∈ Qm×p. Assume that there exist a left-
coprime factorization (DG,NG) of G and a right-coprime factorization (NK,DK) of
K (both over H∞(E1)). Then the feedback system F(G,K) is �2-stable if and only if
the matrix NGNK + DGDK has an inverse in H∞(E1,C

p×p), i.e., if and only if

inf
z∈E1
| det[NG(z)NK(z) + DG(z)DK(z)]| > 0 .

Proposition 2.4 (see [1, Lemma 3.1]). Assume that G ∈ �̂1(Cm×m). Then G
has an inverse in �̂1(Cm×m) if and only if

inf
z∈E1
| detG(z)| > 0 .

The next result will be an important tool in the proof of our main theorem in
section 3, and it is also interesting in its own right.

Proposition 2.5. Let G ∈ Qp×m and K ∈ Qm×p. Assume that the feedback
system F(G,K) is �2-stable. Let (DG,NG) be a left-coprime factorization of G and
(NK,DK) be a right-coprime factorization of K (both over H∞(E1)). Assume that
DG,DK ∈ �̂1(Cp×p), NG ∈ �̂1(Cp×m), and NK ∈ �̂1(Cm×p). Then F (G,K) ∈
�̂1(C(m+p)×(m+p)). In particular, F(G,K) is �q-stable for 1 ≤ q ≤ ∞.

Proof. By hypothesis, it is clear that NGNK+DGDK ∈ �̂1(Cp×p). Since F(G,K)
is �2-stable, by Proposition 2.3,

inf
z∈E1
| det[NG(z)NK(z) + DG(z)DK(z)]| > 0 .

Then it follows from Proposition 2.4 that (NGNK + DGDK)−1 ∈ �̂1(Cp×p). It is
easy to see that

(I + GK)−1 = DK(NGNK + DGDK)−1DG ,

so that (I + GK)−1 ∈ �̂1(Cp×p). By simple calculations, we obtain

K(I + GK)−1 = NK(NGNK + DGDK)−1DG ,

G(I + KG)−1 = (I + GK)−1G = DK(NGNK + DGDK)−1NG ,

(I + KG)−1 = I −K(I + GK)−1G = I −NK(NGNK + DGDK)−1NG ,

showing that K(I +GK)−1, G(I +KG)−1, and (I +KG)−1 have all their entries in
�̂1(C). Hence F (G,K) ∈ �̂1(C(m+p)×(m+p)).
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The following frequency-response result for transfer functions in �̂1(Cp×m) will be
useful for understanding the asymptotic behavior of the closed-loop system.

Lemma 2.6. Let g ∈ F (Z+,C
p×m), u ∈ F (Z+,C

m), λ ∈ E1, v ∈ C
m and set

G := Z (g).
1. If g ∈ �1(Z+,C

p×m) and limn→∞(u(n)− λnv) = 0, then

lim
n→∞[(g � u)(n)− λnG(λ)v] = 0 .

2. If there exist β ∈ (0, 1) and M ≥ 0 such that g ∈ �1β(Z+,C
p×m) and

‖u(n)− λnv‖ ≤Mβn ∀n ∈ Z+ ,

then there exists L ≥ 0 such that

‖(g � u)(n)−G(λ)λnv‖ ≤ Lβn ∀n ∈ Z+ .

Proof. Since g ∈ �1(Z+,C
p×m),

‖G(z)‖ =

∥∥∥∥∥
∞∑
k=0

g(k)z−k
∥∥∥∥∥ ≤

∞∑
k=0

‖g(k)‖|z|−k ≤
∞∑
k=0

‖g(k)‖ <∞ ∀z ∈ E1 ,

so that G(z) is well defined for z ∈ E1. Define v ∈ F (Z+,C
m) by v(k) := λkv. Since

λ ∈ E1, |λ|−k ≤ 1 for all k ∈ Z+. Therefore,

‖(g � u)(n)− λnG(λ)v‖ =

∥∥∥∥∥
n∑
k=0

g(k)u(n− k)−
∞∑
k=0

λn−kg(k)v

∥∥∥∥∥
≤
∥∥∥∥∥
n∑
k=0

g(k)(u(n− k)− v(n− k))
∥∥∥∥∥+ ‖v‖

∞∑
k=n+1

|λ|n−k‖g(k)‖

≤ ‖(g � (u− v))(n)‖ + ‖v‖
∞∑
k=n

‖g(k)‖ ∀n ∈ Z+ .(2.2)

We proceed to prove statement 1. Let M1 ≥ 0 be such that ‖u(k)−v(k)‖ ≤M1 for all
k ∈ Z+. By hypothesis, limk→∞ ‖u(k)− v(k)‖ = 0 and g ∈ �1(Z+,C

p×m). Therefore,
for ε > 0, there exists k0 ∈ Z+ such that

‖u(k)− v(k)‖ ≤ ε

2‖g‖
1
,

∞∑
j=k

‖g(j)‖ ≤ ε

2M1
; ∀k ≥ k0.

Then, for n ≥ 2k0,

‖(g � (u− v))(n)‖ ≤
k0∑
k=0

‖g(k)‖‖(u− v)(n− k)‖+
n∑

k=k0+1

‖g(k)‖‖(u− v)(n− k)‖

≤ ε

2‖g‖
1

k0∑
k=0

‖g(k)‖+M1

n∑
k=k0+1

‖g(k)‖

≤ ε ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

646 ZHENQING KE, HARTMUT LOGEMANN, AND RICHARD REBARBER

showing that

(2.3) lim
n→∞ ‖g � (u − v)(n)‖ = 0 .

A combination of (2.2), (2.3), and the fact that limn→∞
∑∞
k=n ‖g(k)‖ = 0 yields

statement 1.
To prove statement 2, we set M2 :=

∑∞
k=0 β

−k‖g(k)‖ <∞. By hypothesis, there
exists M ≥ 0 such that

‖(u− v)(n)‖ ≤Mβn ∀n ∈ Z+ .

Since β ∈ (0, 1) and by (2.2), we have

β−n‖(g � u)(n)−G(λ)λnv‖ ≤ β−n
n∑
k=0

‖g(k)‖‖(u− v)(n− k)‖+ β−n‖v‖
∞∑
k=n

‖g(k)‖

≤ β−n
n∑
k=0

‖g(k)‖Mβn−k + ‖v‖
∞∑
k=n

β−k‖g(k)‖

≤MM2 + ‖v‖M2 ∀n ∈ Z+ .

Hence ‖(g � u)(n)−G(λ)λnv‖ ≤M2(M + ‖v‖)βn for all n ∈ Z+.
The next result shows that Lemma 2.6 applies in particular to input-output op-

erators with transfer functions in H∞
< (E1,C

p×m). We omit the routine proof.
Proposition 2.7. For 0 < α < β, H∞(Eα,Cp×m) ⊂ �̂1β(Cp×m).
The following remark shows that Lemma 2.6 also applies to power stable state-

space systems.
Remark 2.8. Consider a discrete-time state-space system

xp(k + 1) = Axp(k) +Bup(k) ,(2.4a)

yp(k) = Cxp(k) +Dup(k) ,(2.4b)

evolving on a Banach space X , where A ∈ B(X), B ∈ B(Cm, X), C ∈ B(X,Cp), and
D ∈ B(Cm,Cp). The transfer function G of (2.4) is given by

G(z) = C(zI −A)−1B +D .

System (2.4) is called power stable if A is power stable, i.e., there exist M ≥ 1 and
ρ ∈ (0, 1) such that

‖Ak‖ ≤Mρk ∀k ∈ Z+ .

Clearly, if (2.4) is power stable, then σ(A) ⊂ {z ∈ C : |z| < 1} and G ∈ H∞
< (E1,

C
p×m). Hence, by Proposition 2.7, Lemma 2.6 applies to power stable systems of the

form (2.4).

3. Low-gain control of discrete-time systems. Let F(G,Kε) denote the
discrete-time feedback system shown in Figure 2.1 and given by (2.1), with K replaced
with Kε. The following asymptotic tracking theorem is the main result of this section.
It is the discrete-time counterpart of the continuous-time result due to Rebarber
and Weiss [13], which is a partial extension of the main results in Hämäläinen and
Pohjolainen [3].
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Theorem 3.1. Let N ∈ N. For j ∈ N , let λj ∈ C be such that |λj | = 1 and
λj �= λk for j �= k. Assume that G ∈ �̂1(Cp×m) and Kε is given by

(3.1) Kε(z) := ε

⎛
⎝K0(z) +

N∑
j=1

Kj

z − λj

⎞
⎠ ,

where K0 ∈ �̂1(Cm×p) and Kj ∈ C
m×p. If

(3.2) σ[λ̄jG(λj)Kj ] ⊂ C0 ∀j ∈ N

and

(3.3) lim sup
z→λj , z∈E1

∥∥∥∥G(z)−G(λj)
z − λj

∥∥∥∥ <∞ ∀j ∈ N ,

then there exists ε∗ > 0 such that, for all ε ∈ (0, ε∗), we have F (G,Kε) ∈ �̂1

(C(m+p)×(m+p)) (thus F(G,Kε) is �q-stable for every 1 ≤ q ≤ ∞).
Moreover, if the reference signal r is given by

(3.4) r(k) :=
N∑
j=1

λkj rj , rj ∈ C
p , ∀k ∈ Z+ ,

and the disturbance signals d1, d2 satisfy

lim
k→∞

⎛
⎝d1(k)−

N∑
j=1

λkj d1j

⎞
⎠ = 0 , lim

k→∞

⎛
⎝d2(k)−

N∑
j=1

λkj d2j

⎞
⎠ = 0(3.5)

for some d1j ∈ C
m and d2j ∈ C

p,

then, for every ε ∈ (0, ε∗), the output of the closed-loop system y asymptotically tracks
r in the presence of d1, d2, that is, limk→∞(y(k)− r(k)) = 0.

Remark 3.2. (i) If condition (3.2) does not hold, then there is no guarantee that
there exists an ε > 0 such that the feedback system F(G,Kε) is �2-stable. Indeed,
if N = m = p = 1, λ1 = 1, K1 = 1, and G ∈ �̂1(C) with G(1) ∈ (−∞, 0], then an
application of Proposition 2.3 shows that F(G,Kε) is not �2-stable for every ε > 0.
Furthermore, ifN = 1 and λ1 = 1, then it can be shown that the existence of an ε∗ > 0
such that, for all ε ∈ (0, ε∗), F(G,Kε) is �2-stable implies that σ(G(1)K1) ⊂ C0

(this follows from a suitable modification of an argument used in [11, Theorem 3]).
Consequently, at least in the case N = 1 and λ1 = 1, condition (3.2) is “close” to
being necessary for the stability conclusion of Theorem 3.1 to hold.

(ii) Condition (3.3) is not very restrictive. It is, for example, satisfied if, for every
j ∈ N , the transfer function G has a holomorphic extension to an open neighborhood
of λj (which is trivially the case if G ∈ H∞

< (E1,C
p×m)).

(iii) Note that only very little plant information is required in order to apply The-
orem 3.1, namely, stability of the system to be controlled, condition (3.3), and some
information on G(λj), where the latter is required for the computation of Kj such
that (3.2) holds. The spectral condition (3.2) is robust with respect to “sufficiently
small” plant perturbations, while (3.3) is robust with respect to all plant perturbation
in H∞

< (E1,C
p×m).
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(iv) If, in Theorem 3.1, we replace the controller Kε by

K̃ε(z) := ε

⎛
⎝K̃0(z) +

N∑
j=1

zK̃j

z − λj

⎞
⎠ ,

where K̃0 ∈ �̂1(Cm×p) and K̃j ∈ C
m×p, and condition (3.2) by

(3.6) σ(G(λj)K̃j) ⊂ C0 ∀j ∈ N ,

while all the other conditions in the theorem remain the same, then the conclusions
on stability, tracking, and disturbance rejection in Theorem 3.1 are still valid. This
follows directly from Theorem 3.1, since

K̃ε(z) = ε

⎛
⎝K̃0(z) +

N∑
j=1

K̃j +
N∑
j=1

λjK̃j

z − λj

⎞
⎠

is of the form (3.1) with

K0(z) = K̃0(z) +
N∑
j=1

K̃j , Kj = λjK̃j ,

and σ(λ̄jG(λj)Kj) = σ(G(λj)K̃j) ⊂ C0.
(v) The spectral condition (3.2) (or, alternatively, (3.6)) is the discrete-time ana-

logue of the continuous-time condition in [13]; see [13, equation (1.5)]. Moreover, in
the continuous-time result [13, Theorem 1.1], it is assumed that the transfer function
of the plant is holomorphic and bounded in a half-plane of the form Re s > −α for
some α > 0; the discrete-time analogue of this condition is, in the terminology of the
present paper, G ∈ H∞

< (E1,C
p×m), which implies (3.3) (cf. part (ii) of this remark).

Consequently, condition (3.3) is weaker than the corresponding continuous-time con-
dition in [13, Theorem 1.1].

To facilitate the proof of Theorem 3.1, we first state and prove the following key
lemma, which shows that the transfer function (I + GKε)−1, the so-called sensitivity
function, is in H∞(E1,C

p×p) for sufficiently small ε > 0.
Lemma 3.3. Let N ∈ N and let λj ∈ C be such that |λj | = 1 and λj �= λk for j, k ∈

N , j �= k. Let G ∈ H∞(E1,C
p×m) be such that the limit G(λj) := limz→λj , z∈E1 G(z)

exists for every j ∈ N . Let Kε be given by (3.1), where K0 ∈ H∞(E1,C
m×p) and

Kj ∈ C
m×p. Assume that (3.2) and (3.3) hold. Then there exists ε∗ > 0 such

that, for all ε ∈ (0, ε∗), (I + GKε)−1 ∈ H∞(E1,C
p×p). Moreover, if the additional

assumptions that G ∈ H∞
< (E1,C

p×m) and K0 ∈ H∞
< (E1,C

m×p) are satisfied, then,
for every ε ∈ (0, ε∗), (I + GKε)−1 ∈ H∞

< (E1,C
p×p).

Proof. Before proceeding to the technical details, we summarize the idea of the
proof. We wish to show that (I + GKε)−1 is bounded in E1, the complement of the
closed unit disc, for all sufficiently small ε > 0. Roughly speaking, we decompose E1

in the form E1 = Ω∪
(
∪nj=1Ωj

)
, where Ω is bounded away from all of the λj ’s and Ωj

is the “part of E1 near λj .” We prove that, for sufficiently small ε > 0, (I + GKε)−1

is bounded on each of these sets. Special care is required for the analysis on the
sets Ωj .
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�
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�
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V1 UV2

Fig. 3.1. An illustration of the sets U , V1, and V2.

Returning to the technical details of the proof, we first note that, since σ[λ̄jG
(λj)Kj] ⊂ C0 for all j ∈ N , there exists θ ∈ (0, π/2) such that

(3.7)
N⋃
j=1

σ[λ̄jG(λj)Kj ] ⊂ {z ∈ C \ {0} : arg z ∈ (−θ, θ)} =: U .

Let ρ ∈ (0, 1) and consider Figure 3.1. The circles {z ∈ C : |z| = ρ} and {z ∈
C : |z + 1| = 1} intersect at two points, denoted by ρeiφ(ρ) and ρe−iφ(ρ), where
φ(ρ) ∈ (π/2, π). Note that φ(ρ) → π/2 monotonically as ρ → 0. Hence there exists
ρ0 ∈ (0, 1) such that π − φ(ρ) > θ for all ρ ∈ (0, ρ0]. Set

V1 := {z ∈ C \ {0} : arg z ∈ (−φ(ρ0), φ(ρ0))}

and

V2 := −V1 = {z ∈ C \ {0} : arg z ∈ (π − φ(ρ0), π + φ(ρ0))}.

Clearly,

(3.8) U ∩ V 2 = ∅ .

There exists ρ1 ∈ (0, ρ0] such that |λj−λk| > 2ρ1 for all j, k ∈ N , j �= k. Defining

Ωj := E1

⋂
{z ∈ C : |z − λj | < ρ1} ,

we have that Ωj ∩ Ωk = ∅ for j, k ∈ N , j �= k. Moreover, set Ω := E1 \
⋃N
j=1 Ωj .

Assume that G ∈ H∞(E1,C
p×m) and K0 ∈ H∞(E1,C

m×p). It is clear that

sup
z∈Ω

∥∥∥∥∥∥G(z)

⎛
⎝K0(z) +

N∑
j=1

Kj

z − λj

⎞
⎠
∥∥∥∥∥∥ <∞ .

Therefore, there exists ε∞ > 0 such that

S(z) := [I + G(z)Kε(z)]−1 =

⎡
⎣I + εG(z)

⎛
⎝K0(z) +

N∑
j=1

Kj

z − λj

⎞
⎠
⎤
⎦
−1
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is uniformly bounded for all z ∈ Ω and for all ε ∈ (0, ε∞). Fix j ∈ N . To analyze S
on Ωj , we define

Sj(z) :=
(
I +

εG(λj)Kj

z − λj

)−1

=
(
I +

ελ̄jG(λj)Kj

λ̄jz − 1

)−1

and

Qj(z) :=
G(z)−G(λj)

z − λj
Kj + G(z)K0(z) +

∑
k∈N, k �=j

G(z)Kk

z − λk
.

By (3.3), we see that Qj is bounded on Ωj , with a bound that is independent of ε.
For convenience, we set Gj := λ̄jG(λj)Kj . Moreover, since ρ1 ∈ (0, ρ0], it follows
that λ̄jΩj − 1 ⊂ V1. Together with the implication that if w ∈ V1, then γw ∈ V1 for
all γ ≥ 0, this yields

sup
z∈Ωj

‖Sj(z)‖ = sup

{∥∥∥∥∥
(
I + ε

Gj
w

)−1
∥∥∥∥∥ : w ∈ λ̄jΩj − 1

}

≤ sup
s∈V1

‖s(sI +Gj)−1‖ = sup
s∈V2

‖s(sI −Gj)−1‖ .

By (3.7) and (3.8), the function s �→ s(sI − Gj)−1 is holomorphic on an open set
W ⊃ V 2 (where V 2 denotes the closure of V2). Furthermore,

lim
|s|→∞

s(sI −Gj)−1 = I .

Hence s �→ s(sI − Gj)−1 is bounded on V 2. Therefore, Sj is bounded on Ωj with
bound independent of ε. We have S−1 − S−1

j = εQj, so that we can write

S(z) = Sj(z)(I + εQj(z)Sj(z))−1 .

Hence there exists εj ∈ (0, ε∞) such that S is bounded on Ωj for all ε ∈ (0, εj).
Setting

ε∗ := min{εj : j ∈ N} ,

it follows that

(3.9) (I + GKε)−1 ∈ H∞(E1,C
p×p) ∀ε ∈ (0, ε∗) .

Finally, let ε ∈ (0, ε∗) and assume that G ∈ H∞
< (E1,C

p×m) and K0 ∈ H∞
< (E1,C

m×p).
It is clear that (I + GKε)−1 is meromorphic on Eγ for some γ ∈ (0, 1). Letting
β ∈ (γ, 1), it follows that (I+GKε)−1 has at most finitely many poles in the compact
annulus Eβ \E1. By (3.9), (I +GKε)−1 does not have any poles on ∂E1 and so there
exists α ∈ (β, 1) such that (I + GKε)−1 ∈ H∞(Eα,Cp×p).

We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. By Lemma 3.3, we know that there exists ε∗ > 0 such that

for all ε ∈ (0, ε∗), (I + GKε)−1 ∈ H∞(E1,C
p×p). In the following, let ε ∈ (0, ε∗).

We first show that the other block entries of F (G,Kε) are also H∞-functions.
Due to the stability of G, it suffices to show that Kε(I + GKε)−1 ∈ H∞(E1,C

m×p).
In the remainder of the proof, when we write z → λj , it is assumed that z ∈ E1. By
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assumption, λj �= λk for j, k ∈ N , j �= k. Note that, by (3.2), G(λj)Kj is invertible.
Consequently,

lim
z→λj

1
z − λj

(I + G(z)Kε(z))−1

= lim
z→λj

⎡
⎣εG(z)Kj + (z − λj)

⎛
⎝I + εG(z)K0(z) + ε

∑
k∈N, k �=j

G(z)Kk

z − λk

⎞
⎠
⎤
⎦
−1

= (εG(λj)Kj)−1 ∀j ∈ N .(3.10)

By (3.1) and (3.10), we conclude that Kε(z)(I + GKε)−1 has a finite limit at λj , so
that Kε(I + GKε)−1 is bounded on E1 ∩ Λ, where Λ is a neighborhood of the set
{λj : j ∈ N}. Since (I + GKε)−1 ∈ H∞(E1,C

p×p) and Kε is uniformly bounded on
E1 \ Λ, it follows that Kε(I + GKε)−1 ∈ H∞(E1,C

m×p). Consequently, F (G,Kε) ∈
H∞(E1,C

(m+p)×(m+p)), showing that F(G,Kε) is �2-stable.
To prove that F (G,Kε) ∈ �̂1(C(m+p)×(m+p)), we set

K1(z) :=
N∑
j=1

Kj

z − λj
.

We see that K1 is a (strictly proper) rational matrix function. By a standard result
(see [16, p. 75, Theorem 4.1.43]), K1 has a right-coprime factorization over Rs, i.e.,
K1 = ND−1, where N ∈ Rm×p

s , D ∈ Rp×ps , and there exist X ∈ Rp×ms , Y ∈ Rp×ps

such that XN + YD = I . Therefore,

Kε = ε(K0 + K1) = ε(K0D + N)D−1 ,

showing that Kε has right-coprime factorization (ε(K0D + N),D), since

(ε−1X)ε(K0D + N) + (Y −XK0)D = XD + YD = I .

Since K0,N ∈ �̂1(Cm×p) and D ∈ �̂1(Cp×p), we have that K0D + N ∈ �̂1(Cm×p).
Moreover, (I,G) is a left-coprime factorization of G overH∞(E1) and, by assumption,
G ∈ �̂1(Cm×p). Therefore, invoking Proposition 2.5, it follows that F (G,Kε) ∈
�̂1(C(m+p)×(m+p)).

To prove tracking and disturbance rejection, we note first that, since G(λj)Kj is
invertible,

(3.11) (I + GKε)−1(λj) = lim
z→λj

(I + G(z)Kε(z))−1 = 0 ∀j ∈ N

and

(3.12) ((I + GKε)−1G)(λj) = lim
z→λj

(I + G(z)Kε(z))−1G(z) = 0 ∀j ∈ N .

Let r be given by (3.4) and let d1, d2 satisfy (3.5). For j ∈ N , define aj ∈ F (Z+,C
p)

and bj ∈ F (Z+,C
m) by

aj(k) := λkj rj , bj(k) := λkj d1j ,
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and define d̃1 by

d̃1(k) := d1(k)−
N∑
j=1

bj = d1(k)−
N∑
j=1

λkj d1j .

Obviously, r =
∑N

j=1 aj and limn→∞ d̃1(k) = 0. Then, by Lemma 2.6, (3.11), and
(3.12), we obtain

lim
k→∞

[Z −1((I + GKε)−1) � r](k)

=
N∑
j=1

lim
k→∞

{[Z −1((I + GKε)−1) � aj ](k)− ((I + GKε)−1)(λj)λkj rj}

= 0(3.13)

and

lim
k→∞

[Z −1((I + GKε)−1G) � d1](k)

=
N∑
j=1

lim
k→∞

{[Z −1((I + GKε)−1G) � bj](k)− ((I + GKε)−1G)(λj)λkj d1j}

+ lim
k→∞

[Z −1((I + GKε)−1G) � d̃1](k)

= 0 .(3.14)

Similarly, by Lemma 2.6 and (3.11),

(3.15) lim
k→∞

[Z −1((I + GKε)−1) � d2](k) = 0 .

By Figure 2.1 (with K replaced by Kε), it is clear that

(3.16) r̂ − ŷ = ûc = (I + GKε)−1(r̂ − d̂2)− (I + GKε)−1Gd̂1 .

Therefore, by (3.13)–(3.16),

lim
k→∞

(r − y)(k) = lim
k→∞

{
[Z −1((I + GKε)−1) � (r − d2)](k)

− [Z −1((I + GKε)−1G) � d1](k)
}

= 0 .

This completes the proof.
Next we show that, under a mild extra assumption on G, K0, d1, and d2, the

convergence of y(k) to r(k) as k →∞ is exponentially fast.
Theorem 3.4. Consider the discrete-time feedback system F(G,Kε) shown in

Figure 2.1 (with K replaced by Kε). Assume that G ∈ H∞
< (E1,C

p×m) and Kε is
given by (3.1), where K0 ∈ H∞

< (E1,C
m×p), Kj ∈ C

m×p, and |λj | = 1 for j ∈ N
with λj �= λk for j �= k. If (3.2) holds, then there exists ε∗ > 0 such that, for every
ε ∈ (0, ε∗), F (G,Kε) ∈ H∞

< (E1,C
(m+p)×(m+p)).
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Moreover, if the reference signal r is given by (3.4) and there exist M ≥ 0 and
ρ ∈ (0, 1) such that the disturbance signals d1, d2 satisfy∥∥∥∥∥∥d1(k)−

N∑
j=1

λkj d1j

∥∥∥∥∥∥ ≤Mρk ,

∥∥∥∥∥∥d2(k)−
N∑
j=1

λkj d2j

∥∥∥∥∥∥ ≤Mρk ∀k ∈ Z+,(3.17)

where d1j ∈ C
m, d2j ∈ C

p,

then, for every ε ∈ (0, ε∗), there exist L ≥ 0 and β ∈ (ρ, 1) such that

‖y(k)− r(k)‖ ≤ Lβk ∀k ∈ Z+ .

Proof. By Lemma 3.3 and the hypotheses on G, K0, we know that there exists
ε∗ > 0 such that, for every ε ∈ (0, ε∗), there exists α ∈ (ρ, 1) such that

(I + GKε)−1 ∈ H∞(Eα,Cp×p) , G ∈ H∞(Eα,Cp×m) , K0 ∈ H∞(Eα,Cm×p) .

To prove that F (G,Kε) ∈ H∞(Eα,C(m+p)×(m+p)), it suffices to show that Kε(I +
GKε)−1 ∈ H∞(Eα,Cm×p). By (3.10), we conclude that Kε(z)(I + G(z)Kε(z))−1

has a finite limit as z → λj for every j ∈ N , so that Kε(I + GKε)−1 is bounded on
a neighborhood Λ of the set {λj : j ∈ N}. Since (I + GKε)−1 ∈ H∞(Eα,Cp×p) and
Kε is uniformly bounded on Eα \ Λ, it follows that

Kε(I + GKε)−1 ∈ H∞(Eα,Cm×p) .

Hence F (G,Kε) ∈ H∞(Eα,C(m+p)×(m+p)). Therefore, it follows from Proposition 2.7
that, for every β ∈ (α, 1), we have

(I + GKε)−1 ∈ �̂1β(Cp×p) , (I + GKε)−1G ∈ �̂1β(Cp×m) .

Finally, invoking Lemma 2.6, (3.4), (3.11), (3.12), and (3.17), we conclude that there
exists M1 ≥ 0 such that

‖[Z −1((I + GKε)−1) � r](k)‖ ≤M1β
k ∀k ∈ Z+ ,

‖[Z −1((I + GKε)−1G) � d1](k)‖ ≤M1β
k ∀k ∈ Z+ ,

‖[Z −1((I + GKε)−1) � d2](k)‖ ≤M1β
k ∀k ∈ Z+ .

Consequently, by (3.16), we have

‖y(k)− r(k)‖ ≤ 3M1β
k ∀k ∈ Z+ ,

completing the proof.

Application to state-space systems. We now apply Theorem 3.1 to obtain
tracking results for discrete-time state-space systems. Let X be a Banach space and
let the plant Σp be given by

xp(k + 1) = Axp(k) +Bup(k) ; xp(0) = x0
p ∈ X ,(3.18a)

yp(k) = Cxp(k) +Dup(k) ,(3.18b)

where A ∈ B(X,X), B ∈ B(Cm, X), C ∈ B(X,Cp), and D ∈ B(Cm,Cp). The transfer
function G of Σp is given by

G(z) = C(zI −A)−1B +D .
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Next we construct a state-space realization of the controller transfer function (3.1).
Let K0 ∈ Rm×p

s and let (A0, B0, C0, D0) ∈ C
n0×n0 × C

n0×p × C
m×n0 × C

m×p be a
stabilizable and detectable realization of K0; i.e., K0(z) = C0(zI − A0)−1B0 + D0,
(A0, B0) is stabilizable, and (C0, A0) is detectable. Since K0 is �2-stable, A0 is power
stable. Let Kj ∈ C

m×p and |λj | = 1 for j ∈ N with λj �= λk for j �= k. Moreover,
let Ac ∈ C

(Np+n0)×(Np+n0), Bc ∈ C
(Np+n0)×p, Cc ∈ C

m×(Np+n0), and Dc ∈ C
m×p be

given by

Ac :=

⎛
⎜⎜⎜⎜⎝
A0

λ1Ip
. . .

λNIp

⎞
⎟⎟⎟⎟⎠ , Bc :=

⎛
⎜⎜⎜⎜⎝
B0

Ip
...
Ip

⎞
⎟⎟⎟⎟⎠ ,(3.19a)

Cc := (C0,K1, . . . ,KN) , Dc := D0 ,(3.19b)

where Ip is the p× p identity matrix. We define the controller Σc by

xc(k + 1) = Acxc(k) +Bcuc(k) ; xc(0) = x0
c ∈ C

Np+n0 ,(3.20a)

yc(k) = εCcxc(k) + εDcuc(k) .(3.20b)

Obviously, the transfer function Kε of Σc is given by

Kε(z) = ε(Cc(zI −Ac)−1Bc +Dc) = ε

⎛
⎝K0(z) +

N∑
j=1

Kj

z − λj

⎞
⎠ .

Consider the feedback interconnection of (3.18) and (3.20) given by

(3.21) uc = r − yp − d2 , up = yc + d1 , y = yp + d2 ,

where r is a reference signal and d1 and d2 are disturbance signals. Let F(Σp,Σc)
denote the feedback system given by (3.18)–(3.21). The state-space system F(Σp,Σc)
is a state-space realization of the system F(G,Kε) shown in Figure 2.1 (with K
replaced by Kε).

Theorem 3.5. Assume that (3.18) is power stable and that (3.2) holds, i.e.,
σ(λ̄jG(λj)Kj) ⊂ C0 for every j = N . Then there exists ε∗ > 0 such that, for all
ε ∈ (0, ε∗), the following statements hold:

1. F(Σp,Σc) is power stable. Moreover, F(Σp,Σc) is input-to-state stable in
the sense that there exist M1 ≥ 1 and γ ∈ (0, 1) such that, for all x0

p ∈ X,
x0
c ∈ C

Np+n0 , r, d2 ∈ �∞(Z+,C
p), and all d1 ∈ �∞(Z+,C

m),∥∥∥∥
(
xp

xc

)∥∥∥∥

∞
≤M1

(
γk
∥∥∥∥
(
x0
p

x0
c

)∥∥∥∥+ ‖r‖
∞ + ‖d1‖
∞ + ‖d2‖
∞
)
.

2. If r is given by (3.4) and d1, d2 satisfy (3.5), then for all initial conditions
x0
p ∈ X and x0

c ∈ C
Np+n0 , the output y = yp + d2 asymptotically tracks r,

that is, limk→∞(y(k) − r(k)) = 0. Additionally, if (3.17) holds with M ≥ 0
and ρ ∈ (0, 1), then the convergence is exponentially fast.

We omit the proof, which is based on a routine argument involving a combination
of Theorem 3.1 and a result on the equivalence of input-output and power stability
[5, Theorem 2]; see [4] for details.
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4. Low-gain sampled-data control. In the following, let B(R+) denote the
Borel-σ-algebra on R+. For a C

p×m-valued Borel measure μ on R+, the total variation
|μ| : B(R+)→ [0,∞] of μ is defined by

|μ|(E) := sup

⎧⎨
⎩

∞∑
j=1

‖μ(Ej)‖ : Ej ∈ B(R+) , Ej ∩ Ek = ∅ if j �= k , E =
∞⋃
j=1

Ej

⎫⎬
⎭ .

It is clear that

‖μ(E)‖ ≤ |μ|(E) ∀E ∈ B(R+) .

The following theorem, for which the proof is omitted, shows that a C
p×m-valued

Borel measure is necessarily bounded.
Theorem 4.1. The total variation |μ| of a C

p×m-valued Borel measure μ is a
finite nonnegative Borel measure on R+.

The following technical result, for which we omit the routine proof, is used later.
Proposition 4.2. Let μ be a C

p×m-valued Borel measure on R+. For every
ε > 0, there exists T > 0 such that

∫ ∞

t

|μ|(ds) < ε ∀t ≥ T .

Let μ be a C
p×m-valued Borel measure on R+. Then the continuous-time input-

output operator G defined by

(4.1) (Gu)(t) := (μ � u)(t) =
∫ t

0

μ(ds)u(t− s) , t ≥ 0 , u ∈ L1
loc(R+,C

m) ,

is Lq-stable for 1 ≤ q ≤ ∞. The transfer function G of G is the Laplace transform of
μ, that is,

(4.2) G(s) =
∫

R+

e−stμ(dt) ∀s ∈ C0.

Trivially, by Theorem 4.1, ‖G(s)‖ ≤
∫∞
0 |μ|(dt) < ∞ for all s ∈ C0. It follows that

G ∈ H∞(C0,C
p×m).

Lemma 4.3. Let the operator G be given by (4.1), where μ is a C
p×m-valued

Borel measure on R+. Then

lim sup
t→∞

‖(Gu)(t)‖ ≤ |μ|(R+) lim sup
t→∞

‖u(t)‖ ∀u ∈ Lb(R+,C
m) .

Proof. Let ε > 0. By Proposition 4.2, there exists T > 0 such that

∫ ∞

T

|μ|(ds) ≤ ε

2‖u‖∞
and ‖u(t)‖ ≤ σ +

ε

2M
∀t ≥ T,
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where M := |μ|(R+) and σ := lim supt→∞ ‖u(t)‖. Hence, for t ≥ 2T ,

‖(Gu)(t)‖ ≤
∫ t/2

0

‖u(t− s)‖|μ|(ds) +
∫ t

t/2

‖u(t− s)‖|μ|(ds)

≤
(
σ +

ε

2M

)∫ t/2

0

|μ|(ds) + ‖u‖∞
∫ t

t/2

|μ|(ds)

≤
(
σ +

ε

2M

)∫ ∞

0

|μ|(ds) + ‖u‖∞
∫ ∞

T

|μ|(ds)

≤
(
σ +

ε

2M

)
M + ‖u‖∞

ε

2‖u‖∞
≤Mσ + ε .

Since this holds for all ε > 0, the claim follows.
Lemma 4.4. Let ξ ∈ C0, v ∈ C

m, u ∈ Lb(R+,C
m) and let G be given by (4.1),

where μ is a C
p×m-valued Borel measure on R+.

1. If limt→∞(u(t)− eξtv) = 0, then

lim
t→∞[(Gu)(t)−G(ξ)eξtv] = 0 .

2. If there exist α < 0 and M ≥ 0 such that∫ ∞

0

e−αs|μ|(ds) <∞ and ‖u(t)− eξtv‖ ≤Meαt ∀t ≥ 0 ,

then there exists L ≥ 0 such that

‖(Gu)(t)−G(ξ)eξtv‖ ≤ Leαt ∀t ≥ 0 .

Proof. Define v : R+ → C
m by v(t) := eξtv. By (4.1) and (4.2), using ξ ∈ C0, we

have

‖(Gu)(t)−G(ξ)eξtv‖ =
∥∥∥∥
∫ t

0

μ(ds)u(t− s)−
∫ ∞

0

eξ(t−s)μ(ds)v
∥∥∥∥

≤
∥∥∥∥
∫ t

0

μ(ds)(u(t− s)− eξ(t−s)v)
∥∥∥∥+ ‖v‖

∫ ∞

t

|eξ(t−s)||μ|(ds)

≤ ‖(G(u− v))(t)‖ + ‖v‖
∫ ∞

t

|μ|(ds) ∀t ≥ 0 .(4.3)

By hypothesis, limt→∞ ‖u(t)− v(t)‖ = 0, and so, by Lemma 4.3,

(4.4) lim
t→∞ ‖G(u− v)(t)‖ = 0 .

Moreover, it follows from Proposition 4.2 that limt→∞
∫∞
t
|μ|(ds) = 0. Hence, invok-

ing (4.3) and (4.4) completes the proof of statement 1.
To prove statement 2, assume that there exist α < 0 and M ≥ 0 such that

M1 :=
∫∞
0
e−αs|μ|(ds) < ∞ and ‖u(t)− eξtv‖ ≤ Meαt for all t ≥ 0. Since α < 0, it
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follows from (4.3) that

e−αt‖(Gu)(t)−G(ξ)eξtv‖ ≤ e−αt
∫ t

0

‖(u− v)(t− s)‖|μ|(ds) + ‖v‖e−αt
∫ ∞

t

|μ|(ds)

≤M
∫ t

0

e−αs|μ|(ds) + ‖v‖
∫ ∞

t

e−αs|μ|(ds)

≤MM1 + ‖v‖M1 ∀t ≥ 0 .

Hence ‖(Gu)(t)−G(ξ)eξtv‖ ≤M1(M + ‖v‖)eαt for all t ≥ 0.
Definition 4.5. Let τ > 0 denote the sampling period and let F (R+,C

m) denote
the space of all C

m-valued functions defined on R+. We define the ideal sampling
operator Sτ : F (R+,C

m)→ F (Z+,C
m) by

(Sτu)(k) := u(kτ) ∀k ∈ Z+ .

The (zero-order) hold operator Hτ : F (Z+,C
m)→ F (R+,C

m) is defined by

(Hτv)(t) := v(k) ∀t ∈ [kτ, (k + 1)τ) .

Define the sample-hold discretization Gτ of G by

(4.5) Gτ := SτGHτ

and define gτ ∈ F (Z+,C
p×m) by

(4.6) gτ (k) := μ(Ek) , where Ek :=
{ {0} , k = 0,

((k − 1)τ, kτ ] , k ∈ N .

Proposition 4.6. Assume that G is given by (4.1) and gτ is defined by (4.6),
where μ is a C

p×m-valued Borel measure on R+. Then gτ is in �1(Z+,C
p×m) and the

operator Gτ defined by (4.5) satisfies

Gτv = gτ � v ∀v ∈ F (Z+,C
m) .

Consequently, Gτ ∈ B(�q(Z+,C
m), �q(Z+,C

p)) for 1 ≤ q ≤ ∞.
Proof. Clearly,

∞∑
k=0

‖gτ (k)‖ =
∞∑
k=0

‖μ(Ek)‖ ≤
∞∑
k=0

|μ|(Ek) = |μ|(R+) <∞ ,

showing that gτ ∈ �1(Z+,C
p×m). For any discrete-time input v ∈ F (Z+,C

m), we
have

(Gτv)(k) = ((SτGHτ )v)(k) = (G(Hτ v))(kτ) =
∫ kτ

0

μ(ds)(Hτ v)(kτ − s)

=
k∑
j=0

∫
Ej

μ(ds)v(k − j) =
k∑
j=0

gτ (k)v(k − j) = (gτ � v)(k) ∀k ∈ Z+ .

Hence Gτ ∈ B(�q(Z+,C
m), �q(Z+,C

p)) for 1 ≤ q ≤ ∞.
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Let Gτ denote the transfer function of Gτ . Note that, since gτ ∈ �1(Z+,C
p×m),

Gτ (z) is well defined for z ∈ E1.
Remark 4.7. Let α < 0, assume that

∫∞
0 e−αt|μ|(dt) < ∞, and set ρ := eατ ∈

(0, 1). Then

∞∑
k=0

‖gτ (k)‖ρ−k ≤ e−ατ
∞∑
k=0

∫
Ek

e−αt|μ|(dt) = e−ατ
∫ ∞

0

e−αt|μ|(dt) <∞ ,

so that gτ ∈ �1ρ(Z+,C
p×m), or, equivalently, Gτ ∈ �̂1ρ(Cp×m) ⊂ H∞(Eρ,Cp×m).

Lemma 4.8. Let ξ ∈ C0. Then limτ→0 Gτ (eξτ ) = G(ξ).
Proof. Clearly,

Gτ (eξτ ) =
∞∑
k=0

gτ (k)e−ξτk =
∞∑
k=0

μ(Ek)e−ξτk =
∞∑
k=0

∫
Ek

e−ξτkμ(dt)

and

G(ξ) =
∫

R+

e−ξtμ(dt) =
∞∑
k=0

∫
Ek

e−ξtμ(dt) ,

so that

‖Gτ (eξτ )−G(ξ)‖ =

∥∥∥∥∥
∞∑
k=0

∫
Ek

(e−ξτk − e−ξt)μ(dt)

∥∥∥∥∥ ≤
∞∑
k=0

∫
Ek

|e−ξτk − e−ξt||μ|(dt) .

Using the fact that ξ ∈ C0, we obtain

‖Gτ (eξτ )−G(ξ)‖ ≤
∞∑
k=0

∫
Ek

|1− e−ξ(t−τk)||μ|(dt) ≤ sup
t∈[0,τ ]

|1− eξt||μ|(R+) .

Since limτ→0 supt∈[0,τ ] |1− eξt| = 0 and |μ|(R+) is finite, the claim follows.
Remark 4.9. The convergence of Gτ (eξτ ) to G(ξ) as τ → 0 is uniform for all

ξ ∈ U if U ⊂ C0 is compact. Moreover, it is obvious that Gτ (1) = G(0) for all τ > 0.
The following theorem is the main result of this section.
Theorem 4.10. Let N ∈ N and ξj ∈ iR for all j ∈ N with ξj �= ξk for j �= k.

Let G be given by (4.1), where μ is a C
p×m-valued Borel measure on R+ such that∫∞

0
e−αt|μ|(dt) < ∞ for some α < 0. Let the discrete-time controller Kτ,ε be such

that its transfer function Kτ,ε is given by

(4.7) Kτ,ε(z) = ε

⎛
⎝K0(z) +

N∑
j=1

Kj

z − eξjτ

⎞
⎠ ,

where K0 ∈ �̂1(Cm×p) and Kj ∈ C
m×p. Assume that

(4.8) σ(G(ξj)Kj) ⊂ C0 ∀j ∈ N .

The following statements hold for the output y of the sampled-data system shown
in Figure 4.1:
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Fig. 4.1. Sampled-data low-gain control.

1. There exists τ∗ > 0 such that, for every sampling period τ ∈ (0, τ∗), there
exists ετ > 0 such that, for all ε ∈ (0, ετ), the feedback system is L∞-stable,
in the sense that there exists N1 ≥ 0 such that, for all r, d2 ∈ Lb(R+,C

p) and
all d1 ∈ Lb(R+,C

m),

‖y‖∞ ≤ N1(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞) .

If r is given by

(4.9) r(t) :=
N∑
j=1

eξjtrj ∀t ≥ 0 where rj ∈ C
p ,

and d1 ∈ Lb(R+,C
m), d2 ∈ Lb(R+,C

p) satisfy

lim
t→∞

⎛
⎝d1(t)−

N∑
j=1

eξjtd1j

⎞
⎠ = 0 , lim

t→∞

⎛
⎝d2(t)−

N∑
j=1

eξjtd2j

⎞
⎠ = 0 ,(4.10)

where d1j ∈ C
m, d2j ∈ C

p,

then, for every δ > 0, there exists τδ ∈ (0, τ∗) such that, for every sampling
period τ ∈ (0, τδ) and every ε ∈ (0, ετ ),

(4.11) lim sup
t→∞

‖y(t)− r(t)‖ ≤ δ .

2. Under the additional assumptions that K0 ∈ H∞
< (E1,C

m×p) and that there
exist γ ∈ (α, 0) and N2 ≥ 0 such that

(4.12)∥∥∥∥∥∥d1(t)−
N∑
j=1

eξjtd1j

∥∥∥∥∥∥ ≤ N2e
γt ,

∥∥∥∥∥∥d2(t)−
N∑
j=1

eξjtd2j

∥∥∥∥∥∥ ≤ N2e
γt ∀t ≥ 0 ,

(4.11) can be replaced by

‖y(t)− r(t)‖ ≤ δ +N3e
βt ∀t ≥ 0

for suitable β ∈ (γ, 0) and N3 ≥ 0 (both depending on τ and ε).
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Only very little plant information is required in order to apply Theorem 4.10,
namely, stability of the system to be controlled and some information on G(ξj), where
the latter is required for the computation of Kj such that (4.8) holds. The spectral
condition (4.8) is robust with respect to “sufficiently small” plant perturbations.

Proof of Theorem 4.10. To prove statement 1, set τ0 := 2π/ sup{|ξj − ξk| : j, k ∈
N, j �= k} and note that if τ ∈ (0, τ0), then eξjτ �= eξkτ for all j, k ∈ N , j �= k. It
follows from Lemma 4.8 that

lim
τ→0

eξ̄jτGτ (eξjτ )Kj = G(ξj)Kj ∀j ∈ N .

Hence, by hypothesis (4.8), there exists τ∗ ∈ (0, τ0) such that

(4.13) σ(eξ̄jτGτ (eξjτ )Kj) ⊂ C0 ∀j ∈ N , ∀τ ∈ (0, τ∗) .

By assumption, there exists α < 0 such that
∫∞
0 e−αt|μ|(dt) < ∞. Therefore, by

Remark 4.7, Gτ ∈ H∞
< (E1,C

p×m). Clearly,

lim sup
z→eξjτ , z∈E1

∥∥∥∥Gτ (z)−Gτ (eξjτ )
z − eξjτ

∥∥∥∥ <∞
holds for every j ∈ N . Moreover, by assumption, K0 ∈ �̂1(Cm×p). It follows from
Theorem 3.1 that, for every τ ∈ (0, τ∗), there exists ετ > 0 such that, for all ε ∈ (0, ετ ),

Kτ,ε(I + GτKτ,ε)−1 ∈ �̂1(Cm×p) .

Consequently, for all such τ and ε, the convolution operator Kτ,ε(I +GτKτ,ε)−1 has
impulse response in �1(Z+,C

m×p).
In the following, let τ ∈ (0, τ∗) and ε ∈ (0, ετ). Set

(4.14) M := |μ|(R+) and M1 := ‖Kτ,ε(I +GτKτ,ε)−1‖ .

Let d1 ∈ Lb(R+,C
m) and d2, r ∈ Lb(R+,C

p). It is well known that ‖Gd1‖∞ ≤
M‖d1‖∞. Furthermore, set

(4.15) d := Gd1 + d2 .

Trivially,

(4.16) ‖Sτd‖
∞ ≤ ‖d‖∞ ≤M‖d1‖∞ + ‖d2‖∞ and ‖Sτr‖
∞ ≤ ‖r‖∞ .

The discrete-time signal wτ in Figure 4.1 is given by

wτ = Kτ,εSτ [r − (GHτwτ + d)] = Kτ,ε[Sτ r − (Gτwτ + Sτd)] .

It follows that

(4.17) wτ = Kτ,ε(I +GτKτ,ε)−1(Sτ r − Sτd) .

Invoking (4.14) and (4.16), we have

(4.18) ‖wτ‖
∞ ≤M1(‖Sτr‖
∞ + ‖Sτd‖
∞) ≤M1(‖r‖∞ +M‖d1‖∞ + ‖d2‖∞) .
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Clearly, the continuous-time signal y in Figure 4.1 satisfies

(4.19) y = GHτwτ +Gd1 + d2 = GHτwτ + d .

Since ‖Hτwτ‖∞ = ‖wτ‖
∞ , it follows from (4.18) and (4.19) that

‖y‖∞ ≤ ‖GHτwτ‖∞ + ‖Gd1‖∞ + ‖d2‖∞
≤M‖Hτwτ‖∞ +M‖d1‖∞ + ‖d2‖∞
= M‖wτ‖
∞ +M‖d1‖∞ + ‖d2‖∞
≤MM1(‖r‖∞ +M‖d1‖∞ + ‖d2‖∞) +M‖d1‖∞ + ‖d2‖∞
≤ N1(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞) ,

with N1 := (M + 1)(MM1 + 1). This completes the proof of the L∞-stability of the
feedback system.

To prove approximate tracking (see (4.11)), note that, by (4.13), Gτ (eξjτ )Kj is
invertible for every j ∈ N and every τ ∈ (0, τ∗). In the following, we take limits as
z → eξjτ for z ∈ E1. It is assumed that τ ∈ (0, τ∗) and ε ∈ (0, ετ ). A straightforward
calculation yields that

lim
z→eξjτ

(I + Gτ (z)Kτ,ε(z))−1 = 0 ∀j ∈ N

and

lim
z→eξj τ

1
z − eξjτ

(I + Gτ (z)Kτ,ε(z))−1 = (εGτ (eξjτ )Kj)−1 ∀j ∈ N .

Consequently,

(Kτ,ε(I + GτKτ,ε)−1)(eξjτ ) = lim
z→eξjτ

εK0(z)(I + Gτ (z)Kτ,ε(z))−1

+ lim
z→eξj τ

N∑
k=1

(
εKk

z − eξkτ
(I + Gτ (z)Kτ,ε(z))−1

)

= lim
z→eξjτ

εKj

z − eξjτ
(I + Gτ (z)Kτ,ε(z))−1

= Kj(Gτ (eξjτ )Kj)−1 ∀j ∈ N .(4.20)

Setting

(4.21) dj := G(ξj)d1j + d2j ∀j ∈ N ,

it follows from the definition of d (see (4.15)) that

d(t)−
N∑
j=1

eξjtdj = (Gd1)(t)−
N∑
j=1

eξjtG(ξj)d1j + d2(t)−
N∑
j=1

eξjtd2j .

Invoking Lemma 4.4 and (4.10), we obtain that

(4.22) lim
t→∞

∥∥∥∥∥∥d(t)−
N∑
j=1

eξjtdj

∥∥∥∥∥∥ = 0.
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It follows trivially from (4.9) and (4.22) that

(4.23) (Sτ r)(k) =
N∑
j=1

eξjkτ rj ∀k ∈ Z+ and lim
k→∞

∥∥∥∥∥∥(Sτd)(k) −
N∑
j=1

eξjkτdj

∥∥∥∥∥∥ = 0 .

Define aτ , bτ ∈ F (Z+,C
m) by

(4.24)

aτ (k) :=
N∑
j=1

eξjτkKj(Gτ (eξjτ )Kj)−1rj , bτ (k) :=
N∑
j=1

eξjτkKj(Gτ (eξjτ )Kj)−1dj .

It follows from Lemma 2.6, (4.17), (4.20), and (4.23) that

(4.25) lim
k→∞

[wτ (k)− aτ (k) + bτ (k)] = 0 .

By (4.8), G(ξj)Kj is invertible for every j ∈ N . Define v1, v2 : R+ → C
m by

(4.26) v1(t) :=
N∑
j=1

eξjtKj(G(ξj)Kj)−1rj , v2(t) :=
N∑
j=1

eξjtKj(G(ξj)Kj)−1dj .

We conclude from Lemma 4.4 and (4.9) that

(4.27) lim
t→∞[(Gv1)(t)− r(t)] =

N∑
j=1

lim
t→∞[(G(eξj ·Kj(G(ξj)Kj)−1rj))(t) − eξjtrj ] = 0 .

Furthermore, writing

(Gv2)(t)− d(t) =
N∑
j=1

[
(G(eξj ·Kj(G(ξj)Kj)−1dj))(t)− eξjtdj

]
+

N∑
j=1

eξjtdj − d(t) ,

an application of Lemma 4.4, and (4.22) yields that

(4.28) lim
t→∞[(Gv2)(t)− d(t)] = 0.

Let δ > 0. Invoking Lemma 4.8 and the fact that ξj ∈ iR, there exists τδ ∈ (0, τ∗)
such that if τ ∈ (0, τδ), then

sup
t∈[kτ,(k+1)τ)

‖v1(t)− (Hτaτ )(t)‖

= sup
t∈[kτ,(k+1)τ)

∥∥∥∥∥∥
N∑
j=1

eξjtKj(G(ξj)Kj)−1rj −
N∑
j=1

eξjτkKj(Gτ (eξjτ )Kj)−1rj

∥∥∥∥∥∥
≤ sup

t∈[kτ,(k+1)τ)

N∑
j=1

|eξj(t−kτ) − 1|‖Kj(G(ξj)Kj)−1rj‖

+ sup
t∈[kτ,(k+1)τ)

N∑
j=1

(‖Kj‖‖(G(ξj)Kj)−1 − (Gτ (eξjτ )Kj)−1‖‖rj‖)

≤ δ

2M
∀k ∈ Z+ ,
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and, similarly,

sup
t∈[kτ,(k+1)τ)

‖v2(t)− (Hτ bτ )(t)‖ ≤
δ

2M
∀k ∈ Z+ ,

where M is defined in (4.14). Hence,

(4.29) sup
t≥0
‖v1(t)− (Hτaτ )(t)‖ + sup

t≥0
‖v2(t)− (Hτ bτ )(t)‖ ≤

δ

M
.

Let τ ∈ (0, τδ) and ε ∈ (0, ετ ). Then, writing

Hτwτ − v1 + v2 = Hτ (wτ − aτ + bτ ) + (Hτaτ − v1) + (v2 −Hτ bτ )

and invoking (4.25) and (4.29), we obtain

(4.30) lim sup
t→∞

‖(Hτwτ )(t) − v1(t) + v2(t)‖ ≤
δ

M
.

By (4.19),

y − r = G(Hτwτ − v1 + v2) + (d−Gv2) + (Gv1 − r) ,

so that it follows from (4.27) and (4.28) that

lim sup
t→∞

‖y(t)− r(t)‖ ≤ lim sup
t→∞

‖(G(Hτwτ − v1 + v2))(t)‖ .

Finally, Hτwτ − v1 + v2 is bounded and thus, by Lemma 4.3 and (4.30),

lim sup
t→∞

‖y(t)− r(t)‖ ≤M lim sup
t→∞

‖(Hτwτ )(t)− v1(t) + v2(t)‖ ≤ δ ,

completing the proof of statement 1.
To prove statement 2 of Theorem 4.10, let τ ∈ (0, τδ) and ε ∈ (0, ετ ). Assume

that K0 ∈ H∞
< (E1,C

m×p) and that there exist N2 ≥ 0 and γ ∈ (α, 0) such that (4.12)
holds. Invoking Remark 4.7, we conclude that Gτ ∈ H∞

< (E1,C
p×m). Therefore, by

Theorem 3.4, Kτ,ε(I+GτKτ,ε)−1 ∈ H∞
< (E1,C

m×p). Hence, by Proposition 2.7, there
exists ρ ∈ (eγτ , 1) such that

Kτ,ε(I + GτKτ,ε)−1 ∈ �̂1ρ(Cm×p) .

By Lemma 4.4 and (4.12), there exists M2 ≥ 0 such that∥∥∥∥∥∥(Gd1)(t)−
N∑
j=1

eξjtG(ξj)d1j

∥∥∥∥∥∥ ≤M2e
γt ∀t ≥ 0 .

Invoking (4.12), it follows that∥∥∥∥∥∥d(t)−
N∑
j=1

eξjtdj

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥(Gd1)(t) −

N∑
j=1

eξjtG(ξj)d1j

∥∥∥∥∥∥+

∥∥∥∥∥∥d2(t)−
N∑
j=1

eξjtd2j

∥∥∥∥∥∥
≤ (M2 +N2)eγt ∀t ≥ 0 ,(4.31)
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where d and dj are defined in (4.15) and (4.21), respectively. Trivially,∥∥∥∥∥∥(Sτd)(k) −
N∑
j=1

eξjkτdj

∥∥∥∥∥∥ ≤ (M2 +N2)(eγτ )k ≤ (M2 +N2)ρk ∀k ∈ Z+ .

It follows from (4.20) and Lemma 2.6 that there exists M3 ≥ 0 such that

(4.32) ‖wτ (k)− aτ (k) + bτ (k)‖ ≤M3ρ
k ∀k ∈ Z+ ,

where wτ and aτ , bτ are defined in (4.17) and (4.24), respectively. We conclude from
Lemma 4.4, (4.9), and (4.31) that there exists M4 ≥ 0 such that

(4.33) ‖(Gv1)(t)− r(t)‖ ≤M4e
γt , ‖(Gv2)(t)− d(t)‖ ≤M4e

γt ; ∀t ≥ 0 ,

where v1 and v2 are defined in (4.26). Since ρ ∈ (0, 1), we have

ρk ≤ ρ−1ρ(kτ+θ)/τ = ρ−1eβ(kτ+θ) ∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

where β := (ln ρ)/τ . Consequently, by (4.32) and (4.29),

‖(Hτwτ )(t) − v1(t) + v2(t)‖ ≤ ‖(Hτwτ −Hτaτ +Hτbτ )(t)‖

+ ‖(Hτaτ )(t)− v1(t)‖+ ‖v2(t)− (Hτ bτ )(t)‖

≤M3ρ
−1eβt +

δ

M
∀t ≥ 0 .

Since ρ ∈ (eγτ , 1), we have that β ∈ (γ, 0) ⊂ (α, 0), and hence

‖(G(Hτwτ − v1 + v2))(t)‖ ≤
∫ t

0

‖(Hτwτ − v1 + v2)(t− s)‖|μ|(ds)

≤
∫ t

0

M3ρ
−1eβ(t−s)|μ|(ds) +

δ

M

∫ ∞

0

|μ|(ds)

≤M3ρ
−1eβt

∫ ∞

0

e−βs|μ|(ds) + δ

≤M3M5ρ
−1eβt + δ ∀t ≥ 0 ,

whereM5 :=
∫∞
0
e−βs|μ|(ds) ≤

∫∞
0
e−αs|μ|(ds) <∞. Therefore, by (4.19) and (4.33),

it follows that

‖y(t)− r(t)‖ ≤ ‖(G(Hτwτ − v1 + v2))(t)‖ + ‖(d(t)−Gv2(t))‖ + ‖(Gv1)(t) − r(t)‖

≤ ‖(G(Hτwτ − v1 + v2))(t)‖ + 2M4e
γt

≤ δ + (M3M5ρ
−1 + 2M4)eβt ∀t ≥ 0 .

This completes the proof.
Remark 4.11. The proof of Theorem 4.10 shows that, for fixed {ξj : j ∈ N}, τδ

and ετ can be chosen to be uniform for all signals r, d1, and d2 with rj , d1j , and d2j ,
j ∈ N , satisfying a prespecified bound.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

APPROXIMATE TRACKING BY SAMPLED-DATA CONTROL 665

Application to state-space systems. In the following, we apply the input-
output results in this paper to a class of infinite-dimensional state-space systems.

Let X be a Hilbert space and assume that the plant is given by

ẋp(t) = Axp(t) +Bup(t) ; xp(0) = x0
p ∈ X ,(4.34a)

yp(t) = Cxp(t) +Dup(t) ,(4.34b)

where A : D(A)→ X is the generator of a strongly continuous semigroup T(t) on X ,
B ∈ B(Cm, X−1) is the control operator, C ∈ B(X,Cp) is the (bounded) observation
operator, and D ∈ C

p×m is the feedthrough matrix. Here X−1 is the completion of X
with respect to the norm ‖x‖−1 := ‖(βI−A)−1x‖X , where β is in the resolvent set A.
It is known that X−1 does not depend on the choice of β. Moreover, X ↪→ X−1 and
T(t) extends to a C0-semigroup on X−1. The generator of the extended semigroup
is a bounded operator from X to X−1 which extends A. The extended semigroup
and its generator will be denoted by the same symbols T(t) and A, respectively. We
assume that B is admissible for T(t), that is, for every t ≥ 0, there exists bt ≥ such
that ∥∥∥∥

∫ t

0

T(t− s)Bu(s)
∥∥∥∥
X

≤ bt‖u‖L2 ∀u ∈ L2([0, t],Cm) .

The admissibility assumption implies, in particular, that system (4.34) is regular (see
[15, 18] for more details on admissible control operators and regular systems). For
up ∈ L2

loc(R+,C
m), the mild solution xp of (4.34a), given by

(4.35) xp(t) = T(t)x0
p +
∫ t

0

T(t− σ)Bup(σ)dσ ,

is a continuous X-valued function, satisfying the differential equation (4.34a) in X−1

for almost every t ∈ R+. The transfer function G of (4.34) is given by

G(s) = C(sI −A)−1B +D ∀s ∈ Cω(T) ,

where

ω(T) := lim
t→∞

1
t

ln ‖T(t)‖ .

We say that (4.34) is exponentially stable if ω(T) < 0. Let K0 ∈ Rm×p
s and let

(A0, B0, C0, D0) ∈ C
n0×n0 ×C

n0×p ×C
m×n0 ×C

m×p be a stabilizable and detectable
realization of K0; i.e., K0(z) = C0(zI − A0)−1B0 +D0, (A0, B0) is stabilizable, and
(C0, A0) is detectable. Since K0 is �2-stable, it follows that A0 is power stable. Let
Ac ∈ C

(Np+n0)×(Np+n0), Bc ∈ C
(Np+n0)×p, Cc ∈ C

m×(Np+n0), and Dc ∈ C
m×p be

given by (3.19) with λj = eξjτ , ξj ∈ iR for j ∈ N . We define the controller by

xc(k + 1) = Acxc(k) +Bcuc(k) ; xc(0) = x0
c ∈ C

Np+n0 ,(4.36a)

yc(k) = εCcxc(k) + εDcuc(k) .(4.36b)

The transfer function Kτ,ε of (4.36) is given by

Kτ,ε(z) = ε

⎛
⎝K0(z) +

N∑
j=1

Kj

z − eξjτ

⎞
⎠ .
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We consider the following feedback interconnection of (4.34) and (4.36):

(4.37) up = Hτyc + d1 , y = yp + d2 , uc = Sτ (r − y) ,

where r is a reference signal and d1 and d2 are disturbance signals.
Theorem 4.12. Consider the sampled-data state-space system given by (4.34),

(4.36), and (4.37). Assume that (4.34) is exponentially stable and σ(G(ξj)Kj) ⊂ C0

for all j = N . The following statements hold:
1. There exists τ∗ > 0 such that, for every sampling period τ ∈ (0, τ∗), there

exists ετ > 0 such that if ε ∈ (0, ετ ), then the sampled-data system is expo-
nentially stable; i.e., for every ε ∈ (0, ετ ), there exist N1 ≥ 0 and β < 0 such
that∥∥∥∥
(
xp(kτ + θ)
xc(k)

)∥∥∥∥ ≤ N1

(
eβ(kτ+θ)

∥∥∥∥
(
x0
p

x0
c

)∥∥∥∥+ ‖r‖∞ + ‖d1‖∞ + ‖d2‖∞
)

∀θ ∈ [0, τ) , ∀k ∈ Z+ , ∀x0
p ∈ X , ∀x0

c ∈ C
Np+n0 ,

∀r, d2 ∈ Lb(R+,C
p) , ∀d1 ∈ Lb(R+,C

m) .

2. If r is of the form (4.9) and d1 ∈ Lb(R+,C
m), d2 ∈ Lb(R+,C

p) satisfy (4.10),
then, for every δ > 0, there exists τδ > 0 such that, for every sampling period
τ ∈ (0, τδ), there exists ετ > 0, such that, for every ε ∈ (0, ετ ),

lim sup
t→∞

‖y(t)− r(t)‖ ≤ δ ∀x0
p ∈ X , x0

c ∈ C
Np+n0 .

Proof. The sample-hold discretization of (4.34) is given by the quadruple

(4.38)
(
T(τ) ,

∫ τ

0

T(s)Bds , C , D
)
.

Clearly, since T(t) is exponentially stable, T(τ) is power stable. Since admissibility
of B for T(t) implies that A−1B ∈ B(Cm, X) and∫ τ

0

T(s)Bvds = (T(τ) − I)A−1Bv ∀v ∈ C
m ,

we see that
∫ τ
0 T(s)Bds ∈ B(Cm, X) for every τ > 0. The transfer function of (4.38)

is denoted by Gτ . By Lemma 4.8 and the assumption that σ(G(ξj)Kj) ⊂ C0, there
exists τ∗ > 0 such that if τ ∈ (0, τ∗), then eξjτ �= eξkτ for all j, k ∈ N , j �= k, and

(4.39) σ(eξ̄jτGτ (eξjτ )Kj) ⊂ C0 ∀j ∈ N .

Define

E := (I + εDcD)−1 , Ec := (I + εDDc)−1 ,

and Δ : [0, τ ]→ B(X × C
Np+n0) by

Δ(θ) :=
(
T(θ) 0

0 Ac

)
+

(∫ θ
0

T(s)Bds 0
0 Bc

)(
E 0
0 Ec

)(−εDc εI

−I −εD

)(
C 0
0 Cc

)
.
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For θ ∈ [0, τ ] and k ∈ Z+, define R(k, θ) : Lb(R+,C
m)× Lb(R+,C

p)× Lb(R+,C
p)→

X × C
Np+n0 by

R(k, θ)

⎛
⎜⎝
d1

d2

r

⎞
⎟⎠ :=

(∫ kτ+θ
kτ T(kτ + θ − s)Bd1(s)ds+ ε

∫ θ
0 T(s)Bdsf(kτ ; d1, d2, r)

BcEc[−Dd1(kτ) + r(kτ) − d2(kτ)]

)
,

where

f(kτ ; d1, d2, r) := −DcDEd1(kτ) + EDc[r(kτ) − d2(kτ)] .

By (4.35)–(4.37) and a routine calculation, we obtain

(4.40)
(
xp(kτ + θ)
xc(k + 1)

)
= Δ(θ)

(
xp(kτ)
xc(k)

)
+R(k, θ)

⎛
⎜⎝
d1

d2

r

⎞
⎟⎠ ∀k ∈ Z+ , θ ∈ [0, τ) .

It follows from (4.40) with θ = τ that

(4.41)
(
xp((k + 1)τ)
xc(k + 1)

)
= Δ(τ)

(
xp(kτ)
xc(k)

)
+R(k, τ)

⎛
⎜⎝d1

d2

r

⎞
⎟⎠ ∀k ∈ Z+ .

In the following, let τ ∈ (0, τ∗). Applying statement 1 of Theorem 3.5 to the feedback
interconnection of discrete-time systems (4.38) and (4.36), we conclude that there
exists ετ > 0 such that, for every ε ∈ (0, ετ ), Δ(τ) is power stable.

By the admissibility of B, there exists M1 ≥ 0 such that∥∥∥∥∥
∫ kτ+θ

kτ

T(kτ + θ − s)Bd1(s)ds

∥∥∥∥∥
X

= M1‖d1‖L2((kτ,kτ+θ),Cm) ≤M1

√
τ‖d1‖∞

∀k ∈ Z+ , ∀θ ∈ [0, τ ] , ∀d1 ∈ Lb(R+,C
m) .

Therefore, there exists M2 ≥ 0 such that∥∥∥∥∥∥∥R(k, θ)

⎛
⎜⎝
d1

d2

r

⎞
⎟⎠
∥∥∥∥∥∥∥ ≤M2(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞) ∀k ∈ Z+ , ∀θ ∈ [0, τ ] ,(4.42)

∀r, d2 ∈ Lb(R+,C
p) , ∀d1 ∈ Lb(R+,C

m) .

Hence, it follows from the discrete-time variation-of-parameters formula, the power
stability of Δ(τ), (4.41), and (4.42) that there exist M3 ≥ 1 and ρ ∈ (0, 1) such that

∥∥∥∥
(
xp(kτ)
xc(k)

)∥∥∥∥ ≤M3

(
ρk
∥∥∥∥
(
x0
p

x0
c

)∥∥∥∥+ ‖r‖∞ + ‖d1‖∞ + ‖d2‖∞
)
∀k ∈ Z+ , ∀x0

p ∈ X ,

∀x0
c ∈ C

Np+n0 , ∀r, d2 ∈ Lb(R+,C
p) , ∀d1 ∈ Lb(R+,C

m) .(4.43)
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Setting M4 := maxθ∈[0,τ ] ‖Δ(θ)‖, it follows from (4.40), (4.42), and (4.43) that, for all
θ ∈ [0, τ), k ∈ Z+, x0

p ∈ X , x0
c ∈ C

Np+n0 , r, d2 ∈ Lb(R+,C
p), and d1 ∈ Lb(R+,C

m),∥∥∥∥
(
xp(kτ + θ)
xc(k + 1)

)∥∥∥∥ ≤M4

∥∥∥∥
(
xp(kτ)
xc(k)

)∥∥∥∥+M2(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞)

≤M3M4ρ
k

∥∥∥∥
(
x0
p

x0
c

)∥∥∥∥+ (M2 +M3M4)(‖r‖∞ + ‖d1‖∞ + ‖d2‖∞)

≤ N1

(
eβ(kτ+θ)

∥∥∥∥
(
x0
p

x0
c

)∥∥∥∥+ ‖r‖∞ + ‖d1‖∞ + ‖d2‖∞
)
,

where β := (ln ρ)/τ < 0 and N1 := max{M3M4ρ
−1,M2 + M3M4}. This completes

the proof of statement 1.
To prove the approximate tracking and disturbance rejection result claimed in

statement 2, note that, by exponential stability of (4.34) and boundedness of C, the
impulse response of (4.34) is a C

p×m-valued Borel measure μ of the form μ(ds) =
g(s)ds+Dδ0(ds), where g(·)eα· ∈ L1(R+,C

p×m) for some α > 0, and δ0 is the Dirac
measure (see [8, Lemma 2.3]). By (4.34)–(4.37) and a routine calculation, we obtain

(4.44)
(
y(kτ + θ)
yc(k)

)
= Q(θ)Δk(τ)

(
x0
p

x0
c

)
+
(
ỹ(kτ + θ)
ỹc(k)

)
∀θ ∈ [0, τ) , ∀k ∈ Z+ ,

where

Q(θ) :=

(
CT(θ) − ε(F (θ) +DE)DcC εF (θ)Cc + εDECc

−εDcEcC εCc − ε2DcEcDCc

)
,

with F (θ) := C
∫ θ
0 T(s)BdsE ,

and ỹ, ỹc satisfy

(4.45) ỹ = G(d1 +Hτ ỹc) + d2 , ỹc = Kτ,εSτ (r − ỹ) .

An application of Theorem 4.10 to system (4.45), with r given by (4.9) and d1, d2

satisfying (4.10), shows that for every δ > 0, there exists τδ ∈ (0, τ∗) such that, for
every sampling period τ ∈ (0, τδ), there exists ετ > 0, such that, for every ε ∈ (0, ετ ),

lim sup
t→∞

‖ỹ(t)− r(t)‖ ≤ δ .

Therefore, by power stability of Δ(τ) and (4.44),

lim sup
t→∞

‖y(t)− r(t)‖ ≤ δ ∀x0
p ∈ X , ∀x0

c ∈ C
Np+n0 ,

completing the proof.
Example 4.13. For purposes of illustration, we consider the heat equation for

a bar of length 1. We keep both endpoints at zero temperature and inject heat of
magnitude up at the point η1 ∈ (0, 1). The measurement is generated by a spatial
averaging of the state over an σ-neighborhood of a point η2 ∈ (η1, 1). The system to
be controlled can be formulated as follows:

zt(η, t) = zηη(η, t) + δ(η − η1)up(t) ,

yp(t) =
1
2σ

∫ η2+σ

η2−σ
z(λ, t)dλ ,
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with boundary conditions

z(0, t) = z(1, t) = 0 ∀t > 0 .

For simplicity, we assume zero initial conditions

z(η, 0) = 0 ∀η ∈ [0, 1] .

Sampled-data low-gain integral control of this system (in the presence of input hys-
teresis) was studied in [6].

With input up and output yp, it is not hard to show that this system is a regular
linear system with state space X = L2(0, 1) and bounded observation. In particular,
the corresponding semigroup T(t), given by

(T(t)x)(η) =
∞∑
n=1

2 exp(−n2π2t) sin(nπη)
∫ 1

0

sin(nπλ)x(λ)dλ

∀x ∈ L2(0, 1), ∀η ∈ [0, 1] ,

is exponentially stable. The transfer function G is given by

G(s) =
sinh(σ

√
s) sinh(η1

√
s) sinh((1 − η2)

√
s)

σs sinh(
√
s)

.

The aim is to design a robust controller such that the closed-loop system approxi-
mately tracks the reference signal r(t) = sin t in the presence of disturbance signals
d1, d2 given by

d1(t) =
1
5

cos(5t) +
1

t+ 1
, d2(t) =

1
5

sin(5t)− 1
2

ln
(

1 +
1

t+ 1

)
, t ≥ 0 .

Set

K1 := 1/G(i) , K2 := K1 , K3 := 1/G(5i) , K4 := K3 ,

and K0(z) ≡ 10, so that the transfer function Kτ,ε of the controller Kτ,ε (see (4.7))
is given by

Kτ,ε(z) := ε

(
10 +

K1

z − eiτ +
K2

z − e−iτ +
K3

z − e5iτ +
K4

z − e−5iτ

)

= ε

(
10 +

2Re (K1)z − 2Re (K1e
−iτ )

z2 − (2 cos τ)z + 1
+

2Re (K3)z − 2Re (K3e
−5iτ )

z2 − (2 cos 5τ)z + 1

)
.

Since all the relevant hypotheses are satisfied, the conclusions of Theorem 4.10 are
valid. In Figure 4.2, simulations are shown for the specific values

η1 = 0.2 , η2 = 0.6 , σ = 0.01 , τ = 0.1 , ε = 0.1 ,

with zero initial conditions for the controller. The error signal e = r − yp − d2

and the output of the sampled-data system y = yp + d2 are shown in Figure 4.2.
Asymptotically, the error is bounded by 0.0028, that is, lim supt≥0 |e(t)| ≤ 0.0028.
Simulations show that, for the sampling period τ = 0.1, instability occurs at ε ≈ 0.22.
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Fig. 4.2. Error signal e and output y.
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OPTIMAL CONTROL IN FLUID MECHANICS BY FINITE
ELEMENTS WITH SYMMETRIC STABILIZATION∗

M. BRAACK†

Abstract. There are two main possibilities for the numerical computation of optimal control
problems with constraints given by partial differential equations: One may consider first the dis-
cretized problem and then build the optimality condition. The other possibility is to formulate first
the optimality condition on the continuous level and then discretize. Both approaches may lead to
different discrete adjoint equations because discretization and building the adjoint do not commute
in general. This type of inconsistency takes place when conventional stabilized finite elements for
flow problems, as for instance, streamline diffusion (SUPG), are used, due to its nonsymmetry. Con-
sequently, the computed control is significantly affected by the way of defining the discrete optimality
condition. Hence, there is a need for symmetric stabilization so that discretization and building the
adjoint commute. We formulate the use of this kind of stabilization and give a quasi-optimal a priori
estimate in the context of optimal control problems for the Oseen system. In particular, we show that
local projection stabilization and edge-oriented stabilization result to be quasi-optimal for optimal
control problems.

Key words. finite elements, stabilization, optimal control, Oseen equation, Navier–Stokes

AMS subject classifications. 35Q30, 65N12, 65N30, 76D05, 76D55, 76M10, 93C20
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1. Introduction. The numerical computation of optimal control problems with
constraints given by partial differential equations can be divided into two main ap-
proaches: One may consider first the discretized problem and then build the optimal-
ity condition. The other possibility is to formulate first the optimality condition on
the continuous level and then discretize. Both approaches lead to different discrete
adjoint equations when discretization and building the adjoint do not commute. This
type of inconsistency takes place when conventional residual-based stabilized finite el-
ements for flow problems, as for instance streamline upwind/Petrov–Galerkin (SUPG)
introduced by Brooks and Hughes in [9], are used, because they are nonsymmetric.
Consequently, the computed control is significantly affected by the way of defining
the discrete optimality condition.

An error estimate for convection-diffusion-reaction equations with the SUPG
method is given by Collis and Heinkenschloss in [11] where the two approaches
“discretize-optimize” and “optimize-discretize” different a priori estimates are derived.
The estimate for “optimize-discretize” has a better asymptotic in terms of powers of
mesh size. In numerical tests, the largest difference is observed in the adjoint variable.
For convection-diffusion problems with a particular least-squares stabilization Dedé
and Quarteroni [12] derived an a posteriori estimate and used it for local mesh refine-
ment. Becker and Vexler [4] presented recently an a priori estimate for optimal control
with such a scalar equation for finite elements with local projection stabilization.

Since more inconsistent terms appear in systems of equations, Abraham et al.
investigated numerically the Galerkin Least-Squares (GLS) stabilization for the Os-
een system in [1]. Herein, a significant effect is observed between both approaches.
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Moreover, the computed control appears to be very sensitive to the evaluation of sta-
bilization parameters. Therefore, the authors conclude that it is questionable whether
the GLS approach is suitable for optimal control problems.

Li and Petzold [16] discussed this topic as well in the context of (a) consistent
discrete boundary conditions for the adjoint problem and (b) adaptive mesh refine-
ment. They propose a combination of “discretize-optimize” and “optimize-discretize”
by splitting the domain into an inner part and a boundary part. The aspect of stabi-
lization due to the presence of convective terms or due to a saddle point structure of
the primal equation is not considered.

Obviously, there is a need for symmetric stabilization so that discretization and
building the adjoint commute. Recently, new stabilization techniques which are not
residual-based were developed and analyzed, for instance, edge-oriented stabilization
(see Burman et al. [10]) or local projection stabilization (LPS) [2]. For a review
and a critical comparison of those techniques with residual-based techniques, we refer
to [6]. In this work we derive some sufficient conditions for stabilized finite elements
in order to obtain a consistent and stable adjoint problem in the context of optimal
control. Local projection and edge-oriented stabilization are two prototypical methods
fulfilling these conditions.

As a prototype example we consider the variational formulation of the Oseen
problem, which is a very popular linearization of the Navier–Stokes equations. In the
domain Ω ⊂ R

d, d = 2, 3, we consider the following system of equations for pressure
p and velocity field v:

−μΔv + (β · ∇)v + σv +∇p = f in Ω ,
div v = 0 in Ω ,(1.1)

v = 0 on ∂Ω ,

with divergence-free convection field β : Ω → R
d, divβ = 0, and viscosity parameter

μ > 0. The parameter σ ≥ 0 may come from a possible discretization in time.
We explain now the principle dilemma arising in optimal control problems with

discrete state equations: We write a linear state equation given by a partial differential
equation in abstract operator form:

Au+Bq = f .(1.2)

Here, u denotes the state variable, and q the control out of the subspace Q of L2(Ω)
with L2-norm ‖·‖. For the Oseen system above, we use the vector notation u := {v, p}
in order to prevent confusion with the L2-scalar product (·, ·). The operator A applied
to the state vector u is given by the matrix-vector multiplication in function spaces:

Au :=
(
−μΔ + (β · ∇) + σ ∇

div v 0

)(
v
p

)
.

The objective functional under consideration is of the form:

J(u, q) :=
1
2
‖Cu− Cû‖2 +

α

2
‖q‖2 ,(1.3)

with a regularization parameter α > 0, a target state û. The operator C should
be linear and L2-continuous. Since tracking problems in fluid dynamics usually are
focused on the velocities, we suppose

‖Cu‖ ≤ c‖v‖(1.4)
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with a positive constant c. Hence, the optimal control problem reads

argmin
{
J(u, q) : u is solution of (1.2) for control q ∈ Q

}
.

The corresponding (continuous) Karush–Kuhn–Tucker (KKT) system is of the follow-
ing form: ⎛

⎝αI 0 B∗

0 C A∗

B A 0

⎞
⎠
⎛
⎝qu
z

⎞
⎠ =

⎛
⎝ 0
Cû
f

⎞
⎠ ,

where z = {zv, zp} denotes the adjoint state (zv = adjoint velocity, zp = adjoint
pressure). If these three equations are discretized properly, we obtain a discrete
KKT system. We provide the discrete variables with the subscribe h to emphasize
the dependency of the mesh-size function h: uh, zh, qh. If we denote the discrete
operators with the subscript h as well, we obtain formally the corresponding discrete
primal state equation:

Ahuh +Bhqh = fh .

However, this discrete version is not necessarily stable, for instance, due to convective
terms like in the Oseen system, (β ·∇)v. The principle idea of stabilized finite elements
is the use of additional terms Suh , S

q
h taking account for such instabilities of the discrete

operator Ah:

(Ah + Suh)uh + (Bh + Sqh)qh = fh .(1.5)

In the case of the Oseen system, such term s may be necessary for satisfying the
discrete inf-sup condition and to stabilize the indefinite convective terms. Since the
adjoint equation has to be stabilized as well (let us denote this operator by Szh), the
corresponding discrete KKT system of “optimize-discretize” is of the form⎛

⎝ αI 0 B∗
h

0 Ch A∗
h + Szh

Bh + Sqh Ah + Suh 0

⎞
⎠
⎛
⎝qhuh
zh

⎞
⎠ =

⎛
⎝ 0
Cû
fh

⎞
⎠ .

The other possibility is to start with the discrete state (1.5), and build the corre-
sponding KKT system (“discretize-optimize”), cf. [11]:⎛

⎝ αI 0 B∗
h + ([Sqh]

′)∗

0 Ch A∗
h + ([Suh ]′)∗

Bh + Sqh Ah + Suh 0

⎞
⎠
⎛
⎝qhuh
zh

⎞
⎠ =

⎛
⎝ 0
Cû
fh

⎞
⎠ .

Here, the additional term ([Sqh]
′)∗ arises in the equation for qh, which is the adjoint

linearization of Sqh. These two strategies coincide only in the case that it holds Szh =
([Suh ]′)∗ and Sqh = 0, which is not true in general. We will come back to this point
in section 3 for the established SUPG-PSPG (streamline upwind Petrov–Galerkin–
pressure stabilized Petrov–Galerkin) stabilization of the Oseen system.

In this work, we derive sufficient conditions for stabilized finite elements so that
the resulting discrete optimal control problem allows for a quasi-optimal a priori esti-
mate. Particular examples of those methods are local projection stabilization (LPS)
and edge-oriented stabilization (EOS). We show that the Oseen system stabilized with
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LPS or EOS leads to a consistent discrete KKT system in the sense that “discretize-
optimize” and “optimize-discretize” coincide. We give on quasi-uniform triangulations
with maximum mesh size h an a priori error estimate of the form:

|||u− uh|||h + ‖q − qh‖ � hr+
1
2 (‖u‖r+1 + ‖z‖r+1 + ‖q‖r+1) ,(1.6)

for a certain h-dependent (semi) norm ||| · |||h. Here r stands for the polynomial degree
of the finite elements and ‖ · ‖r+1 for the norm in the Sobolev space Hr+1(Ω). The
expression a � b means a ≤ cb for a generic h-independent constant c.

The contents of this work are as follows: In the following section, we formulate the
variational formulation of the Oseen system and derive the necessary and sufficient
condition for an optimal control problem on the continuous level. The discrete KKT
system is formulated for finite element discretizations. In particular, the approaches
discretize-optimize and optimize-discretize for stabilized finite element discretization
will be presented. In section 3 we derive conditions on the stabilization, namely,
symmetry, coercivity, and quasi-optimality for the primal problem with given control.
For the resulting discrete optimal control problems, discretize-optimize and optimize-
discretize coincides, and an a priori estimate of similar quality as the solely primal
problem (for given control) is proven, i.e., (1.6). In section 4 we show that two
classes of stabilization techniques, LPS, and EOS, fit into this class of finite element
techniques. Finally, we extend LPS to the Navier–Stokes system and discuss shortly
the consequences for the corresponding KKT system.

2. Variational formulation for optimal control.

2.1. Continuous variational formulation. The state variable u : Ω→ R
m is

sought in a Banach space X ⊂ [L2(Ω)]m and the control space Q is a subspace of
L2-integrable functions, Q ⊂ L2(Ω). For the Oseen system we have m = d + 1. The
equation for the state is given in the form

a(u, ϕ) + b(q, ϕ) = 〈l, ϕ〉 ∀ϕ ∈ X,(2.1)

with bilinear forms a : X ×X → R and b : Q ×X → R. A possible control is, e.g.,
b(q, ϕ) = (Bq, ϕ) with a continuous linear mapping B : Q → [L2(Ω)]m. The right-
hand side is a functional l ∈ (L2(Ω)m)′. For the Oseen system (1.1) this functional
acts as L2-integral in the momentum equation, 〈l, ϕ〉 =

∫
Ω
fϕv dx. As a typical

optimal control problem one may consider a functional J as in (1.3). With a linear
operator C : X → [L2(Ω)]m the difference between Cu and a target solution Cû ∈ X
in the L2(Ω)-norm is measured, together with the costs in the L2-norm of the control
weighted by some positive constant α > 0.

We assume that the bilinear forms a and b are such that for every control q ∈ Q
there exists a unique solution u ∈ X of (2.1) and

u = S(q) ≡ u0 + Tq ,(2.2)

where u0 is a solution of (2.1) with q = 0 and T : Q→ X is a bounded linear operator.
Hence, the optimization problem can be expressed as

{u, q} = arg min{J(u, q) : q ∈ Q, u = S(q)} .(2.3)

2.2. First-order continuous optimality condition. We begin with the first-
order optimality system:
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Lemma 2.1. A necessary and sufficient condition for a solution {u, q} of the
optimal control problem (2.3) is the existence of a dual state z ∈ X, so that the
following system is fulfilled:

a(u, ϕ) + b(q, ϕ)− 〈l, ϕ〉 = 0 ∀ϕ ∈ X ,(2.4)
a(ψ, z) + (Cu− Cû, Cψ) = 0 ∀ψ ∈ X ,(2.5)

α(q, λ)Q + b(λ, z) = 0 ∀λ ∈ Q .(2.6)

Proof. A more general proof of this result can be found in the book of Lions [17].
However, we recall this proof and make it more specific since we need several parts of
this proof later.

In order to show that the system (2.4)–(2.6) is a necessary condition, we can
suppose that {u, q} is given by (2.3). The state equation (2.4) is fulfilled by the
definition of S. Furthermore, we introduce the adjoint state z ∈ X as the solution
of (2.5). Hence, it remains to show the validity of (2.6). Due to (2.2) the reduced
functional j : Q→ R, j(q) := J(S(q), q) has the derivative:

j′(q)(λ) = (Cu − Cû, CS ′(q)λ) + α(q, λ)Q
= (Cu − Cû, CTλ) + α(q, λ)Q .

Since the necessary condition to minimize j is j′(q)(λ) = 0 for all λ ∈ Q, we obtain
for the optimal control q:

α(q, λ)Q = −(Cu− Cû, CTλ)
= (Cu − Cû, C(u0 − S(λ))) .

Using the adjoint state z ∈ X given by (2.5), we get for ψ := u0 − S(λ):

a(u0 − S(λ), z) = −(Cu− Cû, C(u0 − S(λ))) .

By combining the last two equations, we get due to linearity:

α(q, λ)Q = a(S(λ) − u0, z)
= a(S(λ), z)− 〈l, z〉
= 〈l, z〉 − b(λ, z)− 〈l, z〉 .

This proves the necessary condition. In order to show that the system of equations is
a sufficient condition, we consider the second derivative of the reduced functional:

j′′(q)(λ, λ) = ‖CTλ‖2 + α‖λ‖2 ≥ 0 .(2.7)

Hence we get also the sufficient condition.

2.3. Stabilized finite elements. In order to solve the optimality system (2.4)–
(2.6) numerically, we will replace the infinite dimensional space X by a finite dimen-
sional subspace Xh ⊂ X consisting of conforming finite elements. However, since the
Galerkin system is not necessarily stable, one has to add certain stabilization terms.
This will be made more concrete in this section. After discretization of the system, one
may solve the corresponding finite dimensional problem totally coupled or iteratively,
for instance, by a gradient method.

The mesh size function will be denoted by h and the triangulation by Th. We con-
sider shape regular meshes Th of tetrahedral or hexahedral elements K in three spatial
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dimensions (d = 3), and triangular or quadrilateral elements for the two-dimensional
case (d = 2). The finite element spaces result from isoparametric transformations of
polynomials on a reference cell K̂. By Pr we denote the set of polynomials of total
degree (for hex’s/quad’s) or rather maximal degree (for tri’s/tet’s) r on the reference
cell K̂, and TK : K̂ → K a polynomial transformation of the same type and degree;
i.e., TK ∈ Pr. Now, we formulate the finite element space

Prh :=
{
ϕ ∈ C(Ω,R) : ϕ|K = ϕ̂ ◦ T−1

K with ϕ̂, TK ∈ Pr
}
.

These finite element spaces are the usual Pr elements (tri’s/tet’s) or rather Qr ele-
ments (quad’s/hex’s). The discrete space is the intersection of X and the product
space of these finite elements (equal-order finite elements):

Xh = X ∩ [Prh]m .

The control space is also approximated by a certain discrete space Qh ⊂ Q. We may
take, for instance, the same type of finite elements as for u, but this is not mandatory.

In terms of stabilized finite elements the discrete state equation reads

uh ∈ Xh : a(uh, ϕ) + b(qh, ϕ) + suh(uh, ·;ϕ) = 〈l, ϕ〉 ∀ϕ ∈ Xh .(2.8)

The subscribe h in the stabilization term suh(uh, ·;ϕ) indicates the dependence on
the mesh-size, and the capital u indicates that it is the stabilization for the primal
variable u. The stabilization term may depend on further quantities in the primal
equation (we indicated this by the “·”), as, for instance, the right-hand side f and
on the control qh as well. This holds, in particular, for conventional residual-based
stabilization techniques.

The stabilization has to be chosen in such a way that there is also a unique
discrete solution operator Sh : Qh → Xh, uh = Sh(qh). For the adjoint equation (2.5)
and the gradient equation (2.6) we may distinguish between discretize-optimize and
optimize-discretize as discussed in the following.

2.3.1. Discretize-optimize. The approach discretize-optimize means that we
start with a discrete primal equation (2.8) and formulate on its basis the corresponding
discrete optimality conditions. Since the dual equation is always linear, we have to
linearize the probably nonlinear stabilization term. By ∂usuh(·)(ϕ, . . . ) we denote the
Gateaux derivative with respect to u in the direction of ϕ:

∂us
u
h(u, ·)(ϕ, z) := lim

ε→0

1
ε

(suh(u + εϕ, ·; z)− suh(u, ·; z)) .

We obtain the adjoint equation:

zh ∈ Xh : a(ϕ, zh) + ∂us
u
h(uh, ·)(ϕ, zh) = (C(û − uh), Cϕ) ∀ϕ ∈ Xh.(2.9)

Although (2.8) is stable the adjoint equation (2.9) may not lead to the optimal conver-
gence order. This is, indeed, the case for conventional stabilizations of flow problems,
as, for instance, PSPG and SUPG. The reason for the suboptimality is that the term
∂us

u
h(·, ·) does not contain the full adjoint residual corresponding to the adjoint mo-

mentum equation arising in (2.5).
Furthermore, as shown in [11], the derivative of the stabilization with respect to

the control enters into the discrete version of (2.6) in the case “discretize-optimize”:

qh ∈ Qh : α(qh, λ)Q + b(λ, zh) + ∂qs
u
h(uh, ·)(λ, zh) = 0 ∀λ ∈ Qh .(2.10)
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The resulting discrete KKT system (2.8), (2.9), and (2.10) is fully consistent in the
sense that for the discrete solution {uh, qh, zh} holds:

{uh, qh} = argmin{J(uh, qh) : qh ∈ Q, uh = Sh(qh)} .(2.11)

2.3.2. Optimize-discretize. Alternatively, one may start with the continuous
dual problem (2.5) and formulate a corresponding stable discrete version. Hence,
this alternative starts firstly with the continuous optimality system and secondly
discretizes properly by adding appropriate stabilization terms. Applying similar sta-
bilization techniques as for the primal problem (2.4) leads to a term szh(·, ·; ·) in the
discrete adjoint equation:

zh ∈ Xh : a(ϕ, zh) + szh(zh, ·;ϕ) = (C(û − uh), Cϕ) ∀ϕ ∈ Xh .(2.12)

In residual-based stabilization techniques, the stabilization involves the residual of the
adjoint equation and is, therefore, dependent of C(û − uh). The discrete version of
the gradient equation (2.6) is simply

qh ∈ Qh : α(qh, λ) + b(λ, zh) = 0 ∀λ ∈ Qh .(2.13)

Depending on the specific stabilization, the system (2.8), (2.12), and (2.13) is not a
necessary condition to minimize J in Xh ×Qh. Therefore, we obtain an inconsistent
discrete KKT system. In summary, we see that there is a certain conflict between a
consistent “suboptimal” and an inconsistent but “optimal” discrete adjoint problem.
With “(sub)optimal” we refer to the discretization error in dependence of the mesh
size.

3. Symmetric stabilization for optimal control. We formulate the abstract
setting of the previous sections for the Oseen system (1.1). The state variable u
consists of velocity v ∈ V := H1

0 (Ω) and pressure p ∈ P := L2
0(Ω), the space of

L2-integrable function in Ω with zero mean. The bilinear form for the Oseen system
with u = {v, p} and test functions ϕ = {φ, ξ} reads:

a(u, ϕ) := (div v, ξ) + (σv, φ) + (β · ∇v, φ) + (μ∇v,∇φ) − (p, divφ) .(3.1)

We write the control in the form b(q, ϕ) = (Bq, ϕ).
The PSPG was introduced by Hughes et al. in [14]. It is introduced to circumvent

the inf-sup condition. SUPG stabilization was developed independently by Johnson
and Saranen in [15] and Brooks and Hughes [9] in order to stabilize the convective
terms. The combination of PSPG and SUPG is a standard method for equal-order
finite elements in computational fluid dynamics. This combination for the Oseen
system with equal-order finite elements uses the stabilization term:

suh(u, f −Bq;ϕ) := (σv + (β · ∇)v +∇p+Bq − f, δp∇ξ + δv(β · ∇)φ)(3.2)

−
∑
K

(μΔv, δp∇ξ + δv(β · ∇)φ)K ,(3.3)

where the parameters δp and δv are cell-wise constants, depending on the local Peclet
number. It is easy to check that for this method in general holds ∂usuh(uh, ·)(ϕ, zh) �≡
szh(zh, ·;ϕ) and ∂qsuh(uh, ·) �≡ 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL IN FLUID MECHANICS 679

Now we derive an a priori estimate for the optimal control problem for a quite
general class of stabilized finite element schemes. The requirements we need consist
in

• linearity and symmetry of the stabilization,
• a coercivity property, and
• quasi-optimality of the forward problem (i.e., for fixed control).

These properties are concretized in the following subsection.

3.1. Requirements on the finite element stabilization. From now on we
focus on linear stabilization techniques for the Oseen system which are independent
of the right-hand side f . For a given control q ∈ Q such schemes are of the form

a(uh, ϕ) + b(q, ϕ) + sh(uh, ϕ) = 〈l, ϕ〉 ∀ϕ ∈ Xh .(3.4)

For the bilinear stabilization form sh : Xh×Xh → R we assume a symmetry property:
Lemma 3.1. If a stabilized scheme of type (3.4) fulfills the symmetry property

(P1) sh(u, ϕ) = sh(ϕ, u) ∀u, ϕ ∈ X ,

then discretization and optimization commute.
Proof. Since ∂qs(uh, ϕ) = 0 the KKT system corresponding to the discretized

primal equation reads:

a(uh, ϕ) + b(qh, ϕ) + sh(uh, ϕ)− 〈l, ϕ〉 = 0 ∀ϕ ∈ Xh(3.5)
a(ψ, zh) + sh(ψ, zh) + (C(uh − û), Cψ) = 0 ∀ψ ∈ Xh(3.6)

α(qh, λ) + b(λ, zh) = 0 ∀λ ∈ Qh .(3.7)

If we build the continuous KKT system first and then discretize, we obtain the same
system because the stabilization term for (2.5) is sh(zh, ψ). Due to (P1) this is
equivalent to the discrete adjoint equation above.

The a priori error estimate we are going to prove is in terms of a (possible h-
dependent) semi-norm

||| · |||h : X → R
+
0 ,

which is supposed to fulfill the following (discrete) coercivity property:

(P2) : |||uh|||h � (a(uh, uh) + sh(uh, uh))1/2 ∀uh ∈ Xh .(3.8)

This semi-norm is supposed to be stronger than the L2-norm of the velocities, i.e.,

(P3) : ‖v‖ � |||u|||h ∀u = {v, p} ∈ X .(3.9)

We introduce the term “symmetric of order s” for a stabilized scheme with finite
elements of order r.

Definition 3.2. A stabilized scheme (3.4) with property (P1) is called symmetric
of order s, with 0 ≤ s ≤ r + 1, if for (arbitrary but fixed) control q ∈ Q ⊂ Hr+1(Ω)
the solution uh = uh(q) of the discrete problem (3.4) and the solution u = u(q) ∈
[Hr+1(Ω)]d+1 of the continuous problem (2.1) fulfill the following a priori estimate:

(P4) |||u(q)− uh(q)|||h � hs‖u‖r+1(3.10)

for a triple norm satisfying conditions (P2) and (P3).
In this definition we assume the same regularity for p as for v. However, this

condition can easily be relaxed to one order less of regularity for p; see [5].
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3.2. A priori estimates. In this part we derive, firstly, a L2-error estimate of
the control, and secondly, an estimate for the error in the primal state and dual state.

For w ∈ X , we denote by z(w) and zh(w) the continuous and discrete solutions
of the adjoint problems, respectively, with a right-hand side including w:

z(w) ∈ X : a(ψ, z) = (C(û − w), Cψ) ∀ψ ∈ X ,

zh(w) ∈ Xh : a(ψ, zh) + sh(ψ, zh) = (C(û − w), Cψ) ∀ψ ∈ Xh .

Lemma 3.3. We consider a stabilized scheme which is symmetric of order s for
the primal equation in the sense of Definition 3.2 and apply this to the discrete adjoint
problem. Then it holds for arbitrary w ∈ V :

|||z(w)− zh(w)|||h � hs‖z(w)‖r+1 .

Proof. The adjoint problem is also of Oseen type. Hence, the estimate of type
(3.10) carries over to the corresponding adjoint solutions.

Lemma 3.4. For the differences of the discrete velocities vh(q + δq) and vh(q)
for the control q and q + δq, respectively, as well as for the dual solutions zh(u) and
zh(u+ δu) for the data u and u+ δu = {v+ δv, p+ δp}, respectively, it holds for their
velocity components:

‖vh(q + δq)− vh(q)‖ � ‖δq‖ ,
‖zvh(u+ δu)− zvh(u)‖ � ‖δv‖ .

Proof. With the coercivity (3.8) and the continuity of the linear form b we obtain
for δvh = vh(q + δq)− vh(q):

‖δvh‖2 � |||δuh|||2h � a(δuh, δuh) + sh(δuh, δuh)
= 〈l, δuh〉 − b(q + δq, δvh)− (〈l, δuh〉 − b(q, δvh))
= −b(δq, δvh) � ‖δq‖‖δvh‖ .

This is the first estimate of the Lemma. The second estimate for the difference in the
adjoint solution, δzh := zh(u+δu)−zh(u), it follows analogously due to the continuity
(1.4) of the linear operator C:

‖δzvh‖2 � |||δzh|||2h � a(δzh, δzh) + sh(δzh, δzh) = −(Cδu,Cδzh) � ‖δv‖ ‖δzvh‖ .

This gives us the assertion.
Lemma 3.5. We suppose {u, z, q} ∈ [Hr+1(Ω)]3d+2 for the continuous solution

of the optimal control problems (2.4)–(2.6). The stabilized scheme is assumed to be
symmetric of order s ≤ r + 1 in the sense of Definition 3.2. Then it holds for the
control qh of the discretized system (3.5)–(3.7):

‖q − qh‖ � hs(‖u‖r+1 + ‖z‖r+1 + ‖q‖r+1) .(3.11)

Proof. We split the error in the control in interpolation error and projection error:

‖q − qh‖ ≤ ‖q − ihq‖+ ‖ihq − qh‖ .

If we take as ih the nodal interpolation, it holds ‖q − ihq‖ � hr+1‖q‖r+1. Since
r+ 1 ≥ s, it is sufficient to bound the projection part. Denoting the discrete reduced
functional by

jh(q) := J(Sh(q), q) ,
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with the discrete solution operator uh(q) = Sh(q), the reduced optimization problems
are

min
q∈Q

j(q) and min
qh∈Qh

jh(qh) .

The corresponding (continuous and discrete) optimality conditions are

j′(q)(δq) = b(δq, zv) + (αq, δq) = 0 ∀δq ∈ Q ,
j′h(qh)(δq) = b(δq, zvh) + (αqh, δq) = 0 ∀δq ∈ Qh .

From (2.7) it follows j′′(q)(λ, λ) ≥ α‖λ‖2 for all λ ∈ Q. By the same arguments it
holds also for the discrete reduced functional:

j′′h(qh)(δq, δq) ≥ α‖δq‖2 ∀δq ∈ Qh .

Furthermore, since jh(q) is at most quadratic, it implies for arbitrary δqh ∈ Qh:

j′′h(qh)(·, δqh) = j′h(qh + δqh)(·)− j′h(qh)(·) .

Hence, for arbitrary δqh ∈ Qh:

α‖δqh‖2 ≤ j′′h(qh)(δqh, δqh)
= j′h(qh + δqh)(δqh)− j′h(qh)(δqh) .

Let us denote the discrete solution of the adjoint equation with right-hand side uh(ihq)
by ẑh := zh(uh(ihq)). Due to the optimality conditions, j′h(qh)(δqh) = 0 = j′(q)(δqh),
it follows especially for δqh = ihq − qh:

α‖ihq − qh‖2 ≤ j′h(ihq)(ihq − qh)− j′(q)(ihq − qh)
= b(ihq − qh, ẑ vh − zv) + (α( ihq − q), ihq − qh)
≤ c‖ẑ vh − zv‖ · ‖ihq − qh‖+ α‖ihq − q‖ · ‖ihq − qh‖ .

In the last step we used the fact that b(·, ·) is continuous. Dividing both sides by
α‖ihq − qh‖ gives

‖ihq − qh‖ ≤
c

α
‖ẑ vh − zv‖+ ‖ihq − q‖ .

Hence, it remains to bound ‖ẑ vh − zv‖ by the right-hand side of (3.11). This can be
done by a further splitting:

‖ẑ vh − zv‖ = ‖zvh(uh(ihq))− zv(u(q))‖
≤ ‖zvh(uh(ihq))− zvh(u(q))‖ + ‖zvh(u(q))− zv(u(q))‖ .

The first term ‖zvh(uh(ihq)) − zvh(u(q))‖ can be bounded by the stability property in
Lemma 3.4 of the discrete primal and adjoint problems:

‖zvh(uh(ihq))− zvh(u(q))‖ � ‖vh(ihq)− v(q)‖
≤ ‖vh(ihq)− vh(q)‖+ ‖vh(q)− v(q)‖
� ‖ihq − q‖+ hs‖u(q)‖r+1

� hr+1‖q‖r+1 + hs‖u(q)‖r+1

� hs(‖u‖r+1 + ‖q‖r+1) .
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Here, we used the stability for the primal equation corresponding to Lemma 3.4 for
the adjoint state. The second term ‖zvh(u(q)) − zv(u(q))‖ (which is based on the
same control q) can be treated by the approximation property of the discrete adjoint
problem (Lemma 3.3) and (3.9):

‖zvh(u(q))− zv(u(q))‖ � |||zh(u(q))− z(u(q))|||h � hs‖u(q)‖r+1 .

The main result is given in the following theorem.
Theorem 3.6. The stabilized scheme is assumed to be symmetric of order s in

the sense of Definition 3.2 with a bilinear form sh. Then it holds the following a priori
estimate for u = u(q) and uh = uh(qh):

|||u − uh|||h � hr+
1
2 (‖u‖r+1 + ‖z‖r+1 + ‖q‖r+1) ,(3.12)

presumed the regularity {u, z, q} ∈ [Hr+1(Ω)]3d+2 for the continuous solution of the
optimal control problem (2.3).

Proof. In order to get this estimate we start with

|||u− uh|||h ≤ |||u(q)− uh(q)|||h + |||uh(q) − uh(qh)|||h .

Due to the quasi-optimality (3.10) for ||| · |||, the first term |||u(q)− uh(q)|||h is bounded
by the right-hand side of (3.12). The second term can be bounded due to stability of
the discrete problem with respect to the control. At first, we note that due to (P2):

|||uh|||2h � a(uh, uh) + sh(uh, uh) = (f, vh)− (Bqh, vh)
≤ (‖f‖+ ‖Bqh‖) ‖vh‖ � (‖f‖+ ‖Bqh‖) |||uh|||h .

Hence, the discrete solution depends continuously on the right-hand side f and the
control qh: |||uh||| � ‖f‖ + ‖Bqh‖. Due to linearity, this implies that for discrete
solutions to different controls it holds

|||uh(q)− uh(qh)|||h � ‖B(q − qh)‖ � ‖q − qh‖ .

The previously derived bound in the control (3.11) gives an adequate bound of this
term.

Note that the same estimate can easily be derived analogously for |||z − zh|||h.
4. Application to symmetric stabilization techniques. In this part we

present the symmetric stabilization techniques by (a) local projection [5] and by
(b) interior penalties/edge stabilization [10] for the Oseen system which fulfill the
assumptions of Theorem 3.6.

4.1. Local projection stabilization. The main idea of local projection stabi-
lization is to include fine grid fluctuations of the pressure and of the velocity gradient
in the stabilization term. A very particular feature is that the stabilization disap-
pears for coarse grid test functions. This technique has shown its potential in several
incompressible and compressible fluid dynamical applications; see, e.g., [7, 8]. In or-
der to specify the stabilization term, we have to introduce further notations. The
discontinuous analogon of Prh is denoted by

Prh,disc :=
{
ϕ ∈ L2(Ω,R) : ϕ|K = ϕ̂ ◦ T−1

K with ϕ̂, TK ∈ Pr
}
.

Furthermore, let T2h be the coarser mesh obtained by a “global coarsening” of Th.
For quadrilaterals or hexahedrals, the finer mesh Th contains 2d times more elements
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Fig. 4.1. Patches of elements for the local projection stabilization: Th (left) and T2h (right).

than T2h. The elements of T2h will be denoted by “patches”. In Figure 4.1 a typical
mesh of this type is shown.

Let Dv
h and Dp

h be the following space for pressure and velocities, respectively, of
functions allowing discontinuities across elements of T2h:

Dv
h := [Pr−1

2h,disc]
d , Dp

h := Pr−1
2h,disc .

In the case r = 1, these spaces contain patch-wise (K ∈ T2h) constants, and for r = 2,
they contain patch-wise linear elements (d-linear elements for quad’s or hex’s). We
make use of the L2-projection operator

π̄h : L2(Ω)→ Dp
h ,

characterized by the property for v ∈ L2(Ω):

(v − π̄hv, φ) = 0 ∀φ ∈ Dp
h .

Important is the fact that this projection acts locally on patches of elements, so that
the numerical effort for computing this projection is very low. The operator giving
the space fluctuations is denoted by

κ̄h := i− π̄h ,

with the identity mapping i. For ease of presentation, we use the same notations
π̄h, κ̄h for the mappings on vector-valued functions, for instance, π̄h : L2(Ω)d → Dv

h.
The discrete primal equation of the optimal control problem with local projection

is as in (3.4) with the stabilization term independent of the control q:

slpsh (u, ϕ) := (β · ∇v, δvκ̄h(β · ∇)φ) + (∇p, δpκ̄h∇ξ) + (div v, γκ̄h(div ξ)) .(4.1)

The parameters δp, δv, and γ are patch-wise constant and depend (similar to PSPG
and SUPG) on the local Peclet number. This bilinear stabilization is proposed in
[3] and analyzed in [5] for the Oseen system. In particular, it was shown that for
the continuous solution u(q) and the discrete solution uh(q) for a fixed but arbitrary
q ∈ Q the a priori estimate (3.10) holds, if the stabilization parameters are chosen
appropriately.

The following lemma states the fact that optimize–discretize and discretize–optimize
coincide for the corresponding scheme:

Corollary 4.1. For the LPS stabilization discretization and optimization com-
mutes and the a priori estimate in Theorem 3.6 holds.

Proof. We show firstly that the stabilization is symmetric, i.e., (P1):

slps(ϕ, z) = slps(z, ϕ) .
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This is an immediate result of the definition of the orthogonal projection π̄h. Let us
consider, firstly, the pressure stabilization (δv = γ = 0). Due to (πh∇ξ1, κ̄h∇ξ2) = 0
for ξ1, ξ2 ∈ Qh it holds:

slps(ϕ, z) = (∇ξ, δpκ̄h∇zp)
= (∇ξ, δpκ̄h∇zp)− (πh∇ξ, δpκ̄h∇zp)
= (κ̄h∇ξ, δpκ̄h∇zp)
= (κ̄h∇ξ, δp∇zp) = (∇zp, δpκ̄h∇ξ)
= slps(z, ϕ) .

For δv, γ > 0 the argument is the same.
The corresponding triple norm is defined by

|||u|||lps := (a(u, u) + slpsh (u, u))1/2,

fulfilling obviously the coercivity property (P2) as well as (P3) for σ > 0.
In [5] it is shown that the estimate (3.10) holds with s = r + 1/2 for P1, P2,

Q1, and Q2 (equal-order) finite elements. Hence, we obtain the following a priori
estimate.

Corollary 4.2. For the local projection scheme in the optimal control context
we obtain the following a priori estimate for σ > 0:

|||u − uh|||lps � hr+
1
2 (‖u‖r+1 + ‖z‖r+1 + ‖q‖r+1) ,

presumed the regularity {u, z, q} ∈ [Hr+1(Ω)]3d+2 for the continuous solution of the
optimal control problem (2.3).

Remarks. 1. The right-hand side of the estimate involves derivatives of order
r + 1 of the primal state, dual state, and of the control. For convection dominated
flow this seems a little bit optimistic. However, the smoothness assumption above is
to show that the discretization allows for a quasi-optimal convergence rate which is
characteristic for stabilized methods. Even for the pure primal problem without any
control it is not possible to require less regularity for obtaining a convergence order
of hr+1/2. We refer to [5] for a relaxation of the smoothness on the pressure, i.e.,
p ∈ H1(Ω) or even less.

2. Furthermore, it should be emphasized that the whole analysis carries over to
further variants of (Guermond-type) local projections, for instance,

slpsh (u, ϕ) := (β · ∇κhv, δ
v(β · ∇)κhφ) + (∇κhp, δ

p∇κhξ) + (div κhv, γ(div κhξ)) ,

where κh = i− i2h is the difference between the identity and the nodal interpolation
i2h on the mesh T2h.

4.2. Edge stabilization. The interior penalty method of Douglas and Dupont
(see [13]) was extended by Burman, Fernandez, and Hansbo to the Oseen system [10].
The principal idea is to add least squares penalty terms on the gradient jumps of
velocity and pressure between neighboring elements to the Galerkin formulation. A
jump term on an interior edge E ⊂ ∂K, E ∩ ∂Ω = ∅, of a cell K ∈ Th with opposite
neighbor K ′ is defined by ∣∣[u(x)]

∣∣ := u(x)|K − u(x)|K′ .
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Jump terms on the boundary ∂Ω are set to zero. The stabilization

sesh (u, ϕ) := ses,vh (v, φ) + ses,ph (p, ξ) ,

ses,vh (v, φ) :=
∑
K∈Th

∫
∂K

{
δK
∣∣[n · ∇v]∣∣ · ∣∣[n · ∇φ]

∣∣+ γK
∣∣[div v]

∣∣ · ∣∣[divφ]
∣∣}ds ,

ses,ph (p, ξ) :=
∑
K∈Th

∫
∂K

αK
∣∣[∇p]∣∣ · ∣∣[∇ξ]∣∣ ds ,

with cell dependent parameters αK , δK , γK ≥ 0 is obviously symmetric; hence, (P1)
holds. The Galerkin bilinear form deviates somewhat from (3.1) due to weak imple-
mentation of boundary conditions by the Nitsche method [18]. We denote the cor-
responding bilinear form by aes(·, ·) and refer to [10] for details. However, this does
not harm the applicability of the framework in this paper to this edge stabilization
technique.

It was shown in [10] that the system is stable and quasi-optimal (3.10), in the
semi-norm

|||u|||′es :=
(
σ‖v‖2 + ν‖∇v‖2 + ses,vh (v, v) + |||v|||2∂Ω

)1/2
,

with the boundary contributions

|||v|||∂Ω :=
(
‖|β · n|1/2v‖2∂Ω +‖(γν)1/2h−1/2v‖2∂Ω +‖ν3/2h−1/2 max(Pe1/2, 1)v · n‖2∂Ω

)1/2
and the local Peclet number Pe = ν−1h|β|. Furthermore, the stabilized system is
quasi-optimal (for given control q) in the following sense:

|||u(q)− uh(q)|||′es � hr+1/2‖u‖r+1 .

However, in order to apply Theorem 3.6 we have to consider a triple norm which
allows for a coercivity property of the form (3.8). This is not valid for ||| · |||′es, but for
a triple norm including jumps of velocity gradients and pressure gradients as well:

|||u|||es :=
(
σ‖v‖2 + ν‖∇v‖2 + |||v|||2∂Ω + sesh (u, u)

)1/2
.

In [10] it was shown:

|||uh|||′es � (aes(uh, uh) + ses,vh (vh, vh))1/2 ∀u ∈ Xh .

Hence, we get (P2) due to

|||uh|||2es = (|||uh|||′es)2 + ses,ph (uh, uh)
� aes(uh, uh) + ses,vh (vh, vh) + ses,ph (ph, ph)
= aes(uh, uh) + sesh (uh, uh) .

Property (P3) is obviously fulfilled for σ > 0. Finally, we have to verify property
(P4), i.e., the estimate (3.10) for the triple norm |||u|||es:

|||u(q)− uh(q)|||es � hr+1/2‖u‖r+1 .

But this is a direct consequence of

|||u(q)− uh(q)|||′es � hr+1/2‖u‖r+1 ,(4.2)
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the identity ses,ph (p−ph, p−ph) = ses,ph (ph, ph), for p = p(q), ph = ph(q), and

ses,ph (ph, ph) � h2r+1‖u‖2r+1 .(4.3)

For the exact dependence of the constant in terms of the parameters σ, β, and ν in
the estimates (4.2) and (4.3) we refer to [10].

In summary, we obtain the following result.
Corollary 4.3. For the edge stabilization discretization and optimization com-

mutes and the a priori estimate

|||u− uh|||es � hr+
1
2 (‖u‖r+1 + ‖z‖r+1 + ‖q‖r+1)

holds if σ > 0, presuming the regularity {u, z, q} ∈ [Hr+1(Ω)]3d+2 for the continuous
solution of the optimal control problem (2.3).

5. Extension to Navier–Stokes. The proposed stabilizations in sections 4.1
and 4.2 can be extended to the Navier–Stokes system. The corresponding semilinear
form is

a(u)(ϕ) := (div v, ξ) + (σv, φ) + (v · ∇v, φ) + (μ∇v,∇φ) −−(p, divφ) ,

and the local projection stabilization term which works fine in practice, see [7], is

slpsh (u, ϕ) := (v · ∇v, δvκ̄h(v · ∇)φ) + (∇p, δpκ̄h∇ξ) + (div v, γκ̄h(div ξ)) .

Although these terms remain symmetric, the stabilization does not remain linear due
to the nonlinearity in the convective term. Let us take δp = γ = 0 and assume δv to
be independent of v in order to concentrate on the problematic term:

∂us
lps
h (u)(ϕ, z) = (v · ∇φ, δvκ̄h(v · ∇)zv) + (φ · ∇v, δvκ̄h(v · ∇)zv)

+ (v · ∇v, δvκ̄h(φ · ∇)zv) .

The first term on the right-hand side is due to the orthogonality property of π̄h equal
to

slpsh (z, ϕ) = (v · ∇zv, δvκ̄h(v · ∇)φ) = (v · ∇φ, δvκ̄h(v · ∇)zv) .

Due to the other two remaining terms, optimization and discretization do not longer
commutate. However, one may use the full gradient instead of the streamline deriva-
tive. In this case, the projection of the divergence is no longer necessary, so that we
end up with the following bilinear stabilization, cf. [5]:

slpsh (u, ϕ) := (∇v, δvκ̄h∇φ) + (∇p, δpκ̄h∇ξ) .

If the parameters δv and δp are independent of u (or uh), Lemma 3.1 remains valid.
However, the analysis of the correct calibration of the constants suggests a cell-wise v-
dependency. In particular, if u ∈ H2(Ω), one may take δv = 0 in the case of low local
Reynolds number, and δv ∼ hK(1+‖v‖K,∞+hKσ) for the convection dominant case.
In the latter case, there remains a certain nonlinearity in the definition of slpsh (u, ϕ), so
that a minor inconsistency remains for the optimal control problem. However, since
the nonlinearity is only in the stabilization parameter, it can be expected that this
inconsistency is by far less problematic than residual-based stabilization.
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6. Summary. In this work, we discuss the difference of optimize-discretize and
discretize-optimize for optimal control problems of flow problems. In particular, we
investigate the impact of stabilized finite element discretizations. We set up some
sufficient conditions for stabilized finite elements for the Oseen system which lead to
a consistent optimal control problem in the sense that discretization and optimization
commutes. For those schemes we prove an a priori estimate. Finally, we gave two
examples of stabilization, namely, local projection and edge stabilization, fitting into
this concept.
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[12] L. Dedé and Q. Quarteroni, Optimal control and numerical adaptivity for advection-diffusion
equations, Modél. Math. Anal. Numér., 39 (2005), pp. 1019–1040.

[13] J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin
methods, in Computing Methods in Applied Sciences (2nd Int. Symp., Versailles, 1975),
Lecture Notes in Physics 58, Springer, New York, 1976, pp. 207–216.

[14] T. Hughes, L. Franca, and M. Balestra, A new finite element formulation for compu-
tational fluid dynamics: V. circumvent the Babuska-Brezzi condition: A stable Petrov-
Galerkin formulation for the Stokes problem accommodating equal order interpolation,
Comput. Methods Appl. Mech. Engrg., 59 (1986) pp. 89–99.

[15] C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and
Navier-Stokes equations, Math. Comput., 47 (1986), pp. 1–18.

[16] S. Li and L. Petzold, Adjoint sensitivity analysis for time-dependent partial differential equa-
tions with adaptive mesh refinement, J. Comput. Phys., 198 (2004), pp. 310–325.

[17] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Number
170 in Die Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1971.
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Abstract. A class of optimal control problems for quasilinear elliptic equations is considered,
where the coefficients of the elliptic differential operator depend on the state function. First- and
second-order optimality conditions are discussed for an associated control-constrained optimal control
problem. Main emphasis is laid on second-order sufficient optimality conditions. To this aim, the
regularity of the solutions to the state equation and its linearization is studied in detail and the
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1. Introduction. In this paper, we consider optimal control problems for a
quasilinear elliptic equation of the type

(1.1)
{−div [a(x, y(x))∇y(x)] + f(x, y(x)) = u(x) in Ω,

y(x) = 0 on Γ.

Equations of this type occur, for instance, in models of heat conduction, where the
heat conductivity a depends on the spatial coordinate x and on the temperature y.
For instance, the heat conductivity of carbon steel depends on the temperature and
also on the alloying additions contained; cf. Bejan [2]. If the different alloys of steel are
distributed smoothly in the domain, then a = a(x, y) should depend in a sufficiently
smooth way on (x, y). Similarly, the heat conductivity depends on (x, y) in the growth
of silicon carbide bulk single crystals; see Klein et al. [22].

If a is independent of x, then the well-known Kirchhoff transformation is helpful
to solve (1.1) uniquely. Also in the more general case a = a(x, y), a Kirchhoff-type
transformation can be applied. Here, we may define b(x, y) :=

∫ y
0 a(x, z)dz and set

θ(x) := b(x, y(x)). Under this transformation, we obtain a semilinear equation of the
type −Δ θ + div [(∇xb)(x, b−1(x, θ))] + f(x, b−1(x, θ)) = u. We thank an anonymous
referee for this hint. However, b should at least be Lipschitz with respect to x and,
due to the new divergence term, the analysis of this equation is certainly not easy,
too. We believe that the direct discussion of the quasilinear equation is not more
difficult. Moreover, the form (1.1) seems to be more directly accessible to a numerical
solution.
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In the case a = a(x, y), in spite of the nonmonotone character of the equation
(1.1), there exists a celebrated comparison principle proved by Douglas, Dupont, and
Serrin [16] that leads to the uniqueness of a solution of (1.1); for a more recent paper,
extending this result the reader is referred to Kř́ıžek and Liu [23]. We will use the
approach of [23] to deduce that (1.1) is well posed under less restrictive assumptions
than those considered by the previous authors.

For other classes of quasilinear equations, in particular for equations in which
a depends on the gradient of y, we refer the reader to, for instance, Lions [24] and
Nečas [27].

As far as optimization is concerned, there exists a rich literature on the optimal
control of semilinear elliptic and parabolic equations. For instance, the Pontryagin
principle was discussed for different elliptic problems in [5], [4], [1], while the parabolic
case was investigated in [6] and [29]. Problems with quasilinear equations with nonlin-
earity of gradient type were considered by [7], [8], [11], and [12]. This list on first-order
necessary optimality conditions is by far not exhaustive. However, to our knowledge,
the difficult issue of second-order conditions for problems with quasilinear equations
has not yet been studied.

There is some recent progress in the case of semilinear equations. Quite a number
of contributions to second-order necessary and/or sufficient optimality conditions were
published for problems with such equations. We mention only [3], [14], and the state-
constrained case in [10], [15], [28].

Surprisingly, the important state equation (1.1) has not yet been investigated in
the context of optimal control. Our paper is the first step towards a corresponding
numerical analysis. We are convinced that our analysis can also be extended to other
quasilinear equations or associated systems, since the main difficulties are already
inherent in (1.1).

First-order optimality conditions are needed to deduce regularity properties of op-
timal controls as an important prerequisite for all further investigations. The second-
order analysis is a key tool for the numerical analysis of nonlinear optimal control
problems. As in the minimization of a function f : R → R, second-order sufficient
conditions are commonly assumed to guarantee stability of locally optimal controls
with respect to perturbations of the problem. For instance, an approximation of the
PDEs by finite elements is a typical perturbation of a control problem. Associated
error estimates for local solutions of the FEM-approximated optimal control problem
are based on second-order sufficiency. Likewise, the standard assumption for the con-
vergence of higher order numerical optimization algorithms such as SQP-type methods
is a second-order sufficient condition at the local solution to which the method should
converge.

A review on important applications of optimal control theory to problems in
engineering and medical science shows that in most of the cases the underlying PDEs
are quasilinear. Although our equation has a particular type, our problem might
serve as a model case for the numerical analysis of optimal control problems with
more general quasilinear equations or systems.

The theory of optimality conditions of associated control problems is the main
issue of our paper, which is organized as follows:

First, we discuss the well-posedness of this equation in different spaces. Next, the
differentiability properties of the control-to-state mapping are investigated. Based on
these results, the Pontryagin maximum principle is derived. Moreover, second-order
necessary and sufficient optimality conditions are established.
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Notation. By BX(x, r) we denote the open ball in a normed space X with
radius r centered at x, and by B̄X(x, r) we denote its closure. In some formulas,
the partial derivative ∂/∂xj is sometimes abbreviated by ∂j . By c (without index),
generic constants are denoted. Moreover, 〈· , ·〉 stands for the pairing between H1

0 (Ω)
and H−1(Ω).

2. Study of the quasilinear equation.

2.1. Existence, uniqueness, and regularity of solutions. The proof of the
existence and uniqueness of a solution of (1.1) relies on the following assumptions:

(A1) Ω ⊂ R
n is an open bounded set with a Lipschitz boundary Γ.

(A2) The functions a : Ω × R → R and f : Ω × R → R are Carathéodory, f is
monotone nondecreasing with respect to the second variable for almost all
x ∈ Ω, and

(2.1) ∃α0 > 0 such that a(x, y) ≥ α0 for a.e. x ∈ Ω and ∀ y ∈ R.

The function a(·, 0) belongs to L∞(Ω), and for any M > 0 there exist a
constant CM > 0 and a function φM ∈ Lq(Ω), with q ≥ pn/(n + p) and
n < p, such that for all |y|, |yi| ≤M

|a(x, y2)− a(x, y1)| ≤ CM |y2 − y1| and

|f(x, y)| ≤ φM (x) for a.e. x ∈ Ω.(2.2)

In the rest of the paper q and p ∈ (n,+∞) will be fixed. Let us remark that q ≥
pn/(n+ p) > n/2.

Example 2.1. The following equation satisfies our assumptions if we assume
φ0, φ1 ∈ L∞(Ω), φ0(x) ≥ α0 > 0 a.e. in Ω, φ1(x) ≥ 0 a.e. in Ω, and 1 ≤ m ∈ N:{−div

[
(φ0(x) + y2m(x))∇y(x)

]
+ φ1(x) exp(y(x)) = u(x) in Ω,

y(x) = 0 on Γ.

Theorem 2.2. Under the assumptions (A1) and (A2), for any element u ∈
W−1,p(Ω) problem (1.1) has a unique solution yu ∈ H1

0 (Ω) ∩ L∞(Ω). Moreover there
exists μ ∈ (0, 1) independent of u such that yu ∈ Cμ(Ω̄) and for any bounded set
U ⊂W−1,p(Ω)

(2.3) ‖yu‖H1
0(Ω) + ‖yu‖Cμ(Ω̄) ≤ CU ∀u ∈ U

for some constant CU > 0. Finally, if uk → u in W−1,p(Ω), then yuk
→ yu in

H1
0 (Ω) ∩ Cμ(Ω̄).

Proof. Existence of a solution. Depending on M > 0, we introduce the truncated
function aM by

aM (x, y) =

⎧⎪⎨
⎪⎩
a(x, y), |y| ≤M,

a(x,+M), y > +M,

a(x,−M), y < −M.

In the same way, we define the truncation fM of f . Let us prove that the equation

(2.4)
{−div [aM (x, y)∇y] + fM (x, y) = u in Ω,

y = 0 on Γ
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admits at least one solution y ∈ H1
0 (Ω). We define, for fixed u ∈ W−1,p(Ω) and

M > 0, a mapping F : L2(Ω) → L2(Ω) by F (z) = y, where y ∈ H1
0 (Ω) is the unique

solution to

(2.5)
{−div [aM (x, z)∇y] + fM (x, z) = u in Ω,

y = 0 on Γ.

Thanks to assumption (A2), (2.2), we have

|fM (x, z)| ≤ φM (x)

and φM ∈ Lq(Ω) ⊂ H−1(Ω). Therefore, (2.5) is a linear equation and u − fM (·, z)
belongs to H−1(Ω); hence (2.5) admits a unique solution yM ∈ H1

0 (Ω) and F is well
defined. It can be shown by standard arguments invoking in particular the compact
injection of H1(Ω) in L2(Ω) that F is continuous. Furthermore, we have

(2.6) ‖yM‖H1(Ω) ≤
1
α0

(
‖u‖H−1(Ω) + ‖φM‖H−1(Ω)

)
.

Using this estimate and the fact that H1(Ω) is compactly embedded into L2(Ω), it is
easy to apply the Schauder theorem to prove the existence of a fixed point yM ∈ H1

0 (Ω)
of F . Obviously, yM is a solution of (2.4).

Since q ≥ np/(n+p) we have that Lq(Ω) ⊂W−1,p(Ω). Now an application of the
Stampacchia truncation method yields

(2.7) ‖yM‖L∞(Ω) ≤ c∞ ‖u− f(·, 0)‖W−1,p(Ω),

where c∞ depends only on the coercivity constant α0 given in (2.1) but neither on
‖aM (·, yM )‖L∞(Ω) nor on fM (·, yM ). For the idea of this method, the reader is referred
to Stampacchia [30] or to the exposition for semilinear elliptic equations in Tröltzsch
[31, Theorem 7.3]. By taking

M ≥ c∞ ‖u− f(·, 0)‖W−1,p(Ω),

(2.7) implies that aM (x, yM (x)) = a(x, yM (x)) and fM (x, yM (x)) = f(x, yM (x)) for
a.e. x ∈ Ω, and therefore yM ∈ H1

0 (Ω) ∩ L∞(Ω) is a solution of (1.1). The Hölder
regularity follows as usual; see, for instance, Gilbarg and Trudinger [19, Theorem 8.29].
Inequality (2.3) follows from (2.6), (2.7), and the estimates in [19, Theorem 8.29].
Finally, the convergence property can be deduced from (2.3) easily once the uniqueness
is proved.

Uniqueness of a solution. Here we follow the method by Kř́ıžek and Liu [23].
Let us assume that yi ∈ H1

0 (Ω) ∩ L∞(Ω), i = 1, 2, are two solutions of (1.1). The
regularity results proved above imply that yi ∈ C(Ω̄), i = 1, 2. Let us define the open
sets

Ω0 = {x ∈ Ω : y2(x)− y1(x) > 0}

and for every ε > 0

Ωε = {x ∈ Ω : y2(x)− y1(x) > ε}.

Now we take zε(x) = min{ε, (y2(x)− y1(x))+}, which belongs to H1
0 (Ω) and |zε| ≤ ε.

Multiplying the equations corresponding to yi by zε and doing the usual integration
by parts we get∫

Ω

{a(x, yi)∇yi · ∇zε + f(x, yi)zε} dx = 〈u, zε〉, i = 1, 2.
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By subtracting both equations, using the monotonicity of f , (2.1) and (2.2) and the
fact that∇zε(x) = 0 for a.a. x �∈ Ω0\Ωε and in view of∇zε = ∇(y2−y1)+ = ∇(y2−y1)
a.e. in Ω0 \ Ωε we get

α0‖∇zε‖2L2(Ω) ≤
∫

Ω

{a(x, y2)|∇zε|2 + [f(x, y2)− f(x, y1)]zε}dx

=
∫

Ω

{a(x, y2)∇(y2 − y1) · ∇zε + [f(x, y2)− f(x, y1)]zε}dx

and, invoking the weak formulation of the equation for y1,

=
∫

Ω

[a(x, y1)∇y1 − a(x, y2)∇y1] · ∇zε dx

=
∫

Ω0\Ωε

[a(x, y1)∇y1 − a(x, y2)∇y1] · ∇zε dx

≤ CM‖y2 − y1‖L∞(Ω0\Ωε)‖∇y1‖L2(Ω0\Ωε)‖∇zε‖L2(Ω0\Ωε)

≤ CMε‖∇y1‖L2(Ω0\Ωε)‖∇zε‖L2(Ω0\Ωε).

From this inequality, along with Friedrich’s inequality, we get

(2.8) ‖zε‖L2(Ω) ≤ C‖∇zε‖L2(Ω) ≤ C′ε‖∇y1‖L2(Ω0\Ωε).

Now by limε↓0 |Ω0 \ Ωε| = 0 and (2.8) we deduce

|Ωε| = ε−2

∫
Ωε

ε2 ≤ ε−2

∫
Ω

|zε|2 ≤ C′′‖∇y1‖2L2(Ω0\Ωε) → 0,

which implies that |Ω0| = limε→0 |Ωε| = 0 and hence y2 ≤ y1. In the same way, we
prove that y1 ≤ y2

As in this theorem, throughout our paper, the solutions of PDEs are defined as
weak solutions.

Remark 2.3. Let us remark that the Lipschitz property of a with respect to y
assumed in (A2) was necessary only to prove the uniqueness of a solution of (1.1), but
it was not needed to establish existence and regularity. We can get multiple solutions
of (1.1) if the Lipschitz property (2.2) fails; see Hlaváček, Kř́ıžek, and Malý [21] for a
one-dimensional example.

By assuming more regularity on a, f , Γ, and u, we can obtain higher regularity
of the solutions of (1.1).

Theorem 2.4. Let us suppose that (A1) and (A2) hold. We also assume that
a : Ω̄×R −→ R is continuous and Γ is of class C1. Then, for any u ∈W−1,p(Ω), (1.1)
has a unique solution yu ∈ W 1,p

0 (Ω). Moreover, for any bounded set U ⊂ W−1,p(Ω),
there exists a constant CU > 0 such that

(2.9) ‖yu‖W 1,p
0 (Ω) ≤ CU ∀u ∈ U.

If uk → u in W−1,p(Ω), then yuk
→ yu strongly in W 1,p

0 (Ω).
The proof of this theorem follows from Theorem 2.2 and the W 1,p(Ω)-regularity

results for linear elliptic equations; see Giaquinta [18, Chap. 4, p. 73] or Morrey [25,
pp. 156–157]. It is enough to remark that the function â(x) = a(x, yu(x)) is continuous
in Ω̄ and u− f(·, yu) belongs to W−1,p(Ω).

Let us state some additional assumptions leading to W 2,q(Ω)-regularity for the
solutions of (1.1).
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(A3) For all M > 0, there exists a constant cM > 0 such that the following local
Lipschitz property is satisfied:

(2.10) |a(x1, y1)− a(x2, y2)| ≤ cM {|x1 − x2|+ |y1 − y2|}

for all xi ∈ Ω̄, yi ∈ [−M,M ], i = 1, 2.
Theorem 2.5. Under the hypotheses (A1)–(A3) and assuming that Γ is of class

C1,1, for any u ∈ Lq(Ω), (1.1) has one solution yu ∈ W 2,q(Ω). Moreover, for any
bounded set U ⊂ Lq(Ω), there exists a constant CU > 0 such that

(2.11) ‖yu‖W 2,q(Ω) ≤ CU ∀u ∈ U.

Proof. (i) From Sobolev embedding theorems (cf. Nečas [26, Theorem 3.4]), it
follows that

Lq(Ω) ↪→W−1, nq
n−q (Ω) if 1 < q < n,(2.12)

Lq(Ω) ↪→W−1,∞(Ω) if n ≤ q <∞.(2.13)

Since Lq(Ω) ⊂ W−1,p(Ω), we can apply Theorem 2.4 to get the existence of at least
one solution in W 1,p

0 (Ω) for every 1 < p <∞ if q ≥ n, and for p = nq
n−q if q < n. We

have to prove the W 2,q(Ω)-regularity. To this aim, we distinguish between two cases
in the proof.

(ii)(a) Case q ≥ n. We have that y ∈ W 1,p
0 (Ω) for any p < ∞, in particular in

W 1,2q
0 (Ω). By using assumption (A3), expanding the divergence term of the PDE

(1.1), and dividing by a we find that

(2.14) −Δy =
1
a︸︷︷︸
L∞

⎧⎪⎪⎨
⎪⎪⎩u− f(·, y)︸ ︷︷ ︸

Lq

+
n∑
j=1

∂ja(x, y)︸ ︷︷ ︸
L∞

∂jy︸︷︷︸
Lq

+
∂a

∂y︸︷︷︸
L∞

|∇y|2︸ ︷︷ ︸
Lq

⎫⎪⎪⎬
⎪⎪⎭ ,

hence the right-hand side of (2.14) is in Lq(Ω). Notice that ∂a
∂y ∈ L∞ follows from

(2.10) and the boundedness of y. The C1,1 smoothness of Γ permits us to apply a
well-known result by Grisvard [20] on maximal regularity and to get y ∈ W 2,q(Ω).

(ii)(b) Case n/2 < q < n. Notice that y ∈ W 1, nq
n−q

0 (Ω). It follows that |∇y|2 ∈
L

nq
2(n−q) (Ω). A simple calculation confirms that

(2.15)
nq

2(n− q) > q,

since this is equivalent to q > n/2, a consequence of our assumption on q. Therefore,
it holds that |∇y|2 ∈ Lq(Ω) and once again the right-hand side of (2.14) belongs
to Lq(Ω). We apply again the regularity results by Grisvard [20] to obtain y ∈
W 2,q(Ω).

Corollary 2.6. Suppose that the assumptions of Theorem 2.5, except the regu-
larity hypothesis of Γ, are satisfied with q = 2. Then, if Ω ⊂ R

n is an open, bounded,
and convex set, n = 2 or n = 3, there exists one solution of (1.1): y ∈ H2(Ω)∩H1

0 (Ω).
Proof. This is a simple extension of Theorem 2.5 for q = 2. Notice that we have

assumed n ≤ 3 so that q > n/2 is true. The C1,1 smoothness of Γ is not needed for
convex domains, since maximal regularity holds there; cf. [20].
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2.2. Differentiability of the control-to-state mapping. In order to derive
the first- and second-order optimality conditions for the control problem, we need to
assume some differentiability of the functions involved in the control problem. In this
section, we will analyze the differentiability properties of the states with respect to
the control. To this aim, we require the following assumption.

(A4) The functions a and f are of class C2 with respect to the second variable and,
for any number M > 0, there exists a constant DM > 0 such that

2∑
j=1

∣∣∣∣∂ja∂yj
(x, y)

∣∣∣∣+
∣∣∣∣∂jf∂yj (x, y)

∣∣∣∣ ≤ DM for a.e. x ∈ Ω and ∀ |y| ≤M.

Now we are going to study the differentiability of the control-to-state mapping.
As a first step we study the linearized equation of (1.1) around a solution yu. The
reader should note that the well-posedness of the linearized equation is not obvious
because of the linear operator is not monotone.

Theorem 2.7. Given y ∈W 1,p(Ω) for any v ∈ H−1(Ω) the linearized equation

(2.16)

⎧⎨
⎩−div

[
a(x, y)∇z +

∂a

∂y
(x, y)z∇y

]
+
∂f

∂y
(x, y) z = v in Ω,

z = 0 on Γ

has a unique solution zv ∈ H1
0 (Ω).

Remark 2.8. As a consequence of the open mapping theorem, assuming that (A2)
and (A4) hold, we know that the relation v �→ zv defined by (2.16) is an isomorphism
between H−1(Ω) and H1

0 (Ω). Indeed, it is enough to note that the linear mapping

z �→ −div
[
a(x, y)∇z +

∂a

∂y
(x, y)z∇y

]
+
∂f

∂y
(x, y) z

is continuous from H1
0 (Ω) to H−1(Ω). To verify this, we notice first that a(x, y),

∂a
∂y (x, y), and ∂f

∂y (x, y) are bounded functions because of our assumptions and the
boundedness of y, which follows from the fact that y ∈ W 1,p

0 (Ω) ⊂ C(Ω̄) for p > n.
The only delicate point is to check that

∂a

∂y
(·, y)z∇y ∈ L2(Ω)n.

This property follows from the Hölder inequality

(∫
Ω

∣∣∣∣∂a∂y (·, y)z∇y
∣∣∣∣
2

dx

)1/2

≤ DM‖z‖
L

2p
p−2 (Ω)

‖∇y‖Lp(Ω)

and the fact that

H1
0 (Ω) ⊂ L 2n

n−2 (Ω) ⊂ L
2p

p−2 (Ω) if n > 2,

H1
0 (Ω) ⊂ Lr(Ω) ∀ r <∞ if n = 2,

where we have used that

p > n⇒ 2n
n− 2

>
2p
p− 2

.
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Remark 2.9. The reader can easily check that the proof of Theorem 2.7 can be
modified in a very obvious way to state that the equation

⎧⎨
⎩−div

[
a(x, y1)∇z +

∂a

∂y
(x, y2)z∇y

]
+
∂f

∂y
(x, y3) z = v in Ω,

z = 0 on Γ

has a unique solution in z ∈ H1
0 (Ω) for any elements y ∈ W 1,p(Ω) and yi ∈ L∞(Ω),

i = 1, 2, 3.
Proof of Theorem 2.7. First we prove the uniqueness and then the existence.
Uniqueness of solution of (2.16). We follow the same approach used to prove the

uniqueness of a solution of (1.1). Let us take v = 0 and assume that z ∈ H1
0 (Ω) is a

solution of (2.16); then the goal is to prove that z = 0. Thus we define the sets

Ω0 = {x ∈ Ω : z(x) > 0} and Ωε = {x ∈ Ω : z(x) > ε}.

Now we set zε(x) = min{ε, z+(x)}, so that zε ∈ H1
0 (Ω), |zε| ≤ ε, zzε ≥ 0, z∇zε =

zε∇zε, and ∇z · ∇zε = |∇zε|2. Then multiplying the equation corresponding to z by
zε and performing an integration by parts we get∫

Ω

{
a(x, y)|∇zε|2 +

∂a

∂y
(x, y)zε∇y · ∇zε +

∂f

∂y
(x, y)z2

ε

}
dx = 0;

then, by the monotonicity of f and (A2),

α0‖∇zε‖2L2(Ω) ≤
∫

Ω

{
a(x, y)|∇zε|2 +

∂f

∂y
(x, y)z2

ε

}
dx

= −
∫

Ω

∂a

∂y
(x, y)zε∇y · ∇zε dx = −

∫
Ω0\Ωε

∂a

∂y
(x, y)zε∇y · ∇zε dx

≤ CM‖∇y‖Lp(Ω0\Ωε)‖∇zε‖L2(Ω).

From here follows an inequality analogous to (2.8), and continuing the proof in a
similar manner, we conclude that |Ω0| = limε→0 |Ωε| = 0, and therefore z ≤ 0 in Ω.
But −z is also a solution of (2.16), so by the same arguments we deduce that −z ≤ 0
in Ω, and therefore z = 0.

Existence of solution of (2.16). For every t ∈ [0, 1] let us consider the equation

(2.17)

⎧⎨
⎩−div

[
a(x, y)∇z + t

∂a

∂y
(x, y)z∇yu

]
+
∂f

∂y
(x, y) z = v in Ω,

z = 0 on Γ.

For t = 0, the resulting linear equation is monotone, and by an obvious application
of the Lax–Milgram theorem we know that there exists a unique solution z0 ∈ H1

0 (Ω)
for every v ∈ H−1(Ω). Let us denote by S the set of points t ∈ [0, 1] for which (2.17)
defines an isomorphism between H1

0 (Ω) and H−1(Ω). S is not empty because 0 ∈ S.
Let us denote by tmax the supremum of S. We will prove first that tmax ∈ S, and
then we will see that tmax = 1, which concludes the proof of existence.

Let us take a sequence {tk}∞k=1 ⊂ S such that tk → tmax when k →∞ and let us
denote by zk the solutions of (2.17) corresponding to the values tk. Multiplying the
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equation of zk by zk and integrating by parts, using assumptions (A1) and (A2) we
get

α0‖∇zk‖2L2(Ω) ≤
∫

Ω

{
a(x, y)|∇zk|2 +

∂f

∂y
(x, y)z2

k

}
dx

= 〈v, zk〉 − tk
∫

Ω

∂a

∂y
(x, y)zk∇y · ∇zk dx

≤
(
‖v‖H−1(Ω) + tkDM‖∇y‖Lp(Ω)‖zk‖

L
2p

p−2 (Ω)

)
‖∇zk‖L2(Ω),

which implies

(2.18) ‖∇zk‖L2(Ω) ≤ C
(
‖v‖H−1(Ω) + ‖zk‖

L
2p

p−2 (Ω)

)
.

In principle it seems that there are two possibilities: either {zk}∞k=1 is bounded in
L

2p
p−2 (Ω) or it is not. In the first case (2.18) implies that {zk}∞k=1 is bounded in

H1
0 (Ω); then we can extract a subsequence, denoted in the same way, such that

zk ⇀ z weakly in H1
0 (Ω) and strongly in L

2p
p−2 (Ω) because of the compactness of

the embedding H1
0 (Ω) ⊂ L

2p
p−2 (Ω) for p > n. Therefore we can pass to the limit in

(2.17), with t = tk, and check that z is a solution of (2.17) for t = tmax, and therefore
tmax ∈ S, as we wanted to prove.

Let us see that the second possibility is not actually a correct assumption. Indeed,
let us assume that ‖zk‖

L
2p

p−2 (Ω)
→∞, taking a subsequence if necessary. We define

ρk =
1

‖zk‖
L

2p
p−2 (Ω)

→ 0 and ẑk = ρkzk.

Then from (2.18) we deduce

(2.19) ‖∇ẑk‖L2(Ω) ≤ C
(
ρk‖v‖H−1(Ω) + ‖ẑk‖

L
2p

p−2 (Ω)

)
= C

(
ρk‖v‖H−1(Ω) + 1

)
.

Moreover ẑk satisfies the equation

(2.20)

⎧⎨
⎩−div

[
a(x, y)∇ẑk + tk

∂a

∂y
(x, y)ẑk∇y

]
+
∂f

∂y
(x, y)ẑk = ρkv in Ω,

z = 0 on Γ.

From (2.19) we know that we can extract a subsequence, denoted once again in
the same way, such that ẑk ⇀ ẑ weakly in H1

0 (Ω) and strongly in L
2p

p−2 (Ω). Then
‖ẑ‖

L
2p

p−2 (Ω)
= 1 and passing to the limit in (2.20) we have that ẑ satisfies the equation

⎧⎨
⎩−div

[
a(x, y)∇ẑ + tmax

∂a

∂y
(x, y)ẑ∇y

]
+
∂f

∂y
(x, y)ẑ = 0 in Ω,

z = 0 on Γ.

But we have already proved the uniqueness of solution of (2.16); the fact of including
tmax in the equation does not matter for the proof. Therefore ẑ = 0, which contradicts
the fact that its norm in L

2p
p−2 (Ω) is one.
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Finally we prove that tmax = 1. If it is false, then let us consider the operators
Tε, Tmax ∈ L(H1

0 (Ω), H−1(Ω)) for any ε > 0 with tmax + ε ≤ 1, defined by

Tεz = −div
[
a(x, y)∇z + (tmax + ε)

∂a

∂y
(x, y)z∇y

]
+
∂f

∂y
(x, y)z,

Tmaxz = −div
[
a(x, y)∇z + tmax

∂a

∂y
(x, y)z∇y

]
+
∂f

∂y
(x, y)z.

Then we have

‖Tε − Tmax‖L(H1
0 (Ω),H−1(Ω)) = sup

‖z‖
H1

0(Ω)≤1

‖(Tε − Tmax)z‖H−1(Ω)

≤ DM sup
‖z‖

H1
0(Ω)≤1

ε‖z‖
L

2p
p−2 (Ω)

‖∇y‖Lp(Ω) ≤ Cε.

Since Tmax is an isomorphism, if Cε < 1, then Tε is also an isomorphism, which
contradicts the fact that tmax is the supremum of S.

Theorem 2.10. Let us suppose that (A1), (A2), and (A4) hold. We also assume
that a : Ω̄ × R �→ R is continuous and Γ is of class C1. Then the control-to-state
mapping G : W−1,p(Ω) → W 1,p

0 (Ω), G(u) = yu, is of class C2. Moreover, for any
v, v1, v2 ∈ W−1,p(Ω) the functions zv = G′(u)v and zv1,v2 = G′′(u)[v1, v2] are the
unique solutions in W 1,p

0 (Ω) of the equations

(2.21)

⎧⎨
⎩−div

[
a(x, yu)∇z +

∂a

∂y
(x, yu)z∇yu

]
+
∂f

∂y
(x, y) z = v in Ω,

z = 0 on Γ

and

(2.22)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− div
[
a(x, yu)∇z +

∂a

∂y
(x, yu)z∇yu

]
+
∂f

∂y
(x, yu) z = −∂

2f

∂y2
(x, yu)zv1zv2

+ div
[
∂a

∂y
(x, yu)(zv1∇zv2 +∇zv1zv2) +

∂2a

∂y2
(x, yu)zv1zv2∇yu

]
in Ω,

z = 0 on Γ,

respectively, where zi = G′(u)vi, i = 1, 2.
Proof. We introduce the mapping F : W 1,p

0 (Ω)×W−1,p(Ω)→ W−1,p(Ω) by

F (y, u) = −div [a(·, y)∇y] + f(·, y)− u.

Because of the assumptions (A2) and (A4), it is obvious that F is well defined, of
class C2, and F (yu, u) = 0 for every u ∈ W 1,p

0 (Ω). If we prove that

∂F

∂y
(yu, u) : W 1,p

0 (Ω) −→W−1,p(Ω)

is an isomorphism, then we can apply the implicit function theorem to deduce the
theorem, getting (2.21) and (2.22) by simple computations. Let us remark that

∂F

∂y
(yu, u)z = −div

[
a(x, yu)∇z +

∂a

∂y
(x, yu)z∇yu

]
+
∂f

∂y
(x, yu) z.
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According to Theorem 2.7, for any v ∈ H−1(Ω), there exists a unique element z ∈
H1

0 (Ω) such that

∂F

∂y
(yu, u)z = v.

It is enough to prove that z ∈ W 1,p
0 (Ω) if v ∈ W−1,p(Ω) ⊂ H−1(Ω). More precisely,

this means that the unique solution of (2.16) in H1
0 (Ω) belongs to W 1,p

0 (Ω). First of
all, let us note that

a(·, yu) ∈ L∞(Ω),
∂a

∂y
(·, yu)∇yu ∈ Lp(Ω)n,

∂f

∂y
(·, yu) ∈ L∞(Ω), and v ∈ W−1,p(Ω).

Therefore, we can apply a result by Stampacchia [30, Theorem 4.1 and Remark 4.2]
about L∞(Ω)-estimates of solutions of linear equations to get that z ∈ L∞(Ω). Now
we have that

−div[a(x, yu)∇z] = v + div
[
∂a

∂y
(x, yu)z∇yu

]
− ∂f

∂y
(x, yu)z ∈W−1,p(Ω)

and x �→ a(x, yu(x)) is a continuous real-valued function defined in Ω̄. Finally, as in the
proof of Theorem 2.4, we can use the W 1,p

0 (Ω)-regularity results for linear equations
(see [18, Chap. 4, p. 73] or [25, pp. 156–157]) to deduce that z ∈ W 1,p

0 (Ω).
From Theorem 2.5 we know that the states y corresponding to controls u ∈

Lq(Ω), with q > n/2, can have an extra regularity under certain assumptions. In this
situation, a natural question arises. Can we prove a result analogous to Theorem 2.10
with G : Lq(Ω)→ W 2,q(Ω)? The answer is positive if we assume some extra regularity
of the function a.

(A5) For all M > 0, there exists a constant dM > 0 such that the following
inequality is satisfied:

(2.23)
∣∣∣∣∂ja∂yj

(x1, y1)−
∂ja

∂yj
(x2, y2)

∣∣∣∣ ≤ dM {|x1 − x2|+ |y1 − y2|}

for all xi ∈ Ω̄, yi ∈ [−M,M ], i = 1, 2 and j = 1, 2.
Theorem 2.11. Suppose that (A1)–(A5) hold and Γ is of class C1,1. Then the

control-to-state mapping G : Lq(Ω) → W 2,q(Ω), G(u) = yu, is of class C2. For any
v, v1, v2 ∈ Lq(Ω), the functions zv = G′(u)v and zv1,v2 = G′′(u)[v1, v2] are the unique
solutions in W 2,q(Ω) ∩W 1,q

0 (Ω) of (2.21) and (2.22), respectively.
Proof. The proof follows the same steps as in the previous theorem, with obvious

modifications. Let us note the main differences. This time, the function F is defined
by the same expression as above and acts from (W 2,q(Ω)∩W 1,q

0 (Ω))×Lq(Ω) to Lq(Ω).
We have to check that F is well defined, and we must determine the first- and second-
order derivatives. By using the assumptions (A3)–(A5), we have for j = 0, 1, 2 and
y ∈W 2,q(Ω) ∩W 1,q

0 (Ω) that

div
[
∂ja

∂yj
(x, y(x))∇y(x)

]
=
[
∇x

∂ja

∂yj

]
(x, y(x)) · ∇y(x) +

∂j+1a

∂yj+1
(x, y(x))|∇y(x)|2

+
∂ja

∂yj
(x, y(x))Δy(x) ∈ Lq(Ω).(2.24)
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We have used the fact that (∂ja/∂yj) is Lipschitz in x and y, and therefore differen-
tiable a.e., and that the chain rule is valid in the framework of Sobolev spaces.

On the other hand, (A2) and (A4) imply that

∂jf

∂yj
(·, y) ∈ Lq(Ω) for j = 0, 1, 2.

From these remarks, it is easy to deduce that F is of class C2. Let us prove that (2.16)
has a unique solution z ∈W 2,q(Ω)∩W 1,q

0 (Ω) for any v ∈ Lq(Ω). The uniqueness is an
immediate consequence of the uniqueness of solution in H1

0 (Ω) ∩ L∞(Ω). It remains
to prove the W 2,q-regularity. We argue similarly to the proof of Theorem 2.4. From
(2.16) we get

−Δz =
1
a

{
v + div

[∂a
∂y

(x, ȳ) z ∇ȳ
]
− ∂f

∂y
(x, ȳ) z + v

}
+∇xa · ∇z +

∂a

∂y
∇ȳ · ∇z

=
1
a

{
v − ∂f

∂y
(x, ȳ) z +∇x

∂a

∂y
z · ∇ȳ +

∂2a

∂y2
z |∇ȳ|2 +

∂a

∂y
∇z · ∇ȳ +

∂a

∂y
zΔȳ

}

+∇xa · ∇z +
∂a

∂y
∇z · ∇ȳ.

The right-hand side is an element of Lq(Ω). To verify this, consider, for instance, the
term with the lowest regularity, i.e., the term ∇ȳ · ∇z:( ∫

Ω

|∇ȳ|q|∇z|qdx
) 1

q ≤
(∫

Ω

|∇ȳ|ndx
) 1

n
(∫

Ω

|∇z|
nq

n−q dx
)n−q

nq

≤ c
(∫

Ω

|∇ȳ|
nq

n−q dx
)n−q

nq ‖z‖
W

1,
nq

n−q
0 (Ω)

≤ c‖ȳ‖W 2,q(Ω) ‖z‖
W

1,
nq

n−q
0 (Ω)

,

where we have used that z ∈ W 1, nq
n−q

0 (Ω), which is a consequence of the embedding
Lq(Ω) ⊂ W−1, nq

n−q (Ω) along with Theorem 2.10. Notice that we have assumed q >
n/2. This inequality is equivalent to nq/(n− q) > n and is also behind the estimate
of the integral containing ∇ȳ.

Remark 2.12. If q = 2, then Theorem 2.11 remains true for n = 2 or n = 3 if we
replace the C1,1-regularity of Γ by the convexity of Ω. This is a consequence of the
H2-regularity for the elliptic problems in convex domains; see Grisvard [20].

3. The control problem. Associated to the state equation (1.1), we introduce
the control problem

(P)

⎧⎪⎪⎨
⎪⎪⎩

min J(u) =
∫

Ω

L(x, yu(x), u(x)) dx,

u ∈ L∞(Ω),
α(x) ≤ u(x) ≤ β(x) for a.e. x ∈ Ω,

where L : Ω×(R×R)→ R is a Carathéodory function, p > n, and α, β ∈ L∞(Ω), with
β(x) ≥ α(x) for a.e. x ∈ Ω. A standard example for the choice of L is the quadratic
function

L(x, y, u) = (y − yd(x))2 +
N

2
u2,

where yd ∈ Lq(Ω) is given fixed.
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First of all, we study the existence of a solution for problem (P).
Theorem 3.1. Let us assume that (A1) and (A2) hold. We also suppose that L

is convex with respect to u and, for any M > 0, there exists a function ψM ∈ L1(Ω)
such that

|L(x, y, u)| ≤ ψM (x) for a.e. x ∈ Ω and |y|, |u| ≤M.

Then (P) has at least one optimal solution ū.
Proof. Let {uk}∞k=1 ⊂ L∞(Ω) be a minimizing sequence for (P). Since {uk}∞k=1

is bounded in L∞(Ω) ⊂ W−1,p(Ω), Theorem 2.4 implies that {yuk
}∞k=1 is bounded

in W 1,p
0 (Ω) and, taking a subsequence, denoted in the same way, we get uk ⇀ ū

weakly� in L∞(Ω), and hence strongly in W−1,p(Ω). Therefore, yuk
→ ȳu in W 1,p

0 (Ω).
Moreover, it is obvious that α ≤ ū ≤ β, and hence ū is a feasible control for (P). Let
us denote by ȳ the state associated to ū. Now we prove that ū is a solution of (P). It
is enough to use the convexity of L with respect to u along with the continuity with
respect to (y, u) and the Lebesgue dominated convergence theorem as follows:

J(ū) =
∫

Ω

L(x, ȳ(x), ū(x)) dx ≤ lim inf
k→∞

∫
Ω

L(x, ȳ(x), uk(x)) dx

≤ lim sup
k→∞

∫
Ω

|L(x, ȳ(x), uk(x)) − L(x, yuk
(x), uk(x))| dx

+ lim sup
k→∞

∫
Ω

L(x, yuk
(x), uk(x)) dx = lim

k→∞
J(uk) = inf (P).

Our next goal is to derive the first-order optimality conditions. We get the opti-
mality conditions satisfied by ū from the standard variational inequality J ′(ū)(u−ū) ≥
0 for any feasible control u. To argue in this way, we need the differentiability of J ,
which requires the differentiability of L with respect to u and y. Since we also wish to
derive second-order optimality conditions, we require the existence of the second-order
derivatives of L. More precisely, our assumption is the following.

(A6) L : Ω × (R × R) −→ R is a Carathéodory function of class C2 with respect
to the last two variables and, for all M > 0, there exist a constant CL,M > 0
and functions ψu,M ∈ L2(Ω) and ψy,M ∈ Lq(Ω), such that∣∣∣∣∂L∂u (x, y, u)

∣∣∣∣ ≤ ψu,M (x),
∣∣∣∣∂L∂y (x, y, u)

∣∣∣∣ ≤ ψy,M (x), ‖D2
(y,u)L(x, y, u)‖ ≤ CL,M ,

‖D2
(y,u)L(x, y2, u2)−D2

(y,u)L(x, y1, u1)‖ ≤ CL,M (|y2 − y1|+ |u2 − u1|)

for a.e. x ∈ Ω and |y|, |yi|, |u|, |ui| ≤ M , i = 1, 2, where D2
(y,u)L denotes

the second derivative of L with respect to (y, u), i.e., the associated Hessian
matrix.

By applying the chain rule and introducing the adjoint state as usual, an elemen-
tary calculus leads to the following result.

Theorem 3.2. Let us assume that a : Ω̄ × R �→ R is continuous, Γ is of class
C1, and (A1), (A2), (A4), and (A6) hold. Then the function J : L∞(Ω) → R is of
class C2. Moreover, for every u, v, v1, v2 ∈ L∞(Ω), we have

(3.1) J ′(u)v =
∫

Ω

(
∂L

∂u
(x, yu, u) + ϕu

)
v dx
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and

(3.2)

J ′′(u)v1v2 =
∫

Ω

{
∂2L

∂y2
(x, yu, u)zv1zv2 +

∂2L

∂y∂u
(x, yu, u)(zv1v2 + zv2v1)

+
∂2L

∂u2
(x, yu, u)v1v2 − ϕu

∂2f

∂y2
(x, yu)zv1zv2

−∇ϕu
[
∂a

∂y
(x, yu)(zv1∇zv2 +∇zv1zv2) +

∂2a

∂y2
(x, y)zv1zv2∇yu

]}
dx,

where ϕu ∈ W 1,p
0 (Ω) is the unique solution of the problem

(3.3)⎧⎨
⎩ −div [a(x, yu)∇ϕ] +

∂a

∂y
(x, yu)∇yu · ∇ϕ+

∂f

∂y
(x, yu)ϕ =

∂L

∂y
(x, yu, u) in Ω,

ϕ = 0 on Γ,

where zvi = G′(u)vi is the solution of (2.21) for y = yu and v = vi, i = 1, 2.
Proof. The only delicate point in the proof of the previous theorem is the existence

and uniqueness of a solution of the adjoint state equation (3.3). To prove this, let us
consider the linear operator T ∈ L(H1

0 (Ω), H−1(Ω)) given by

Tz = −div
[
a(x, y)∇z +

∂a

∂y
(x, y)z∇y

]
+
∂f

∂y
(x, y) z.

According to Remark 2.8, T is an isomorphism and its adjoint operator is also an
isomorphism T ∗ ∈ L(H1

0 (Ω), H−1(Ω)) given by

T ∗ϕ = −div [a(x, yu)∇ϕ] +
∂a

∂y
(x, yu)∇yu · ∇ϕ+

∂f

∂y
(x, yu)ϕ.

This is exactly equivalent to the well-posedness of the adjoint equation (3.3) in H1
0 (Ω).

Finally, Theorems 2.2 and 2.4 along with assumption (A6) imply that the adjoint state
ϕ belongs to the space W 1,p

0 (Ω), as claimed in the theorem, provided that the term

∂a

∂y
(x, yu)∇yu · ∇ϕ

belongs to W−1,p(Ω). Let us prove this fact. Thanks to the boundedness of yu and
the assumption (A4), it is enough to prove that ∇yu · ∇ϕ ∈ Lr(Ω) ⊂W−1,p(Ω) holds
for some r large enough. By using that ∇yu ∈ Lp(Ω), ∇ϕ ∈ L2(Ω) and invoking the
Hölder inequality, we get that ∇yu · ∇ϕ ∈ L2p/(p+2)(Ω). For n = 2, L2p/(p+2)(Ω) ⊂
W−1,p(Ω). Let us consider the case n > 2. In this case, we have

L2p/(p+2)(Ω) ⊂W−1,r(Ω), with r =
2pn

p(n− 2) + 2n
.

Therefore it turns out that ϕ ∈ W 1,σ
0 (Ω), with σ = min{p, r}. If σ = p, then the

proof is complete. If it is not true, then let us notice that

r = 2 + ε, with ε =
4(p− n)

p(n− 2) + 2n
.
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The proof proceeds by induction: For k ≥ 1, we assume that ϕ ∈ W 1,2+kε
0 (Ω) and

then we prove that ϕ ∈W 1,σ
0 (Ω), with σ = min{p, 2 + (k + 1)ε}. Consequently, for k

large enough, we have that σ = p. By using the embedding of Sobolev spaces in Lr

spaces and after performing some obvious computations, we get that

∇yu ∈ Lp(Ω) and ∇ϕ ∈ L2+kε(Ω)⇒ ∇yu · ∇ϕ ∈W−1,r(Ω),

with

r =
pn(2 + kε)

p[n− (2 + kε)] + (2 + kε)n
.

We have to prove that r − (2 + kε) ≥ ε, which is equivalent to

(p− n)(2 + kε)2

p[n− (2 + kε)] + (2 + kε)n
≥ ε.

From the definition of ε, we obtain that the previous inequality is equivalent to

(p− n)(2 + kε)2 ≥ 4(p− n)
p(n− 2) + 2n

{p[n− (2 + kε)] + (2 + kε)n}

if and only if

[p(n− 2) + 2n](2 + kε)2 ≥ 4{p[n− (2 + kε)] + (2 + kε)n}.

Let us set for every p ≥ n

ρ(p) = [p(n− 2) + 2n](2 + kε(p))2, μ(p) = 4{p[n− (2 + kε(p))] + (2 + kε(p))n}

and

ε(p) =
4(p− n)

p(n− 2) + 2n
.

Using that ε(n) = 0, we get that ρ(n) = 4n2 = μ(n). If we prove that ρ′(p) > μ′(p)
for every p > n, then the inequality ρ(p) > μ(p) will be true for all p > n and the
proof of the theorem is concluded. Using that ε′(p) > 0 and ε(p) > 0 for p > n, we
get

ρ′(p) = (n− 2)(2 + kε(p))2 + 2k[p(n− 2) + 2n](2 + kε(p))ε′(p) > 4(n− 2)

and

μ′(p) = 4(n− 2− kε(p)) + 4(−kpε′(p) + knε′(p))

= 4(n− 2)− 4k[ε(p) + (p− n)ε′(p)] < 4(n− 2),

which leads to the desired result.
Remark 3.3. By using the expression given by (3.2) for J ′′(u), it is obvious that

J ′′(u) can be extended to a continuous bilinear form J ′′(u) : L2(Ω)× L2(Ω) −→ R.
By using the inequality J ′(ū)(u − ū) ≥ 0 and the differentiability of J given by

(3.1) and (3.3) we deduce the first-order optimality conditions.
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Theorem 3.4. Under the assumptions of Theorem 3.2, if ū is a local minimum
of (P), then there exists ϕ̄ ∈W 1,p

0 (Ω) such that
⎧⎨
⎩ −div [a(x, ȳ)∇ϕ̄] +

∂a

∂y
(x, ȳ)∇ȳ · ∇ϕ̄+

∂f

∂y
(x, ȳ)ϕ̄ =

∂L

∂y
(x, ȳ, ū) in Ω,

ϕ̄ = 0 on Γ,
(3.4)

∫
Ω

(
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x)

)
(u(x)− ū(x)) dx ≥ 0 ∀ α ≤ u ≤ β,(3.5)

where ȳ is the state associated to ū.
From (3.5) we get as usual

(3.6) ū(x) =
{
α(x) if d̄(x) > 0,
β(x) if d̄(x) < 0

and d̄(x) =

⎧⎪⎨
⎪⎩
≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if α(x) < ū(x) < β(x)

for almost all x ∈ Ω, where

(3.7) d̄(x) =
∂L

∂u
(x, ȳ(x), ū(x)) + ϕ̄(x).

We finish this section by studying the regularity of the optimal solutions of (P).
Theorem 3.5. Under the assumptions of Theorem 3.4 and assuming that

∂L

∂u
: Ω̄× (R× R)→ R is continuous,(3.8)

∃ΛL > 0 such that
∂2L

∂u2
(x, y, u) ≥ ΛL for a.e. x ∈ Ω and ∀y, u ∈ R

2,(3.9)

then the equation

(3.10)
∂L

∂u
(x, ȳ(x), t) + ϕ̄(x) = 0

has a unique solution t̄ = s̄(x) for every x ∈ Ω̄. The function s̄ : Ω̄→ R is continuous
and is related to ū by the formula

(3.11) ū(x) = Proj [α(x),β(x)](s̄(x)) = max{min{β(x), s̄(x)}, α(x)}.

Moreover, if α, β are contained in C(Ω̄), then ū belongs to C(Ω̄), too. Finally, if Γ is
C1,1, (A3) holds, q > n is taken in the assumptions (A2) and (A6), α, β ∈ C0,1(Ω̄),
and for every M > 0 there exists a constant CL,M > 0 such that

(3.12)
∣∣∣∣∂L∂u (x2, y, u)− ∂L

∂u
(x1, y, u)

∣∣∣∣ ≤ CL,M |x2 − x1| ∀xi ∈ Ω and ∀|y|, |u| ≤M,

then s̄, ū ∈ C0,1(Ω̄).
Proof. Given x ∈ Ω̄, let us define the function g : R→ R by

g(t) =
∂L

∂u
(x, ȳ(x), t) + ϕ̄(x).
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Then g is of class C1 and from (3.9) we know that it is strictly increasing and

lim
t→−∞ g(t) = −∞ and lim

t→+∞ g(t) = +∞.

Therefore, there exists a unique element t̄ ∈ R such that g(t̄) = 0.
Taking d̄ as defined by (3.7) and using (3.6) along with the strict monotonicity of

(∂L/∂u) with respect to the third variable, we obtain⎧⎪⎨
⎪⎩

if d̄(x) > 0, then α(x) = ū(x) > s̄(x),
if d̄(x) < 0, then β(x) = ū(x) < s̄(x),
if d̄(x) = 0, then ū(x) = s̄(x),

which implies (3.11).
Let us prove that s̄ is a bounded function. By using the mean value theorem

along with (3.8), (3.9), and (3.10), we get

ΛL|s̄(x)| ≤
∣∣∣∣∂L∂u (x, ȳ(x), s̄(x)) − ∂L

∂u
(x, ȳ(x), 0)

∣∣∣∣ =
∣∣∣∣ϕ̄(x) +

∂L

∂u
(x, ȳ(x), 0)

∣∣∣∣ ,
and hence

|s̄(x)| ≤ 1
ΛL

max
x∈Ω̄

∣∣∣∣ϕ̄(x) +
∂L

∂u
(x, ȳ(x), 0)

∣∣∣∣ <∞.
The continuity of s̄ at every point x ∈ Ω̄ follows easily from the continuity of ȳ and
(∂L/∂u) by using the inequality

ΛL|s̄(x) − s̄(x′)| ≤
∣∣∣∣∂L∂u (x′, ȳ(x′), s̄(x)) − ∂L

∂u
(x′, ȳ(x′), s̄(x′))

∣∣∣∣
≤ |ϕ̄(x′)− ϕ̄(x)|+

∣∣∣∣∂L∂u (x′, ȳ(x′), s̄(x))− ∂L

∂u
(x, ȳ(x), s̄(x))

∣∣∣∣ .(3.13)

If α, β ∈ C(Ω̄), then the identity (3.11) and the continuity of s̄ imply the conti-
nuity of ū in Ω̄.

Finally, if Γ is C1,1 and (A3) and (A6) hold with q > n, then ȳ, ϕ̄ ∈ W 2,q(Ω) ⊂
C0,1(Ω). Then we can get from (3.13), the boundedness of s̄, and (3.12) that s̄ ∈
C0,1(Ω̄). Once again, (3.11) allows us to conclude that ū ∈ C0,1(Ω̄), assuming that α
and β are also Lipschitz in Ω̄. Indeed, it is enough to realize that

|ū(x2)− ū(x1)| ≤ max{|β(x2)− β(x1)|, |α(x2)− α(x1)|, |s̄(x2)− s̄(x1)|}

≤ max{Lβ, Lα, Ls̄}|x2 − x1|,

where Lβ, Lα, and Ls̄ are the Lipschitz constants of α, β, and s̄, respectively.

4. Pontryagin’s principle. The goal of this section is to derive the Pontryagin
principle satisfied by a local solution of (P). We need this principle for our second-
order analysis. There is already an extensive list of contributions about Pontryagin’s
principle, but none of them was devoted to quasilinear equations of nonmonotone type.
This lack of monotonicity requires an adaptation of the usual proofs to overcome this
difficulty. For this purpose, we will make the following assumption.
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(A7) L : Ω× (R×R) −→ R is a Carathéodory function of class C1 with respect to
the second variable and, for all M > 0, there exists a function ψM ∈ Lq(Ω),
with q ≥ pn/(p+ n), such that∣∣∣∣∂L∂y (x, y, u)

∣∣∣∣ ≤ ψM (x) for a.e. x ∈ Ω, |u| ≤M, and |y| ≤M.

Associated with the control problem (P), we define the Hamiltonian as usual by

H(x, y, u, ϕ) = L(x, y, u) + ϕ[u− f(x, y)].

The Pontryagin principle is formulated as follows.
Theorem 4.1. Let ū be a local solution of (P). We assume that a : Ω̄×R �→ R is

continuous, Γ is of class C1, and (A1), (A2), (A4), and (A7) hold. Then there exists
ϕ̄ ∈ W 1,p

0 (Ω) satisfying (3.4) and

(4.1) H(x, ȳ(x), ū(x), ϕ̄(x)) = min
s∈[αεū (x),βεū (x)]

H(x, ȳ(x), s, ϕ̄(x)) for a.e. x ∈ Ω,

where

αεū(x) = max{α(x), ū(x) − εū} and βεū(x) = min{β(x), ū(x) + εū},

εū > 0 is the radius of the L∞(Ω) ball where J achieves the minimum value at ū
among all feasible controls.

Relation (4.1) is an immediate consequence of (3.5) if L is convex with respect to
the third variable, but this assumption is not made in the above theorem. To prove
(4.1), we will use the following lemma whose proof can be found in [13, Lemma 4.3].

Lemma 4.2. For every 0 < ρ < 1, there exists a sequence of Lebesgue measurable
sets {Ek}∞k=1 ⊂ Ω such that

(4.2) |Ek| = ρ|Ω| and
1
ρ
χEk

⇀ 1 in L∞(Ω) weakly�,

where | · | denotes the Lebesgue measure.
Proposition 4.3. Under the assumptions of Theorem 4.1, for any u ∈ L∞(Ω)

there exist a number 0 < ρ̂ < 1 and measurable sets Eρ ⊂ Ω, with |Eρ| = ρ|Ω| for all
0 < ρ < ρ̂, that have the following properties: If we define

uρ(x) =
{
ū(x) if x ∈ Ω \ Eρ,
u(x) if x ∈ Eρ,

then

yρ = ȳ + ρz + rρ, lim
ρ↘0

1
ρ
‖rρ‖W 1,p

0 (Ω) = 0,(4.3)

J(uρ) = J(ū) + ρz0 + r0ρ, lim
ρ↘0

1
ρ
|r0ρ| = 0(4.4)

hold true, where ȳ and yρ are the states associated to ū and uρ, respectively, z is the
unique element of W 1,p

0 (Ω) satisfying the linearized equation

(4.5) div
[
a(x, ȳ)∇z +

∂a

∂y
(x, ȳ)z∇ȳ

]
+
∂f

∂y
(x, ȳ) z = u− ū in Ω,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

706 EDUARDO CASAS AND FREDI TRÖLTZSCH

and

(4.6) z0 =
∫

Ω

{
∂L

∂y
(x, ȳ(x), ū(x))z(x) + L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))

}
dx.

Proof. Let us define the function g ∈ L1(Ω) by

g(x) = L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x)).

Given ρ ∈ (0, 1), we take a sequence {Ek}∞k=1 as in Lemma 4.2. Since L∞(Ω) is
compactly embedded in W−1,p(Ω), there exists kρ such that

(4.7)
∣∣∣∣
∫

Ω

(
1− 1

ρ
χEk

(x)
)
g(x) dx

∣∣∣∣ +
∥∥∥∥
(

1− 1
ρ
χEk

)
(u− ū)

∥∥∥∥
W−1,p(Ω)

< ρ ∀k ≥ kρ.

Let us denote Eρ = Ekρ . Let us introduce zρ = (yρ − ȳ)/ρ. By subtracting the
equations satisfied by yρ and ȳ and dividing by ρ we get

−div
[
a(x, ȳ)∇zρ +

a(x, yρ)− a(x, ȳ)
ρ

∇yρ
]

+
f(x, yρ)− f(x, ȳ)

ρ
=
uρ − ū
ρ

in Ω.

Now setting

aρ(x) =
∫ 1

0

∂a

∂y
(x, ȳ(x) + θ(yρ(x) − ȳ(x))) dθ,

fρ(x) =
∫ 1

0

∂f

∂y
(x, ȳ(x) + θ(yρ(x)− ȳ(x))) dθ

we deduce from the above identity

(4.8) −div [a(x, ȳ)∇zρ + aρ(x)zρ∇yρ] + fρ(x)zρ =
1
ρ
χEρ(u− ū) in Ω.

Let us define T, Tρ : W 1,p
0 (Ω) �→ W−1,p(Ω) by

Tξ = −div
[
a(x, ȳ)∇ξ +

∂a

∂y
(x, ȳ)ξ∇ȳ

]
+
∂f

∂y
(x, ȳ)ξ,

Tρξ = −div [a(x, ȳ)∇ξ + aρ(x)ξ∇yρ] + fρ(x)ξ.

Since yρ → ȳ in W 1,p
0 (Ω) ⊂ C(Ω̄), we deduce from our assumptions on a and f that

(4.9) aρ(x)→
∂a

∂y
(x, ȳ(x)) and fρ(x)→

∂f

∂y
(x, ȳ(x)) uniformly in Ω̄,

and consequently

‖Tρ − T ‖L(W 1,p
0 (Ω),W−1,p(Ω)) ≤ C

{
‖yρ − ȳ‖W 1,p

0 (Ω)

+‖aρ(x)−
∂a

∂y
(x, ȳ(x))‖C(Ω̄) + ‖fρ(x) −

∂f

∂y
(x, ȳ(x))‖C(Ω̄)

}
→ 0.(4.10)
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Since T is an isomorphism, by taking ρ̂ small enough, we have that Tρ is also an
isomorphism and T−1

ρ → T−1 in L(W−1,p(Ω),W 1,p
0 (Ω)) too. Taking into account

(4.7), we obtain

‖z − zρ‖W 1,p
0 (Ω) =

∥∥∥∥T−1(u − ū)− T−1
ρ

[
1
ρ
χEρ(u− ū)

]∥∥∥∥
W 1,p

0 (Ω)

≤
∥∥∥∥T−1

ρ

[(
1− 1

ρ
χEρ

)
(u− ū)

]∥∥∥∥
W 1,p

0 (Ω)

+ ‖(T−1 − T−1
ρ )(u− ū)‖W 1,p

0 (Ω)

≤ C
∥∥∥∥
(

1− 1
ρ
χEρ

)
(u− ū)

∥∥∥∥
W−1,p(Ω)

+ ‖T−1 − T−1
ρ ‖L(W 1,p

0 (Ω),W−1,p(Ω))‖u− ū‖W−1,p(Ω) → 0.

Now it is enough to notice that, by definition of zρ and the convergence zρ → z in
W 1,p

0 (Ω), we have

ερ =
yρ − ȳ
ρ
− z → 0,

and hence yρ = ȳ + ρz + ρερ. By putting rρ = ρερ we get (4.3). Finally, let us prove
(4.4). Similarly to the definitions of aρ and fρ, we introduce

Lρ(x) =
∫ 1

0

∂L

∂y
(x, ȳ(x) + θ(yρ(x) − ȳ(x)), uρ(x)) dθ.

Then we have

J(uρ)− J(ū)
ρ

=
∫

Ω

L(x, yρ(x), uρ(x))− L(x, ȳ(x), ū(x))
ρ

dx

=
∫

Ω

L(x, yρ(x), uρ(x))− L(x, ȳ(x), uρ(x))
ρ

dx

+
∫

Ω

L(x, ȳ(x), uρ(x)) − L(x, ȳ(x), ū(x))
ρ

dx

=
∫

Ω

Lρ(x)zρ(x) dx +
∫

Ω

1
ρ
χEρ(x)[L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))]dx

→
∫

Ω

∂L

∂y
(x, ȳ(x), ū(x))z(x) dx +

∫
Ω

[L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))]dx = z0,

which implies (4.4).
Proof of Theorem 4.1. Since ū is a local solution of (P), there exists εū > 0

such that J achieves the minimum at ū among all feasible controls of B̄L∞(Ω)(ū, εū).
Let us take u ∈ BL∞(Ω)(ū, εū) with α(x) ≤ u(x) ≤ β(x) a.e. x ∈ Ω. Following
Proposition 4.3, we consider the sets {Eρ}ρ>0} such that (4.3) and (4.4) hold. Then
uρ ∈ BL∞(Ω)(ū, εū) and therefore (4.4) leads to

0 ≤ lim
ρ↘0

J(uρ)− J(ū)
ρ

= z0.
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By using (4.5) and the adjoint state given by (3.4), we get from the previous inequality
after an integration by parts

0 ≤
∫

Ω

{ϕ̄(x)(u(x) − ū(x)) + L(x, ȳ(x), u(x)) − L(x, ȳ(x), ū(x))} dx

=
∫

Ω

[H(x, ȳ(x), u(x), ϕ̄(x)) −H(x, ȳ(x), ū(x), ϕ̄(x))]dx.(4.11)

Since u is an arbitrary feasible control in the ball BL∞(Ω)(ū, εū), taking into account
the definitions of αεū and βεū given in the statement of Theorem 4.1, we deduce
from (4.11)

(4.12)
∫

Ω

H(x, ȳ(x), ū(x), ϕ̄(x)) dx = min
αεū≤u≤βεū

∫
Ω

[H(x, ȳ(x), u(x), ϕ̄(x)) dx.

To conclude the proof, we will show that (4.12) implies (4.1). Let the sequence {qj}∞j=1

exhaust the rational numbers contained in [0, 1]. For every j we set uj = qjαεū +(1−
qj)βεū . Then every function uj belongs to L∞(Ω) and αεū(x) ≤ uj(x) ≤ βεū(x) for
every x ∈ Ω. Now we introduce functions F0, Fj : Ω �→ R by

F0(x) = H(x, ȳ(x), ū(x), ϕ̄(x)) and Fj(x) = H(x, ȳ(x), uj(x), ϕ̄(x)), j = 1, . . . ,∞.

Associated to these integrable functions we introduce the set of Lebesgue regular
points E0 and {Ej}∞j=1, which are known to satisfy |Ej | = |Ω| for j = 0, 1, . . . ,∞, and

(4.13) lim
r↘0

1
|Br(x0)|

∫
Br(x0)

Fj(x) dx = Fj(x0) ∀x0 ∈ Ej , j = 0, 1, . . . ,∞,

where Br(x0) is the Euclidean ball in R
n of center x0 and radius r. Let us set

E = ∩∞j=0Ej . Then it is obvious that |E| = |Ω| and (4.13) holds for every x0 ∈ E.
Given x0 ∈ E and r > 0 we define

uj,r(x) =
{
ū(x) if x �∈ Br(x0),
uj(x) if x ∈ Br(x0), j = 1, . . . ,∞.

From (4.12) and the above definition we deduce∫
Ω

H(x, ȳ(x), ū(x), ϕ̄(x)) dx ≤
∫

Ω

H(x, ȳ(x), uj,r(x), ϕ̄(x)) dx,

and therefore

1
|Br(x0)|

∫
Br(x0)

H(x, ȳ(x), ū(x), ϕ̄(x)) dx,

≤ 1
|Br(x0)|

∫
Br(x0)

H(x, ȳ(x), uj(x), ϕ̄(x)) dx,

and passing to the limit when r → 0 we get

H(x0, ȳ(x0), ū(x0), ϕ̄(x0)) ≤ H(x0, ȳ(x0), uj(x0), ϕ̄(x0)).

Since the function s → H(x0, ȳ(x0), s, ϕ̄(x0)) is continuous and {uj(x0)}∞j=1 is dense
in [αεū(x0), βεū(x0)], we get

H(x0, ȳ(x0), ū(x0), ϕ̄(x0)) ≤ H(x0, ȳ(x0), s, ϕ̄(x0)) ∀s ∈ [αεū(x0), βεū(x0)].
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Finally, (4.1) follows from the previous inequality and the fact that x0 is an arbitrary
point of E.

Remark 4.4. If we consider that ū is a global solution or even a local solution of
(P) in the sense of the Lp(Ω) topology, then (4.1) holds with εū = 0. More precisely

H(x, ȳ(x), ū(x), ϕ̄(x)) = min
s∈[α(x),β(x)]

H(x, ȳ(x), s, ϕ̄(x)) for a.e. x ∈ Ω.

The proof is the same. The only point we have to address is that the functions uρ
defined in Proposition 4.3 corresponding to feasible controls u satisfy

‖up − ū‖Lp(Ω) =

(∫
Eρ

|u(x)− ū(x)|p dx
)1/p

≤ ‖u− ū‖L∞(Ω)|Eρ|1/p

≤ ‖β − α‖L∞(Ω)|Ω|1/pρ1/p.

Therefore for ρ small enough the functions uρ are in the corresponding ball of Lp(Ω)
where ū is the minimum.

5. Second-order optimality conditions. The goal of this section is to prove
first necessary and next sufficient second-order optimality conditions. For it we will
assume that (A1), (A2), (A4), and (A6) hold, the function a : Ω̄ × R −→ R is
continuous, and Γ is of class C1.

If ū is a feasible control for problem (P) and there exists ϕ̄ ∈ W 1,p
0 (Ω) satisfying

(3.4) and (3.5), then we introduce the cone of critical directions

(5.1) Cū =

⎧⎪⎨
⎪⎩h ∈ L2(Ω) : h(x) =

⎧⎪⎨
⎪⎩
≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x)
= 0 if d̄(x) �= 0

for a.e. x ∈ Ω

⎫⎪⎬
⎪⎭ ,

where d̄ is defined by (3.7). In the previous section, we introduced the Hamiltonian
H associated to the control problem. It is easy to check that

∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) = d̄(x).

In what follows, we will use the notation

H̄u(x) =
∂H

∂u
(x, ȳ(x), ū(x), ϕ̄(x)) and H̄uu(x) =

∂2H

∂u2
(x, ȳ(x), ū(x), ϕ̄(x)).

Now we prove the necessary second-order optimality conditions.
Theorem 5.1. Let us assume that ū is a local solution of (P). Then the following

inequalities hold:

(5.2)
{
J ′′(ū)h2 ≥ 0 ∀h ∈ Cū,
H̄uu(x) ≥ 0 for a.a. x with H̄u(x) = 0.

Proof. Let us take h ∈ Cū arbitrarily and 0 < ε < εū. Then we define

hε(x) =
{

0 if α(x) < ū(x) < α(x) + ε or β(x) − ε < ū(x) < β(x),
max{− 1

ε ,min{+ 1
ε , h(x)}} otherwise.
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It is clear that hε ∈ Cū ∩ L∞(Ω) and hε → h in L2(Ω). Moreover, we have

α(x) ≤ ū(x) + thε(x) ≤ β(x) for a.e. x ∈ Ω and 0 ≤ t < ε2.

Therefore, if we define gε : [0, ε2] −→ R by gε(t) = J(ū+ thε), we have

gε(0) = min
t∈[0,ε2]

gε(t).

From our assumptions it is clear that gε is a C2 function. From the fact hε ∈ Cū we
deduce that

g′ε(0) = J ′(ū)hε =
∫

Ω

H̄u(x)hε(x) dx = 0.

Now, an elementary calculus and Theorem 3.2 yield

(5.3)

0 ≤ g′′ε (0) = J ′′(ū)h2
ε =

∫
Ω

{
∂2L

∂y2
(x, ȳ, ū)z2

hε
+ 2

∂2L

∂y∂u
(x, ȳ, ū)zhεhε

+
∂2L

∂u2
(x, ȳ, ū)h2

ε − ϕ̄
∂2f

∂y2
(x, ȳ)z2

hε

−∇ϕ̄ ·
[
2
∂a

∂y
(x, ȳ)zhε∇zhε +

∂2a

∂y2
(x, ȳ)z2

hε
∇ȳ

]}
dx,

where zhε ∈ H1
0 (Ω) is the solution of (2.16) corresponding to v = hε. Moreover,

the convergence hε → h in L2(Ω) implies that zhε → zh in H1
0 (Ω), where zh is the

solution of (2.16) for v = h; see Remark 2.8. Now we estimate the terms of (5.3).
Arguing as in Remark 2.8, and taking into account the embedding H1

0 (Ω) ⊂ L
2p

p−2 (Ω)
and assumption (A4), we get∫

Ω

∣∣∣∣∇ϕ̄(x) · ∂a
∂y

(x, ȳ)zhε(x)∇zhε(x)
∣∣∣∣ dx ≤ DM‖∇ϕ̄‖Lp(Ω)‖zhε‖

L
2p

p−2 (Ω)
‖∇zhε‖L2(Ω)

≤ CDM‖ϕ̄‖W 1,p
0 (Ω)‖zhε(x)‖2H1

0 (Ω).

Analogously we have∫
Ω

∣∣∣∣∇ϕ̄(x) · ∂
2a

∂y2
(x, ȳ)z2

hε
(x)∇ȳ(x)

∣∣∣∣ dx ≤ DM‖∇ϕ̄‖Lp(Ω)‖zhε‖2
L

2p
p−2 (Ω)

‖∇ȳ‖Lp(Ω)

≤ CDM‖ϕ̄‖W 1,p
0 (Ω)‖zhε(x)‖2H1

0 (Ω)‖ȳ‖W 1,p
0 (Ω).

The rest of the terms in the integral (5.3) are easy to estimate with the help of
assumptions (A4) and (A6). Therefore, we can pass to the limit in (5.3) and deduce

0 ≤ lim
ε→0

J ′′(ū)h2
ε = J ′′(ū)h2.

This proves the first inequality of (5.2). Finally, the second inequality is an obvious
consequence of (4.1). Indeed, it is a standard conclusion of (4.1) that

H̄u(x) =

⎧⎪⎨
⎪⎩
≥ 0 if ū(x) = α(x),
≤ 0 if ū(x) = β(x),
= 0 if α(x) < ū(x) < β(x)

for a.e. x ∈ Ω
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and

H̄uu(x) ≥ 0 if H̄u(x) = 0 for a.e. x ∈ Ω.

Let us consider the Lagrangian function associated to the control problem (P),

L : L∞(Ω)×W 1,p
0 (Ω)×W 1,p

0 (Ω) −→ R,

given by the expression

L(u, y, ϕ) = J (y, u) +
∫

Ω

{ϕ[u− f(x, y)]− a(x, y)∇ϕ · ∇y} dx

=
∫

Ω

{H(x, y(x), u(x), ϕ(x)) − a(x, y(x))∇ϕ(x) · ∇y(x)} dx,

where we denote

J (y, u) =
∫

Ω

L(x, y(x), u(x)) dx.

Defining H̄y, H̄yy, and H̄yu similarly to H̄u and H̄uu, after obvious modifications, we
can write the first- and second-order derivatives of L with respect to (y, u) as follows:

D(y,u)L(ū, ȳ, ϕ̄)(z, h) =
∫

Ω

{
H̄y(x)z(x) + H̄u(x)h(x)

}
dx

−
∫

Ω

∇ϕ̄(x) ·
{
a(x, ȳ(x))∇z(x) +

∂a

∂y
(x, ȳ(x))z(x)∇ȳ(x)

}
dx.

If we assume that z is the solution of (2.16) associated to v = h, then by using the
adjoint state (3.4) we get

(5.4) D(y,u)L(ū, ȳ, ϕ̄)(z, h) =
∫

Ω

H̄u(x)h(x) dx.

Moreover, we find

D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)2 =

∫
Ω

{
H̄yy(x)z2(x) + 2H̄yu(x)z(x)h(x) + H̄uu(x)h2(x)

}
dx

−
∫

Ω

∇ϕ̄(x) ·
{
∂2a

∂y2
(x, ȳ(x))z2(x)∇ȳ(x) + 2

∂a

∂y
(x, ȳ(x))z(x)∇z(x)

}
dx.

Once again if we take z as the solution of (2.16) associated to v = h, we deduce from
(3.2) that

(5.5) J ′′(ū)h2 = D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)2.

Therefore the necessary optimality conditions (5.2) can be written as follows:

(5.6)

{
D2

(y,u)L(ū, ȳ, ϕ̄)(z, h)2 ≥ 0 ∀(z, h) ∈ H1
0 (Ω)× Cū satisfying (2.16),

H̄uu(x) ≥ 0 if H̄u(x) = 0 for a.e. x ∈ Ω.

We finish this section by establishing the sufficient second-order optimality con-
ditions.
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Theorem 5.2. Let us assume that ū is a feasible control for the problem (P) and
that there exists ϕ̄ ∈ W 1,p

0 (Ω) satisfying (3.4) and (3.5). If, in addition, there exist
μ > 0 and τ > 0 such that

(5.7)
J ′′(ū)h2 > 0 ∀h ∈ Cū \ {(0, 0)},
H̄uu(x) ≥ μ if |H̄u(x)| ≤ τ for a.e. x ∈ Ω,

then there exist ε > 0 and δ > 0 such that

(5.8) J(ū) +
δ

2
‖u− ū‖2L2(Ω) ≤ J(u)

for every feasible control u ∈ L∞(Ω) for (P) such that ‖u− ū‖L∞(Ω) ≤ ε.
Remark 5.3. 1. If we compare the first inequality of (5.7) with the analogous

inequality of (5.2), we see that the gap is minimal between the necessary and sufficient
conditions, as is usual in finite dimensions. However, the second inequality of (5.7)
is stronger than the corresponding one of (5.2). This is a consequence of the infinite
number of constraints on the control: one constraint for every point of Ω. In general
we cannot take τ = 0. The reader is referred to Dunn [17] for a simple example
proving the impossibility of taking τ = 0.

2. Let us recall that H̄uu(x) = (∂2L/∂u2)(x, ȳ(x), ū(x)). Therefore, the second
condition of (5.7) is satisfied if we assume that the second derivative of L with respect
to u is strictly positive. A standard example is given by the function

L(x, y, u) = L0(x, y) +
N

2
u2, with N > 0.

3. The sufficient optimality conditions (5.7) can be written as follows:

D2
(y,u)L(ū, ȳ, ϕ̄)(z, h)2 > 0 ∀(z, h) ∈ (H1

0 (Ω)× Cū) \ {(0, 0)} verifying (2.16),
H̄uu(x) ≥ μ if |H̄u(x)| ≤ τ for a.e. x ∈ Ω.

Once again this is an obvious consequence of (5.5).
Proof.
Step 1: Preparations. We will argue by contradiction. Let us assume that there

exists a sequence of feasible controls for (P), {uk}∞k=1 ⊂ L∞(Ω), such that

(5.9) ‖uk − ū‖L∞(Ω) <
1
k

and J(ū) +
1
k
‖uk − ū‖2L2(Ω) > J(uk).

Let us define

(5.10) yk = G(uk) = yuk
, ȳ = G(ū) = yū, ρk = ‖uk−ū‖L2(Ω) and vk =

1
ρk

(uk−ū).

Then

(5.11) lim
k→∞

‖yk − ȳ‖W 1,p
0 (Ω) = 0, lim

k→∞
ρk = 0 and ‖vk‖L2(Ω) = 1 ∀k.

By taking a subsequence, if necessary, we can assume that vk ⇀ v weakly in L2(Ω).
We will prove that v ∈ Cū. Next, we will use (5.7). In this process we will need the
following result:

(5.12) lim
k→∞

1
ρk

(yk − ȳ) = z in H1
0 (Ω),
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where z ∈ H1
0 (Ω) is the solution of (2.16) corresponding to the state ȳ. Let us prove

it. We will set zk = (yk − ȳ)/ρk. By subtracting the state equations satisfied by
(yk, uk) and (ȳ, ū), dividing by ρk, and applying the mean value theorem, we get
(5.13)

−div
[
a(x, yk)∇zk +

∂a

∂y
(x, ȳ + θk(yk − ȳ))zk∇ȳ

]
+
∂f

∂y
(x, ȳ + νk(yk − ȳ))zk = vk.

Taking into account that zk ∈ W 1,p
0 (Ω), we can multiply (5.13) by zk and make an

integration by parts to get, with the aid of (2.1) and (5.11), that

α0

∫
Ω

|∇zk(x)|2 dx ≤
∫

Ω

a(x, yk)|∇zk(x)|2 dx

=
∫

Ω

{
vkzk −

∂f

∂y
(x, ȳ + νk(yk − ȳ))z2

k −
∂a

∂y
(x, ȳ + θk(yk − ȳ))zk∇zk · ∇ȳ

}
dx

≤ ‖vk‖L2(Ω)‖zk‖L2(Ω) + C‖zk‖
L

2p
p−2 (Ω)

‖∇ȳ‖L2(Ω)‖∇zk‖L2(Ω).

We have used that the term −∂f/∂y z2
k is nonpositive. Therefore,

‖∇zk‖L2(Ω) ≤ C
{

1 + ‖zk‖
L

2p
p−2 (Ω)

}
.

As in the proof of Theorem 2.7, {zk}∞k=1 must be bounded in L
2p

p−2 (Ω); otherwise we
could obtain a nonzero solution of (2.16). Then the above inequality leads to the
boundedness of {zk}∞k=1 in H1

0 (Ω). Therefore we can extract a subsequence, denoted
in the same way, such that zk ⇀ z weakly in H1

0 (Ω) and strongly in L
2p

p−2 (Ω). Thanks
to this convergence and to (5.10), we get the strong convergences in L2(Ω):

∂a

∂y
(x, ȳ+θk(yk− ȳ))zk∇ȳ →

∂a

∂y
(x, ȳ)z∇ȳ and

∂f

∂y
(x, ȳ+νk(yk− ȳ))zk →

∂f

∂y
(x, ȳ)z.

Therefore we can pass to the limit in (5.13) and deduce

(5.14) −div
[
a(x, ȳ)∇z +

∂a

∂y
(x, ȳ)z∇ȳ

]
+
∂f

∂y
(x, ȳ)z = v.

Moreover by using (5.13), (5.14), and the uniform convergence yk → ȳ it is easy to
prove that ∫

Ω

a(x, ȳ)|∇zk|2 dx→
∫

Ω

a(x, ȳ)|∇z|2 dx.

This fact, along with the weak convergence of {zk}∞k=1 in H1
0 (Ω), implies the strong

convergence zk → z in H1
0 (Ω).

Step 2: v ∈ Cū. Since α(x) ≤ uk(x) ≤ β(x) a.e., we have that vk(x) ≥ 0 if
ū(x) = α(x) and vk(x) ≤ 0 if ū(x) = β(x) a.e. Since the set of functions satisfying
these sign conditions is convex and closed in L2(Ω), then it is weakly closed, and
therefore the weak limit v of {vk}∞k=1 satisfies the sign condition too. It remains to
prove that v(x) = 0 for a.a. x such that d̄(x) �= 0. From (5.9), by using the mean
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value theorem we obtain

ρk
k

=
1
kρk
‖uk − ū‖2L2(Ω) >

J(uk)− J(ū)
ρk

=
∫

Ω

∂L

∂y
(x, ȳ + θk(yk − ȳ), ū+ θk(uk − ū))zk dx

+
∫

Ω

∂L

∂u
(x, ȳ + θk(yk − ȳ), ū+ θk(uk − ū))vk dx.

Taking limits in both sides of the inequality, using (3.4), (5.14), the already proved
convergence zk → z in H1

0 (Ω), and integrating by parts, we get

0 ≥
∫

Ω

{
∂L

∂y
(x, ȳ, ū)z +

∂L

∂u
(x, ȳ, ū)v

}
dx

=
∫

Ω

{
ϕ̄+

∂L

∂u
(x, ȳ, ū)

}
v dx =

∫
Ω

d̄(x)v(x) dx =
∫

Ω

|d̄(x)||v(x)| dx,

the last equality being a consequence of proved signs for v and (3.6). The previous
inequality implies that |d̄(x)v(x)| = 0 holds a.e., and hence v(x) = 0 if d̄(x) �= 0, as
we wanted to prove.

Step 3: v = 0. The next step consists of proving that v does not satisfy the first
condition of (5.7). This will lead to the identity v = 0. By using (5.9), the definition
of L, and the fact that (ȳ, ū) and (yk, uk) satisfy the state equation, we get

L(uk, yk, ϕ̄) = J (yk, uk) < J (ȳ, ū) +
1
k
‖uk − ū‖2L2(Ω)

= L(ū, ȳ, ϕ̄) +
1
k
‖uk − ū‖2L2(Ω).(5.15)

Performing a Taylor expansion up to the second order, we obtain

L(uk, yk, ϕ̄) = L(ū+ ρkvk, ȳ + ρkzk, ϕ̄) = L(ū, ȳ, ϕ̄) + ρkD(y,u)L(ū, ȳ, ϕ̄)(zk, vk)

+
ρ2
k

2
D2

(y,u)L(ū + θkρkvk, ȳ + θkρkzk, ϕ̄)(zk, vk)2.

This equality, along with (5.15) and (5.9), leads to

ρkD(y,u)L(ū, ȳ, ϕ̄)(zk, vk) +
ρ2
k

2
D2

(y,u)L(wk, ξk, ϕ̄)(zk, vk)2 <
1
k
‖uk − ū‖2L2(Ω) ≤

ρ2
k

k
,

where we have put ξk = ȳ+ θkρkzk and wk = ū+ θkρkvk. It is obvious that ξk → ȳ in
W 1,p

0 (Ω) and wk → ū in L∞(Ω). Dividing the previous inequality by ρ2
k and taking

into account the expressions obtained for the derivatives of L, we obtain

1
ρk

∫
Ω

H̄u(x)vk(x) dx +
1
2

∫
Ω

{
Hk
yy(x)z

2
k(x) + 2Hk

yu(x)zk(x)vk(x) +Hk
uu(x)v

2
k(x)

}
dx

−1
2

∫
Ω

{
∂a

∂y
(x, ξk)zk∇zk +

∂2a

∂y2
(x, ξk)z2

k∇ξk
}
∇ϕ̄ dx < 1

k
,(5.16)

where

Hk
yy(x) = Hyy(x, ξk(x), wk(x), ϕ̄(x)),
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with analogous definitions for Hk
uu and Hk

yu. It is easy to check that

{
(Hk

yy(x), H
k
yu(x), H

k
uu(x))→ (H̄yy(x), H̄yu(x), H̄uu(x))

|Hk
yy(x)|+ |Hk

yu(x)| + |Hk
uu(x)| ≤ C

for a.e. x ∈ Ω

for some constant C <∞. We also have the following convergence properties:

⎧⎨
⎩

∂ja

∂yj
(x, ξk)zk∇ϕ̄→

∂ja

∂yj
(x, ȳ)z∇ϕ̄, j = 1, 2,

∇zk −→ ∇z and zk∇ξk −→ z∇ȳ.
in L2(Ω)n.

Using these properties we can pass to the limit in (5.16) as follows:

lim sup
k→∞

{
1
ρk

∫
Ω

H̄u(x)vk(x) dx +
1
2

∫
Ω

Hk
uu(x)v

2
k(x) dx

}

+
1
2

∫
Ω

[H̄yy(x)z2(x) + 2H̄yu(x)z(x)v(x)] dx

−1
2

∫
Ω

{
∂a

∂y
(x, ȳ)z∇z +

∂2a

∂y2
(x, ȳ)z2∇ȳ

}
∇ϕ̄ dx ≤ 0.(5.17)

The rest of the proof is devoted to verifying that the above upper limit is bounded
from below by 1

2

∫
Ω H̄uuv

2
k dx. If this is proved, then from (5.17) and (5.5) we deduce

that J ′′(ū)v2 = D2
(y,u)L(ū, ȳ, ϕ̄)(z, v)2 ≤ 0. According to (5.7) this is possible only

if v = 0. The proof of the mentioned lower estimate is quite technical, which makes
an important difference with respect to the finite dimension. In our framework the
difficulty is due to the fact that we only have a weak convergence vk ⇀ v. To overcome
this difficulty we use a convexity argument. In order to achieve this goal the essential
tool is the second condition of (5.7).

From (A4) and (A6) we get

‖H̄uu −Hk
uu‖L∞(Ω) ≤ C

{
‖ȳ − yk‖L∞(Ω) + ‖ū− uk‖L∞(Ω)

}
→ 0.

Using this property, ‖vk‖L2(Ω) = 1, and the identity H̄u(x)vk(x) = |H̄u(x)||vk(x)|, we
obtain

lim sup
k→∞

{
1
ρk

∫
Ω

H̄u(x)vk(x) dx +
1
2

∫
Ω

Hk
uu(x)v

2
k(x) dx

}

= lim sup
k→∞

{
1
ρk

∫
Ω

|H̄u(x)||vk(x)| dx +
1
2

∫
Ω

H̄uu(x)v2
k(x) dx

}

≥ lim sup
k→∞

{
1
ρk

∫
{|H̄u(x)|>τ}

[
|H̄u(x)||vk(x)|+

1
2
H̄uu(x)v2

k(x)
]
dx

+
1
2

∫
{|H̄u(x)|≤τ}

H̄uu(x)v2
k(x) dx

}
,(5.18)

where τ is given by (5.7).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

716 EDUARDO CASAS AND FREDI TRÖLTZSCH

Remembering that ρk‖vk‖L∞(Ω) = ‖uk− ū‖L∞(Ω) < 1/k, we deduce the existence
of an integer k0 > 0 such that

‖H̄uu‖L∞(Ω)ρk‖vk‖L∞(Ω)

τ
<
‖H̄uu‖L∞(Ω)

kτ
< 1 ∀k ≥ k0,

and therefore
τ

ρk
|vk(x)| ≥ ‖H̄uu‖L∞(Ω)v

2
k(x) for a.e. x ∈ Ω ∀k ≥ k0.

Then we have, with the help of the second condition of (5.7),

lim sup
k→∞

{
1
ρk

∫
{|H̄u|>τ}

[
|H̄u||vk|+

1
2
H̄uuv

2
k

]
dx+

1
2

∫
{|H̄u|≤τ}

H̄uuv
2
k dx

}

≥ lim sup
k→∞

{∫
{|H̄u|>τ}

[
‖H̄uu‖L∞(Ω) +

1
2
H̄uu

]
v2
k dx+

1
2

∫
{|H̄u|≤τ}

H̄uuv
2
k dx

}

≥
∫
{|H̄u|>τ}

[
‖H̄uu‖L∞(Ω) +

1
2
H̄uu

]
v2 dx

+
1
2

∫
{|H̄u|≤τ}

H̄uuv
2 dx ≥ 1

2

∫
Ω

H̄uuv
2 dx.(5.19)

Combining (5.18) and (5.19) we get the sought-after lower estimate.
Step 4: Final contradiction. Using that ‖vk‖L2(Ω) = 1 along with (5.16), (5.17),

(5.18), (5.19), the second condition of (5.7), and the fact that v = 0, we deduce

0 ≥ lim sup
k→∞

{∫
{|H̄u|>τ}

[
‖H̄uu‖L∞(Ω) +

1
2
H̄uu

]
v2
k dx+

1
2

∫
{|H̄u|≤τ}

H̄uuv
2
k dx

}

≥ lim sup
k→∞

{
‖H̄uu‖L∞(Ω)

2

∫
{|H̄u|>τ}

v2
k dx+

μ

2

∫
{|H̄u|≤τ}

v2
k dx

}

≥
min{‖H̄uu‖L∞(Ω), μ}

2
lim sup
k→∞

∫
Ω

v2
k dx =

min{‖H̄uu‖L∞(Ω), μ}
2

> 0,

providing the contradiction that we were looking for.
We finish this section by formulating a different version of the sufficient second-

order optimality conditions which is equivalent to (5.7); see [9, Theorem 4.4] for the
proof of this equivalence. This formulation is very useful for numerical purposes.

Theorem 5.4. Let us assume that ū is a feasible control for problem (P). We
also assume that there exists ϕ̄ ∈W 1,p

0 (Ω) satisfying (3.4) and (3.5). Then (5.7) holds
if and only if there exist δ, σ > 0 such that

(5.20) J ′′(ū)h2 ≥ δ‖h‖2L2(Ω) ∀h ∈ Cσū ,

where

Cσū =

⎧⎪⎨
⎪⎩h ∈ L2(Ω) : h(x) =

⎧⎪⎨
⎪⎩
≥ 0 if ū(x) = α(x)
≤ 0 if ū(x) = β(x)
= 0 if |d̄(x)| > σ

for a.e. x ∈ Ω

⎫⎪⎬
⎪⎭ .
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SYMBOLIC MODELS FOR NONLINEAR CONTROL SYSTEMS:
ALTERNATING APPROXIMATE BISIMULATIONS∗

GIORDANO POLA† AND PAULO TABUADA†

Abstract. Symbolic models are abstract descriptions of continuous systems in which symbols
represent aggregates of continuous states. In the last few years there has been a growing interest in the
use of symbolic models as a tool for mitigating complexity in control design. In fact, symbolic models
enable the use of well-known algorithms in the context of supervisory control and algorithmic game
theory for controller synthesis. Since the 1990s many researchers faced the problem of identifying
classes of dynamical and control systems that admit symbolic models. In this paper we make further
progress along this research line by focusing on control systems affected by disturbances. Our main
contribution is to show that incrementally globally asymptotically stable nonlinear control systems
with disturbances admit symbolic models.

Key words. symbolic models, approximate bisimulation, alternating bisimulation, incremental
stability, nonlinear systems
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DOI. 10.1137/070698580

1. Introduction. In recent years we have witnessed the development of different
symbolic techniques aimed at reducing the complexity of controller synthesis [EFP06].
These techniques are based on the idea that many states can be treated as equivalent,
when synthesizing controllers, and can thus be replaced by a symbol. The models
resulting from replacing equivalent states by symbols, termed symbolic models, are
typically simpler than the original ones, in the sense that they have a lower number of
states. In many cases, one can even construct symbolic models with a finite number
of states, which is especially useful for controller design. In fact, the use of sym-
bolic models provides a systematic approach (based on well-established techniques
of supervisory control [RW87] and algorithmic game theory [AVW03]) to the design
of controllers for classes of specifications that traditionally have not been considered
in the context of continuous control systems. These include specifications involv-
ing regular languages, temporal logic, fairness constraints, etc., which arise in many
application domains such as manufacturing systems, flight control systems, heating
and ventilation systems, etc. The search for classes of systems admitting symbolic
models goes back to the 1990s and was motivated by problems of verification of dy-
namical and hybrid systems. Alur and Dill showed in [AD90] that timed automata
admit symbolic models; this result was then generalized in [ACHH93, NOSY93] to
multirate automata and in [HKPV98, PV94] to rectangular automata. More complex
continuous dynamics, but simpler discrete dynamics, were considered in [LPS00],
where it was shown that o-minimal hybrid systems also admit symbolic models. Sym-
bolic models for control systems were only considered later, and early results were
reported in [KASL00, MRO02, FJL02, CW98]. More precise results appeared re-
cently in [TP06, Tab07], where it was shown that discrete-time controllable linear
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systems admit symbolic models. Most of these results are based on appropriately
adapting the notion of bisimulation introduced by Milner [Mil89] and Park [Par81]
to the context of continuous and hybrid systems. A different approach emerged re-
cently through the work of [YW00, HMP05, GP07, Tab08], where an approximate
version of bisimulation was considered. While (exact) bisimulation requires that ob-
servations of the states are identical, the notion of approximate bisimulation relaxes
this condition by allowing observations to be close and within a desired precision.
This more flexible notion of bisimulation allows the identification of more classes of
systems, admitting symbolic models. Indeed, the work in [Tab08] showed that for
every asymptotically stabilizable nonlinear control system it is possible to construct
a symbolic model, which is based on an approximate notion of simulation (one-sided
version of approximate bisimulation). Extensions of the results in [Tab08], from ap-
proximate simulation to approximate bisimulation, can be found in [Gir07, PGT08].
In particular [PGT08] showed that, for the class of (incrementally globally) asymptot-
ically stable nonlinear control systems, symbolic models exist which are approximate
bisimulation equivalent to control systems, with a precision that can be chosen a pri-
ori, as a design parameter. Control systems in the work of [Tab08, Gir07, PGT08] are
not affected by exogenous disturbance inputs. However, in many realistic situations,
physical processes are characterized by a certain degree of uncertainty which is often
modeled by additional disturbance inputs. Building upon [Tab08, Gir07, PGT08],
this paper extends the results in [PGT08] to nonlinear control systems influenced by
disturbances. The presence of disturbances requires us to replace the notion of ap-
proximate bisimulation used in [PGT08] with the notion of alternating approximate
bisimulation, inspired by Alur and coworkers’ alternating bisimulation [AHKV98]. To
the best of the authors’ knowledge, alternating approximate bisimulation was never
used before in the context of control systems. This novel notion of bisimulation is a
critical ingredient of our results since, as illustrated in section 3.2 through a simple ex-
ample, approximate bisimulation fails to distinguish between the different role played
by control inputs and disturbance inputs. Consequently, control strategies synthesized
on symbolic models based on notions of bisimulation and approximate bisimulation
cannot be transferred to the original models in a way which is robust with respect
to disturbance inputs. Alternating approximate bisimulation solves this problem by
guaranteeing that control strategies synthesized on symbolic models, based on alter-
nating approximate bisimulations, can be readily transferred to the original model,
independently of the particular evolution of the disturbance inputs.

The main contribution of this paper is to show that incrementally globally asymp-
totically stable control systems affected by exogenous inputs do admit symbolic models.

Since control systems with disturbances can be thought of as arenas for differential
games [Isa99], our results also provide an alternative approach to the study of differen-
tial games by means of tools developed in computer science (see, e.g., [Zie98, AVW03]).

Similar ideas to the ones of this paper have been recently explored in [PT07]
for the class of linear control systems with disturbances. A detailed discussion on
relationships between the results of the present paper and the ones in [PT07] can be
found in the last section of this paper. Notions of bisimulation for nonlinear control
systems with disturbances have also been studied in [vdS04], albeit with a different
purpose. While we are interested in the construction of bisimilar models that are
finite, the work in [vdS04] uses bisimulation to relate continuous, and thus infinite,
control systems. We defer to the last section of this paper for a discussion on the
relationships between the notion of bisimulation employed in [vdS04] and the one
used in this paper.
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2. Control systems and stability notions.

2.1. Notation. The symbols Z, N, R, R
+, and R

+
0 denote the set of integers,

positive integers, reals, positive reals, and nonnegative reals, respectively. The identity
map on a set A is denoted by 1A. Given two sets A and B, if A is a subset of
B, we denote by ıA : A ↪→ B or simply by ı the natural inclusion map taking any
a ∈ A to ı(a) = a ∈ B. Given a function f : A → B the symbol f(A) denotes the
image of A through f , i.e., f(A) := {b ∈ B : ∃a ∈ A s.t. b = f(a)}; if C ⊆ A,
then f |C : C → B denotes the restriction of f to C, so that f |C(c) = f(c) for
any c ∈ C. We identify a relation R ⊆ A × B with the map R : A→ 2B defined
by b ∈ R(a) if and only if (a, b) ∈ R. Given a relation R ⊆ A × B, R−1 denotes the
inverse relation of R, i.e., R−1 := {(b, a) ∈ B × A : (a, b) ∈ R}. Given a vector x ∈ R

n

we denote by x′ the transpose of x and by xi the ith element of x. Furthermore,
‖x‖ denotes the infinity norm of x. We recall that ‖x‖ := max{|x1|, |x2|, . . . , |xn|},
where |xi| is the absolute value of xi. Given a set A ⊆ R

n, the symbol A denotes
the topological closure of A. The symbol Bε(x) denotes the closed ball centered at
x ∈ R

n with radius ε ∈ R
+
0 , i.e., Bε(x) = {y ∈ R

n : ‖x− y‖ ≤ ε}. For any A ⊆ R
n

and μ ∈ R define [A]μ := {a ∈ A | ai = kiμ, ki ∈ Z, i = 1, . . . , n}. By geometrical
considerations on the infinity norm, for any μ ∈ R

+ and λ ≥ μ/2 the collection of
sets {Bλ(q)}q∈[Rn]μ is a covering of R

n, i.e., R
n ⊆

⋃
q∈[Rn]μ

Bλ(q); conversely for any
λ < μ/2, R

n
�
⋃
q∈[Rn]μ

Bλ(q). A function f : [a, b] → R
n is said to be absolutely

continuous on [a, b] if for any ε ∈ R
+ there exists δ ∈ R

+ so that for every k ∈ N

and for every sequence of points a ≤ a1 < b1 < a2 < b2 < · · · < ak < bk ≤ b, if∑
i=1...m(bi−ai) < δ, then

∑
i=1...m |f(bi)−f(ai)| < ε. A function f :]a, b[→ R

n is said
to be locally absolutely continuous if the restriction of f to any compact subset of ]a, b[
is absolutely continuous. Given a measurable function f : R

+
0 → R

n, the (essential)
supremum of f is denoted by ‖f‖∞. We recall that ‖f‖∞ := (ess) sup{‖f(t)‖, t ≥ 0}
and f is essentially bounded if ‖f‖∞ < ∞. For a given time τ ∈ R

+, define fτ
so that fτ (t) = f(t) for any t ∈ [0, τ), and f(t) = 0 elsewhere; f is said to be
locally essentially bounded if for any τ ∈ R

+, fτ is essentially bounded. A function
f : R

n → R is said to be radially unbounded if f(x)→∞, as ‖x‖ → ∞. A continuous
function γ : R

+
0 → R

+
0 is said to belong to class K if it is strictly increasing and

γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞, as r → ∞. A
continuous function β : R

+
0 × R

+
0 → R

+
0 is said to belong to class KL if for each fixed

s the map β(r, s) belongs to class K∞ with respect to r and, for each fixed r, the map
β(r, s) is decreasing with respect to s and β(r, s) → 0, as s→∞. Given a metric
space (X,d), we denote by dh the Hausdorff pseudometric induced by d on 2X ; we
recall that for any X1, X2 ⊆ X , dh(X1, X2) := max{	dh(X1, X2), 	dh(X2, X1)}, where
	dh(X1, X2) = supx1∈X1

infx2∈X2 d(x1, x2) is the directed Hausdorff pseudometric. We
recall that the Hausdorff pseudometric dh satisfies the following properties for any
X1, X2, X3 ⊆ X : (i) X1 = X2 implies dh(X1, X2) = 0; (ii) dh(X1, X2) = dh(X2, X1);
(iii) dh(X1, X3) ≤ dh(X1, X2) + dh(X2, X3).

2.2. Control systems. The class of systems that we consider in this paper is
formalized in the following definition.

Definition 2.1. A control system is a quadruple Σ = (Rn,W,W , f), where
• R

n is the state space;
• W = U × V is the input space, where

– U ⊆ R
m is the control input space;

– V ⊆ R
s is the disturbance input space;
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• W = U × V is a subset of the set of all measurable and locally essentially
bounded functions of time from intervals of the form ]a, b[⊆ R to W with
a < 0 and b > 0;
• f : R

n × W → R
n is a continuous map satisfying the following Lipschitz

assumption: for every compact set K ⊂ R
n, there exists a constant κ > 0

such that

‖f(x,w)− f(y, w)‖ ≤ κ‖x− y‖

for all x, y ∈ K and all w ∈W .
A locally absolutely continuous curve x :]a, b[→ R

n is said to be a trajectory of Σ if
there exists w ∈ W satisfying ẋ(t) = f(x(t),w(t)) for almost all t ∈ ]a, b[.

Although we have defined trajectories over open domains, we shall refer to trajec-
tories x :[0, τ ]→ R

n defined on closed domains [0, τ ], τ ∈ R
+, with the understanding

of the existence of a trajectory z :]a, b[→ R
n such that x = z|[0,τ ]. We will also write

x(τ, x,w) to denote the point reached at time τ ∈]a, b[ under the input w from initial
condition x; this point is uniquely determined, since the assumptions on f ensure
existence and uniqueness of trajectories. Whenever we need to distinguish between a
control input value u and a disturbance input value v in (u, v) ∈W we slightly abuse
notation by writing f(x, u, v) instead of f(x, (u, v)). Analogously, whenever we need
to distinguish between u and v in an input signal (u,v) ∈ W , we write x(τ, x,u,v)
instead of x(τ, x, (u,v)).

In some of the subsequent developments we assume that control systems are
forward complete. We recall that a control system Σ is forward complete if every tra-
jectory is defined on an interval of the form ]a,∞[. Sufficient and necessary conditions
for a system to be forward complete are given in [AS99]. Simpler, but only sufficient,
conditions for forward completeness are also available in the literature; these include
linear growth or compact support of the vector field (see, e.g., [LM67]). The results
presented in this paper will rely upon the following stability notion.

Definition 2.2 ([Ang02]). A control system Σ is said to be incrementally globally
asymptotically stable (δ-GAS) if it is forward complete and there exists a KL function
β such that for any t ∈ R

+
0 , any x1, x2 ∈ R

n, and any input signal w ∈ W the
following condition is satisfied:

(2.1) ‖x(t, x1,w)− x(t, x2,w)‖ ≤ β(‖x1 − x2‖ , t).

The above definition can be thought of as an incremental version of the classical
notion of global asymptotic stability (GAS). Sufficient and necessary conditions for a
control system to be δ-GAS, based on dissipation inequalities, can be found in [Ang02].

3. Symbolic models and approximate equivalence notions.

3.1. Alternating transition systems. In this paper we will use the class of
alternating transition systems as abstract models of control systems.

Definition 3.1. An (alternating) transition system is a tuple:

T = (Q,L, � , O,H),

consisting of
• a set of states Q;
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• A set of labels L = A×B, where
– A is the set of control labels;
– B is the set of disturbance labels;

• A transition relation � ⊆ Q× L×Q;
• An output set O;
• An output function H : Q→ O.

A transition system T is said to be
• metric if the output set O is equipped with a metric d : O ×O → R

+
0 ;

• countable if Q and L are countable sets;
• finite if Q and L are finite sets.

We will follow standard practice and denote by q
a,b� p a transition from q to

p labeled by a and b. Transition systems capture dynamics through the transition
relation. For any states q, p ∈ Q, q

a,b� p simply means that it is possible to evolve or
jump from state q to state p under the action labeled by a and b. A transition system
can be represented as a graph where circles represent states and arrows represent
transitions (see, e.g., Figure 3.1). We will use transition systems as an abstract
representation of control systems. There are several different ways in which we can
transform control systems into transition systems. We now describe one of these ways
which has the property of capturing all the information contained in a control system
Σ. Given Σ = (Rn, U × V,U × V , f) define the transition system

T (Σ) := (Q,L, � , O,H),

where
• Q = R

n;
• L = A×B, where A = U and B = V ;
• q u,v� p if x(τ, q,u,v) = p for some τ ∈ R

+;
• O = R

n;
• H = 1Rn .

In the subsequent developments we will work with a subtransition system of T (Σ)
obtained by selecting those transitions from T (Σ) describing trajectories of duration
τ for some chosen τ ∈ R

+. This can be seen as a time discretization or sampling
process.

Definition 3.2. Given a control system Σ = (Rn, U ×V,U ×V , f) and a param-
eter τ ∈ R

+, define the transition system

Tτ (Σ) := (Qτ , Lτ ,
τ
� , Oτ , Hτ ),

where
• Qτ = R

n;
• Lτ = Aτ × Bτ , where Aτ = {u ∈ U | the domain of u is [0, τ ]} and Bτ =
{v ∈ V | the domain of v is [0, τ ]};
• q u,v

τ
� p if x(τ, q,u,v) = p;

• Oτ = R
n;

• Hτ = 1Rn .
Note that Tτ (Σ) is a metric transition system when we regard Oτ = R

n as being
equipped with the metric d(p, q) = ‖p− q‖.
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3.2. Alternating and approximate bisimulations. In this section we in-
troduce a notion of approximate equivalence upon which all the results in this paper
rely. The following definition has been introduced in [GP07] and in a slightly different
formulation in [Tab08].

Definition 3.3. Given two metric transition systems T1 = (Q1, L1,
1
� , O,H1)

and T2 = (Q2, L2,
2
� , O,H2) with the same output set O and metric d, and given

a precision ε ∈ R
+
0 , a relation R ⊆ Q1×Q2 is said to be an ε-approximate bisimulation

relation between T1 and T2 if for any (q1, q2) ∈ R
(i) d(H1(q1), H2(q2)) ≤ ε;
(ii) q1

l1

1
� p1 implies existence of q2

l2

2
� p2 such that (p1, p2) ∈ R;

(iii) q2
l2

2
� p2 implies existence of q1

l1

1
� p1 such that (p1, p2) ∈ R.

Moreover, T1 is ε-approximately bisimilar to T2 if there exists an ε-approximate bisim-
ulation relation R between T1 and T2 such that R(Q1) = Q2 and R−1(Q2) = Q1.

Note that when ε = 0, the notion of ε-approximate bisimulation relation is equiv-
alent to the classical notion of Milner [Mil89] and Park [Par81]. The work in [PGT08]
showed existence of symbolic models that are approximately bisimilar to δ-GAS con-
trol systems (with no disturbance). However, the notion stated in Definition 3.3 and
employed in [PGT08] does not capture the different role of control and disturbance
inputs in control systems. The following example shows that approximate bisimu-
lations (in the sense of Definition 3.3) cannot be used for control design of systems
affected by disturbances.

Example 3.4. Consider the control system Σ = (R, U × V,U × V , f), where
U = [1, 2] ⊂ R, V = [0.4, 1] ⊂ R, U × V is the class of all measurable and locally es-
sentially bounded functions taking values in U ×V , and f : R×U ×V → R is defined
by f(x, u, v) = −2x+ uv. We work in the compact state space1 X = [0, 2]. Consider
the transition system T = (Q,L, � , O,H), where

• Q = {q1, q2, q3};
• L = {l1, l2, l3};
• q l� p is depicted in Figure 3.1;
• O = R;
• H : O → R is defined by H(q1) = 0, H(q2) = 1, and H(q3) = 2.

Given the desired precision ε = 0.6 and τ = 1, by using the results in [PGT08], it is
possible to show that the relation R ⊂ Qτ ×Q defined by

(3.1) R = R1 × {q1} ∪R2 × {q2} ∪R3 × {q3},

where R1 = [0, 0.6], R2 = [0.4, 1.6], and R3 = [1.4, 2] is a 0.6-approximate bisimulation
relation between Tτ (Σ) and T . Furthermore, since R(Qτ ) = Q and R−1(Q) = Qτ ,
transition systems Tτ (Σ) and T are 0.6-approximately bisimilar.2 Suppose now that
the goal is to find a control strategy on T such that, starting from state q1, it is possible
to reach the set {q2, q3} in one step. By Figure 3.1, q1

l2� q2 and q1
l3� q3,

1The set X is invariant for the control system Σ; i.e., x(t, x,u,v) ∈ X for any x ∈ X, any
(u,v) ∈ U × V , and any time t ∈ R

+
0 .

2Transition system T coincides with transition system Tτ,η,μ(Σ) as defined in (7) of [PGT08],
with τ = 1, η = 1, and μ = 0.01. Theorem 4.1 of [PGT08] guarantees that T is 0.6-approximately
bisimilar to transition system Tτ (Σ) with τ = 1. Notice that condition (8) of [PGT08] boils down,
in this case, to e−2τ ε+ μ+ η/2 ≤ ε, which is indeed satisfied.
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Fig. 3.1. Transition system T associated with control system Σ of Example 3.4.

and hence both labels l2 and l3 solve that problem. Since (0, q1) ∈ R, the notion of
approximate bisimulation (see condition (iii) of Definition 3.3) guarantees that starting
from 0 ∈ R1 there exists a pair of labels (a2, b2), (a3, b3) ∈ Aτ×Bτ so that 0

a2,b2

τ
� x2 ∈

R2 and 0
a3,b3

τ
� x3 ∈ R3 in transition system Tτ (Σ). Indeed, by choosing constant

curves (a2(t), b2(t)) = (1, 1) and (a3(t), b3(t)) = (2, 1), t ∈ [0, 1], we have

0
a2,b2

τ
� 0.86 ∈ R2, 0

a3,b3

τ
� 1.73 ∈ R3.(3.2)

However, if the constant disturbance label b(t) = 0.4, t ∈ [0, 1], occurs instead of
b2 = b3, we obtain

0
a2,b

τ
� 0.35 ∈ R1, 0

a3,b

τ
� 0.69 ∈ R2,

thus showing that the control strategy in (3.2) does not produce the desired result on
the transition system Tτ (Σ). This situation occurs because the notion of bisimulation
treats disturbances as cooperative inputs that can be arbitrarily changed to help achieve
control objectives. In reality, disturbances need to be treated adversarially. Since
0

a3,b

τ
� 0.69 ∈ R2 and the set X is invariant for Σ, it is easy to see that for any

b̂ ∈ Bτ , 0
a3,b̂

τ
� x with x ≥ 0.69 and hence x ∈ R2 ∪ R3. Therefore, control label a3

guarantees that state 0 ∈ R1 reaches R2 ∪R3, robustly with respect to the disturbance
labels’ action, whereas control label a2 does not. We stress that this different feature
of control labels a2 and a3 is not captured by the notion of approximate bisimulation
in Definition 3.3.

The above example motivates us to propose the following definition that com-
bines the notions of [GP07] and [Tab08] with the notion of alternating bisimulation,
introduced by Alur and coworkers in [AHKV98].

Definition 3.5. Given two metric transition system T1 =(Q1, A1 ×B1,
1
� ,

O,H1) and T2 = (Q2, A2 × B2,
2
� , O,H2) with the same observation set O and

the same metric d and given a precision ε ∈ R
+
0 , a relation R ⊆ Q1 × Q2 is said to

be an alternating ε-approximate (AεA) bisimulation relation between T1 and T2 if for
any (q1, q2) ∈ R

(i) d(H1(q1), H2(q2)) ≤ ε;
(ii) ∀a1 ∈ A1 ∃a2 ∈ A2 ∀b2 ∈ B2 ∃b1 ∈ B1 such that q1

a1,b1

1
� p1 and q2

a2,b2

2
� p2

with (p1, p2) ∈ R;
(iii) ∀a2 ∈ A2 ∃a1 ∈ A1 ∀b1 ∈ B1 ∃b2 ∈ B2 such that q1

a1,b1

1
� p1 and q2

a2,b2

2
� p2

with (p1, p2) ∈ R.
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Moreover, T1 is said to be AεA bisimilar to T2 if there exists an AεA bisimulation
relation R between T1 and T2 such that R(Q1) = Q2 and R−1(Q2) = Q1.

It is easy to see that Definition 3.3 can be recovered as a special case of Definition
3.5, when the cardinality of each of the sets B1 and B2 in transition systems T1 and
T2 is one. Moreover, when ε = 0, the notion of bisimulation in Definition 3.5 coincides
with the 2-player version of the definition proposed in [AHKV98].

Definition 3.5 captures the different role played by control and disturbance la-
bels in the transition systems involved, whereas Definition 3.3 does not. In fact,
by [AHKV98] it is possible to show that AεA bisimulation relations preserve control
strategies (see Lemma 1 in [AHKV98]) and hence prevent phenomena illustrated in
Example 3.4.

4. Existence of symbolic models. In this section we present the main result
of this paper:

Theorem 4.1. Consider a control system Σ = (Rn, U × V,U × V , f). If Σ is
δ-GAS and U × V is compact, then for any desired precision ε ∈ R

+ there exist
τ ∈ R

+ and a countable transition system T that is AεA bisimilar to Tτ (Σ).
The above result is important because it shows the existence of symbolic models

for nonlinear control systems in the presence of disturbances, and therefore it provides
a first step toward the construction of symbolic models with guaranteed approxima-
tion properties. Theorem 4.1 relies upon the δ-GAS assumption on the control system
considered. This condition is not far from also being necessary. Indeed a counterex-
ample can be found in [PGT08], which shows that unstable (autonomous) control
systems do not admit, in general, AεA bisimilar countable symbolic models.3 The
last part of this section will be devoted to the proof of Theorem 4.1 which is based
on three steps:

(1) We first associate a suitable transition system Tτ,η,μ(Σ) to a control system
Σ = (R, U × V,U × V , f) (Definition 4.3).

(2) We then prove, under a compactness assumption on U × V , that transition
system Tτ,η,μ(Σ) is countable (Corollary 4.5).

(3) We finally prove, under the δ-GAS assumption on Σ, that Tτ,η,μ(Σ) is AεA
bisimilar to Tτ (Σ) (Theorem 4.6).

Step 1. Given a control system Σ, any τ ∈ R
+, η ∈ R

+, and μ ∈ R
+, we will

define the transition system

(4.1) Tτ,η,μ(Σ) := (Q,L, � , O,H).

Parameters τ, η, and μ in transition system Tτ,η,μ(Σ) can be thought of, respectively,
as a sampling time, a state space, and an input space quantization. In order to define
Tτ,η,μ(Σ) we will extract a countable set of states Q from Qτ and a countable set of
labels L from Lτ in such a way that the resulting Tτ,η,μ(Σ) is countable and AεA
bisimilar to Tτ (Σ).

From now on, we denote by dh the Hausdorff pseudometric induced by the met-
ric d of the observation space Oτ of Tτ (Σ). Furthermore, since the output func-
tion Hτ of Tτ (Σ) is the identity function, we write d(x, y) = ‖x − y‖ instead of
d(x, y) = ‖Hτ (x) −Hτ (y)‖. We start by showing that any subset of R

n can be ar-
bitrarily well approximated by a subset of the lattice [Rn]η, where η is the precision
that we require on the approximation.

3The notions of bisimulation employed in this paper and in [PGT08] do coincide for autonomous
control systems, i.e., control systems where the cardinality of each of the input sets U and V is one.
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Lemma 4.2. For any set X ⊆ R
n and any precision η ∈ R

+ there exists P ⊆ [Rn]η
such that dh(P,X) ≤ η/2.

Proof. By geometrical considerations on the infinity norm, X ⊆
⋃
p∈[Rn]η

Bη/2(p)
and therefore for any x ∈ X there exists p ∈ [Rn]η such that d(x, p) = ‖x− p‖ ≤ η/2.
Denote by ϑ : X → [Rn]η a function that associates to any x ∈ X a vector p ∈ [Rn]η
so that d(x, p) = ‖x− p‖ ≤ η/2 and set P = ϑ(X). Notice that, by construction, for
any p ∈ P there exists x ∈ X such that d(x, p) = ‖x− p‖ ≤ η/2 (choose x such that
p = ϑ(x)). Then by definition of dh, the statement holds.

By the above result, for any given precision η ∈ R
+ we can approximate the state

space Qτ = R
n of Tτ (Σ) by means of the countable set Q := [Rn]η. This choice for Q

guarantees that for any x ∈ Qτ there exists q ∈ Q so that ‖x− q‖ ≤ η/2.
The approximation of the set of labels Lτ of Tτ (Σ) is more involved and requires

the notion of reachable set. We recall that given a forward complete control system
Σ = (Rn, U × V,U × V , f), any τ ∈ R

+, and x ∈ R
n, the reachable set of Tτ (Σ) with

initial condition x ∈ Qτ is the set R(τ, x) of endpoints x(τ, x,a,b) for any a ∈ Aτ
and b ∈ Bτ or, equivalently,

(4.2) R(τ, x) :=
{
y ∈ Qτ : x

a,b

τ
� y, a ∈ Aτ , b ∈ Bτ

}
.

Moreover, the reachable set of Tτ (Σ) with initial condition x ∈ Qτ and control label
a ∈ Aτ is the set R(τ, x,a) of endpoints x(τ, x,a,b) for any b ∈ Bτ , i.e.,

(4.3) R(τ, x,a) :=
{
y ∈ Qτ : x

a,b

τ
� y, b ∈ Bτ

}
.

The reachable sets in (4.2) and (4.3) are well defined because the control system Σ
associated with Tτ (Σ) is assumed to be forward complete. Given any desired precision
μ ∈ R

+, we approximate Lτ by means of the set L := A×B, where

A :=
⋃
q∈QA

μ(q), B :=
⋃
q∈Q

⋃
a∈Aμ(q)B

μ(q, a),(4.4)

and Aμ(q) captures the set of control labels that can be applied at the state q ∈ Q,
while Bμ(q, a) captures the set of disturbance labels that can be applied at the state
q ∈ Q when the chosen control label is a ∈ Aμ(q). The definition of sets A and B
in (4.4) is asymmetric. This asymmetry follows from the notion of AεA bisimulation
relation that we use, where control labels must be chosen robustly with respect to the
action of disturbance labels (see conditions (ii) and (iii) in Definition 3.5). Given any
τ ∈ R

+, define the following sets:

(4.5)
Aμ(τ, q) := {P ∈ 2[Rn]μ | ∃a ∈ Aτ s.t. dh(P,R(τ, q, a)) ≤ μ/2},
Bμ(τ, q, a) := {p ∈ [Rn]μ | ∃b ∈ Bτ s.t. d(p,x(τ, q, a,b)) = ‖p− x(τ, q, a,b)‖ ≤ μ/2}.

Notice that for any P ∈ Aμ(τ, q) there may exist a (possibly infinite) set of control la-
bels a ∈ Aτ so that dh(P,R(τ, q, a)) ≤ μ/2. Analogously, for any p ∈ Bμ(τ, q, a) there
may exist a (possibly infinite) set of disturbance labels b ∈ Bτ so that d(p,x(τ, q, a,b))
= ‖p−x(τ, q, a,b)‖ ≤ μ/2. In order to define the sets Aμ(q) and Bμ(q, a) in (4.4) we
consider for any P ∈ Aμ(τ, q) only one control label a ∈ Aτ and, respectively, for any
p ∈ Bμ(τ, q, a) only one disturbance label b ∈ Bτ , as representatives of all control la-
bels and all disturbance labels associated with the set P and the vector p, respectively.
The sets Aμ(q) and Bμ(q, a) will be defined as the collections of these representative
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control and disturbance labels, respectively. The choice of representatives is defined
by the functions

ψτ,qμ : Aμ(τ, q)→ Aτ , ϕτ,q,aμ : Bμ(τ, q, a)→ Bτ ,(4.6)

where
• ψτ,qμ associates to any P ∈ Aμ(τ, q) one control label4 a = ψτ,qμ (P ) ∈ Aτ so

that dh(P,R(τ, q, a)) ≤ μ/2,
• ϕτ,q,aμ associates to any p ∈ Bμ(τ, q, a) one disturbance label4 b = ϕτ,q,aμ (p)∈ Bτ

so that d(p,x(τ, q, a,b)) = ‖p− x(τ, q, a,b)‖ ≤ μ/2.
By the above definition, functions ψτ,qμ and ϕτ,q,aμ are not unique. The sets Aμ(q) and
Bμ(q, a), appearing in (4.4), can now be defined by

Aμ(q) := ψτ,qμ (Aμ(τ, q)), Bμ(q, a) := ϕτ,q,aμ (Bμ(τ, q, a)).(4.7)

Since the control system Σ is assumed to be forward complete, the reachable sets
R(τ, q, a), appearing in (4.5), are nonempty; hence sets Aμ(τ, q) and Bμ(τ, q, a) in
(4.5) are nonempty and therefore sets Aμ(q) and Bμ(q, a) in (4.7) are nonempty, as
well.

We now have all the ingredients to define the transition system in (4.1).
Definition 4.3. Given a forward complete control system Σ = (R, U × V,

U × V, f), any τ ∈ R
+, η ∈ R

+, and μ ∈ R
+, we define the transition system

(4.8) Tτ,η,μ(Σ) := (Q,L, � , O,H),

where
• Q = [Rn]η;
• L = A×B, where

A =
⋃
q∈QA

μ(q), B =
⋃
q∈Q

⋃
a∈Aμ(q)B

μ(q, a),

and the sets Aμ(q) and Bμ(q, a) are defined in (4.7);
• q a,b� p if a ∈ Aμ(q), b ∈ Bμ(q, a), and ‖p− x(τ, q, a,b)‖ ≤ η/2;
• O = R

n;
• H = ι : Q ↪→ O.

Transition system Tτ,η,μ(Σ) is metric when we regard O = R
n as being equipped

with the metric d(p, q) = ‖H(p)−H(q)‖ = ‖p− q‖; furthermore, note that the metric
employed for Tτ,η,μ(Σ) is the same one used in transition system Tτ (Σ).

Step 2. Transition system Tτ,η,μ(Σ) is not countable, in general, because the set
Aμ(τ, q) of (4.5) (which is involved in the definition of sets of labels A and B) is not
so.5 However, if the reachable sets in (4.2) associated to Σ are bounded, we can
guarantee countability of Tτ,η,μ(Σ).

Proposition 4.4. Consider a forward complete control system Σ = (Rn, U × V,
U × V, f) and any τ ∈ R

+. Suppose that for any x ∈ R
n the reachable set6 R(τ, x)

is bounded. Then, for any η ∈ R
+ and μ ∈ R

+ the corresponding transition system
Tτ,η,μ(Σ) is countable.

Proof. Since for any η ∈ R
+ the set of states Q of Tτ,η,μ(Σ) is countable, we

only need to show that A and B are countable. Given any precision μ ∈ R
+, for

4These control and disturbance labels exist by the definition of the sets Aμ(τ, q) and Bμ(τ, q, a).
5Recall that the power set of a countable set is, in general, not countable (see, e.g., [Sto63]).
6Note that sets R(τ, x) are well defined because of the forward completeness assumption on the

control system.
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any q ∈ Q consider the set P (q) := {p ∈ [Rn]μ : ∃z ∈ R(τ, q) s.t. ‖p − z‖ ≤ μ/2}.
The set R(τ, q) is bounded and therefore the set P (q) is finite. Since for any q ∈ Q,
Aμ(τ, q) ⊆ 2P (q), Aμ(τ, q) is finite, and therefore Aμ(q) = ψτ,qμ (Aμ(τ, q)) is finite as well.
Moreover, since A is the union of finite sets Aμ(q) with q ranging in the countable
set Q = [Rn]η, the set A is countable (see, e.g., [Sto63]). With respect to the set B,
since for any state q ∈ Q and any a ∈ Aμ(q), Bμ(τ, q, a) ⊆ [Rn]μ, the set Bμ(τ, q, a) is
countable and then Bμ(q, a) = ϕτ,q,aμ (Bμ(τ, q, a)) is countable as well. Finally, since B
is the union of countable sets Bμ(q, a) with q ranging in the countable set Q = [Rn]η
and a ranging in the finite set Aμ(q), the set B is countable (see, e.g., [Sto63]).

A direct consequence of the above result is that if the state space of Σ is bounded,
which is the case in many realistic situations, the transition system Tτ,η,μ(Σ) of (4.8)
is finite. The following result gives a checkable condition that guarantees countability
of Tτ,η,μ(Σ).

Corollary 4.5. Consider a forward complete control system Σ = (Rn, U × V,
U × V, f) and suppose that U × V is compact. Then, for any τ ∈ R

+, η ∈ R
+, and

μ ∈ R
+ the corresponding transition system Tτ,η,μ(Σ) is countable.

Proof. By Proposition 5.1 of [LSW96], for any τ ∈ R
+ and x ∈ Qτ the reachable

set R(τ, x) is bounded. Hence, the result follows by applying Proposition 4.4.
Step 3. We can now give the following result, which relates δ-GAS to existence

of (not necessarily countable) symbolic models.
Theorem 4.6. Consider a control system Σ = (Rn, U × V,U × V , f) and any

desired precision ε ∈ R
+. If Σ is δ-GAS, then for any τ ∈ R

+, μ ∈ R
+, and η ∈ R

+

satisfying the condition

(4.9) β(ε, τ) + μ+ η/2 < ε,

the corresponding transition system Tτ,η,μ(Σ) is AεA bisimilar to Tτ (Σ).
Before giving the proof of this result, we point out that if Σ is δ-GAS, there always

exist parameters τ ∈ R
+, η ∈ R

+, and μ ∈ R
+ satisfying condition (4.9). In fact, if

Σ is δ-GAS, then there exists a sufficiently large τ ∈ R
+ so that β(ε, τ) < ε; then by

choosing sufficiently small values of μ and η, condition (4.9) is fulfilled.
Proof. Consider the relation R ⊆ Qτ × Q defined by (x, q) ∈ R if and only if

||x − q|| ≤ ε. By construction R−1(Q) = Qτ ; by geometrical considerations on the
infinity norm, Qτ ⊆

⋃
p∈[Rn]η

Bη/2(p), and therefore, since by (4.9) η/2 < ε, we have
that R(Qτ ) = Q. We now show that R is an AεA bisimulation relation between Tτ (Σ)
and Tτ,η,μ(Σ). Consider any (x, q) ∈ R. Condition (i) in Definition 3.5 is satisfied
by the definition of R and of the involved metric transition systems. Let us now
show that condition (ii) in Definition 3.5 also holds. Since δ-GAS implies forward
completeness, reachable sets defined in (4.3) are well defined, for any τ ∈ R

+, x ∈ Qτ ,
and a ∈ Aτ . Consider any a1 ∈ Aτ . Given any μ ∈ R

+, by Lemma 4.2, there exists
P ⊆ [Rn]μ such that

(4.10) dh(P,R(τ, q, a1)) ≤ μ/2.

By inequality (4.10), P ∈ Aμ(τ, q) and then let a2 be given by7 a2 = ψτ,qμ (P ) ∈ Aμ(q).
By (4.10), the definition of ψτ,qμ , and the properties of dh, we have

(4.11) dh(R(τ, q, a1),R(τ, q, a2)) ≤ dh(P,R(τ, q, a1)) + dh(P,R(τ, q, a2)) ≤ μ.

7Note that depending on the choice of function ψτ,q
μ , which is not unique, a2 can either coincide

or not with a1.
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Consider now any disturbance label8 b2 ∈ Bμ(q, a2) ⊂ Bτ and set z = x(τ, q, a2,b2) ∈
R(τ, q, a2). By inequality (4.11) and the definition of dh, there exists z1 ∈ R(τ, q, a1)
such that

(4.12) d(z1, z) = ‖z1 − z‖ ≤ μ.

The vector9 z1 can be either in R(τ, q, a1) or in R(τ, q, a1) \R(τ, q, a1); in both cases,
for any σ ∈ R

+ there exists z2 ∈ R(τ, q, a1) such that

(4.13) d(z1, z2) = ‖z1 − z2‖ ≤ σ.

(In particular, if z1 ∈ R(τ, q, a1), one can choose z1 = z2.) Choose b1 ∈ Bτ such
that z2 = x(τ, q, a1,b1). (Notice that since z2 ∈ R(τ, q, a1), such b1 ∈ Bτ does exist.)
Consider the transition x

a1,b1

τ
� y in Tτ (Σ). Since Qτ ⊆

⋃
q′∈[Rn]η

Bη/2(q′), there exists

p ∈ Q = [Rn]η such that

(4.14) d(z, p) = ‖z − p‖ ≤ η/2.

Thus q
a2,b2� p in Tτ,η,μ(Σ). Since Σ is δ-GAS, by (4.13), (4.12), and (4.14) the

following chain of inequalities holds:

‖y − p‖ = ‖y − z2 + z2 − z1 + z1 − z + z − p‖
≤ ‖y − z2‖+ ‖z2 − z1‖+ ‖z1 − z‖+ ‖z − p‖
≤ β(||x− q||, τ) + ‖z2 − z1‖+ ‖z1 − z‖+ ‖z − p‖ ≤ β(ε, τ) + σ + μ+ η/2.

By inequality (4.9), there exists a sufficiently small value of σ ∈ R
+ such that

β(ε, τ) + σ + μ+ η/2 ≤ ε, and hence (y, p) ∈ R and condition (ii) in Definition 3.5
holds. We now show that condition (iii) is also satisfied. Consider any a2 ∈ A;
since A ⊂ Aτ , we can choose a1 = a2 ∈ Aτ . Consider any b1 ∈ Bτ and set
z = x(τ, q, a1,b1). Since Qτ ⊆

⋃
q′∈[Rn]μ

Bμ/2(q′), there then exists z1 ∈ [Rn]μ such
that

(4.15) d(z, z1) = ‖z − z1‖ ≤ μ/2.

Furthermore z ∈ R(τ, q, a1) and hence, it is clear that z1 ∈ Bμ(τ, q, a1) by definition
of Bμ(τ, q, a1). Then let b2 be given by10 b2 = ϕτ,q,a1

μ (z1) = ϕτ,q,a2
μ (z1) ∈ Bμ(q, a2).

By definition of function ϕτ,q,a2
μ and by setting z2 = x(τ, q, a2,b2), it follows that

(4.16) d(z1, z2) = ‖z1 − z2‖ ≤ μ/2.

Since Qτ ⊆
⋃
q′∈[Rn]η

Bη/2(q′), there exists p ∈ Q = [Rn]η such that

(4.17) d(z2, p) = ‖z2 − p‖ ≤ η/2,

8Existence of such disturbance label is guaranteed by the nonemptyness of set Bμ(q, a2).
9The reachable set R(τ, q,a1) is, in general, not closed and therefore inequality (4.11) does not

guarantee the existence of z1 ∈ R(τ, q,a1), satisfying inequality (4.12). However, by definition of
dh, the vector z1 is guaranteed to exist in the topological closure of the reachable set R(τ, q,a1).

10Note that depending on the choice of function ϕτ,q,a1
μ , which is not unique, b2 can either

coincide or not with b1.
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and therefore q
a2,b2� p in Tτ,η,μ(Σ). Consider now the transition x

a1,b1

τ
� y in Tτ (Σ).

Since Σ is δ-GAS, by (4.15), (4.16), (4.17), and (4.9), the following chain of inequalities
holds:

‖y − p‖ = ‖y − z + z − z1 + z1 − z2 + z2 − p‖
≤ ‖y − z‖+ ‖z − z1‖+ ‖z1 − z2‖+ ‖z2 − p‖
≤ β(‖x− q‖, τ) + ‖z − z1‖+ ‖z1 − z2‖+ ‖z2 − p‖ ≤ β(ε, τ) + μ+ η/2 < ε.

Thus (y, p) ∈ R, which completes the proof.
Finally, by combining Corollary 4.5 and Theorem 4.6, the proof of Theorem 4.1

holds as a straightforward consequence.

5. Discussion. In this paper we showed existence of symbolic models that are
AεA bisimilar to δ-GAS nonlinear control systems with disturbances. Moreover, the
parameter ε describing the precision can be chosen as small as desired.

The results of this paper generalize the work in [PGT08] to control systems influ-
enced by disturbances (compare Theorem 4.6 with Theorem 4.1 of [PGT08]). While
Theorem 4.1 of [PGT08] states existence of symbolic models that are approximately
bisimilar (in the sense of Definition 3.3) to δ-GAS control systems, Theorem 4.6 shows
existence of symbolic models that are AεA bisimilar to δ-GAS control systems influ-
enced by disturbances. As pointed out in section 3.2, the results of [PGT08] cannot
directly be applied to the case of control systems with disturbances. Indeed as Ex-
ample 3.4 shows, the symbolic model in (7) of [PGT08] does not capture the different
role played by the control inputs and by the disturbance inputs. As a consequence,
control strategies synthesized on the symbolic model of [PGT08] cannot be transferred
to the original system. This paper also shares similar ideas with [PT07]. The work in
[PT07] proposes symbolic models for linear control systems with disturbances. The
approximation notion employed in [PT07] is AεA simulation (one-sided version of AεA
bisimulation). The results in this paper extend the ones in [PT07] by enlarging the
class of control systems from linear to nonlinear; enlarging the class of control inputs
from piecewise constant to measurable and locally essentially bounded; and generaliz-
ing results from simulation to bisimulation. Bisimulation theory for nonlinear control
systems in the presence of disturbances has also been considered in [vdS04]. While
the focus in [vdS04] was the reduction of continuous systems to continuous systems
with lower dimension in the state space, the focus of the present paper is the reduction
of continuous systems to symbolic models. This difference in purpose translates to a
different notion of bisimulation. The notion proposed in [vdS04] is exact,11 while the
notion in Definition 3.5 is approximate. Moreover, systems related by a bisimulation
relation according to [vdS04] have the same inputs, while in this paper they have
necessarily different inputs since one system is continuous and the other is countable
or finite. Working with different inputs forced us to introduce one additional level
of quantification on inputs leading to the notion in Definition 3.5, which has four
quantifiers while the notion of bisimulation in [vdS04] has two. This additional level
of quantification is also responsible for the more complex construction of finite models
with respect to previous work in [PGT08], where only two quantifiers were used since
disturbances were absent.

Future work will concentrate on constructive techniques to obtain the symbolic
models whose existence was shown in this paper. A first step in this direction can be

11We recall that an exact bisimulation relation is an ε–approximate bisimulation relation with
ε = 0.
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found in [PT08] where the construction of symbolic models for linear control systems
affected by disturbances is discussed.

Acknowledgment. The authors would like to thank Antoine Girard (Université
Joseph Fourier, France) for stimulating discussions on the topic of this paper.
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STATE-CONSTRAINED OPTIMAL CONTROL OF SEMILINEAR
ELLIPTIC EQUATIONS WITH NONLOCAL RADIATION

INTERFACE CONDITIONS∗
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Abstract. We consider a control- and state-constrained optimal control problem governed by
a semilinear elliptic equation with nonlocal interface conditions. These conditions occur during
the modeling of diffuse-gray conductive-radiative heat transfer. The nonlocal radiation interface
condition and the pointwise state constraints represent the particular features of this problem. To
deal with the state constraints, continuity of the state is shown, which allows us to derive first-order
necessary conditions. Afterwards, we establish second-order sufficient conditions that account for
strongly active sets and ensure local optimality in an L2-neighborhood.
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first-order necessary conditions, second-order sufficient conditions
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1. Introduction. In this paper, an optimal control problem is investigated that
arises from the sublimation growth of semiconductor single crystals such as silicon
carbide (SiC) or aluminum nitrite (AlN). To be more precise, the physical vapor
transport (PVT) method is considered, where polycrystalline powder is placed under
a low-pressure inert gas atmosphere at the bottom of a cavity inside a crucible. The
crucible is heated up to 2000 until 3000 K by induction. Due to the high temperatures
and the low pressure, the powder sublimates and crystallizes at a single-crystalline
seed located at the cooled top of the cavity, such that the desired single crystal grows
into the reaction chamber (see [13, 19] for more details). Here, we focus on the control
of the conductive-radiative heat transfer in the reaction chamber, which is denoted by
Ωg. More precisely, we aim at optimizing the temperature gradient in Ωg by directly
controlling the heat source u in Ωs := Ω\Ωg, where Ω denotes the domain of the
entire crucible including the gas phase. Thus, the objective functional, considered
here, reads as follows:

(P) Minimize J(u, y) :=
1
2

∫
Ωg

|∇y − z|2 dx+
β

2

∫
Ωs

u2 dx,

where y denotes the temperature, z is the desired temperature gradient, and β is a
given positive real number. Because of the high temperatures, it is essential to account
for radiation on the outer boundary Γ0 := ∂Ω and on the interface Γr := Ωs ∩ Ωg.
Thus, y is given by the solution of the stationary heat equation with radiation interface
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and boundary conditions on Γr and Γ0, respectively, as follows:

(SL)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−div(κs∇y) = u in Ωs,
−div(κg∇y) = 0 in Ωg,

κg

(
∂y

∂nr

)
g

− κs
(
∂y

∂nr

)
s

= qr on Γr,

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing
outward with respect to Ωs. Furthermore, σ represents the Boltzmann radiation
constant, ε is the emissivity, and κs, κg denote the thermal conductivities in Ωs, Ωg,
respectively. Moreover, qr denotes the additional radiative heat flux on Γr, which
is discussed in more detail in section 1.2. In addition to the stationary semilinear
heat equation, the optimization is subject to the following pointwise state and control
constraints:

(1.1)
ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs,
ya(x) ≤ y(x) ≤ yb(x) a.e. in Ωg,

y(x) ≤ ymax(x) a.e. in Ωs.

Here, ua and ub reflect the minimum and maximum heating power, respectively.
Furthermore, y|Ωs has to be bounded by ymax to avoid melting of the solid components
of the crucible in Ωs. Finally, the state constraints in Ωg are required to ensure
sublimation of the polycrystalline powder and crystallization at the seed, respectively.

The pointwise inequality constraints on the state and the nonlocal radiation on
Γr represent the crucial points of the problem. First of all, pointwise state constraints
are known to be theoretically and numerically difficult to handle since the associated
Lagrange multipliers are in general only regular Borel measures; see Casas [9, 10], Al-
ibert and Raymond [3], and Bergounioux and Kunisch [6]. Second, the nonlinearity in
the state equation in (P) is in general not monotone (see, for instance, [21]) such that
standard techniques cannot be applied. The analysis of the purely control-constrained
counterpart to (P) is already comparatively comprehensive. Based on the results of
Laitinen and Tiihonen [14] for the nonlinear state equation, first-order necessary con-
ditions for this problem are derived by Meyer, Philip, and Tröltzsch in [15]. Moreover,
in [18], second-order sufficient conditions are established, incorporating a generalized
two-norm discrepancy. However, these results cannot immediately be transferred to
problem (P) due to the presence of pointwise state constraints. Therefore, the inclu-
sion of state constraints represents the genuine contribution of this paper and requires
us to significantly extend the analysis of the aforementioned references. First, the con-
tinuity of the solution to (SL) is shown in section 2 by means of results on maximum
elliptic regularity by Gröger [12] and Elschner, Rehberg, and Schmidt [11]. Based on
this, a duality argument allows us to discuss the adjoint equation involving measures
as inhomogeneity (cf. section 4), which leads to the derivation of first-order condi-
tions in a standard way (see section 5). Finally, in section 6, second-order sufficient
conditions are established that account for strongly active sets and guarantee local
optimality with L2-quadratic growth in an L2-neighborhood; i.e., the two-norm dis-
crepancy can be avoided. The associated analysis follows the lines of a very recent
contribution by Casas, De Los Reyes, and Tröltzsch [7].
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1.1. General assumptions and notation. We start now by introducing the
general assumptions of the problem statement including the notation used throughout
this paper. If X is a linear normed function space, then we use the notation ‖ · ‖X
for a standard norm used in X . Moreover, we set X2 := X × X . The dual space
of X is denoted by X∗, and for the associated duality pairing, we write 〈 . , . 〉X∗,X .
If it is obvious in which spaces the respective duality pairing is considered, then the
subscript is occasionally neglected. Now, given another linear normed space Y , the
space of all bounded linear operators from X to Y is called B(X,Y ). For an arbitrary
A ∈ B(X,Y ), the associated adjoint operator is denoted by A∗ ∈ B(Y ∗, X∗), and
for its inverse, if it exists, we write A−∗ := (A∗)−1. If X is continuously embedded
in Y , we write X ↪→ Y . The trace operators on Γr and Γ0 are denoted by τr and
τ0, respectively. Throughout the paper, they are considered with different domains
and ranges. For simplicity, the associated operators are always called τr and τ0, and
we will mention their respective domains and ranges if it is important. Furthermore,
to improve readability, we sometimes neglect the trace operators in arguments of
boundary integrals. The function 1 ∈ L∞(Γ0) satisfies 1(x) = 1 a.e. on Γ0, while
U denotes the set of admissible controls with respect to the control constraints, i.e.,
U = {u ∈ L2(Ωs) | ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}. Further, a function u ∈ L2(Ωs)
is called feasible for (P) if it satisfies the inequality constraints in (1.1). Finally,
by c we denote a generic positive constant which can take different values on differ-
ent occasions. Now, concerning the data specified in (P), we impose the following
assumptions.

Assumption 1.1.

(A1) The domain Ω ⊂ R
N , N ∈ {2, 3}, is a bounded open domain with a Lipschitz

boundary Γ0. Moreover, Ωg ⊂ Ω is an open subset of Ω with a boundary
Γr ⊂ Ω. In two dimensions, Γr is assumed to be a closed Lipschitz surface
which is piecewise C1,δ, whereas it is of class C1 in the three-dimensional
case. The subdomain Ωs is defined by Ωs = Ω \Ωg. The distance of Γr to Γ0

is assumed to be positive.
(A2) The desired temperature gradient z is given in L2(Ωg)N , and β > 0 is a fixed

constant.
(A3) The fixed function κ ∈ L∞(Ω) in the semilinear equation (SL) is defined by

κ(x) =
{
κs(x) if x ∈ Ωs,
κg(x) if x ∈ Ωg,

where κs and κg represent the thermal conductivity of solid and gas, respec-
tively. In two dimensions, κs and κg satisfy κs ∈ L∞(Ωs) and κg ∈ L∞(Ωg),
while they are uniformly continuous in the case of N = 3. Moreover, κ sat-
isfies κ(x) ≥ κmin a.e. in Ω, with a fixed κmin ∈ R

+ \ {0}.
(A4) By ε ∈ L∞(Γ0 ∪ Γr) we denote the emissivity satisfying 0 < εmin ≤ ε(x) ≤

1 a.e. on Γr ∪ Γ0. The term σ represents the Boltzmann radiation and is
assumed to be a positive real number. The inhomogeneity on the boundary Γ0

is given by a fixed function y0 ∈ L∞(Γ0) satisfying y0(x) ≥ θ > 0 a.e. on Γ0.
(A5) The bounds in the state constraints are ymax ∈ C(Ωs) and ya, yb ∈ C(Ωg)

with yb(x) > ya(x) ≥ θ for all x ∈ Ωg, ymax(x) ≥ θ for all x ∈ Ωs, and
ymax(x) > ya(x) for all x ∈ Γr. For the control constraints, we assume
ua, ub ∈ L2(Ω) with 0 ≤ ua(x) < ub(x) a.e. in Ωs.

1.2. Some well-known results. In the following, we recall some significant
results regarding the nonlocal radiation on Γr as well as the solvability of the state
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equation. The results have been discussed in detail in [21, 14, 15]. We start with the
following definition.

Definition 1.1. The radiative heat flux qr on Γr is defined by

(1.2) qr = (I −K)(I − (1− ε)K))−1εσ|y3|y := Gσ|y3|y,

where the integral operator K is defined by

(Ky)(x) =
∫

Γr

ω(x, z)y(z) dsz,

with a symmetric kernel ω. In the case of a two-dimensional domain, the kernel
ω : Γr × Γr → R is formally given by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

2|z − x|3 ∀x, z ∈ Γr,

and in the case of a three-dimensional domain,

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

π|z − x|4 ∀x, z ∈ Γr.

Notice that Ξ : Γr × Γr → R denotes the visibility factor, which is defined by

Ξ(x, z) =
{

0 if xz ∩ Ωg �= ∅,
1 if xz ∩ Ωg = ∅,

where xz denotes the line between x and z. For the properties of ω and K we refer
the reader to Tiihonen [21]. The following lemma (see [14, Lemma 8] for the proof)
provides some significant properties of the operator G, which will be useful for our
analysis.

Lemma 1.1. The operator G := (I −K)(I − (1− ε)K)−1ε is linear and bounded
form Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞.

In the following, we briefly discuss the existence of solutions of (SL). To that
end, let us introduce the space

V := {v ∈ H1(Ω) | τrv ∈ L5(Γr), τ0v ∈ L5(Γ0)}.

Moreover, we define the operator associated with the left-hand side of (SL) that is
formally obtained by integration of (SL) by parts over the boundaries Γr and Γ0.

Definition 1.2. The operator A : V → V ∗ is given by

〈A(y), v〉 :=
∫

Ω

κ∇y · ∇v dx+
∫

Γr

(Gσ|y|3y)v ds+
∫

Γ0

εσ|y|3yv ds, y, v ∈ V,

with G : L5/4(Γr)→ L5/4(Γr).
Notice that, thanks to the definition of V , the operator A is well defined and

continuous. Furthermore, Es : L2(Ωs)→ V ∗ and E0 : L5/4(Γ0)→ V ∗ are defined by

〈Es u, v〉 :=
∫

Ωs

uv dx, v ∈ V, and 〈E0 z〉 :=
∫

Γ0

zv ds, v ∈ V.(1.3)

Clearly, Es and E0 are linear and bounded in their respective spaces.
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Definition 1.3. A function y ∈ V is said to be a (weak) solution of (SL) if y
satisfies the following operator equation:

(1.4) A(y) = Esu+ E0 εσy
4
0 in V ∗.

To show the existence of solutions according to this definition, the theory of
monotone operators is not applicable here, since the operator G is not positive, i.e.,
v(x) ≥ 0 a.e. on Γr does not in general imply (Gv)(x) ≥ 0 a.e. on Γr; see [14] for
details. However, the existence of weak solutions can be verified by Brezis’ theorem
for pseudomonotone operators; cf. [22]. In fact, Laitinen and Tiihonen showed in [14]
that A is pseudomonotone giving in turn the existence of weak solutions of (1.4). The
uniqueness then follows from a comparison principle (cf. [14]). Furthermore, Meyer,
Philip, and Tröltzsch [15] showed the boundedness of the solution. We summarize
these results in the following theorem.

Theorem 1.1. Let Assumption 1.1 be satisfied. Then for each u ∈ L2(Ωs), there
exists a unique solution y ∈ V to (SL) in the sense of Definition 1.3. Moreover, the
solution is bounded, i.e., y ∈ L∞(Ω), and satisfies

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c(Ω)(1 + ‖u‖L2(Ωs) + ‖y0‖4L16(Γ0)
)(1.5)

with some constant c(Ω) > 0.

2. Continuous solutions. Our goal in the upcoming sections consists of pro-
viding the first-order necessary optimality conditions for (P). To accomplish this task,
we will utilize the Karush–Kuhn–Tucker (KKT) theory (see section 5 below). Mainly,
we follow the lines of [10]. However, to apply this technique, one has to consider the
state constraints in a space such that the convex set, defined by these constraints, ad-
mits a nonempty interior. Here, we choose the space of continuous functions, denoted
by C(Ω). Therefore, it is at first necessary to show the continuity of the solutions to
(SL). The subsequent analysis follows a classical bootstrapping argument. Based on
Theorem 1.1, one shows that (SL) admits solutions in the space W 1,q(Ω) with q > N .
Afterwards the continuous embedding W 1,q(Ω) ↪→ C(Ω), q > N , implies the desired
continuity. We start with a lemma that represents the key point within the proof of
continuity.

Lemma 2.1. There is a positive real number q̂ with N < q̂ < 6 such that the
operator B(f) : W 1,q(Ω)→W 1,q′(Ω)∗, 1/q + 1/q′ = 1, defined by

〈B(f)y, v〉 :=
∫

Ω

κ∇y · ∇v dx+
∫

Γ0

fyv ds, y ∈W 1,q(Ω), v ∈W 1,q′(Ω),

is continuously invertible for all q ∈ [N, q̂] and all nonnegative functions f ∈ L∞(Γ0)
that are positive on a set of measure greater than zero.

Proof. In the two-dimensional case, N = 2, the assertion is an immediate conse-
quence of a result of Gröger [12, Theorem 1]. In three dimensions, N = 3, we apply a
result of Elschner, Rehberg, and Schmidt [11]. First, the Lax–Milgram lemma implies
that for every functional g ∈ H1(Ω)∗, there exists a unique solution y ∈ H1(Ω) of

(2.1)
∫

Ω

κ∇y · ∇v dx+
∫

Γ0

fyv ds = g(v) ∀v ∈ H1(Ω).

Let g ∈ W 1,q′(Ω)∗ be arbitrarily fixed. Since q ≥ 2, the dual space W 1,q′(Ω)∗ is
continuously embedded in H1(Ω)∗. Consequently, there exists a unique solution y ∈
H1(Ω) of (2.1) with g ∈ W 1,q′(Ω)∗ in the right-hand side of (2.1).
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Now, consider the following equation:∫
Ω

κ∇η · ∇v dx +
∫

Ω

ηv dx = g(v)−
∫

Γ0

fyv ds+
∫

Ω

yv dx ∀ v ∈ W 1,q′(Ω).(2.2)

Due to y ∈ H1(Ω) and N = 3, it holds that y ∈ L6(Ω) and τ0 y ∈ L4(Γ0). Hence,
since f ∈ L∞(Γ0), we have fy ∈ L4/3(Γ0)∗. For this reason, since q′ ∈ [6/5, 3/2] and
because of the continuity of the trace operator from W 1,6/5(Ω) to L4/3(Γ0) for N = 3
(see [1]), the right-hand side of (2.2) defines an element ξ ∈ W 1,q′(Ω)∗ with

〈ξ, v〉W 1,q′ (Ω)∗,W 1,q′ (Ω) := g(v)−
∫

Γ0

fyv ds+
∫

Ω

yv dx, v ∈W 1,q′(Ω).

Therefore, in view of our assumptions on Ω for N = 3 (cf. Assumption 1.1) and
Remark 3.18 in [11], there exists a real number q̂ > 3 (independent of f, g) such that
for all q ∈ [3, q̂], (2.2) admits a unique solution η ∈ W 1,q(Ω). Moreover, the solution
can be estimated by

‖η‖W 1,q(Ω) ≤ c‖ξ‖W 1,q′ (Ω)∗

≤ c
(
‖g‖W 1,q′ (Ω)∗ + (1 + ‖f‖L∞(Γ0))‖y‖H1(Ω)

)
≤ c ‖g‖W 1,q′ (Ω)∗ ,

(2.3)

with a constant c > 0 independent of g. Clearly, due to H1(Ω) ⊂ W 1,q′(Ω), η also
solves ∫

Ω

κ∇η · ∇v dx+
∫

Ω

(η − y)v dx = g(v)−
∫

Γ0

fyv ds ∀ v ∈ H1(Ω).

Subtracting (2.1) from the above equation and inserting v = y − η in the resulting
equation, we have

min{κmin, 1} ‖η − y‖2H1(Ω) ≤
∫

Ω

κ|∇(η − y)|2dx+
∫

Ω

(η − y)2dx = 0.(2.4)

Notice that we have used (A3) in Assumption 1.1 for the latter inequality. Obviously,
(2.4) implies that η(x) = y(x) a.e. in Ω and a.e. on Γr ∪ Γ0. Therefore, possibly after
a modification on a set of measure zero, we have y = η in W 1,q(Ω).

Thus, for q ∈ [3, q̂], the operator equation

B(f)y = g in W 1,q′(Ω)∗

admits a unique solution in W 1,q(Ω) for every given g ∈ W 1,q′(Ω)∗. Moreover, (2.3)
yields the continuity of B(f)−1 : W 1,q′(Ω)∗ →W 1,q(Ω).

For the rest of this paper, let us fix an arbitrary q ∈ (N, q̂). Next, let us redefine
the notion of weak solutions of (SL).

Definition 2.1. The operator Aq : W 1,q(Ω)→W 1,q′(Ω)∗ is defined by

〈Aq(y), v〉 :=
∫

Ω

κ∇y · ∇v dx+
∫

Γr

(Gσ|y|3y)v ds+
∫

Γ0

εσ|y|3yv ds

with y ∈ W 1,q(Ω), v ∈ W 1,q′(Ω), and G : L∞(Γr)→ L∞(Γr). Moreover, similarly to
(1.3), the operators Eq,s : L2(Ωs) → W 1,q′(Ω)∗ and Eq,0 : L∞(Γ0) → W 1,q′(Ω)∗ are
given by

〈Eq,s u, v〉 :=
∫

Ωs

uv dx, v ∈W 1,q′(Ω), and 〈Eq,0 z, v〉 :=
∫

Γ0

zv ds, v ∈W 1,q′(Ω).
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Then, analogously to Definition 1.3, a function y ∈ W 1,q(Ω) is said to be a (weak)
solution of (SL) if it fulfills the operator equation

Aq(y) = Eq,s u+ Eq,0 εσy
4
0 in W 1,q′(Ω)∗.(2.5)

Notice that Aq is well defined since y ∈ W 1,q(Ω), q > N , implies τry ∈ L∞(Γr)
and τ0y ∈ L∞(Γ0). Moreover, Eq,s : L2(Ωs) → W 1,q′(Ω)∗ is continuous because of
W 1,q′(Ω) ↪→ Ls

′
(Ω) with s′ = N q′

N−q′ = N q
(N−1)q−q ≥ 2 for q ≤ 6 (cf., for instance, [1]).

Theorem 2.1. For every u ∈ L2(Ωs), there exists a unique weak solution y ∈
W 1,q(Ω) of (SL) in the sense of Definition 2.1. Moreover, the following estimate
holds true:

‖y‖W 1,q(Ω) ≤ c
(
1 + ‖u‖L2(Ωs) + ‖y0‖4L∞(Γ0) + ‖u‖4L2(Ωs) + ‖y0‖16L∞(Γ0)

)
(2.6)

with a constant c > 0 independent of u, y0.
Proof. As stated above, we apply Lemma 2.1 to the state equation (SL). First,

we observe that the solution of (1.4) for an arbitrary u ∈ L2(Ωs), again denoted by
y, solves∫

Ω

κ∇y · ∇v dx+
∫

Γ0

yv ds =
∫

Ωs

uv dx−
∫

Γr

αG(y)v ds

+
∫

Γ0

(εσy4
0 + α0(y))v ds ∀ v ∈ V

(2.7)

with α0(y) := y − εσ|y|3y and αG(y) := Gσ|y|3y. Due to Theorem 1.1, we have
α0(y) ∈ L∞(Γ0) and αG(y) ∈ L∞(Γr). Now, let us consider the following equality:

〈B(1)η, v〉 =
∫

Ωs

uv dx−
∫

Γr

αG(y)v ds+
∫

Γ0

(εσy4
0 + α0(y))v ds ∀ v ∈W 1,q′(Ω).

(2.8)

Lemma 2.1 implies that B(1)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)). Moreover, the right-hand
side in (2.8), denoted by ωy, defines a functional in W 1,q′(Ω)∗, which is demonstrated
in the following. As mentioned above, embedding theorems imply W 1,q′(Ω) ↪→ L2(Ω)
if q ≤ 6. Moreover, the trace operators τr and τ0 are continuous from W 1,q′(Ω) to
Lr

′
(Γr) and Lr

′
(Γ0), respectively, with r′ = (N−1)q′

N−q′ = (N−1)q
(N−1)q−N > 1 (see again [1]).

Hence, Hölder’s inequality implies

‖ωy‖W 1,q′ (Ω)∗ = sup
‖v‖

W1,q′ =1

∣∣∣∣
∫

Ωs

uv dx−
∫

Γr

αG(y)v ds+
∫

Γ0

(εσy4
0 + α0(y))v dx

∣∣∣∣
≤ sup

‖v‖
W1,q′ =1

(
‖u‖L2(Ωs)‖v‖L2(Ω) + ‖αG(y)‖L∞(Γr)‖v‖L1(Γr)

+
(
‖εσy4

0‖L∞(Γ0) + ‖α0(y)‖L∞(Γ0)

)
‖v‖L1(Γ0)

)
≤ c

(
‖u‖L2(Ωs) + ‖G‖B(L∞(Γr)) ‖y‖4L∞(Γr)

+ ‖y0‖4L∞(Γ0) + ‖y‖L∞(Γ0) + ‖y‖4L∞(Γ0)

)
,

(2.9)

with a constant c > 0 independent of u, y0, and y. Together with (1.5), the latter
inequality ensures ‖ωy‖W 1,q(Ω)∗ < ∞. Therefore, (2.8) admits a unique solution
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η ∈ W 1,q(Ω), satisfying

‖η‖W 1,q(Ω) ≤ ‖B(1)−1‖B(W 1,q′ (Ω)∗,W 1,q(Ω)) ‖ωy‖W 1,q′ (Ω)∗ .(2.10)

An argument analogous to the proof of Lemma 2.1 implies that

η = y in W 1,q(Ω).

For this reason, y ∈W 1,q(Ω) is the unique solution of

(2.11) B(1)y = ωy in W 1,q′(Ω)∗.

Thanks to the definitions of B(1), α0(y), and αG(y), (2.11) is equivalent to∫
Ω

κ∇y · ∇v dx+
∫

Γr

(Gσ|y|3y)v ds+
∫

Γ0

εσ|y|3yv ds

=
∫

Ωs

uv dx+
∫

Γ0

εσy4
0v ds ∀ v ∈W 1,q′(Ω).

Hence, for every u ∈ L2(Ωs), (2.5) admits a unique solution y ∈ W 1,q(Ω). Finally,
(2.6) follows from (2.10) together with (2.9) and (1.5).

Corollary 2.1. Thanks to W 1,q(Ω) ↪→ C(Ω), the solution of (SL) is continuous.
Remark 2.1. Note that additional mapping properties of G are needed to show

continuity of the solution with a similar bootstrapping technique and an increased
differentiability index, e.g., H2(Ω) ↪→ C(Ω). Then, the right-hand side on the interface
boundary in (2.8) must be an element of H1/2(Γr), and therefore one would need
G : H1/2(Γr)→ H1/2(Γr) which is in general not evident. It might be possible to use
results of Agmon, Douglas, and Nirenberg [2], together with density arguments, and
a similar bootstrapping technique for the nonlocal radiation, as carried out above, to
prove Lemma 2.1. However, it is doubtful if the results can be improved in this way
(cf. the counterexamples in [11, section 4] and [20]).

Based on Theorem 2.1, we define the control-to-state operator G : L2(Ωs) →
W 1,q(Ω) associated with (P), i.e., the solution operator for (SL), that assigns to each
u ∈ L2(Ωs) the weak solution y ∈ W 1,q(Ω). With this setting at hand, the optimal
control problem can equivalently be stated as follows:

(P)

⎧⎪⎪⎨
⎪⎪⎩

min
u∈U

f(u) := J(u,G(u))

subject to ya(x) ≤ G(u)(x) ≤ yb(x) ∀x ∈ Ωg,

G(u)(x) ≤ ymax(x) ∀x ∈ Ωs,

Notice that the reduced objective functional f(u) and the state constraints are well
defined since G(u) ∈W 1,q(Ω) ⊂ H1(Ω) ∩ C(Ω).

3. Differentiability of the control-to-state operator. Next, let us turn to
the linearized version of (SL). First, recall a result of Meyer, Philip, and Tröltzsch
[15], that is, the following maximum principle.

Lemma 3.1. Suppose that u ∈ L2(Ωs) satisfies u(x) ≥ 0 a.e. in Ωs, while y0 ∈
L∞(Γ0) fulfills y0(x) ≥ θ > 0 a.e. on Γ0 according to Assumption 1.1. Then, the weak
solution y of (SL) satisfies y(x) ≥ θ > 0 a.e. in Ω and a.e. on Γr and Γ0.

Now, let ū ∈ L2(Ωs) with associated state ȳ ∈ W 1,q(Ω). Moreover, we assume
for the rest of this section that ū(x) ≥ 0 a.e. in Ωs such that Lemma 3.1 implies
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ȳ(x) > 0 a.e. on Γr and Γ0. Next, we turn to the derivative of the operator Aq,
as given in Definition 2.1, at the point ȳ. We already mentioned that τr and τ0
are continuous from W 1,q(Ω) to L∞(Γr) and L∞(Γ0), respectively. Furthermore, the
Nemyzki operator Φ(y) := |y|3y is continuously Fréchet differentiable from L∞(Γr ∪
Γ0) to L∞(Γr ∪ Γ0) (cf. [5]). Since all other parts of Aq are linear and continuous
in their respective spaces, in particular G : L∞(Γr)→ L∞(Γr), Aq is clearly Fréchet
differentiable from W 1,q(Ω) to W 1,q′(Ω)∗, and its derivative at ȳ in an arbitrary
direction y ∈W 1,q(Ω) is given by

〈A′
q(ȳ)y, v〉 =

∫
Ω

κ∇y · ∇v dx+ 4
∫

Γr

(Gσ|ȳ|3y)v ds

+ 4
∫

Γ0

εσ|ȳ|3yv ds, v ∈W 1,q′(Ω).
(3.1)

By the same arguments, Aq is also twice continuously Fréchet differentiable, and the
second derivative at ȳ in arbitrary directions y1, y2 ∈W 1,q(Ω) is given by

〈A′′
q (ȳ)[y1, y2], v〉 = 12

∫
Γr

(Gσ|ȳ|ȳ y1y2)v ds+ 12
∫

Γ0

εσ|ȳ|ȳ y1y2 v ds, v ∈W 1,q′(Ω).

(3.2)

Notice that A′′
q (ȳ) is clearly continuous from W 1,q(Ω)×W 1,q(Ω) to W 1,q′(Ω)∗. Now,

consider the operator equation

A′
q(ȳ)y = w in W 1,q′(Ω)∗(3.3)

with a given w ∈W 1,q′(Ω)∗. Our goal is to show the existence of a unique solution to
(3.3). In [17], an analogous equation in H1(Ω)∗ is investigated and is illustrated by
means of a numerical example in which the Lax–Milgram lemma cannot be applied
to derive existence of solutions because of the nonpositivity of G (cf. [17, section
4]). Instead of that, the Fredholm alternative is employed to prove existence and
uniqueness (see also [18] for details). Here, we argue similarly, which is demonstrated
in the following. First, we introduce a linear operator F (ȳ) : L∞(Γr) → W 1,q′(Ω)∗,
defined by

(3.4) 〈F (ȳ)y, v〉 := 4
∫

Γr

(Gσ|ȳ|3y)v ds, v ∈ W 1,q′(Ω).

As already stated in section 2, the trace operator is continuous from W 1,q′(Ω) to
Lr

′
(Γr), r′ > 1. Hence, thanks to ȳ ∈ L∞(Γr), F (ȳ) is linear and continuous. Then,

together with the Definition of B in Lemma 2.1, (3.3) is equivalent to(
B(ᾱ0) + F (ȳ)τr

)
y = w,(3.5)

where ᾱ0 is defined by ᾱ0 := 4εσ|ȳ|3 such that ᾱ0 ∈ L∞(Γ0). Moreover, here and in
the following, τr is considered as an operator from W 1,q(Ω) to L∞(Γr). Now, since
ȳ(x) ≥ θ > 0 a.e. on Γr, Lemma 2.1 is applicable such that

(3.6) y = B(ᾱ0)−1(w − F (ȳ)τry) = B(ᾱ0)−1w −B(ᾱ0)−1F (ȳ)τry.

Applying τr to (3.6), we infer further

(3.7)
(
I + τrB(ᾱ0)−1F (ȳ)

)
τry = τrB(ᾱ0)−1w.
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Let us now define a linear and continuous operator F(ȳ) : L∞(Γr)→ L∞(Γr) by

(3.8) F(ȳ) := τrB(ᾱ0)−1F (ȳ),

and hence (3.7) is equivalent to

(3.9) (I + F(ȳ))τry = τrB(ᾱ0)−1w in L∞(Γr).

We point out that, due to q > N , the trace operator τr is compact from W 1,q(Ω) to
L∞(Γr) (see [1]). Hence, F(ȳ) is compact as well.

Assumption 3.1. The operator F(ȳ) : L∞(Γr) → L∞(Γr) does not admit the
eigenvalue λ = −1.

By virtue of Fredholm’s theorem, Assumption 3.1 on the eigenvalue of F(ȳ) im-
mediately implies the existence and uniqueness of a solution y ∈ W 1,q(Ω) of the
linearized equation (3.3) (see Theorem 3.1 below). Such a restriction has been con-
sidered in [15] which turns out to be particularly essential in order to establish the
first- and second-order optimality conditions for (P). Therefore, we shall address a
sufficient condition guaranteeing the case where −1 is not an eigenvalue of F(ȳ). Re-
call that Friedrich-type and trace inequalities imply the existence of positive constants
CF (Ω), Cτ (Ω) independent of y ∈ H1(Ω) such that

(3.10)
‖y‖2H1(Ω) ≤ CF (Ω)(‖∇y‖2L2(Ω) + ‖y‖2L2(Γ0)

) ∀y ∈ H1(Ω),

‖y‖2L2(Γr) ≤ Cτ (Ω)‖y‖2H1(Ω) ∀y ∈ H1(Ω).

In the upcoming proposition, we demonstrate that Assumption 3.1 is true in the case
where the temperature difference on the interface surface Γr is small enough.

Proposition 3.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 hold a.e. in Ωs, and denote
the associated state by ȳ = G(ū). Notice that Lemma 3.1 implies ȳ ≥ θ > 0. Fur-
ther, we define ȳmax,r := maxx∈Γr{ȳ(x)}, ȳmin,r := minx∈Γr{ȳ(x)} and ȳmin,0 :=
minx∈Γ0{ȳ(x)}. Under the assumption that

(3.11) ȳ3
max,r − ȳ3

min,r <
1

Cτ (Ω)CF (Ω)
min

{
1
4σ
κmin, εminȳ

3
min,0

}
,

the operator F(ȳ) : L∞(Γr)→ L∞(Γr) does not admit the eigenvalue λ = −1.
Proof. Let z ∈ L∞(Γr) be a solution of (I + F(ȳ))z = 0. Then, invoking the

definition of F(ȳ) (cf. (3.8)), the solution z satisfies

(3.12) z = −τrB(α0)−1F (ȳ)z.

Now define yz ∈ W 1,q(Ω) by yz := −B(α0)−1F (ȳ)z such that (3.12) implies z = τryz.
Hence, by construction, yz solves

(3.13) yz = −B(α0)−1F (ȳ)τryz.

Now, we demonstrate that yz = 0, which immediately verifies the assertion. Equation
(3.13) can also be written as (B(α0) + F (ȳ)τr)yz = 0 which is, as noticed earlier in
(3.5), equivalent to

A′
q(ȳ)yz = 0 in W 1,q′(Ω)∗.

In view of (3.1), we may rewrite the above operator equation as
(3.14)∫

Ω

κ∇yz · ∇v dx + 4
∫

Γr

(Gσ|ȳ|3yz)v ds+ 4
∫

Γ0

εσ|ȳ|3yzv ds = 0 ∀v ∈ W 1,q′(Ω).
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Setting v = yz in (3.14) leads to

(3.15)
∫

Ω

κ∇yz · ∇yz dx+ 4
∫

Γr

G(σ|ȳ|3yz)yz ds+ 4
∫

Γ0

εσ|ȳ|3y2
z ds = 0.

According to [21, Lemma 5], the operator G can be written as G = I − H , where
H ∈ B(Lp(Γr)) satisfies ‖H‖Lp(Γr) ≤ 1 for all 1 ≤ p ≤ ∞. By this decomposition and
Lemma 3.1, the integral over Γr in (3.15) can be estimated as follows:

4
∫

Γr

G(σ|ȳ|3yz)yz ds = 4
∫

Γr

(
σ|ȳ|3y2

z −H(σ|ȳ|3yz)yz
)
ds

≥ 4σ(ȳ3
min,r − ȳ3

max,r)‖yz‖2L2(Γr).

Due to (A3) and (A4), the above inequality and (3.15) imply
(3.16)

0 ≥ κmin‖∇yz‖2L2(Ω) + 4εminσȳ
3
min,0‖y‖2L2(Γ0)

+ 4σ(ȳ3
min,r − ȳ3

max,r)‖yz‖2L2(Γr)

≥
min{κmin, 4εminσȳ

3
min,0}

CF (Ω)
‖y‖2H1(Ω) + Cτ (Ω) 4σ(ȳ3

min,r − ȳ3
max,r)‖yz‖2H1(Ω)

=

(
min{κmin, 4εminσȳ

3
min,0}

CF (Ω)
− Cτ (Ω) 4σ(ȳ3

max,r − ȳ3
min,r)

)
‖yz‖2H1(Ω),

where (3.10) was taken into account. Therefore, under the assumption (3.11), we
come to the conclusion that ‖yz‖H1(Ω) = 0, which completes the proof.

Remark 3.1. It seems to be difficult to verify condition (3.11) in practice since
it contains the unknown solution ȳ. However, if ȳ is a locally optimal solution of
(P), then (3.11) might hold since, in the context of crystal growth, small temperature
gradients in the gas phase are desirable to improve the quality of the grown crystals
(see [16] and the references therein). Thus the temperature differences on Γr are
comparatively small in practice. Apart from this point of view, additional regularity
assumptions such as Assumption 3.1 are typical for the Fréchet differentiability of
solution operators associated with semilinear PDEs. Moreover, F(ȳ) is a compact
operator which is well known to possess only countably many eigenvalues so that
Assumption 3.11 might be fulfilled in many cases.

With Assumption 3.1 at hand, we address the existence and uniqueness of the
solution to (3.3) and the differentiability of the associated control-to-state operator.
As pointed out previously, the assertion is an immediate result of Fredholm’s theorem.

Theorem 3.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs, and denote the associ-
ated state by ȳ = G(ū). Moreover, suppose that Assumption 3.1 holds true. Then, for
every w ∈W 1,q′(Ω)∗, there exists a unique solution y ∈W 1,q(Ω) to (3.3) that satisfies
the estimate

‖y‖W 1,q(Ω) ≤ c ‖w‖W 1,q′ (Ω)∗(3.17)

with a constant c > 0 independent of w. Hence, A′
q(ȳ)

−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω))
holds true.

Proof. Thanks to the compactness of F(ȳ), the theory of Fredholm operators
implies that either λ = −1 is one of countable many eigenvalues of F(ȳ), or I +
F(ȳ) is continuously invertible. Hence, Assumption 3.1 ensures that (I + F(ȳ))−1 ∈
B(L∞(Γr)) such that

τry = (I + F(ȳ))−1τrB(ᾱ0)−1w.
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Inserting this in (3.6), we have

(3.18) y = B(ᾱ0)−1(I − F (ȳ)(I + F(ȳ))−1τrB(ᾱ0)−1)w.

Since Assumption 3.1 ensures that

‖(I + F(ȳ))−1‖B(L∞(Γr)) <∞,

(3.18) immediately implies (3.17).
Theorem 3.2. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs. Furthermore, suppose

that Assumption 3.1 is fulfilled. Then, there exists an open neighborhood U(ū) of ū
in L2(Ωs) such that G : L2(Ωs) → W 1,q(Ω) is on U(ū) twice continuously Fréchet
differentiable. Moreover, the first derivative of G at ū in an arbitrary direction u ∈
L2(Ωs) is given by

G′(ū)u = A′
q(ȳ)

−1Eq,s u(3.19)

with ȳ = G(ū). The second derivative of G at ū in arbitrary directions u1, u2 ∈ L2(Ωs)
is given by

G′′(ū)[u1, u2] = A′
q(ȳ)

−1(−A′′
q (ỹ)[y1, y2]),(3.20)

where A′′
q (ȳ) is defined as in (3.2) and yi = G′(ū)ui, i = 1, 2.

Proof. The proof follows standard arguments. First of all, let us introduce the
operator T : W 1,q(Ω)× L2(Ωs)→W 1,q′(Ω)∗, given by

T (y, u) := Aq(y)− Eq,s u− Eq,0 εσy4
0 .(3.21)

Further, we set ȳ = G(u) and hence, by the definition of the solution operator G,
ȳ ∈W 1,q(Ω) is the unique solution of

Aq(ȳ) = Eq,s ū+ Eq,0 εσy
4
0 in W 1,q′(Ω)∗.

Thus, it holds that T (ȳ, ū) = 0. Moreover, since Aq : W 1,q(Ω) → W 1,q′(Ω) is twice
continuously Fréchet differentiable, T : W 1,q(Ω)×L2(Ωs)→W 1,q′(Ω)∗ is twice contin-
uously Fréchet differentiable. By (3.21), ∂yT (ȳ, ū) : W 1,q(Ω)→W 1,q′(Ω)∗ is given by

∂yT (ȳ, ū) = A′(ȳ).

Therefore, Theorem 3.1 implies that ∂yT (ȳ, ū)−1 ∈ B(W 1,q′(Ω)∗,W 1,q(Ω)). Thus,
taking account of the implicit function theorem, we see there exists an open neigh-
borhood U(ū) of ū in L2(Ωs) such that the control-to-state operator G : L2(Ωs) →
W 1,q(Ω) is on U(ū) twice continuously Fréchet differentiable. The first derivative of
G at ū in an arbitrarily direction u ∈ L2(Ωs) is given by

G′(ū)u = −∂yT (ȳ, ū)−1∂uT (ȳ, ū)u = A′
q(ȳ)

−1Eq,s u.(3.22)

Moreover, the second derivative of G at ū in arbitrary directions u1, u2 ∈ L2(Ωs) is
given by

G′′(ū)[u1, u2] = −∂yT (ȳ, ū)−1∂2
yyT (ȳ, ū)[y1, y2] = A′

q(ȳ)
−1(−A′′

q (ȳ)[y1, y2]),
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where yi = G′(ū)ui, i = 1, 2. Notice that ∂2
yuT = ∂2

uuT = 0 and ∂2
uyT = 0 were used

for the computation of G′′.
Remark 3.2. Notice that the additional assumption ū(x) ≥ 0 a.e. in Ωs is auto-

matically fulfilled for all u ∈ U , since ua(x) ≥ 0 a.e. in Ωs.
In view of the definition of A′

q(ȳ) in (3.1) and formal integration by parts, y :=
G′(ū)u and η := G′′(ū)[u1, u2], as given in (3.19) and (3.20), can be seen as solutions
of linear PDEs. First, the equation A′

q(ȳ)y = Eq,su, which corresponds to (3.19), can
be considered as the variational formulation of the following linear PDE:

(3.23)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div(κs∇y) = u in Ωs,
−div(κg∇y) = 0 in Ωg,

κg (∂nry)g − κs (∂nry)s − 4Gσ|ȳ|3y = 0 on Γr,

κs∂n0y + 4 εσ|ȳ|3y = 0 on Γ0.

Similarly, A′
q(ȳ)η = −A′′

q (ȳ)[y1, y2] is interpreted as a variational formulation of

(3.24)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−div(κs∇y) = 0 in Ωs,
−div(κg∇y) = 0 in Ωg,

κg (∂nry)g − κs (∂nry)s − 4Gσ|ȳ|3y = −12Gσ|ȳ|ȳ y1y2 on Γr,

κs∂n0y + 4 εσ|ȳ|3y = −12 εσ|ȳ|ȳ y1y2 on Γ0.

Definition 3.1. Let ū ∈ L2(Ωs), ū(x) ≥ 0 a.e. in Ωs, and ȳ = G(ū) be given.
Then, a function y ∈ W 1,q(Ω) is said to be a (weak) solution of (3.23) for u ∈ L2(Ωs)
if it satisfies the following operator equation:

A′
q(ȳ)y = Eq,s u in W 1,q′(Ω)∗,

where A′
q(ȳ) is as defined in (3.1). Moreover, η ∈ W 1,q(Ω) is the (weak) solution of

(3.24) for given y1, y2 ∈W 1,q(Ω) if it fulfills

A′
q(ȳ)η = −A′′

q (ȳ)[y1, y2] in W 1,q′(Ω)∗.

Corollary 3.1. Suppose that ū ∈ L2(Ωs) is given with ū(x) ≥ 0 a.e. in Ωs, and
assume that Assumption 3.1 is fulfilled. Then the first and second derivatives of G at
ū in direction u ∈ L2(Ωs) and directions u1, u2 ∈ L2(Ωs), respectively, are given by
the solutions of (3.23) and (3.24) in the sense of Definition 3.1.

4. Adjoint equation involving measures. In this section, we discuss the
adjoint equation to (3.3), given by

A′
q(ȳ)

∗p = g in W 1,q(Ω)∗,(4.1)

where A′
q(ȳ)

∗ : W 1,q′(Ω) → W 1,q(Ω)∗ denotes the adjoint of A′
q(ȳ) and g is a given

element of W 1,q(Ω)∗. We already know from Theorem 3.1 that, under Assumption
3.1, A′

q(ȳ) is an isomorphism from W 1,q(Ω) to W 1,q′(Ω)∗. Thus, the adjoint operator
A′
q(ȳ)∗ : W 1,q′(Ω) → W 1,q(Ω)∗ is in turn continuously invertible, and consequently,

(4.1) admits a unique solution p ∈W 1,q′(Ω), q′ = q
q−1 <

N
N−1 , due to q > N .

Lemma 4.1. Let ū ∈ L2(Ωs) with associated state ȳ = G(ū) satisfy ū(x) ≥ 0
a.e. in Ωs. Furthermore, suppose that Assumption 3.1 is satisfied. Then, A′

q(ȳ)−∗ ∈
B(W 1,q(Ω)∗,W 1,q′(Ω)) holds true.
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The concrete form of A′
q(ȳ)

∗ follows from

〈A′
q(ȳ)

∗p, v〉(W 1,q)∗,W 1,q = 〈p,A′
q(ȳ)v〉W 1,q′ ,(W 1,q′ )∗ = 〈A′

q(ȳ)v, p〉(W 1,q′ )∗,W 1,q′

=
∫

Ω

κ∇p · ∇v dx+ 4
∫

Γr

(Gσ|ȳ|3v)p ds+ 4
∫

Γ0

εσ|ȳ|3pv ds, v ∈W 1,q(Ω).

As demonstrated in the following, we are allowed to insert regular Borel measures as
inhomogeneity in (4.1). To this end, define by M(Ω) the space of all regular Borel
measures on the compact set Ω. By the Riesz–Radon theorem (cf. [4]), it is well known
that the dual space C(Ω)∗ can be isometrically identified with M(Ω) with respect to
the duality pairing

〈μ, ϕ〉C(Ω)∗,C(Ω) :=
∫

Ω

ϕdμ, φ ∈ C(Ω), μ ∈ M(Ω).

According to this, we associate with every μ ∈ M(Ω) an element ofW 1,q(Ω)∗, denoted
by μ̃, by setting

〈μ̃ , v〉W 1,q(Ω)∗,W 1,q(Ω) =
∫

Ω

v dμ, v ∈W 1,q(Ω).(4.2)

Notice that the right-hand side in (4.2) clearly defines an element of W 1,q(Ω)∗ since
W 1,q(Ω) ↪→ C(Ω). Hence, for a given μ ∈ M(Ω), the operator equation

A′
q(ȳ)

∗p = μ̃ in W 1,q(Ω)∗(4.3)

is equivalent to

∫
Ω

κ∇p · ∇v dx+ 4
∫

Γr

(Gσ|ȳ|3v)p ds+ 4
∫

Γ0

εσ|ȳ|3pv ds =
∫

Ω

v dμ ∀ v ∈W 1,q(Ω).

(4.4)

As mentioned in section 2, the trace operator is continuous from W 1,q′(Ω) to Lr
′
(Γr),

r′ = (N−1)q
(N−1)q−N > 1. Moreover, v ∈ W 1,q(Ω) clearly implies v ∈ Lr(Γr) due to the

continuous embedding W 1,q(Ω) ↪→ C(Ω). Hence, if we consider G as an operator from
Lr(Γr) to Lr(Γr), we obtain∫

Γr

(Gσ|ȳ|3v)p ds =
∫

Γr

σ|ȳ|3(G∗p)v ds,

where G∗ : Lr
′
(Γr)→ Lr

′
(Γr) is the adjoint ofG, i.e., G∗ = ε(I−(1−ε)K∗)−1(I−K∗)

(cf. Definition 1.1). Notice in this context that K is formally self-adjoint due to the
symmetry of its kernel. In view of this and formal integration by parts, (4.3) and
(4.4), respectively, can be considered as a variational formulation of the following
linear PDE with measure data on the right-hand side:

(4.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−div(κs∇p) = μ|Ωs
in Ωs,

−div(κg∇p) = μ|Ωg
in Ωg,

κg

(
∂p

∂nr

)
g

− κs
(
∂p

∂nr

)
s

− 4 σ|ȳ|3G∗p = μ|Γr
on Γr,

κs∂n0p+ 4 εσ|ȳ|3p = μ|Γ0 on Γ0,
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where μ|Ωg
, μ|Ωs

, μ|Γr
, and μ|Γ0 denote the restrictions of μ on Ωg, Ωs, Γr, and Γ0,

respectively. In other words, μ ∈M(Ω) is decomposed into μ = μ|Ωg
+ μ|Ωs

+ μ|Γr
+

μ|Γ0 , where μ|Ωg
, μ|Ωs

, μ|Γr
, and μ|Γ0 are Borel measures concentrated on Ωg, Ωs, Γr,

and Γ0.
Definition 4.1. Let ȳ ∈ W 1,q(Ω) be given. Then, a function p ∈ W 1,q′(Ω),

q′ < N
N−1 , is said to be a (weak) solution of (4.5) if it satisfies the operator equation

(4.3), which is equivalent to the weak formulation (4.4).
Clearly, Lemma 4.1 implies that there is a solution of (4.5) in the sense of Def-

inition 4.1. Furthermore, since the embedding W 1,q(Ω) ↪→ C(Ω) is continuous and
dense, M(Ω) is continuously embedded in W 1,q(Ω)∗, and hence

‖μ̃‖W 1,q(Ω)∗ ≤ c ‖μ‖M(Ω).

Consequently one obtains the following result.
Theorem 4.1. Let ū ∈ L2(Ωs) with ū(x) ≥ 0 a.e. in Ωs, and let the associated

state be denoted by ȳ = G(ū) ∈ W 1,q(Ω). Furthermore, suppose that Assumption 3.1
is satisfied. Then, Aq(ȳ)−∗ ∈ B(W 1,q(Ω)∗,W 1,q′(Ω)), and consequently, for every
μ ∈ M(Ω), there exists a unique solution p ∈ W 1,q′(Ω) of (4.5) in the sense of
Definition 4.1 that satisfies

‖p‖W 1,q′ (Ω) ≤ c ‖μ‖M(Ω)

with a constant c > 0 independent of μ.

5. First-order necessary optimality conditions for (P). Before establish-
ing KKT-type optimal conditions for (P), we briefly address the existence of an opti-
mal solution. Clearly, under the assumption that there exists a feasible control ū of
(P), standard arguments imply the existence of at least one (global) optimum (cf. also
[15, Theorem 5.2]). Due to the nonlinearities in the state equation, uniqueness of the
optimal solution can certainly not be expected. Let us now introduce the notion of
local optima.

Definition 5.1. A feasible control ū of (P) is called a local solution for (P)
if there exists a positive real number ε such that f(ū) ≤ f(u) holds for all feasible
u ∈ L2(Ωs) with ‖u− ū‖L2(Ωs) ≤ ε.

Throughout this section, let ū ∈ U be a local solution of (P), and assume that
Assumption 3.1 is fulfilled at ū. Notice that everything that follows also holds for
a global optimum of (P). To apply the KKT theory, the existence of an interior
(Slater) point with respect to the state constraints in (1.1) has to be assumed. This
assumption is referred to as the “linearized Slater condition.”

Definition 5.2. Let ū ∈ U be a local solution of (P), and assume that Assump-
tion 3.1 is fulfilled at ū. We say that ū ∈ U satisfies the linearized Slater condition
for (P) if there exists an interior point u0 ∈ U such that

ya(x) + δ ≤ G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ yb(x) − δ ∀x ∈ Ωg,

G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ ymax(x)− δ ∀x ∈ Ωs,

with a fixed δ > 0.
Notice that ū ∈ U automatically satisfies ū(x) ≥ 0 a.e. in Ωs (cf. Remark 3.2)

such that Assumption 3.1 implies that G′(ū) : L2(Ωs)→W 1,q(Ω) is well defined.
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Definition 5.3. The Lagrange functional L : U×M(Ωs)×M(Ωg)×M(Ωg)→ R

for (P) is given by

L(u, μ) = f(u) +
∫

Ωs

(G(u)− ymax)dμs +
∫

Ωg

(ya − G(u))dμag +
∫

Ωg

(G(u)− yb)dμbg ,

with μ = (μs, μag , μ
b
g).

Since G is twice continuously Fréchet differentiable at ū (see Theorem 3.2), it is
straightforward to see that f is twice continuously Fréchet differentiable at ū, and its
derivative at ū ∈ L2(Ωs) in an arbitrary direction u ∈ L2(Ωs) is given by

f ′(ū)u =
∫

Ωg

(∇G(ū)− z) · ∇G′(ū)u dx+ β

∫
Ωs

ū u dx.

Due to G(ū) ∈ W 1,q(Ω) and z ∈ L2(Ωg)N , the first addend defines an element of
W 1,q(Ω)∗ such that the linear and continuous operator L : W 1,q(Ω) → W 1,q(Ω)∗

exists with

〈Lȳ, v〉 :=
∫

Ωg

(∇ȳ − z) · ∇v dx, v ∈ W 1,q(Ω),

where ȳ = G(ū) ∈ W 1,q(Ω). With this setting, f ′(ū)u = 〈Lȳ,G′(ū)u〉+β(ū, u). Notice
that since f and G are continuously Fréchet differentiable at ū, L is continuously
Fréchet differentiable at ū such that the following definition makes sense.

Definition 5.4. Let ū ∈ U be a local solution of (P), and suppose that Assump-
tion 3.1 is fulfilled. Then, μs ∈ M(Ωs), μag ∈ M(Ωg), and μbg ∈ M(Ωg) are said to
be Lagrange multipliers associated with the state constraints in (P) if it holds that

∂uL(ū, μ)(u− ū) ≥ 0 ∀u ∈ U ,(5.1)

μs ≥ 0, μag ≥ 0, μbg ≥ 0,(5.2) ∫
Ωs

(G(ū)− ymax)dμs =
∫

Ωg

(ya − G(ū))dμag =
∫

Ωg

(G(ū)− yb)dμbg = 0,(5.3)

where we again set μ = (μs, μag , μ
b
g).

Notice that if ν ∈M(Ω), then we write

ν ≥ 0 ⇔
∫

Ω

y dν ≥ 0 ∀ y ∈ {y ∈ C(Ω) | y(x) ≥ 0 ∀x ∈ Ω}.

The following theorem states the first-order necessary optimality conditions for (P),
i.e., the existence of Lagrange multipliers in the sense of Definition 5.4. The proof
can be found, for instance, in [10].

Theorem 5.1. Let ū be a locally optimal solution of (P) satisfying the linearized
Slater condition. Furthermore, let Assumption 3.1 be satisfied. Then, there exist
corresponding Lagrange multipliers (μs, μag , μ

b
g) ∈ M(Ωs)×M(Ωg)×M(Ωg) according

to Definition 5.4 such that (5.1)–(5.3) are satisfied.
Next, let us transform (5.1)–(5.3) into the optimality system of (P) by introducing

the adjoint equation. First, by the definition of L and (3.22), (5.1) is equivalent to

〈A′
q(ū)−∗(Lȳ + μ̃s − μ̃ag + μ̃bg

)
, Eq,s(u − ū)〉W 1,q′ (Ω),W 1,q′ (Ω)∗

+ (β ū , u− ū)L2(Ωs) ≥ 0 ∀u ∈ U ,
(5.4)
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where μ̃s, μ̃ag , and μ̃bg denote the elements of W 1,q(Ω)∗ associated with μs, μag , and μbg
in the sense of (4.2). Consider now the operator equation

A′
q(ȳ)

∗p = Lȳ + μ̃s − μ̃ag + μ̃bg in W 1,q(Ω)∗(5.5)

which is equivalent to

∫
Ω

κ∇p · ∇v dx+ 4
∫

Γr

(Gσ|ȳ|3v)p ds+ 4
∫

Γ0

εσ|ȳ|3pv ds

=
∫

Ωg

(∇ȳ − z) · ∇v dx+
∫

Ωs

v dμs −
∫

Ωg

v dμag +
∫

Ωg

v dμbg ∀ v ∈ W 1,q(Ω)

(5.6)

(cf. (4.3) and (4.4)). As in the case of (4.5), (5.6) can be considered as the variational
formulation of
(5.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(κg∇p) = −Δȳ + div z + (μbg − μag)|Ωg
in Ωg,

−div(κs∇p) = μs|Ωs
in Ωs,

κg

(
∂p

∂nr

)
g

− κs
(
∂p

∂nr

)
s

− 4σ|ȳ|3G�p = − ∂ȳ

∂nr
+ z · nr
+ (μbg − μag + μs)|Γr

on Γr,

κs
∂p

∂n0
+ 4εσ|ȳ|3p = μs|Γ0 on Γ0.

Again, the multipliers are decomposed into their restrictions on Ωs, Ωg, Γr, and Γ0,
respectively. Analogously to Definition 4.1, we define solutions to (5.7).

Definition 5.5. A function p ∈W 1,q′(Ω) is said to be the weak solution of (5.7)
if it satisfies (5.5) and (5.6), respectively.

Clearly, thanks to Lemma 4.1, there exists a unique solution of (5.7) in the sense
of Definition 5.5 (cf. Theorem 4.1). Using the definition of p and (5.4), (5.1) can be
transformed into

∂L
∂u

(ū, μ)(u − ū) =
∫

Ωs

(p+ βū)(u − ū) dx ≥ 0 ∀u ∈ U .(5.8)

By standard arguments, a pointwise evaluation of this equation implies

ū = Pad
{
− 1
β
p(x)

}
,(5.9)

where Pad : L2(Ωs) → L2(Ωs) denotes the pointwise projection operator on the
admissible set U . In this way, we find the following theorem that states the first-order
necessary optimality conditions for (P).

Theorem 5.2 (first-order necessary optimality conditions for (P)). Let ū ∈
L2(Ωs) be an optimal solution of (P) with the associated state ȳ = G(ū) ∈ W 1,q(Ω),
q > N . Suppose further that ū satisfies Assumption 3.1 and the linearized Slater
conditions. Then, there exist an adjoint state p ∈W 1,q′(Ω), q′ < N

N−1 , and Lagrange
multipliers μs ∈ M(Ωs), μag ∈ M(Ωg), and μbg ∈ M(Ωg) such that the following
relations are satisfied:

• The state equation (SL) in the sense of Definition 2.1,
• the adjoint equation (5.7) in the sense of Definition 5.5,
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• the projection formula (5.9),
• the nonnegativity of the Lagrange multipliers (5.2), and
• the complementary slackness conditions (5.3).

It is straightforward to see that, if ua, ub ∈ W 1,q′(Ωs), then Pad is continuous
from W 1,q′(Ωs) to W 1,q′(Ωs) such that the following regularity result for the optimal
control is obtained.

Remark 5.1. If ua, ub ∈ W 1,q′(Ωs), then the optimal control ū is a function in
W 1,q′(Ωs), q′ < N

N−1 .

6. Second-order sufficient optimality conditions for (P). In the follow-
ing, we present second-order sufficient optimality conditions for (P) guaranteeing
local optimality with respect to the L2(Ω) topology. The investigation of second-
order sufficient optimality conditions for semilinear control problems with pointwise
state constraints was originally undertaken by Casas, Tröltzsch, and Unger in [8].
They suggested second-order optimality conditions that deal with strongly active
sets. However, owing to the presence of the two-norm discrepancy, the result only
provides sufficient optimality conditions for local solutions with respect to L∞(Ω)
topology. Later on, Casas, De Los Reyes, and Tröltzsch [7] modified this result and
arrived at sufficient conditions that are in some sense less restrictive than the original
conditions. In particular, under certain assumptions, these conditions ensure the ex-
istence of local solutions in L2(Ω). The result is, however, not directly applicable for
(P) since here we deal with a nonmonotone operator G, and the objective functional
in (P) is different from that considered in [7]. However, thanks to Theorem 3.2, we
obtain analogous second-order sufficient conditions for the existence of local solutions
to (P) in L2(Ωs). At this point, let us underline that the proof of Theorem 6.1 below
is basically analogous to the second-order analysis of [7], which has only to be slightly
modified due to the gradient within the objective functional of (P). In view of this,
the corresponding analysis is therefore presented in a rather concise form.

Definition 6.1. Let ū ∈ U be a feasible control of (P) with the associated
state G(ū) = ȳ. We assume that there exist μag , μ

b
g ∈ M(Ωg), μs ∈ M(Ωs), and

p ∈W 1,q′(Ω), 1 ≤ q′ ≤ N/(N − 1), satisfying (5.1)–(5.3) and (5.7).
(i) The convex, closed subset Hū ⊂ L2(Ωs) is given by

Hū :=
{
h ∈ L2(Ωs) | h(x) =

{
≥ 0 if ū(x) = ua(x),
≤ 0 if ū(x) = ub(x).

}
(ii) The subset Cū ⊂ Hū is defined as follows:

Cū = {h ∈ Hū | h satisfies (6.1), (6.2), and (6.3)},

h(x) = 0 if p(x) + βū(x) �= 0,(6.1)

yh(x) =

⎧⎪⎨
⎪⎩
≥ 0 if ȳ(x) = ya(x), x ∈ Ωg,

≤ 0 if ȳ(x) = yb(x), x ∈ Ωg,

≤ 0 if ȳ(x) = ymax(x), x ∈ Ωs,

(6.2)

∫
Ω̄g

yh dμ
a
g =

∫
Ω̄g

yh dμ
b
g =

∫
Ω̄s

yh dμs = 0,(6.3)

where yh = S′(ū)h.
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(iii) We say that ū satisfies the second-order sufficient condition (SSC) if

(SSC)
∂2L
∂u2

(ū, μ)h2 > 0

holds true for every h ∈ Cū \ {0}.
Theorem 6.1 (second-order sufficient optimality conditions for (P)). Let ū ∈ U

be a feasible control of (P) and let Assumption 3.1 be fulfilled. Furthermore, assume
that there exist μag , μ

b
g ∈M(Ωg), μs ∈ M(Ωs), and p ∈W 1,q′(Ω), 1 ≤ q′ ≤ N/(N−1),

satisfying (5.1)–(5.3) and (5.7). If ū additionally satisfies (SSC), then there exist
positive real numbers ε and δ such that

f(ū) +
δ

2
‖u− ū‖2L2(Ωs) ≤ f(u)

holds true for every feasible control u of (P) with ‖u − ū‖L2(Ωs) < ε. Hence, ū is a
local solution of (P) according to Definition 5.1.

Proof. As already mentioned above, generally speaking, the proof completely
follows the lines of [7]. With a modification of the arguments in [7] the gradient-
type objective functional can also be incorporated into the analysis, as we will see
in the following. Let us start by assuming the contrary: There exists a sequence
{uk}∞k=1 ⊂ L2(Ωs) of feasible controls of (P) such that

(6.4) f(ū) +
1
k
‖uk − ū‖2L2(Ωs) > f(uk) ∀k ∈ N and lim

k→∞
‖uk − ū‖L2(Ωs) = 0.

We define hk := 1
ak

(uk − ū) with ak := ‖uk − ū‖L2(Ωs). Thus, ‖hk‖L2(Ωs) = 1 holds
for all k ∈ N. For this reason, there exists a subsequence denoted w.l.o.g. again by
{hk}∞k=1, which converges weakly in L2(Ωs) to some h̄ ∈ L2(Ωs), i.e., hk ⇀ h̄ as
k →∞. Using the same arguments as in [7, section 4], one proves that

∂L
∂u

(ū, μ)h̄ = 0.(6.5)

The underlying argument is based on the mean value theorem, which is also applicable
here since Theorem 3.2 guarantees that G is twice continuously differentiable in a
neighborhood around ū. Moreover, it is completely analogous to [7, section 4] to show
that h̄ ∈ Cū, i.e., h̄ belongs to Hū and satisfies conditions (6.1)–(6.3); cf. Definition
6.1. The corresponding argument relies on the compactness of G′(ū) when considered
with range in C(Ω), which holds due to the continuous Fréchet differentiability of
G : L2(Ωs)→W 1,q(Ω) and the compact embedding W 1,q(Ω) ↪→ C(Ω) for q > N .

From (6.5) and h̄ ∈ Cū, it follows that h̄ = 0. For the reader’s convenience, this
is demonstrated in more detail in the following since the arguments of [7] have to be
slightly modified in the case of a gradient-type objective functional as in (P). Due
to Theorem 3.2 and the convergence uk → ū by construction, there is an open ball
Br(ū) ⊂ L2(Ωs), where G is twice continuously differentiable. Hence there exists a
point zk ∈ L2(Ωs) between uk and ū such that

L(uk, μ) = L(ū, μ) + ak
∂L
∂u

(ū, μ)hk +
a2
k

2
∂2L
∂u2

(zk, μ)h2
k ∀ k ≥ k0

for sufficiently large k0 > 0. By rearranging and dividing by a2
k/2, the above equation
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is equivalent to

2
∂L
∂u

(ū, μ)(uk − ū) +
∂2L
∂u2

(ū, μ)h2
k =

2
a2
k

{
L(uk, μ)− L(ū, μ)

}
+
[
∂2L
∂u2

(ū, μ)− ∂2L
∂u2

(zk, μ)
]
h2
k ∀ k ≥ k0.

(6.6)

Furthermore, the feasibility of uk for (P) and the positivity of μ imply that L(uk, μ) ≤
f(uk), and hence from (6.4) we infer that

L(uk, μ) ≤ f(uk) < f(ū) +
1
k
‖uk − ū‖2L2(Ωs) = L(ū, μ) +

1
k
‖uk − ū‖2L2(Ωs) ∀ k ∈ N,

where we used the complementary slackness conditions (5.3). Hence, since uk ∈ U
and ‖hk‖L2(Ωs) = 1 for all k ∈ N, the latter equality, together with (5.1) and (6.6),
implies that

(6.7)
∂2L
∂u2

(ū, μ)h2
k <

1
k

+
∥∥∥∥∂2L
∂u2

(ū, μ)− ∂2L
∂u2

(zk, μ)
∥∥∥∥
B2(L2(Ωs))

∀ k ≥ k0,

where B2(L2(Ωs)) denotes the space of bounded bilinear forms from L2(Ωs)×L2(Ωs)
to R. Notice that ∂2L

∂u2 (·, μ) is continuous from L2(Ωs) to B2(L2(Ωs)), and hence since
limk→∞ zk = ū in L2(Ωs), the right-hand side of (6.7) converges to zero as k → ∞.
To show the convergence of the left-hand side in (6.7), we argue as follows: For each
k ∈ N, we set yk := G′(ū)hk and wk := G′′(ū)h2

k, and hence

∂2L
∂u2

(ū, μ)h2
k = ‖∇yk‖2L2(Ωg) + (∇ȳ − z,∇wk)L2(Ωg) + β‖hk‖2L2(Ωs)

+
∫

Ω̄s

wk dμs +
∫

Ω̄g

wk dμ
b
g −

∫
Ω̄g

wk dμ
a
g .

(6.8)

Obviously, since G′(ū) is continuous and linear from L2(Ωs) to W 1,q(Ω) and hk ⇀ h̄
in L2(Ωs), one finds

(6.9) ∇yk ⇀ ∇yh̄ in L2(Ω) as k→∞,

with yh̄ = G′(ū)h̄. Moreover, since wk = G′′(ū)h2
k = −(A′

q(ȳ))
−1A′′

q (ȳ)[yk, yk] (see
Theorem 3.2) and yk → yh̄ in C(Ω) due to the compactness of W 1,q(Ω) ↪→ C(Ω), we
have

wk → wh̄ := G′′(ū)h̄2 in W 1,q(Ω).

Thus, using the weak lower semicontinuity of the norm, we arrive at

∂2L
∂u2

(ū, μ)h̄2 =‖∇yh̄‖2L2(Ωg) + (∇ȳ − z,∇wh̄)L2(Ωg) + β‖h̄‖2L2(Ωs)

+
∫

Ω̄s

wh̄dμs −
∫

Ω̄g

wh̄dμ
a
g +

∫
Ω̄g

wh̄dμ
b
g

≤ lim inf
k→∞

∂2L
∂u2

(ū, μ)h2
k

≤ lim
k→∞

{
1
k

+
∥∥∥∥∂2L
∂u2

(ū, μ)− ∂2L
∂u2

(zk, μ)
∥∥∥∥
B2(L2(Ωs))

}
= 0,
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where we used (6.7) for the last inequality. For this reason and since h̄ ∈ Cū, (SSC)
implies that h̄ = 0. With an analogous argument as in step 4 of the proof of Theorem
4.1 in [7], the desired contradiction is finally obtained.

Remark 6.1. In general, the above second-order analysis does not apply to more
general objective functionals of the form

J(∇y, u) =
∫

Ωg

f(∇y) dx+
β

2

∫
Ωs

u2 dx,

even if Ψy(x) = f(∇y(x)) considered as a mapping from Ωg to R is sufficiently smooth
for all fixed y ∈ H1(Ωg). For the differentiability of J and f , respectively, one
would in general need W 1,∞ regularity of the states, which cannot be expected in our
case. In the case of (P), we benefit from the continuous Fréchet differentiability of
Φ(v(x)) = |v(x) − z(x)|2 from L2(Ωg)2 to L1(Ωg).
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[15] C. Meyer, P. Philip, and F. Tröltzsch, Optimal control of a semilinear PDE with nonlocal
radiation interface conditions, SIAM J. Control Optim., 45 (2006), pp. 699–721.

[16] C. Meyer and P. Philip, Optimizing the temperature profile during sublimation growth of sic
single crystals: Control of heating power, frequency, and coil position, Crystal Growth &
Design, 5 (2005), pp. 1145–1156.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL OF NONLOCAL RADIATION 755

[17] C. Meyer, An SQP active set method for a semilinear optimal control problem with nonlocal
radiation interface conditions, in Control of Coupled Partial Differential Equations, K. Ku-
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Abstract. This paper revisits the paper of Bensoussan, Liu, and Sethi where they proposed a
single item continuous-time inventory model where demand is a mixture of a diffusion process and
a compound Poisson process. They showed that in a continuous review setting an (s, S) policy is
optimal when the jump sizes are exponentially distributed. However, the case where the jump sizes
are general was not solved completely. This paper solves this case.
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1. Introduction. In a recent paper Bensoussan, Liu, and Sethi (BLS) [1] pro-
posed a single item continuous-time continuous state inventory model where demand
is a mixture of a diffusion process and a compound Poisson process. They showed
that in a continuous review setting an (s, S) policy is optimal when the jump sizes
are exponentially distributed. However, the case where the demand is a combination
of a diffusion and a general compound Poisson process was not completely resolved.
This short note brings closure to this problem. The presentation builds on the paper
of BLS and uses mostly the same notation.

Let ξi ≥ 0, i = 1, 2, . . . , be a sequence of independently and identically nonnega-
tive random variables distributed having density μ(.) and finite mean. Also, let N(t)
be a right-continuous process with N(0) = 0 and intensity λ > 0 defined by

(1.1) N(t) =
∑
i

ξiχ[0,t](τi), t ≥ 0,

where τi is the sequence of jump times and χA denotes the indicator function defined
by χA(x) = 1 if x ∈ A and 0 otherwise.

We assume that the cumulative demand y(t) on the interval [0, t] is a stochastic
process given by

(1.2) y(t) = Dt+ σw(t) +N(t),

where D ≥ 0 is constant, w(t) is the standard Brownian motion with w(0) = 0, σ ≥ 0,
and N(t) is defined in (1.1). The processes w(t), N(t), and ξi are all independent.

Let f be a real-valued function representing the holding and shortage cost with
f(0) = 0 and f(x) > 0 for x �= 0. The cost c(x) of ordering an amount x is given by

(1.3) c(x) =
{

K + cx, x > 0,
0, x = 0,
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where K > 0 is the fixed setup cost of ordering and c is the unit cost of the item.
Costs are assumed to be additive and exponentially discounted at a rate ρ > 0.

An admissible replenishment policy consists of a sequence (θi, ui), i = 1, . . . , where
θi represents the ith time of ordering and ui > 0 represents the quantity ordered at
time θi. Write

Un = {(θi, ui), i = 1, . . . n},
U∞ = lim

n→∞ Un = U .

Let xt denote the level of stock at time t and Fn = σ{xs, s ≤ t} be the σ-algebra
generated by the history of the inventory level up to time t. Assume that, for each
n ∈ N, Un is Fn-measurable. Then, for a given initial inventory level x and an ordering
policy U , the discounted cost is defined by

(1.4) F (x,U) = EU

{∫ ∞

0

f(x(t))e−ρtdt+
n∑
i=1

c(ui)e−ρθi

}
,

where the expectation is taken with respect to all possible realizations of the process
xt under policy U . Set

F (x) = inf
U
F (x,U).

The objective is to find an admissible policy U∗ such that F (x,U∗) = F (x). Let

G(x) := F (x) + cx,

g(x) := f(x) + cρx,

and introduce the operators A, B, and M defined for a function φ by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Aφ)(x) = −σ
2

2
φ′′(x) +Dφ′(x),

(Bφ)(x) = λ

∫ ∞

0

(φ(x− ξ)− φ(x))μ(ξ)dξ,

(Mφ)(x) = K + inf
u≥0
{φ(x+ u)}.

Write

(1.5) h(x) := g(x) + cD + cλξ̄,

where

ξ̄ =
∫ ∞

0

ξμ(ξ)dξ <∞.

Note that the operator M defined above differs from that considered in BLS. In BLSs
quasi-variational inequality (QVI) the operators act on the function F , while in the
present paper the operators act onG. In any case, the two formulations are equivalent.
Finding the optimal policy U∗ reduces to the problem of finding the solution of the
following QVI problem:

(1.6)

⎧⎨
⎩

ΛG ≤ h,
G ≤MG,

(ΛG− h)(G−MG) = 0,
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where

(Λφ)(x) = (Aφ)(x) − (Bφ)(x) + ρφ(x).

The following lists a number of assumptions that are found in BLS.
(A1) The function f is non-negative and piecewise differentiable with f(0) = 0.

Also, f has polynomial growth rate.
(A2) There exists a π̄ such that∫ ∞

0

e−πξμ(ξ)dξ <∞ for all π > π̄.

(A3) There exists a number a such that g is decreasing and convex on (−∞, a) and
increasing on (a,∞). Furthermore, there exist c0 > 0 and η ≥ a such that g′(x) ≥ c0
for all x ≥ η.

It is also implicit in BLS that
∫∞
0
e−π̄ξμ(ξ)dξ =∞.

Note that the function h defined in (1.5) inherits from g all of the assumptions
made in (A3).

BLS showed that under assumptions (A1)–(A3) and the jump sizes exponentially
distributed the optimal solution of the QVI (1.6) exists and is described by a pair
(s, S) which corresponds to the well-known base stock policy in inventory control.
However, the case where the demand is a combination of a diffusion and a general
compound Poisson process was not completely resolved. The problem with the general
case is resolved in the next section.

2. Solution of the QVI problem. BLS in their quest to find the solution of
the QVI described in (1.6) considered the integro differential equation
(2.1)

−σ
2

2
G′′(x) +DG′(x) + (ρ+ λ)G(x) − λ

∫ ∞

0

G(x − ξ)μ(ξ)dξ = h(x), x > s,

G(x) = G(s), x ≤ s,

for some parameter s < a. They showed, using Laplace transform techniques, that
under assumptions (A1)–(A3) a solution Gs of (2.1) exists. Also, the function Gs
possesses the following properties:

Gs is continuously differentiable on (−∞,∞);(2.2)
Gs is constant on (−∞, s];(2.3)
Gs decreases on the interval [s, a0];(2.4)
Gs(x)→∞ as x→∞.(2.5)

Here, a0 < a and is the solution of Q(x) = 0, where

Q(x) =
2
σ2

∫ ∞

x

e−β2(y−x)g′(y)dy,

and β2 is some strictly positive parameter.
It follows from the properties of Gs (see BLS) that, for a given s < a0, there exists

an S(s) > a0 where the function Gs reaches its minimum (Theorem 5.3 of BLS). It
was also shown (Theorem 6.1 of BLS) that there exists a unique s < a0 such that

(2.6) Gs(s) = K +Gs(S(s)).
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Now, let (s, S(s)) be a solution of (2.6). Note that s is unique but S (s) may not
be unique. Our proof of optimality relies on the concept related to non-K-decreasing
functions which may be found in Porteus [2, p. 137].

Definition 1. A function f : R→ R is non-K-decreasing if

f(x) ≤ K + f(y) for all x ≤ y.

Note that the concept of non-K-decreasing is weaker than the concept of an K-
convexity which is a standard tool for showing optimality of an (s, S) policy; see
Porteus [2] for more details. It is also immediate to deduce that a function f is
non-K-decreasing if and only if for all x ∈ R,

f(x) ≤ K + inf
y≥x

f(y).

Our objective is to show that the function Gs is non-K-decreasing. Note from prop-
erties (2.3)–(2.5) that Gs is constant on (−∞, s], then decreases at least up to a0,
reaches it minimum at some S(s), and eventually goes to ∞ as x → ∞. As x varies
from −∞ to ∞, non-K-decreasing means that the value Gs(x) cannot have a drop
bigger than K beyond S(s).

Theorem 1. Let Gs be the solution of (2.1); then

Gs(x) ≤ K + min
y≥x

Gs(y).

Proof. Define

(2.7) Bs(x) = Gs(x)−min
y≥x

Gs(y);

then the statement of the theorem is equivalent to

Bs(x) ≤ K.

(i) If x ≤ s, then (2.1) and (2.6) lead to Gs(x) = Gs(s) = K + miny Gs(y) =
K + miny≥x Gs(y) or Bs(x) = K. Therefore, the theorem is true in this case.

(ii) If s ≤ x ≤ a0, then Property (2.4) shows that

Gs(x) < Gs(s) = K + min
y

Gs(y) = K + min
y≥x

Gs(y).

This leads to the required result in this case.
(iii) If x > a0 and Bs(x) > K, then we shall show that there exist points x′, x1, x2,

and x3 with x1 < x′ ≤ x2 < x3. Properties of the function Gs at these points is then
shown to lead to a contradiction; see Figure 1.

Define

x′ = inf {x > a0, Bs(x) > K}.

It follows that Bs(x′) = K and Bs(x) < K for s < x < x′.
Put γ = minx≥x′ Gs(x) and

(2.8) x3 = min {x ≥ x′ : Gs(x) = γ}.

The point x3 exists by (2.2) and (2.5). It is also a local minimum, and consequently
G′
s(x3) = 0, G′′

s (x3) ≥ 0, and

(2.9) Gs(x′)−Gs(x3) = K.
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Fig. 1. Typical inventory behavior.

Put Γ = maxx≤x3 Gs(x) and

(2.10) x2 = min {x ≤ x3 : Gs(x) = Γ}.

The point x2 exists since Gs is continuous. It is a local maximum with G′
s(x2) = 0

and G′′
s (x2) ≤ 0. Further, x′ ≤ x2. Indeed, if x2 < x′, it follows from the definition

of x′ that Gs(x2) − Gs(x3) < K or Gs(x2) < Gs(x3) + K = Gs(x′), which is in
contradiction with the definition of x2.

Note that (2.9) and (2.10) give

(2.11) K ≤ Gs(x2)−Gs(x3).

Let

ζ = min
x≤x′

Gs(x)

and

(2.12) x1 = min{x ≤ x′, Gs(x) = ζ}.

The point x1 exists by (2.2). Also, x1 is a local minimum with G′
s(x1) = 0 and

G′′
s (x1) ≥ 0.

Now, we have completed the construction of the required points with a0 < x1 <
x′ ≤ x2 < x3. A crucial property is next sought before we move to the contradiction
argument.

We claim that Gs possesses the following property:

(2.13) Gs(x)−Gs(y) ≤ Gs(x2)−Gs(x3) for x ≤ y ≤ x3.
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If x < x′, then

Gs(x) −Gs(y) ≤ Gs(x) −min
η≥x

Gs(η) < K ≤ Gs(x2)−Gs(x3).

The last inequality follows from (2.11).
If x′ ≤ x ≤ y ≤ x3, the result is immediate from the definitions of x2 and x3.
Now, we are ready for the contradiction argument. We examine two possible cases

relating to the position of x2 with respect to a.
(v) If a0 < x2 ≤ a, then (2.1) with the definitions of x1 and x2 gives

ρGs(x1) = h(x1)− λ
∫ ∞

0

(Gs(x1)−Gs(x1 − ξ))μ(ξ)dξ +
σ2

2
G′′
s (x1),(2.14)

ρGs(x2) = h(x2)− λ
∫ ∞

0

(Gs(x2)−Gs(x2 − ξ))μ(ξ)dξ +
σ2

2
G′′
s (x2).(2.15)

Note by (2.12) that Gs(x1)−Gs(x1− ξ) ≤ 0 for all ξ ≥ 0 and by (2.10) that Gs(x2)−
Gs(x2 − ξ) ≥ 0 for all ξ ≥ 0. Also, G′′

s (x1) ≥ 0 and G′′
s (x2) ≤ 0. Furthermore, h is

decreasing on (−∞, a] by assumption (A3). It follows that ρGs(x2) ≤ ρGs(x1), which
leads to a contradiction since Gs(x2) > Gs(x1). Hence, Bs(x) ≤ K in this case.

(vi) If x2 > a, then (2.1) gives

(ρ+ λ)Gs(x2) = h(x2) + λ

∫ ∞

0

Gs(x2 − ξ)μ(ξ)dξ +
σ2

2
G′′
s (x2),(2.16)

(ρ+ λ)Gs(x3) = h(x3) + λ

∫ ∞

0

Gs(x3 − ξ)μ(ξ)dξ +
σ2

2
G′′
s (x3).(2.17)

The properties of Gs at x2 and x3 imply that

(ρ+ λ)(Gs(x2)−G(x3)) ≤ h(x2)− h(x3) + λ

∫ ∞

0

(Gs(x2 − ξ)−Gs(x3 − ξ))μ(ξ)dξ.

Also, by property (2.13) we have for ξ ≥ 0,

Gs(x2 − ξ)−Gs(x3 − ξ) ≤ Gs(x2)−Gs(x3)

since x2− ξ ≤ x3− ξ ≤ x3. Therefore, ρ(Gs(x2)−G(x3)) ≤ h(x2)−h(x3) < 0 since h
is increasing on [a,∞) and μ is a density function. But (2.11) gives Gs(x2)−Gs(x3) ≥
K > 0. This leads to a contradiction. This completes the proof.

Define S(s) to be the smallest S which solves

(2.18) Gs(s) = K +Gs(S).

Theorem 2. Let (s, S(s)) be a solution of (2.18); then this solution solves the
QVI (1.6).

Proof. We will show that ΛG ≤ h on (−∞,∞) with equality on [s,∞) and that
G ≤MG on (−∞,∞) with equality on (−∞, s]. By construction we have ΛG = h on
[s,∞). Furthermore, on (−∞, s], ΛG ≤ h is equivalent to h(s) ≤ h(x), which is true
since h is decreasing on (−∞, a] and s < a0 < a. Now, turning to the operator M ,
we have

MG(x) =

{
K +Gs(S(s)) if x ≤ S(s),
K + inf

u≥0
Gs(x+ u) if x > S(s).
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If x ≤ s, the result MG(x) = Gs(s) = K +Gs(S(s)). If s < x ≤ S(s), then G ≤MG
is equivalent to Gs(x) ≤ K + Gs(S(s)), which is true by Theorem 1. Finally, if
x > S(s), we have

MG(x) = K + inf
u≥0

Gs(x+ u) = K + inf
y≥x

Gs(y).

Again, G ≤ MG is equivalent to G(x) − infy≥xGs(y) ≤ K, which follows from
Theorem 1 leading to G ≤MG on [S(s),∞). This completes the proof.

In this paper we have shown that an (s, S) policy is optimal for an inventory
model in which demand is a combination of a diffusion and a general compound
process. This solves the open problem that was left in BLS.
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boundary controlled hyperbolic partial differential equation and of a control system involving state
derivative feedback are analyzed.
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Notation.
C set of complex numbers
C

−, C
+ open left half plane, open right half plane

i imaginary identity
N set of natural numbers, including zero
R set of real numbers
R

+ {r ∈ R : r ≥ 0}
R

+
0 R

+ \ {0}
ek ∈ N

m kth unit vector in N
m

�(λ),�(λ), |λ|, λ ∈ C real part, imaginary part, and modulus of λ
�r ∈ R

m, �n ∈ N
m, . . . short notation for (r1, . . . , rm), (n1, . . . , nm), . . .

rσ(A) spectral radius of operator (or matrix) A
re(A) radius of the essential spectrum of operator A
σ(A) spectrum of operator (or matrix) A
σe(A) essential spectrum of operator (or matrix) A
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sign(x), x ∈ R sign(x) =
{

1, x ≥ 0
−1, x < 0

Z set of integer numbers
α(A) spectral abscissa of operator (or matrix) A,

α(A) := sup{�(λ) : λ ∈ C and λ ∈ σ(A)}
‖�a‖, �a ∈ R

m Euclidean norm of �a, ‖�a‖ :=
√∑m

k=1 a
2
k

�a ·�b, �a,�b ∈ R
m Euclidean inner product of �a and �b, �a ·�b :=

∑m
k=1 akbk

1. Introduction. Many engineering systems can be modeled by delay differen-
tial equations of neutral type, for instance, lossless transmission lines [17] and partial
element equivalent circuits [4] in electrical engineering, and combustion systems [26]
and controlled constrained manipulators [27] in mechanical engineering. Equations of
neutral type also arise in boundary-controlled hyperbolic partial differential equations
subjected to small feedback delays [24, 6] and in implementation schemes of predictive
controllers for time-delay systems [7, 25]. In this paper we discuss stability properties
of the linear neutral equation

(1.1) ẋ(t) +
p1∑
k=1

Hkẋ(t− τk) = A0x(t) +
p2∑
k=1

Akx(t − υk),

where x(t) ∈ R
n is the state variable at time t, �τ := (τ1, . . . , τp1) ∈ (R+

0 )p1 and
�υ := (υ1, . . . , υp2) ∈ (R+

0 )p2 are time-delays, and Hk and Ak are real matrices.
An important aspect in the stability theory of neutral equations is the possible

fragility of stability, in the sense that the asymptotic stability of the null solution of
(1.1) may be sensitive to arbitrarily small perturbations of the delays �τ ; see, e.g., [12,
21, 24, 18] and the references therein. This has led to the introduction of the notion
of strong stability in [11, 13, 14], which explicitly takes into account the effect of
small delay perturbations. In [13] a necessary and sufficient condition for the strong
stability of the null solution of (1.1) is described for the special case where the delays
(τ1, . . . , τm) can vary independently of each other (see also [9]), and in [23] some related
spectral properties are discussed, though the focus lies on a stabilization procedure
for systems with an external input. Note that robustness against delay perturbations
is of primary interest in control problems, as parametric uncertainty and feedback
delays are inherent features of control systems.

In the existing literature on the stability of neutral equations, subjected to delay
perturbations, the delays, τk, 1 ≤ k ≤ p1, in (1.1) are almost exclusively assumed to be
either mutually independent or commensurate (all multiples of the same parameter);
an exception is formed by [28] where a problem with three delays depending on two
independent parameters is analyzed. In this paper we study the dependence of the
stability properties of (1.1) on the delay parameters, under the assumption that the
delays τk, 1 ≤ k ≤ p1, are linear functions of m ≥ 1 “independent” parameters
�r = (r1, . . . , rm) ∈ (R+

0 )m, as described by the following relation:

(1.2) τk = �γk · �r, k = 1, . . . , p1,

with

�γk := (γk,1, . . . , γk,m) ∈ N
m \ {�0}, k = 1, . . . , p1.

Note that the cases of mutually independent delays, respectively, commensurate de-
lays, appear in this framework as extreme cases (m = n and �γk = �ek, k = 1, . . . , p1,
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respectively, m = 1). The problem studied in [28] corresponds to the relation (τ1, τ2,
τ3) = (r1, r2, r1 + r2), which is also of the form (1.2).

There are several main reasons why it is important to develop a stability theory
where any delay dependency structure of the form (1.2) can be taken into account
explicitly. First, real systems might give rise to a model of the form (1.1) exhibiting a
delay dependency caused by physical or other interactions in the system’s dynamics.
This is explained with a lossless transmission line example in Chapter 9.6 of [11],
where it is shown that a parallel transmission line which consists of a current source,
two resistors, and a capacitor gives rise to a system of a neutral type with three delays
in the difference part, which are integer combinations of two physical parameters. In
[6, 19, 24] boundary-controlled partial differential equations are described that lead
to a closed-loop system of neutral type, where the delays in the model are particular
linear combinations of (physical) feedback delays and delays induced by propagation
phenomena. In [31, 32] the robustness against small feedback delays of linear systems
controlled with state derivative feedback is addressed, motivated by vibration control
applications. There, the closed-loop system can again be written in the form (1.1),
where the delays τk are combinations of actuator and sensor delays in input and
output channels. All these applications give rise to a (nonextreme case of a) delay
dependency of the form (1.2). Second, the precise dependency of the delays has a
major influence on the stability robustness. For instance, we shall illustrate that
the asymptotic stability of (1.1) may be destroyed by arbitrarily small perturbations
of the delays τk, 1 ≤ k ≤ p1, if these perturbations can be chosen independently
of each other, but it may be robust against small perturbations if the (perturbed)
delays are restricted by a relation like (1.2). Third, the analysis for an arbitrary delay
dependence of the form (1.2) is much more complex than the analysis of the special
cases available in the literature (e.g., fully independent delays in [23]), where the
derivation of the results heavily relies on specific properties induced by the special case.
In this discussion it is worthwhile to note that no assumptions need to be made on the
interdependency of the delays �ν, because, as we shall see, this interdependency does
not affect the stability robustness with respect to (w.r.t.) small delay perturbations,
unlike the interdependency of the delays �r.

While the general aim of the paper is to develop a stability theory for neutral
equations with dependent delays subjected to delay perturbations, the emphasis is on
the derivation of explicit strong stability criteria and on related spectral properties.
As we shall see, only in specific situations, where severe restrictions are put on the
dependency structure, can the criteria available in the literature for independent de-
lays be directly generalized, though the derivation is more complicated. To obtain a
general solution and, in this way, complete the theory, some type of intermediate lift-
ing step may be necessary, where a delay difference equation with dependent delays is
transformed into an equation with independent delays with the same spectral proper-
ties. The main step will boil down to the representation of a multivariable polynomial
as the determinant of a pencil. Such a representation will follow from arguments of
realization theory, more precisely, from the construction of lower fractional represen-
tations (LFRs). See, for instance, [33] and the manual of the LFR toolbox [20] for an
introduction.

Finally, we note that the strong stability criteria developed in this paper are also
important in the context of stabilization and control of neutral systems. If the null
solution of the associated difference equation is strongly stable, then the unstable
manifold is finite-dimensional and remains so in the presence of delay perturbations.
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This opens the possibilities of using controllers which act only on that manifold (see,
e.g., [29]) or which are based on shifting or assigning a finite number of eigenvalues
as [24]. On the contrary, if the difference equation is not strongly stable, then the
closed-loop system lacks robustness against small delay perturbations. This may
happen even if the application of the control law involves a noncompact perturbation
of the solution operator and, thus, directly affects the difference equation; see [13] for
an illustration.

The structure of the paper is as follows: in section 2 some basic notions and results
on neutral equations are recalled, in support of the subsequent sections. In section 3
the spectral properties of the neutral equation (1.1)–(1.2) and of the associated delay
difference equation are addressed, with the emphasis on stability properties and the
sensitivity of stability w.r.t. delay perturbations. The main results are presented in
section 4, where computational expressions are presented that lead to explicit strong
stability conditions. Section 5 is devoted to applications and illustrations. Section 6
contains the conclusions.

2. Preliminaries. The initial condition for the neutral system (1.1)–(1.2) is a
function segment ϕ ∈ C([−τ̄ , 0],Rn), where τ̄ = maxk∈{1,...,p1} τk and C([−τ̄ , 0], R

n)
is the Banach space of continuous functions mapping the interval [−τ̄ , 0] into R

n and
equipped with the supremum-norm. The fact that the map D : C([−τ̄ , 0],Rn)→ R

n,
defined by

D(ϕ) = ϕ(0) +
p1∑
k=1

Hkϕ(−τk),

is atomic at zero guarantees existence and uniqueness of solutions of (1.1). Let x(ϕ) :
t ∈ [−τ̄ , ∞) → x(ϕ)(t) ∈ R

n be the unique forward solution with initial condition
ϕ ∈ C([−τ̄ , 0],Rn), i.e., x(ϕ)(θ) = ϕ(θ) for all θ ∈ [−τ̄ , 0]. Then the state at time
t is given by the function segment xt(ϕ) ∈ C([−τ̄ , 0], R

n) defined as xt(ϕ)(θ) =
x(ϕ)(t + θ), θ ∈ [−τ̄ , 0]. Denote by T (t;�r, �υ) the solution operator, mapping initial
data onto the state at time t, i.e.,

(2.1) (T (t; �r, �υ)ϕ)(θ) = xt(ϕ)(θ) = x(ϕ)(t + θ), θ ∈ [−τ̄ , 0].

This is a strongly continuous semigroup. The associated delay difference equation of
(1.1) is given by

(2.2) z(t) +
p1∑
k=1

Hkz(t− �γk · �r) = 0.

For any initial condition ϕ ∈ CD([−τ̄ , 0],Rn), where

CD([−τ̄ , 0],Rn) = {ϕ ∈ C([−τ̄ , 0],Rn) : D(ϕ) = 0} ,

a solution z(ϕ)(t) of (2.2) is uniquely defined and satisfies zt(φ) ∈ CD([−τ̄ , 0],Rn) for
all t ≥ 0. Let TD(t; �r) be the corresponding solution operator.

The asymptotic behavior of the solutions and, thus, the stability of the null solu-
tion of the neutral equation (1.1) is determined by the spectral radius rσ(T (t; �r, �υ)),
satisfying

rσ(T (1; �r, �υ)) = εcN(�r,�υ),

cN (�r, �υ) = sup {�(λ) : det (ΔN (λ; �r, �υ)) = 0} ,(2.3)
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where the characteristic matrix ΔN is given by

(2.4) ΔN (λ; �r, �υ) =

(
λΔD(λ; �r)−A0 −

p2∑
k=1

Ake
−λυk

)

and

ΔD(λ; �r) =

(
I +

p1∑
k=1

Hke
−λ�γk·�r

)
.

For instance, the null solution is exponentially stable if and only if rσ(T (1; �r, �υ)) < 1
or equivalently cN (�r, �υ) < 0 [13, 12] (see [11] for an overview of stability definitions
and their relation to spectral properties). In a similar way, the stability of the delay
difference equation (2.2) is determined by the spectral radius

(2.5) rσ(TD(1; �r)) = ecD(�r),

where

(2.6) cD(�r) =
{ −∞, det(ΔD(λ; �r)) 	= 0 ∀λ ∈ C,

sup {�(λ) : det (ΔD(λ; �r)) = 0} , otherwise.

An important property in the stability analysis of neutral equations is the relation

(2.7) re(T (1; �r, �υ)) = rσ(TD(1; �r));

see, e.g., [11, 10]. From this follows the well-known result that a necessary condi-
tion for the exponential stability of the null solution of (1.1)–(1.2) is given by the
exponential stability of the null solution of the delay difference equation (2.2).

In the remainder of the paper we will call the solutions of det(ΔN (λ; �r, �υ)) = 0 the
characteristic roots of the neutral system (1.1). Analogously we will call the solutions
of det(ΔD(λ; �r)) = 0 the characteristic roots of the delay difference equation (2.2).

3. Spectral properties. We discuss some spectral properties of the neutral
equation (1.1) which are important for the rest of the paper. In section 3.1–3.2 we
make the implicit assumption that

∃λ ∈ C : detΔD(λ; �r) 	≡ 1.

The degenerate case where this condition is not met will be treated separately in
section 3.3.

3.1. Difference equation. It is well known that the spectral radius (2.5), al-
though continuous in the system matrices Hk, is not continuous in the delays �r (see,
e.g., [11, 13, 16, 23]), which carries over to (2.6). As a consequence, we are from
a practical point of view led to the smallest upper bound on the real parts of the
characteristic roots, which is “insensitive” to small delay changes.

Definition 3.1. For �r ∈ (R+
0 )m, let C̄D(�r) ∈ R be defined as

C̄D(�r) = lim
ε→0+

cε(�r),

where

cε(�r) = sup {cD(�r + δ�r) : δ�r ∈ R
m and ‖δ�r‖ ≤ ε} .

Clearly we have C̄D(�r) ≥ cD(�r), and the inequality can be strict, as shown in [23]
and illustrated later on. We have the following results.
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Proposition 3.2. The following assertions hold:
1. the function

�r ∈ (R+
0 )m → C̄D(�r)

is continuous;
2. for every �r ∈ (R+

0 )m, we have1

(3.1)

C̄D(�r) = max

{
c ∈ R : det

(
I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
= 0

for some �θ ∈ [0, 2π]m
}

;

3. C̄D(�r) = cD(�r) for rationally independent2 �r;
4. for all �r1, �r2 ∈ (R+

0 )m, we have

(3.2) sign
(
C̄D(�r1)

)
= sign

(
C̄D(�r2)

)
.

Proof. Assertions 1 and 3 are direct corollaries of Lemma 2.5 and Theorem 2.2
of [3]. Combining assertion 3 with Theorem 3.1 of [3] yields assertion 2. The proof
of assertion 4 is by contradiction. If (3.2) is not satisfied, then by assertion 1 there
exists a vector �s ∈ (R+

0 )m for which C̄D(�s) = 0. This implies by (3.1) that C̄D(�r) ≥ 0
for all �r ∈ (R+

0 )m and we arrive at a contradiction.
The property (3.2) leads us to the following definition.
Definition 3.3. Let Ξ := sign

(
C̄D(�r)

)
, �r ∈ (R+

0 )m.
A consequence of the noncontinuity of cD w.r.t. �r is that arbitrarily small per-

turbations on the delays may destroy stability of the delay difference equation. This
phenomenon, which was illustrated in [24], has lead to the introduction of the concept
of strong stability in [13]: we say that the null solution of (2.2) is strongly exponentially
stable if it is exponentially stable and remains so when subjected to small variations
in the delays �r. We state this more precisely in the following definition.

Definition 3.4. The null solution of the delay difference equation (2.2) is
strongly exponentially stable if there exists a number r̂ > 0 such that the null so-
lution of

z(t) +
p1∑
k=1

Hkz(t− �γk · (�r + δ�r)) = 0

is exponentially stable for all δ�r ∈ (R+)m satisfying ‖δ�r‖ < r̂ and rk + δrk > 0, 1 ≤
k ≤ m.

The following condition follows from Proposition 3.2.
Proposition 3.5. The null solution of (2.2) is strongly exponentially stable if

and only if Ξ < 0.
Proof. By definition the null solution of (2.2) is strongly exponentially stable if

and only if C̄D(�r) < 0, which is equivalent to Ξ < 0.
Remark 3.6. The condition of Proposition 3.5 does not depend on the particular

value of �r ∈ (R+
0 )m, that is, strong exponential stability for one value of �r implies

strong exponential stability for all values of �r.

1The maximum in (3.1) is well defined because �θ belongs to a compact set.
2The m components of �r = (r1, . . . , rm) are rationally independent if and only if the conditions∑m

k=1 nkrk = 0 and nk ∈ Z imply nk = 0 for all k = 1, . . . , m. For instance, two delays r1 and r2

are rationally independent if their ratio is an irrational number.
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3.2. Neutral equation. Following from (2.7), not only the delay difference
equation (2.2) but also the neutral equation (1.1)–(1.2) have characteristic roots with
real part arbitrarily close to C̄D(�r) for certain (arbitrarily small) perturbations on �r.

From the fact that the operator T (1; �r, �υ), defined in (2.1), has only a point
spectrum in the set

{λ ∈ C : |λ| > re(T (1; �r, �υ)) = rσ(TD(1; �r))}

(see [13]), it follows that all the characteristic roots of (1.1) in the half plane{
λ ∈ C : �(λ) ≥ C̄D(�r) + ε

}
,

where ε > 0, lie in a compact set and that the number of these roots (multiplicity
taken into account) is finite. Bounds on these roots can be obtained from the following
lemma, whose proof can be found in Appendix A.

Lemma 3.7. If ΔN (λ; �r, �υ) = 0 and �(λ) > C̄D(�r), then

|λ| ≤ max
�θ∈[0, 2π]m

∥∥∥∥∥∥
(
I +

p1∑
k=1

Hke
−�(λ)(�γk·�r)e−i�γk·�θ

)−1
∥∥∥∥∥∥(

‖A0‖+
p1∑
i=1

‖Ak‖e−�(λ)υk

)
.

By combining the above results we arrive at the following result.
Proposition 3.8. The function

(�r, �υ) ∈ (R+
0 )m × (R+)p2 → max(C̄D(�r), cN (�r, �υ))

is continuous.
We refer to Appendix B for a detailed proof.
Proposition 3.8 is an important result, given that the function (�r, �υ) ∈ (R+

0 )m ×
(R+)p2 → cN (�r, �υ) is not continuous, with discontinuities occurring at delay values
where cN (�r, �υ) < C̄D(�r). Such situations do occur and will be illustrated in the first
example of section 5.

Furthermore, if we define strong exponential stability for the neutral equation
(1.1)–(1.2) analogously as for the associated delay difference equation, then we have
the following definition.

Definition 3.9. The null solution of the neutral equation (1.1)–(1.2) is strongly
exponentially stable if there exists a number r̂ > 0 such that the null solution of

ẋ(t) +
p1∑
k=1

Hkẋ(t− �γk · (�r + δ�r)) = A0 +
p2∑
k=1

Akx(t− (υk + δυk))

is exponentially stable for all δ�r ∈ (R.+)m and δ�υ ∈ (R+)p2 satisfying ‖δ�r‖ <
r̂, ‖δ�υ‖ < r̂ and rk + δrk > 0, νl + δνl > 0, 1 ≤ k ≤ m, 1 ≤ l ≤ p2.

Then we get the following result.
Proposition 3.10. The null solution of the neutral equation (1.1) is strongly

exponentially stable if and only if cD(�r, �ν) < 0 and Ξ < 0.
Remark 3.11. Proposition 3.10 implies that the interdependency of the delays �υ,

if any, does not affect the strong stability of the neutral equation (3.10), unlike the
interdependence of the delays �τ .
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3.3. Degenerate case. If detΔD(λ; �r) ≡ 1, which occurs, for instance, if all
matrices Hk are lower triangular and have zero diagonal, then the zeros of detΔN

(λ; �r, �υ) are equal to the zeros of

(3.3) Q(λ; �r, �υ) := det

(
λI − adj(ΔD(λ; �r))

(
A0 +

p2∑
k=1

Ake
−λυk

))
.

Equation (3.3) can also be interpreted as the characteristic function of a linear time-
delay system of retarded type, of which the spectral properties carry over (see, e.g.,
[11, 8, 22] for spectral properties of retarded-type systems).

4. Main results, computational expressions for determining strong sta-
bility. The aim of this section is to derive computationally tractable characterizations
of the quantities C̄D(�r) and Ξ, which, by Propositions 3.5 and 3.10, directly result in
strong stability conditions. First, we consider special cases where particular conditions
are put on the interdependence of the delays. In this way expressions are obtained
which directly extend the expressions for the case of independent delays presented
in [23], but the derivation is more involved. Next, we show how an arbitrary delay
dependency of the form (1.2) can be dealt with. The main results will be presented
in Theorems 4.3 and 4.7.

4.1. Results for special dependencies in the delays. We start by stating a
technical lemma.

Lemma 4.1. Assume that there is a vector �β ∈ (R0)m such that

(4.1) �γk · �β = �γl · �β 	= 0 ∀k, l ∈ {1, . . . , p1}.

Let �r ∈ (R+
0 )m and c ∈ R. If the function

�θ ∈ [0, 2π]m → α

(
−

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)

has a global maximum, α0, for �θ = �θ0, then

α0 ∈ σ
(
−

p1∑
k=1

Hke
−c�γk·�re−iγk·�θ0

)
.

Proof. Let λ(�θ0) be an active eigenvalue of
(
−
∑p1
k=1Hke

−c�γk·�re−iγk·�θ0), that is,

�(λ) = α

(
−

p1∑
k=1

Hke
−c�γk·�re−iγk·�θ0

)
.

Because the spectral abscissa of a matrix which smoothly depends on parameters is
a continuously differentiable function of these parameters in the neighborhood of a
global maximum (see [5]), the eigenvalue λ(�θ0) is either simple or semisimple. Hence,
it defines a continuously differentiable function

(4.2) �θ ∈ B(�θ0) → λ(�θ),

where B(�θ0) is some open set of R
m containing �θ0. Let the continuously differ-

entiable functions �θ → w∗
0(�θ) and �θ → v0(�θ) correspond to (normalized) left and
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right eigenvectors: (
λ(�θ)I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
v0(�θ) = 0,(4.3)

w∗
0(�θ)

(
λ(�θ)I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
= 0, �θ ∈ B(�θ0).(4.4)

Because the spectral abscissa has a maximum at �θ0, we have

∂�λ(�θ)
∂θj

∣∣∣∣∣
�θ=�θ0

= 0, j = 1, . . . ,m.

Note that

∂�λ(�θ)
∂θj

∣∣∣∣∣
�θ=�θ0

= � ∂λ(�θ)
∂θj

∣∣∣∣∣
�θ=�θ0

,

where ∂λ(�θ)
∂θj

∣∣
�θ=�θ0

can be computed by differentiating (4.3) at �θ0, premultiplying the

result with w∗
0(�θ0) and using (4.4). In this way we arrive at

(4.5)

∂�(λ(�θ))
∂θj

∣∣∣∣∣
�θ=�θ0

= �
w∗

0(�θ0)
(∑p1

k=1 γk,jiHke
−c�γk·�re−i�γk·�θ0

)
v0(�θ0)

w∗
0(�θ0)v0(�θ0)

= 0, j = 1, . . . ,m.

Let �β ∈ (R0)m be such that condition (4.1) holds. From (4.5) it follows that

0 =
m∑
j=1

βj �

⎛
⎝w∗

0

(∑p1
k=1 γk,jiHke

−c�γk·�re−i�γk·�θ0
)
v0

w∗
0v0

⎞
⎠

= �

⎛
⎝ m∑
j=1

βj
w∗

0

(∑p1
k=1 γk,jiHke

−c�γk·�re−i�γk·�θ0
)
v0

w∗
0v0

⎞
⎠

= �

⎛
⎝w∗

0

(∑p1
k=1(�γk · �β) iHke

−c�γk·�re−i�γk·�θ0
)
v0

w∗
0v0

⎞
⎠

= �

⎛
⎝w∗

0

(∑p1
k=1(�γ1 · �β) iHke

−c�γk·�re−i�γk·�θ0
)
v0

w∗
0v0

⎞
⎠

= (�γ1 · �β) �

⎛
⎝iw∗

0

(∑p1
k=1Hke

−c�γ·�re−i�γk·�θ0
)
v0

w∗
0v0

⎞
⎠

= (�γ1 · �β) �
(
i
w∗

0λ(�θ0)v0
w∗

0v0

)

= −(�γ1 · �β) �(λ(�θ0)).
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We conclude that �(λ(�θ0)) = 0 and �(λ(�θ0)) = α0.
The next result states that under condition (4.1), the quantity C̄D(�r) can be

computed from the zeros of a scalar function.
Proposition 4.2. If detΔD(λ; �r) 	≡ 0 and there is a vector �β ∈ (R0)m such

that

�γk · �β = �γl · �β 	= 0 ∀k, l ∈ {1, . . . , p1},

then for every �r ∈ (R+
0 )m, C̄D(�r) is the largest zero of the function

c ∈ R→ f(c; �r)− 1,

where

(4.6) f(c; �r) = max
�θ∈[0, 2π]m

α

(
−

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
.

Proof. From

(4.7)

C̄D(�r) = max

{
c ∈ R : det

(
I +

p1∑
k=1

Hke
−c�γk·�re−i�γk·�θ

)
= 0

for some �θ ∈ [0, 2π]m
}

(see Proposition 3.2), it follows that there exists at least one value of c such that
f(c; �r) ≥ 1. As limc→+∞ f(c; �r) = 0, the following number is well defined:

ĉ(�r) := max{c : f(c; �r) = 1}.

It is clear that f(c; �r) ≤ 1 if c ≥ ĉ(�r). By (4.7) this implies that

(4.8) ĉ(�r) ≥ C̄D(�r).

Next, from Lemma 4.1 and the fact that f(ĉ(�r); �r) = 1 it follows that there exists
a �θ0(�r) ∈ [0, 2π]p1 such that

1 ∈ σ
(
−

p1∑
k=1

Hke
−ĉ(�r)�γk·�re−i�γk·�θ0(�r)

)
.

By (4.7) one concludes that

(4.9) C̄D(�r) ≥ ĉ(�r).

From (4.8) and (4.9) we get C̄D(�r) = ĉ(�r), which is equivalent to the assertion of the
proposition.

By further imposing that the vector �β, appearing in Proposition 4.2, has positive
components only—among others—an explicit expression for Ξ, and thus an explicit
strong stability condition, is obtained.

Theorem 4.3. Define

(4.10) δ0 := max
�θ∈[0, 2π]m

α

(
−

p1∑
k=1

Hke
−i�γk·�θ

)
.

If detΔD(λ; �r) 	≡ 0 and there is a vector �β ∈ (R+
0 )m such that

�γk · �β = �γl · �β ∀k, l ∈ {1, . . . , p1},
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then the assertion of Proposition 4.2, can be strengthened as follows:
1. for all �r ∈ (R+

0 )m, C̄D(�r) is the unique zero of the strictly decreasing function
c ∈ R → f(c; �τ )− 1, with f given by (4.6);

2. we have

Ξ = sign log(δ0);

3. if δ0 > 1, then there exists a vector �r0 ∈ (R+
0 )m for which C̄D(�r0) > 0.

Proof. We first prove the second and third statements. According to its definition
we evaluate Ξ as

(4.11) Ξ = sign
(
C̄D(�β)

)
.

From Proposition 4.2 C̄D(�β) is the largest zero of the function

c ∈ R → e−c�γ1·�β max
�θ∈[0, 2π]m

α

(
−

p1∑
k=1

Hke
−i�γk·�θ

)
,

thus

(4.12) C̄D(�β) =
1

�γ1 · �β
log(δ0).

The second and third assertions of the proposition follow from (4.11) and (4.12).
The proof of the first assumption is analogous to the proof of Theorem 6 of [23]

and relies on the second assertion, combined with an approximation and continuation
argument.

Remark 4.4. If p1 = m and τk = rk, 1 ≤ k ≤ m, then Proposition 4.3 reduces to
Theorem 6 and Proposition 1 of [23] and δ0 is an equivalent quantity with γ0 of [13].

4.2. Results for general case: Lifting procedure. Recall that the charac-
teristic function of (2.2) is given by

(4.13) ΔD(λ; �r) = det

(
I +

p1∑
k=1

Hke
−λ �γk·�r

)
.

By formally setting

xi = e−λ ri , i = 1, . . . ,m,

the function (4.13) can be interpreted as a multivariable polynomial

(4.14) p(x1, . . . , xm) := det

(
I +

p1∑
k=1

Hk

(
Πm
l=1x

γk,l

l

))
,

with some constraints on the variables.
Using results from realization theory, one can show that the polynomial (4.14)

can be “lifted” and expressed as the determinant of a (linear) pencil. To do so, we
write the polynomial matrix

I +
p1∑
k=1

Hk

(
Πm
l=1x

γk,l

l

)
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γ1,1 times

γp1,1 times

...
... w

· · ·

· · ·

x1

x1x1

x1

...

γp1,m times

γ1,m times

· · ·

· · ·

xm

xm

xm

xm

· · ·

· · ·

+

z ...

+

+

H1

Hp1

Fig. 4.1. Block diagram of the relation (4.15).

as a so-called lower linear fractional representation (see [33]). Let “input” w ∈ R
n

and “output” z ∈ R
n be such that

(4.15) z =

(
I +

p1∑
k=1

Hk

(
Πm
l=1x

γk,l

l

))
w.

This relation can be represented by the block diagram shown in Figure 4.1. By
“pulling out” the square blocks, corresponding to the variables, and collecting them
in a diagonal matrix, it follows that (4.15) is equivalent to

(4.16)
[
z

y

]
= M

[
w

u

]
, u = Δ(x1, . . . , xm) y,

where

(4.17) M =
[
M11 M12

M21 M22

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

s1 blocks︷ ︸︸ ︷
0 · · · 0 H1 · · ·

sp1 blocks︷ ︸︸ ︷
0 · · · 0 Hp1

I 0 · · · 0

0 I
...

...
. . .

0 I 0
...

. . .

I 0 · · · 0

0 I
...

...
. . .

0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
(4.18)

Δ(x1, . . . , xm) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1Inγ1,1

. . .

xmInγ1,m

. . .

x1Inγp1,1

. . .

xmInγp1,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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with sk =
∑m
l=1 γk,l, 1 ≤ k ≤ p1, and Iu, u ∈ N, denoting the u-by-u unity matrix.

From (4.16) we obtain

z = Fl(M,Δ(x1, . . . , xm)) y
:=
(
I +M12Δ(x1, . . . , xm)(I −M22Δ(x1, . . . , xm))−1M21

)
y.

It follows that

p(x1, . . . , xm) = det
(
I +M12Δ(x1, . . . , xm)(I −M22Δ(x1, . . . , xm))−1M21

)
= det

(
I + (I −M22Δ(x1, . . . , xm))−1M21M12Δ(x1, . . . , xm)

)
= det (I + (M21M12 −M22)Δ(x1, . . . , xm))

= det
(
I +

∑m
k=1 H̃kxk

)
,

where

(4.19) H̃k = (M21M12 −M22)Δ(�ek), k = 1, . . . ,m,

and �ek is the kth unit vector in R
m. In this way, we arrive at the following result.

Proposition 4.5. There always exist real square matrices H̃1, . . . , H̃m of equal
dimensions such that

(4.20) p(x1, . . . , xm) = det

(
I +

m∑
k=1

H̃kxk

)
,

or, equivalently,

(4.21) det ΔD(λ; �r) = det

(
I +

m∑
k=1

H̃ke
−λrk

)
.

A solution is given by (4.19), where M and Δ are defined in (4.17) and (4.18).
Remark 4.6. The lifting of (4.14) to an expression of the form (4.20) is not

unique. Furthermore, the presented solution (4.17)–(4.19) does not necessarily cor-
respond to a solution where the matrices H̃k have minimal dimensions. In fact, a
minimal realization can be obtained from a block diagram representation of (4.15)
(possibly different from the one shown in Figure 4.1), where the number of square
blocks (thus, the dimension of Δ(x1, . . . , xm)) is minimal. As we shall illustrate with
two examples, the construction of such minimal realization strongly depends on the
specific properties of the polynomial under consideration and is hard to automate.
Notice here that finding an algorithm for the automatic construction of a minimal
realization is still an open problem in realization theory. Note also that the lifting
procedure presented above is systematic and generally applicable. For more results
on linear fractional representations (LFRs) of multivariable polynomials we refer to
the specialized literature; see, e.g., Chapter 10 in [33] for representations coming from
state-space realizations in control theory, and Chapter 14 in [15] for many references
and extensions to symmetric representations and polynomials with noncommutative
variables. See also [20] for an excellent user-friendly publicly available MATLAB tool-
box which contains—among other things—routines to compute LFRs and numerical
heuristics to reduce the order of LFRs.

We now return to the original problem. From the expression (4.21) it follows
that ΔD(λ; �r) can be interpreted as the characteristic function of the “lifted”
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difference equation

χ(t) +
m∑
k=1

H̃kχ(t− rk) = 0.

As this equation satisfies the condition assumed in the propositions of section 4.1, the
following result directly follows.

Theorem 4.7. For the delay difference equation (2.2) we have

Ξ = sign log(δ0),

where

δ0 := max
�θ∈[0, 2π]m

α

(
m∑
k=1

−H̃ke
−iθk

)

and the matrices H̃k are such that (4.21) in Proposition 4.5 holds.
Furthermore, for all �r ∈ (R+

0 )m, C̄D(�r) is the unique zero of the strictly decreas-
ing function

c ∈ R→ f(c; �r) = max
�θ∈[0, 2π]m

α

(
m∑
k=1

−H̃ke
−crke−iθk

)
.

With two examples we illustrate the lifting procedure for the computation of
the matrices H̃k, 1 ≤ k ≤ m, because this is the main step in the application of
Theorem 4.7.

Example 4.8. If p1 = 3, m = 2, and

�γ1 = (1, 0), �γ2 = (0, 1), �γ3 = (1, 1),

then the delay difference equation (2.2) becomes

(4.22) z(t) +H1z(t− r1) +H2z(t− r2) +H3z(t− (r1 + r2)) = 0.

This case is not directly covered in section 4.1 since there does not exist a vector
�β ∈ (R+

0 )M such that

�γk · �β = �γl · �β 	= 0 ∀k, l ∈ {1, 2, 3}.

The characteristic equation of (4.22) is given by

det
(
I +H1e

−λr1 +H2e
−λr2 +H3e

−λ(r1+r2)
)

= 0.

An application of Proposition 4.5 leads to the equivalent expression

det

⎛
⎜⎜⎜⎝I +

⎡
⎢⎢⎢⎣
H1 0 0 0
H1 0 0 0
H1 0 0 0
0 0 −I 0

⎤
⎥⎥⎥⎦ e−λr1 +

⎡
⎢⎢⎢⎣

0 H2 0 H3

0 H2 0 H3

0 H2 0 H3

0 0 0 0

⎤
⎥⎥⎥⎦ e−λr2

⎞
⎟⎟⎟⎠ = 0.

In Figure 4.2 (top) we show a block diagram of the relation

(4.23) z = (I +H1x1 +H2x2 +H3x1x2) w,
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+

+ x1

H2

w

H1

x2

x1

H2

H3

H1

+

+
x2+

+

+

z w

+

+

+

z
H3 x1

Fig. 4.2. Block diagram representation of (4.23) (above) and (4.25) (below), using a minimum
number of square blocks.

where we have minimized the number of square blocks (corresponding to a variable),
that is, we have minimized the dimension of Δ(x1, x2). It leads to the minimal order3

lifting, given by

(4.24) det

⎛
⎜⎜⎜⎜⎝I +

[
H1 0

H2H1 −H3 0

]
︸ ︷︷ ︸

H̃1

e−λr1 +
[

0 I

0 H2

]
︸ ︷︷ ︸

H̃2

e−λr2

⎞
⎟⎟⎟⎟⎠ = 0.

Example 4.9. If p1 = 3, m = 2, and

�γ1 = (1, 0), �γ2 = (0, 1), �γ3 = (2, 1),

then the characteristic equation of (2.2) becomes

det
(
I +H1e

−λr1 +H2e
−λr2 +H3e

−λ(2r1+r2)
)

= 0.

The systematic lifting procedure proposed in Proposition 4.7 leads us to the equivalent
expression

det

⎛
⎜⎜⎜⎜⎜⎝I +

⎡
⎢⎢⎢⎢⎢⎣

H1 0 0 0 0
H1 0 0 0 0
H1 0 0 0 0
0 0 −I 0 0
0 0 0 −I 0

⎤
⎥⎥⎥⎥⎥⎦ e

−λr1 +

⎡
⎢⎢⎢⎢⎢⎣

0 H2 0 0 H3

0 H2 0 0 H3

0 H2 0 0 H3

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ e

−λr2

⎞
⎟⎟⎟⎟⎟⎠ = 0.

3without assumptions on the matrices Hk . A further reduction may be possible when the matrices
Hk are specified or information about their structure is present.
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A minimal order lifting follows from the block diagram representation of

(4.25) z = (I +H1x1 +H2x2 +H3x1x2) w,

shown in Figure 4.2 (bottom), and it is given by

(4.26) det

⎛
⎜⎜⎜⎜⎜⎜⎝
I +

⎡
⎢⎣

H1 0 0
−I 0 0
H2H1 −H3 0

⎤
⎥⎦

︸ ︷︷ ︸
H̃1

e−λr1 +

⎡
⎢⎣

0 0 I

0 0 0
0 0 H2

⎤
⎥⎦

︸ ︷︷ ︸
H̃2

e−λr2

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

Finally, we illustrate that the lifting step is necessary if the assumption on the
interdependency of the delays of Proposition 4.3 is not satisfied.

Example 4.10. When applying Theorem 4.7 to the delay difference equation

z(t) +
20
101

z(t− r1)−
40
101

z(t− r2)−
80
101

z(t− (r1 + r2)) = 0,

for which the lifting (4.24) can be used, we get δ0 = 0.9945 < 1, thus Ξ < 0, and
we can conclude strong stability. On the other hand, formula (4.10) would result in
δ0 = 1.0066 > 1. This demonstrates that lifting may be necessary if the assumption
of Proposition 4.3 is not satisfied, and that the assertions of Proposition 4.3 are not
condensed formulations of the assertions of Theorem 4.7.

5. Illustrations and applications.

5.1. Numerical example. We apply the theoretical results derived above to
the system

(5.1)
d

dt

(
x(t) +

3∑
k=1

Hkx(t− τk)
)

= A0x(t) +A1x(t− ν1),

where the system matrices are given by

(5.2)
H1 =

[ 1
2 0
− 1

8
1
2

]
, H2 =

[ − 1
8 1
− 1

4
1
4

]
, H3 =

[ − 1
8 − 1

4

0 1
8

]
,

A0 =
[

0 − 11
40

11
80 0

]
, A1 =

[ − 1
64 − 1

8

− 1
8 − 1

32

]

and the dependency of the delays is described by

(5.3) τ1 = r1, τ2 = r2, τ3 = 2r1 + r2,

with r1 and r2 independent.
In Figure 5.1 we show the rightmost characteristic roots of (5.1)–(5.3) for (r1, r2) =

(1, 2) and ν1 = 1, computed with the quasi-polynomial mapping–based rootfinder
(QPMR) [30]. Note that the exponentially transformed characteristic roots corre-
spond to the eigenvalues of the operator T (1; (r1, r2), υ1). We have

cN((1, 2), 1) = −0.025 and cD((1, 2)) = −0.191.
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Fig. 5.1. Rightmost characteristic roots of the system (5.1)–(5.3) with (r1, r2) = (1, 2) and
ν1 = 1. Dots—characteristic roots of the neutral system; crosses—characteristic roots of the asso-
ciated difference equation.

Let us remark that the latter quantity can be calculated from the zeros of a polyno-
mial, because

ΔD(λ; (1, 2)) = det(I +H1χ+H2χ
2 +H3χ

4),

provided χ = e−λ. Thus, if the characteristic roots of the delay difference equation
with the commensurate delays are exponentially transformed, they are mapped to a
finite number of points. Due to the relation

σe(T (t; (r1, r2), ν1)) = σ(TD(t; (r1, r2))),

the transformed roots of the neutral system accumulate to these points. This can be
seen in the right frame of Figure 5.1.

In order to show the effect of small delay perturbations, we depict in Figure 5.2
the characteristic roots of (5.1)–(5.3) for (r1, r2) = (1, 2+π/100) and ν1 = 1. We also
indicate the quantity

C̄D((1, 2), ν1) = −0.066,

which can be computed by applying Theorem 4.7, starting from the representation
(4.26). The fact that C̄D((1, 2)) > cD((1, 2)) illustrates the noncontinuity of the
function �r → cD(�r). Notice from Figures 5.1–5.2 that in any right half plane {λ ∈ C :
�(λ) > C̄D+ε}, ε > 0, the neutral equation has only a finite number of characteristic
roots.

Because C̄D((1, 2)) < 0, which implies Ξ < 0, and cD((1, 2), 1) < 0, the null
solution of (5.1)–(5.3) is strongly exponentially stable.

If one is only interested in checking strong stability of the delay difference equa-
tion, then according to Theorem 4.7 it is sufficient to check whether δ0 < 1, where

(5.4) δ0 = max
�θ∈[0, 2π]2

α
(
−H̃1e

−iθ1 − H̃2e
−iθ2

)
,
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Fig. 5.2. Rightmost characteristic roots of the system (5.1)–(5.3) with (r1, r2) = (1, 2 + π
100

)
and ν1 = 1.

with H̃1, H̃2 defined in (4.26). From (5.4) we get

δ0 = max
θ∈[0,2π]

α(−H̃1 − H̃2e
−iθ) = 0.901.

In Figure 5.3 we show contour lines of the spectral abscissa function

(5.5) (θ1, θ2) → α(−H̃1e
−iθ1 − H̃2e

−iθ2),

as well as curves corresponding to the values of θ1 and θ2 for which a rightmost
eigenvalue of

(5.6) −H̃1e
−iθ1 − H̃2e

−iθ2

is real. As can be seen from the figure, the matrix (5.6) has a real rightmost eigenvalue
if (θ1, θ2) is a global maximizer of (5.5). This is in accordance with the statement of
Lemma 4.1.

Finally, let us illustrate that the effect of delay perturbations strongly depends
on the interdependence of the delays. If, instead of the relation (5.3), we assume that
the delays τk, 1 ≤ k ≤ 3, in (5.1) can vary independently of each other independent,
that is,

τk = rk, k = 1, . . . , 3,

then we get

C̄D((1, 2, 4)) = 0.055,

which shows that strong stability is lost. Note for comparison that with the previously
considered dependency structure (5.3) the nominal values �r = (1, 2) also corresponded
to �τ = (1, 2, 4).
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6

Fig. 5.3. Contour lines of the function (5.5). The global maxima are indicated with “◦”. The
dark curves correspond to values of θ1 and θ2 for which the rightmost eigenvalue of (5.6) is real.

5.2. Boundary-controlled partial differential equation. The following
model from [19] (see also [6, 24] for a simplified version) describes movement of a
string fixed at one side and controlled by changing the direction of the external force
at the other side:

wtt(x, t)− wxx(x, t) + 2awt(x, t) + a2w(x, t) = 0, t ≥ 0, x ∈ [0, 1],(5.7)

w(0, t) = 0, wx(1, t) = −kwt(1, t− h).(5.8)

The variable w(x, t) describes the movement at position x at time t. The parameter
h ≥ 0 represents a small delay in the velocity feedback, k ≥ 0 is the controller gain,
and a ≥ 0 represents a damping constant.

When substituting a solution of the form w(x, t) = eλtz(x) in (5.7)–(5.8) the
following characteristic equation is obtained:

(5.9) 1 + e−2ae−λ2 + ke−λh − ke−2ae−λ(2+h) = 0.

Note that this equation can be interpreted as the characteristic equation of a delay
difference equation of the form (2.2), exhibiting three delays (τ1, τ2, τ3) = (2, h, 2 + h)
that depend on two independent delays (r1, r2) = (2, h).

If h = 0, the characteristic roots are

λ = −1
2

log
∣∣∣∣1 + k

1− k

∣∣∣∣− a+ i
(
πl +

π

4
(1 + sign(k − 1))

)
, l ∈ Z.

As for all k 	= 1,

(5.10) c(k) := −1
2

log
∣∣∣∣1 + k

1− k

∣∣∣∣− a < 0,

the system with h = 0 is stable for all k 	= 1. As k approaches 1, the real parts of the
characteristic roots move off to −∞, which indicates superstability at k = 1 (meaning
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that perturbations disappear in a finite time). This is indeed the case and can be
explained as follows: the general solution of (5.7) can be written as a combination
of two traveling waves: a solution φ(x − t)e−at moving to the right and a solution
ψ(x + t)e−at moving to the left. If k = 1, then φ(x − t)e−at satisfies the second
boundary condition, and thus the reflection coefficient at x = 1 is zero; at x = 0
the wave φ(x + t) is reflected completely. Consequently all perturbations of the zero
solution disappear in a finite time (at most 2 time units).

Next, we look at the effect of a small feedback delay h in the application of the
boundary control. If the delays (r1, r2) = (2, h) are rationally independent, which
occurs if h is an irrational number, then we have cD(�r) = C̄D(�r) (Proposition 3.2),
and the stability condition is given by Ξ < 0 (which also guarantees stability for all
h > 0). To compute Ξ, we apply Theorem 4.7, based on the lifting (4.24). This yields

δ0 = max(θ1,θ2)∈[0, 2π]2 α

(
−
[
e−2a 0
2ke−2a 0

]
e−iθ1 −

[
0 1
0 k

]
e−iθ2

)

= maxθ∈[0, 2π] rσ

([
e−2a 0
2ke−2a 0

]
+
[

0 1
0 k

]
e−iθ

)

= max
{
|λ| : 1− k(λ+ e−2a)

λ2 − e−2aλ
eiθ = 0, θ ∈ [0, 2π], λ ∈ C

}

= max
{
|λ| :

∣∣∣∣k(λ+ e−2a)
λ2 − e−2aλ

∣∣∣∣ = 1, λ ∈ C

}

= max

⎧⎨
⎩|λ| :

k
(
1 + e−2a

|λ|
)

|λ− e−2a| = 1, λ ∈ C

⎫⎬
⎭

=
1
2

(
e−2a + k +

√
(e−2a + k)2 + 4ke−2a

)
.

It follows that

Ξ = sign log(δ0) < 0⇔ k < tanh(a),

where < can be replaced with >,=. We conclude with the following:
1. If k < tanh(a), then the system (5.7)–(5.8) is exponentially stable for all
h ≥ 0.

2. If k > tanh(a), then the system (5.7)–(5.8) is exponentially unstable for all
irrational values of h. Consequently, there exist arbitrarily small values of
h that destroy the exponential stability of the system without delay in the
boundary control.

5.3. Delay robustness of state derivative feedback control. In [1, 2] the
problem of stabilization and control of the linear system

(5.11) ẋ(t) = Ax(t) +Bu(t),

where x(t) ∈ R
n is the vector of state variables, u ∈ R

nu(t) is the vector of inputs,
and A, B are constant coefficient matrices of compatible dimension, has been solved
by the state derivative feedback controller

(5.12) u(t) = −Kdẋ(t).

The use of state derivative control law is motivated by its easy implementation in
applications where accelerometers are used for measuring the system motion, e.g.,
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applications in vibration control, where the state variables typically correspond to
positions and velocities. In [1, 2], it is shown that if the system (5.11) is controllable,
and det(A) 	= 0, then all the characteristic roots of the closed-loop system can be
assigned at arbitrary positions in C \ {0}. However, results described in [31] indicate
that stability of the state derivative feedback control may not be robust against small
feedback delays. This issue is investigated in what follows.

If we assume that there is a delay τuk
on the kth component of input u, 1 ≤ k ≤ nu,

and a delay τxl
in the measurement of the lth component of ẋ, 1 ≤ l ≤ n, then the

closed-loop system (5.11)–(5.12) becomes

(5.13) ẋ(t) +
nu∑
k=1

BEk

n∑
l=1

KdFlẋ(t− τuk
− τxl

) = Ax(t),

where Ek = [eki,j ] ∈ R
nu×nu and Fl = [f li,j ] ∈ R

n×n satisfy

eki,j =
{

1, i = j = k,

0, otherwise,
f li,j =

{
1, i = j = l,

0, otherwise

for k = 1, . . . , nu and l = 1, . . . , n. Equation (5.13) is of the general form (1.1),
provided that we set

(5.14)
p1 = nun, p2 = 0, m = nu + n,

(τ1, . . . , τp1) = (τu1 + τx1 , . . . , τu1 + τxn , . . . , τunu
+ τx1 , τunu

+ τxn),
(r1, . . . , rm) = (τu1 , . . . , τunu

, τx1 , . . . , τxn),

and we define vectors �γk, 1 ≤ k ≤ p1, and matrices A0, Hk, 1 ≤ k ≤ p1, accordingly.
We have the following result.

Proposition 5.1. Assume the system (5.11) is stabilized with the control law
(5.12).

If the feedback gain Kd is such that

γ0(Kd):=max

{
α

(
−

nu∑
k=1

BEk

n∑
l=1

KdFle
i(μk+νl)

)
: �μ ∈ [0, 2π]nu , �ν ∈ [0, 2π]n

}
< 1,

then the exponential stability of the closed-loop system is robust against small feedback
delays.

If γ0(Kd) ≥ 1, then the exponential stability of the closed-loop stability is not
robust against small delay perturbations.

Proof. The interdependence between the delays of the neutral system (5.13)
satisfies the condition of Proposition 4.3. Furthermore, for this system the quantity
δ0, defined in Proposition 4.3, reduces to γ0(Kd). Consequently, if γ0(Kd) < 1, then
Ξ < 0. By the bounds on the characteristic roots given in Lemma 3.7, the continuity
of the individual characteristic roots w.r.t. the delay parameters and the exponential
stability of the delay-free system, we conclude that cD(�r, �υ) < 0 for sufficiently small
values of �r and �υ. Robustness of stability follows. If γ0(Kd) > 1, then the null
solution of (5.13) is not strongly exponentially stable, which implies that infinitesimal
perturbations on the (arbitrarily small) delays destroy exponential stability.

6. Conclusions. The stability theory for neutral equations and delay difference
equation subjected to delay perturbations has been developed for the case where
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the delays have an arbitrary dependency structure, with the emphasis on spectral
properties and computational expressions for C̄D and Ξ that, among others, lead to
explicit strong stability conditions.

Instrumental to this, it has been shown that a general delay difference equation
with dependent delays can always be transformed, without changing the characteristic
equation, into a delay difference equation with possibly larger dimension but with
independent delays, such that the stability theory for systems with independent delays
can be applied to complete the theory. An essential step of the constructive procedure
consists of representing a multivariate polynomial as the determinant of a pencil. In
this sense it is remarkable how the realization theory, commonly used in robust control
and optimization, has proven its usefulness to the problems considered in the paper,
which are of a different nature. In addition special cases have been addressed for which
the lifting step, which may increase the computational complexity, can be omitted.

More specifically the main results are presented in Theorem 4.3, holding for a
special dependency of the delays, and Theorem 4.7, holding for the general case. The-
orem 4.7 depends on a lifting of the characteristic function for which Proposition 4.5
guarantees the existence and provides a constructive solution.

The results derived in the paper have been applied to various problems, including
the study of the effects of unmodeled delays on the stability of a boundary-controlled
hyperbolic partial differential equation and of a control scheme involving state deriva-
tive feedback, being of importance in vibration control applications. These examples
illustrate the importance of taking into account small delays or delay perturbations,
as well as the dependency structure of the delays.

Appendix A. Proof of Lemma 3.7. Because ΔD(λ; �r) is invertible, we can
write the characteristic equation in the form

det

(
λI −ΔD(λ; �r)−1

(
A0 +

p2∑
k=1

Ake
−λυk

))
= 0.

This equation can be interpreted as

λ ∈ σ
(

ΔD(λ; �r)−1

(
A0 +

p2∑
k=1

Ake
−λυk

))
,

which implies

|λ| ≤
∥∥∥∥∥ΔD(λ; �r)−1

(
A0 +

p2∑
k=1

Ake
−λυk

)∥∥∥∥∥ .
By further working out the estimate, we arrive at the assertion.

Appendix B. Proof of Proposition 3.8. We prove continuity at (�r, �υ) =
(�r0, �υ0), where we consider two cases.

Case 1. C̄D(�r0) ≥ cN (�r0, �υ0).
The proof is by contradiction. By item (1) of Proposition 3.2 a violation of the

continuity property would imply the existence of sequences
{
�r()

}
≥1

,
{
�υ()

}
≥1

and
the existence of a number ε > 0 such that

lim
→∞�r() = �r0, lim

→∞ �υ() = �υ0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRONG STABILITY OF NEUTRAL EQUATIONS 785

and

cN (�r(), �υ()) ≥ C̄D(�r0) + ε ∀� ≥ 1.

As a consequence, there exists a sequence of complex numbers {λ()}≥1 satisfying

ΔN (λ(); �r(), �υ()) = 0, �(λ()) > C̄D(�r0) + ε/2 ∀� ≥ 1.

By Lemma 3.7, there is a compact subset of C which contains all elements of the
sequence {λ()}≥1. Consequently, this sequence has at least one accumulation point
λ̂. From Rouché’s theorem it follows that

ΔN (λ̂; �r0, �υ0) = 0.

Because �(λ̂) > C̄D(�r0), we arrive at cN (�r0, �υ0) > C̄D(�r0) and have a contradiction.
Case 2. C̄D(�r0) < cN (�r0, �υ0).
Let ε > 0 be such that C̄D(�r0)+ε < cN (�r0, �υ0) and ΔN (C̄D(�r0)+ε+jω; �r0, �υ0) 	= 0

for all ω ≥ 0. From Lemma 3.7 one concludes that the number of zeros of ΔN in the
right half plane

H := {λ ∈ C : �(λ) > C̄D(�r0) + ε}

is finite and invariant for ‖�r − �r0‖ < δ and ‖υ − υ0‖ < δ, with δ sufficiently small.
The assertion is a consequence of the continuity of the zeros of ΔN in the half place
H w.r.t. the delay parameters �r, �υ and the continuity of C̄D w.r.t. �r.
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GENERAL PROJECTIVE SPLITTING METHODS FOR SUMS OF
MAXIMAL MONOTONE OPERATORS∗

JONATHAN ECKSTEIN† AND B. F. SVAITER‡

Abstract. We describe a general projective framework for finding a zero of the sum of n maximal
monotone operators over a real Hilbert space. Unlike prior methods for this problem, we neither
assume n = 2 nor first reduce the problem to the case n = 2. Our analysis defines a closed convex
extended solution set for which we can construct a separating hyperplane by individually evaluating
the resolvent of each operator. At the cost of a single, computationally simple projection step,
this framework gives rise to a family of splitting methods of unprecedented flexibility: numerous
parameters, including the proximal stepsize, may vary by iteration and by operator. The order
of operator evaluation may vary by iteration and may be either serial or parallel. The analysis
essentially generalizes our prior results for the case n = 2. We also include a relative error criterion
for approximately evaluating resolvents, which was not present in our earlier work.
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1. Background and introduction. This paper considers the inclusion

(1.1) 0 ∈ T1(x) + · · ·+ Tn(x),

where n ≥ 2 and T1, . . . , Tn are set-valued maximal monotone operators on some real
Hilbert space H. Our interest is in splitting methods for this problem: iterative al-
gorithms which may evaluate the individual operators Ti or (perhaps approximately)
their resolvents (I + λTi)

−1, λ > 0, at various points in H but never resolvents of
sums of the Ti. The idea is that (1.1) has been formulated so that each individual Ti
has some relatively convenient structure, but sums of two or more of the Ti might not.
Thus, we seek iterative decomposition algorithms that evaluate only the “easy” resol-
vents (I + λTi)

−1 and not “difficult” compound resolvents such as (I + λ(Ti + Tj))
−1,

i �= j.
Algorithms of this form have been studied since the 1970s [16], although their

roots in numerical methods for single-valued and in particular linear mappings are
much older [8, 22]. In the extensive literature of these methods, the case n = 2
predominates. The most attractive convergence theory among n = 2 algorithms
belongs to the Peaceman–Rachford and Douglas–Rachford class, which form a single
related family using iterations of the form

(1.2) sk+1 =
(
1− ρk

2

)
sk +

ρk
2
RλT1

(
RλT2

(
sk
))
,
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where λ > 0 is fixed, {ρk} ⊂ [0, 2] is a sequence of scalars, and, for any operator T ,
RλT denotes the map 2(I + λT )−1 − I. References to this class of methods in the
context of set-valued monotone operators include [16, 15, 9, 10]. The method of partial
inverses [27] is a special case of this approach. If any solutions to 0 ∈ T1(x) + T2(x)
exist, this method can be shown to converge weakly under mild assumptions on {ρk}
to some point s = x+ λy, where y ∈ T2(x) and −y ∈ T1(x), so 0 ∈ T1(x) + T2(x).

Another family of n = 2 methods is the double-backward class; see, for example,
[17, 21, 7, 4]. These methods use the comparatively simple iteration

(1.3) xk+1 = (I + λkT1)
−1(I + λkT2)

−1 (
xk
)
,

where {λk} is a sequence of positive scalars. These methods have attractive conver-
gence properties, but, unfortunately, solutions to (1.1) are not fixed points of (1.3)
for general maximal monotone operators T1 and T2. Only if {λk} approaches zero
in a particular way is this approach known to solve (1.1). It does not appear that
double-backward algorithms are used in practice for (1.1).

Splitting methods of the forward-backward class, generalizing standard gradient
projection methods for variational inequalities and optimization problems, are more
popular than double-backward methods and use the recursion

(1.4) xk+1 ∈ (I + λkT2)
−1 (

xk − λkT1

(
xk
))
,

where {λk} is again a sequence of positive scalars. References applying such methods
to problems in the form (1.1) with n = 2 include [12, 28]. However, such methods
must typically impose additional assumptions on at least one of the operators T1 or
T2, usually T1.

Traditionally, splitting algorithms allowing n > 2 have either explicitly or implic-
itly relied on reduction of (1.1) to the case n = 2 in the product space Hn, endowed
with the canonical inner product 〈(x1, . . . , xn), (y1, . . . , yn)〉 =

∑n
i=1〈xi, yi〉, as fol-

lows: define the closed subspace

(1.5) W
def= {(w1, . . . , wn) ∈ Hn | w1 + w2 + · · ·+ wn = 0} ,

whose orthogonal complement is

W⊥ = {(v1, . . . , vn) ∈ Hn | v1 = v2 = · · · = vn } = {(v, v, . . . , v) | v ∈ H} .

Next, define two operatorsA,B : Hn ⇒ Hn via A def= T1⊗T2⊗· · ·⊗Tn and B def= NW⊥ ,
the normal cone map of W⊥, that is,

A(x1, . . . , xn) = T1(x1)× T2(x2)× · · · × Tn(xn),(1.6)

B(x1, . . . , xn) =
{
W if x1 = x2 = · · · = xn,
∅ otherwise.(1.7)

Using the maximal monotonicity of T1, . . . , Tn, it is straightforward to establish that
A and B are maximal monotone on Hn and that

0 ∈ A(x1, . . . , xn) +B(x1, . . . , xn)(1.8)
⇔ x1 = x2 = · · · = xn, ∃ yi ∈ Ti(xi), i = 1, . . . , n : y1 + y2 + · · ·+ yn = 0
⇔ x1 = x2 = · · · = xn solves (1.1).
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Applying Douglas–Rachford splitting to (1.8) produces Spingarn’s method [27, sec-
tion 5], in which one performs independent proximal steps on each of the operators
T1, . . . , Tn and then computes the next iterate by essentially averaging the results.
In this setting, a proximal step on one operator cannot “feed” information into the
proximal step for another operator within the same iteration. Applying a different
n = 2 splitting method to (1.8) cannot alter this situation: evaluating the resolvent of
A as defined in (1.6) will always yield independent, essentially simultaneous resolvent
evaluations for T1, . . . , Tn.

A notable special case of (1.1) is the convex feasibility problem of finding a point
in the intersection of n closed convex sets C1, . . . , Cn. If for i = 1, . . . , n one lets
Ti = NCi , the normal cone map of the set Ci, then solving problem (1.1) is equivalent
to finding a point x ∈

⋂n
i=1 Ci, and each resolvent operator (I + λTi)

−1 is simply the
projection map onto the corresponding set Ci. In this special case, any solution x
to (1.1) has the property of also being a zero of every constituent operator Ti, that
is, if x satisfies 0 ∈ T1(x) + · · · + Tn(x), then one in fact has 0 ∈ Ti(x), i = 1, . . . , n.
This special property makes possible a wide variety of specialized methods composed
of projection operations onto the individual sets Ci in a very flexible manner; see,
for example, [2, 3] for some examples of the rich and extensive literature of such
algorithms. Unfortunately, however, these algorithms do not generalize readily to the
arbitrary maximal monotone operator setting (1.1), in which the solution xmay not be
a root of any of the constituent operators Ti. Thus, until quite recently [11], forward-
backward, double-backward, and Peaceman/Douglas–Rachford, all using reduction to
the case n = 2, were in essence the only splitting algorithms available for the general
problem (1.1).

Here, we propose to take a new, projective approach to splitting algorithms for
the general problem (1.1) with n ≥ 2, generalizing our prior work [11] for the case
n = 2. We make use of a product space, but in a somewhat different manner than the
standard reduction to n = 2; instead, we define an extended solution set corresponding
to (1.1) in the product space Hn+1. We also employ projection, but not by trying
to generalize successive projection methods for the special case Ti = NCi . Instead,
we use a simple generic projection algorithm based on separating hyperplanes to
produce a sequence weakly convergent to a point in the extended solution set. The
decomposition properties of the algorithm arise from the particular way in which
we construct the separating hyperplanes. This approach allows for a generality and
flexibility not present in prior splitting methods for (1.1), while still applying in the
general case.

The remainder of this paper is organized as follows: section 2 defines the ex-
tended solution set and analyzes some of its fundamental properties. To clarify the
basic structure of our algorithm, we then introduce it in two stages: section 3 first
describes a generic, abstract family of projection methods for finding a point in the
extended solution set, giving general convergence conditions. Section 4 then spe-
cializes this abstract family to a concrete family characterized by a large number of
parameters, presenting conditions under which it conforms to section 3’s convergence
conditions. Section 5 describes some variations and special cases of the algorithm of
section 4, in particular showing that it subsumes Spingarn’s method [27]. Section 6
describes some simple, preliminary computational experiments suggesting that our
approach has the potential to converge significantly faster than prior splitting algo-
rithms. Finally, section 7 gives some conclusions and topics for future research, while
two appendices prove some technical results needed for sections 3 and 4.
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2. The extended solution set and its separators. Consider now the Hilbert
space H ×Hn = Hn+1 under the canonical inner product

〈(v, w1, . . . , wn), (x, y1, . . . , yn)〉 = 〈v, x〉+
n∑
i=1

〈wi, yi〉,

and define the closed linear subspace

(2.1) V
def= H ×W =

{
(v, w1, . . . , wn) ∈ Hn+1 | w1 + · · ·+ wn = 0

}
.

We define the extended solution set for problem (1.1) to be

(2.2) Se(T1, . . . , Tn)
def= {(z, w1, . . . , wn) ∈ V | wi ∈ Ti(z), i = 1, . . . , n} .

Lemma 2.1. Finding a point in Se(T1, . . . , Tn) is equivalent to solving (1.1) in
the sense that

0 ∈ T1(z) + · · ·+ Tn(z) ⇐⇒ ∃w1, . . . , wn ∈ H : (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn).

Proof. For any z ∈ H, 0 ∈ T1(z)+· · ·+Tn(z) if and only if there exist w1, . . . , wn ∈
H such that w1 + · · ·+wn = 0 and wi ∈ Ti(z) for i = 1, . . . , n. This condition in turn
holds if and only if (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn).

Proposition 2.2. If the monotone operators T1, . . . , Tn : H ⇒ H are maximal,
the corresponding extended solution set Se(T1, . . . , Tn) is closed and convex in Hn+1.
Further, if (z, w1, . . . , wn) and (z′, w′

1, . . . , w
′
n) are any two points in Se(T1, . . . , Tn),

then 〈z − z′, wj − w′
j〉 = 0 for all j = 1, . . . , n.

Proof. Closedness of Se(T1, . . . , Tn) follows immediately from (2.2), the closedness
of the linear subspace V , and the closedness of the graphs of the maximal monotone
operators T1, . . . , Tn. To prove convexity, take any scalars p, q ≥ 0, p+ q = 1, and any

(z, w1, . . . , wn), (z′, w′
1, . . . , w

′
n) ∈ Se(T1, . . . , Tn).

If we can establish that

p(z, w1, . . . , wn) + q(z′, w′
1, . . . , w

′
n) ∈ Se(T1, . . . , Tn),

the proof of convexity will be complete. Since V ⊃ Se(T1, . . . , Tn) is a linear subspace,
it is clear that p(z, w1, . . . , wn) + q(z′, w′

1, . . . , w
′
n) ∈ V . From (2.2), it thus remains

only to show that for all j = 1, . . . , n,

(2.3) pwj + qw′
j ∈ Tj(pz + qz′).

To this end, fix any j ∈ {1, . . . , n}. By the monotonicity of the Ti, we have that
〈z − z′, wi − w′

i〉 ≥ 0 for all i = 1, . . . , n, and so

0 ≤
〈
z − z′, wj − w′

j

〉
≤

n∑
i=1

〈z − z′, wi − w′
i〉 =

〈
z − z′,

n∑
i=1

wi −
n∑
i=1

w′
i

〉
.

Since
∑n

1 wi = 0 and
∑n

1 w
′
i = 0, we conclude that 〈z − z′, wj − w′

j〉 = 0, es-
tablishing the second statement of the proposition. Now, consider an arbitrary



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERAL PROJECTIVE SPLITTING 791

(ẑ, ŵj) ∈ graph(Tj), and observe that〈
ẑ − (pz + qz′), ŵj −

(
pwj + qw′

j

)〉
= p
〈
ẑ − z, ŵj −

(
pwj + qw′

j

)〉
+ q
〈
ẑ − z′, ŵj −

(
pwj + qw′

j

)〉
= p
〈
ẑ − z, ŵj − (1 − q)wj − qw′

j

〉
+ q
〈
ẑ − z′, ŵj − pwj − (1− p)w′

j

〉
= p 〈ẑ − z, ŵj − wj〉+ pq

〈
ẑ − z, wj − w′

j

〉
+ q
〈
ẑ − z′, ŵj − w′

j

〉
+ pq

〈
ẑ − z′, w′

j − wj
〉

= p 〈ẑ − z, ŵj − wj〉+ q
〈
ẑ − z′, ŵj − w′

j

〉
+ pq

〈
(ẑ − z)− (ẑ − z′), wj − w′

j

〉
= p 〈ẑ − z, ŵj − wj〉+ q

〈
ẑ − z′, ŵj − w′

j

〉
− pq〈z − z′, wj − w′

j〉︸ ︷︷ ︸
= 0= p 〈ẑ − z, ŵj − wj〉+ q

〈
ẑ − z′, ŵj − w′

j

〉
.

The monotonicity of Tj implies that 〈ẑ − z, ŵj − wj〉 ≥ 0 and 〈ẑ − z′, ŵj − w′
j〉 ≥ 0,

so we conclude that 〈ẑ − (pz + qz′), ŵj − (pwj + qw′
j)〉 ≥ 0. Since (ẑ, ŵj) ∈ graph(Tj)

was arbitrary and Tj is maximal, (2.3) holds, and Se(T1, . . . , Tn) must be
convex.

Although we do not use it in the development of our algorithm, it is now nearly
immediate to obtain the following result about Se(T1, . . . , Tn).

Corollary 2.3. The interior of Se(T1, . . . , Tn) is empty relative to both Hn+1

and V .
Proof. Take any p = (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn) and any nonzero v ∈ H. For

ε ≥ 0, consider the point p′(ε) = (z + εv, w1 + εv, w2 − εv, w3, . . . , wn). As p ∈ V , we
have (w1 + εv)+ (w2− εv)+w3 + · · ·+wn = w1 + · · ·+wn = 0, and so p′(ε) ∈ V . Let
intV denote the interior relative to V . Now, if p ∈ intV Se(T1, . . . , Tn), then we should
have to have p′(ε) ∈ Se(T1, . . . , Tn) for all sufficiently small ε > 0. But if p′(ε) ∈
Se(T1, . . . , Tn), then Proposition 2.2 implies 0 = 〈z − (z + εv), w1 − (w1 + εv)〉 =
〈−εv,−εv〉 = ε2‖v‖2. Since v �= 0, we immediately obtain ε = 0 and thus a con-
tradiction. We conclude p �∈ intV Se(T1, . . . , Tn) and, since p was arbitrary, that
intV Se(T1, . . . , Tn) = ∅. Since Se(T1, . . . , Tn)’s interior is empty relative to V , it is
also empty relative to Hn+1 ⊃ V .

Several variations on the definition of Se(T1, . . . , Tn) are also possible. One pos-
sibility is to implicitly define wn in terms of w1, . . . , wn−1, obtaining

{(z, w1, . . . , wn−1) | wi ∈ Ti(z), i = 1, . . . , n− 1, −(w1 + · · ·+ wn−1) ∈ Tn(z)} .

This variation, in the case n = 2, is used in our earlier work [11]. Another possible
variation is to use the set

(2.4)

⎧⎨
⎩(z1, . . . , zn, w1, . . . , wn)

∣∣∣∣∣∣
z1 = z2 = · · · = zn
w1 + w2 + · · ·+ wn = 0
wi ∈ Ti(zi), i = 1, . . . , n

⎫⎬
⎭ ,

which is the intersection of the sets graph(NW⊥) and (after some permutation of
indices) graph(T1)× graph(T2)× · · · × graph(Tn) in H2n. Such variations in the defi-
nition of Se(T1, . . . , Tn) do not lead to material differences in the algorithms resulting
from the analysis in sections 3 and 4 below.

In view of Lemma 2.1 and Proposition 2.2, we attempt to solve (1.1) by finding a
point in Se(T1, . . . , Tn), a problem we in turn approach by using a separator-projection
algorithm. The separating hyperplanes used in our algorithm are constructed in a
simple manner from points (xi, yi) ∈ graph(Ti), i = 1, . . . , n. The following lemma
details the construction and properties of these separators.
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Lemma 2.4. Given (xi, yi) ∈ graph(Ti), i = 1, . . . , n, define ϕ : V → R via

(2.5) ϕ(z, w1, . . . , wn)
def=

n∑
i=1

〈z − xi, yi − wi〉.

Then, for any (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn), one has ϕ(z, w1, . . . , wn) ≤ 0, that is,

Se(T1, . . . , Tn) ⊆ {(z, w1, . . . , wn) ∈ V | ϕ(z, w1, . . . , wn) ≤ 0} .

Additionally, ϕ is affine on V , with

∇ϕ =

(
n∑
i=1

yi, x1 − x̄, x2 − x̄, . . . , xn − x̄
)
, where x̄

def=
1
n

n∑
i=1

xi,(2.6)

and

∇ϕ = 0 ⇐⇒ (x1, y1, . . . , yn) ∈ Se(T1, . . . , Tn), x1 = x2 = · · · = xn

⇐⇒ ϕ(z, w1, . . . , wn) = 0 ∀(z, w1, . . . , wn) ∈ V.

Proof. Take any (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn). For each i = 1, . . . , n, we have
wi ∈ Ti(z) and yi ∈ T (xi). Since Ti is monotone, we have 〈z − xi, wi − yi〉 ≥ 0.
Negating and summing these inequalities, we conclude that ϕ(z, w1, . . . , wn) ≤ 0,
proving the first claim.

Next, take (z, w1, . . . , wn) to be an arbitrary element of V . Expanding and re-
grouping the inner products in (2.5), we obtain

ϕ(z, w1, . . . , wn) =

〈
z,

n∑
i=1

yi

〉
−
〈
z,

n∑
i=1

wi

〉
−

n∑
i=1

〈xi, yi〉+
n∑
i=1

〈xi, wi〉

(2.7)

=

〈
z,

n∑
i=1

yi

〉
−

n∑
i=1

〈xi, yi〉+
n∑
i=1

〈xi, wi〉(2.8)

=

〈
z,

n∑
i=1

yi

〉
−

n∑
i=1

〈xi, yi〉+
n∑
i=1

〈xi − x̄, wi〉+
〈
x̄,

n∑
i=1

wi

〉

=

〈
z,

n∑
i=1

yi

〉
+

n∑
i=1

〈xi − x̄, wi〉 −
n∑
i=1

〈xi, yi〉(2.9)

=

〈
(z, w1, . . . , wn),

(
n∑
i=1

yi, x1 − x̄, . . . , xn − x̄
)〉
−

n∑
i=1

〈xi, yi〉,

where (2.8) and (2.9) follow from
∑n

i=1 wi = 0 since (z, w1, . . . , wn) ∈ V . Because∑n
i=1(xi−x̄) =

∑n
i=1 xi−

∑n
i=1 xi = 0, we have that (

∑n
i=1 yi, x1−x̄, . . . , xn−x̄) ∈ V .

Thus, the last form of ϕ(z, w1, . . . , wn) above shows that ϕ is indeed an affine function
on the space V , and ∇ϕ = (

∑n
i=1 yi, x1 − x̄, . . . , xn − x̄).

Finally, we note that ∇ϕ = 0 if and only if
∑n

i=1 yi = 0 and x1 = · · · = xn =
x̄. In that case, since yi ∈ Ti(xi), i = 1, . . . , n, one also has (x1, y1, . . . , yn) =
(x̄, y1, . . . , yn) ∈ Se(T1, . . . , Tn). In this case, we have

∑n
i=1〈xi, yi〉 = 〈x1,

∑n
i=1 yi〉 =

〈x1, 0〉 = 0, and we conclude that ϕ is the zero function.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GENERAL PROJECTIVE SPLITTING 793

Note that ϕ is not an affine function on the space Hn+1 but only on its subspace
V , where the “cross term” 〈z,

∑n
i=1 wi〉 in (2.7) must be zero. We will thus implement

our algorithm within the subspace V .
Next, it is natural to ask, given a point (z, w1, . . . , wn) in V \Se(T1, . . . , Tn), how

to choose the pairs (xi, yi) ∈ graph(Ti) so that ϕ separates (z, w1, . . . , wn) from
Se(T1, . . . , Tn), that is, ϕ(z, w1, . . . , wn) > 0. In fact, such a choice may be accom-
plished by a “prox” operation on each of the operators T1, . . . , Tn. By the maximal
monotonicity of the Ti and the classic results of [18], there exists for each i = 1, . . . , n
a unique (xi, yi) ∈ graph(Ti) such that xi + yi = z + wi. Rearranging this equation,
we obtain z − xi = yi − wi and thus that ϕ(z, w1, . . . , wn) =

∑n
i=1 ‖z − xi‖

2. Thus,
ϕ(z, w1, . . . , wn) > 0 unless x1 = · · · = xn = z, in which case it is easily deduced
that yi = wi for all i, and therefore (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn), contrary to the
assumption. Finding the necessary (xi, yi) ∈ graph(Ti) is equivalent to evaluating the
resolvent (I + Ti)−1, which is, by assumption, tractable for each individual Ti. We
will greatly generalize this procedure for determining a separator in section 4 below.

3. An abstract family of projection algorithms. We now have the necessary
ingredients for implementing a projection method: a closed convex set S and at
least one tractable procedure for calculating a separator between S and any p �∈ S.
Therefore, we may apply the following algorithmic template.

Algorithm 1. Suppose S �= ∅ is a closed convex set in a real Hilbert space U .
Start with an arbitrary p0 ∈ U . Then, for k = 0, 1, . . . , repeat the following:

1. Determine a non-constant differentiable affine function ϕk : U → R such that
ϕk(p) ≤ 0 for all p ∈ S.

2. Let pk be the projection of pk onto the halfspace Hk
def= {p ∈ U | ϕk(p) ≤ 0},

that is,

(3.1) pk = pk −
max

{
0, ϕk

(
pk
)}

‖∇ϕk‖2
∇ϕk.

3. Choose some relaxation parameter ρk ∈ (0, 2), and set

pk+1 = pk + ρk
(
pk − pk

)
.

The last two steps may simply be condensed to

(3.2) pk+1 = pk − ρk
max

{
0, ϕk

(
pk
)}

‖∇ϕk‖2
∇ϕk.

The basic properties of this algorithmic form may be derived by following the analysis
of classical projection algorithms, dating back to Cimmino [6] and Kaczmarz [13, 14] in
the late 1930s. A comprehensive review of projection algorithms may be found in [2].
As in any (relaxed) projection method, the sequences generated by Algorithm 1 behave
as follows: for any p∗ ∈ S, then p∗ ∈ Hk and the firm nonexpansiveness property of
the projection mapping onto Hk assures that for all k ≥ 0,∥∥p∗ − pk∥∥2 ≤ ∥∥p∗ − pk∥∥2 − ∥∥pk − pk∥∥2 ,(3.3) ∥∥p∗ − pk+1

∥∥2 ≤ ∥∥p∗ − pk∥∥2 − ρk(2− ρk)∥∥pk+1 − pk
∥∥2 .(3.4)

The basic behavior of this class of methods is as follows; we omit the proof, which is
entirely standard.

Proposition 3.1. Any infinite sequence {pk} generated by Algorithm 1 behaves
as follows:



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

794 JONATHAN ECKSTEIN AND B. F. SVAITER

1. For any p∗ ∈ S, the sequence {‖pk − p∗‖} is nonincreasing—that is, {pk} is
Fejér monotone to S.

2. If pk0 ∈ S for some k0 ≥ 0, then pk = pk0 for all k ≥ k0.
3. If {pk} has a strong accumulation point in S, then the whole sequence con-

verges to that point.
4. If S is nonempty, then {pk} is bounded. Moreover, if there exist ρ, ρ such

that 0 < ρ ≤ ρk ≤ ρ < 2 for all k, then

∞∑
k=0

∥∥pk − pk∥∥2 <∞, ∞∑
k=0

∥∥pk − pk+1
∥∥2 <∞.(3.5)

5. The sequence {pk} has at most one weak accumulation point in S.
Note, however, that the basic template of Algorithm 1 is not sufficient to ensure

weak convergence of {pk} to a point in S because the separators ϕk might not be cho-
sen to actually separate pk from S or might separate in a pathologically “shallow” way.
The analysis of [11] guarantees convergence using the condition ϕk(pk) ≥ ξ ‖∇ϕk‖2
for all k ≥ 0, where ξ > 0 is a fixed constant. We will also use this condition below.

We now restate and specialize Algorithm 1 for the case S = Se(T1, . . . , Tn) and
U = V , with the separators constructed as in Lemma 2.4. We do not for the moment
assume any particular way of choosing the (xi, yi) ∈ graph(Ti) yielding the separator.

Algorithm 2. Start with an arbitrary p0 = (z0, w0
1 , . . . , w

0
n) ∈ V . Then, for

k = 0, 1, . . . , repeat the following:
1. For i = 1, . . . , n, choose some (xki , y

k
i ) ∈ graph(Ti).

2. If xk1 = xk2 = · · · = xkn and
∑n

i=1 y
k
i = 0, let wk+1

i = yki for i = 1, . . . , n and
zk+1 = xk1 . Otherwise, continue:

3. Let ϕk : V → R be the separator derived from (xki , y
k
i ) via (2.5), that is,

(3.6) ϕk(z, w1, . . . , wn)
def=

n∑
i=1

〈
z − xki , yki − wi

〉
,

and let pk+1 = (zk+1, wk+1
1 , . . . , wk+1

n ) be the projection of pk onto the half-
space Hk

def= {p ∈ V | ϕk(p) ≤ 0}, with an overrelaxation factor ρk ∈ (0, 2),
that is,

x̄k =
1
n

n∑
i=1

xki ,(3.7)

θk =
max

{
0,
∑n
i=1

〈
zk − xki , yki − wki

〉}
∥∥∑n

i=1 y
k
i

∥∥2 +
∑n
i=1

∥∥xki − x̄k∥∥2 ,(3.8)

zk+1 = zk − ρkθk
n∑
i=1

yki ,(3.9)

wk+1
i = wki − ρkθk

(
xki − x̄k

)
, i = 1, . . . , n.(3.10)

Note that the test in step 2 guarantees that the denominator in (3.8) cannot be
zero. Formula (2.6) for the gradient of ϕk implies that (3.7)–(3.10) indeed calculate the
overrelaxed projection of pk onto Hk, and Algorithm 2 is thus Algorithm 1 specialized
to U = V and S = Se(T1, . . . , Tn). Note also that pk ∈ V and the update (3.10)
ensure wk+1

1 + · · · + wk+1
n = 0, so by induction the entire iterate sequence {pk} =

{(zk, wk1 , . . . , wkn)} produced by Algorithm 2 lies in V .
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We now perform a preliminary analysis of the convergence properties of Algo-
rithm 2.

Proposition 3.2. Suppose that the following conditions are met in Algorithm 2:
1. Se(T1, . . . , Tn) �= ∅.
2. 0 < ρ ≤ ρk ≤ ρ < 2 for all k.
3. There exists some scalar ξ > 0 such that, for all k ≥ 0,

ϕk
(
pk
)

= ϕk
(
t(zk, wk1 , . . . , w

k
n

)
≥ ξ ‖∇ϕk‖2(3.11)

= ξ

⎛
⎝
∥∥∥∥∥
n∑
i=1

yki

∥∥∥∥∥
2

+
n∑
i=1

∥∥xki − x̄k∥∥2
⎞
⎠ .

Then ∇ϕk → 0, that is, xki − xkj → 0 for all i, j = 1, . . . , n, and
∑n

i=1 y
k
i → 0.

Furthermore, ϕk(pk)→ 0. If it is also true that
4. either H has finite dimension or the operator T1 + · · ·+ Tn is maximal,
5. zk − x̄k → 0,
6. wki − yki → 0, for i = 1, . . . , n,

then {pk} converges weakly to some p∞ = (z∞, w∞
1 , . . . , w

∞
n ) ∈ Se(T1, . . . , Tn), which

implies that z∞ solves (1.1). Furthermore, xki
w→ z∞ and yki

w→ w∞
i for i = 1, . . . , n.

Proof. The hypothesis that ϕk(pk) ≥ ξ ‖∇ϕk‖2 implies that ϕk(pk) is always
nonnegative, so we obtain from (3.1) that

(3.12)
∥∥pk − pk∥∥ = ϕk

(
pk
)
/‖∇ϕk‖

for all k having ∇ϕk �= 0. Substituting ϕk(pk) ≥ ξ ‖∇ϕk‖2 into this equation, we
obtain

(3.13)
∥∥pk − pk∥∥ ≥ ξ ‖∇ϕk‖ ,

which clearly also holds for k having ∇ϕk = 0. From (3.5), which must hold by
hypotheses 1–2 and Proposition 3.1(4), we have ‖pk − pk‖ → 0, so (3.13) implies
∇ϕk → 0. From the expression for ∇ϕk in (2.6), we immediately have

∑n
i=1 y

k
i → 0

and xki − x̄k → 0 for i = 1, . . . , n, and thus xki − xkj → 0 for all i, j = 1, . . . , n.
Multiplying (3.12) by ‖∇ϕk‖, we obtain that

(3.14) ϕk
(
pk
)

=
∥∥pk − pk∥∥ ‖∇ϕk‖

whenever ∇ϕk �= 0. By Lemma 2.4, ϕk(pk) = 0 whenever ∇ϕk = 0, so (3.14) holds
for all k ≥ 0. Since we have established that ∇ϕk → 0 and we also know that
‖pk − pk‖ → 0 , (3.14) implies that ϕk(pk)→ 0. The first set of conclusions are now
established; note also that by hypothesis 1 and Fejér monotonicity, the sequence {pk}
is bounded.

To prove the remainder of the proposition, we now assume that hyphotheses 4–6
also hold. From hypothesis 5 and xki − x̄k → 0, we immediately obtain

(3.15) zk − xki → 0, i = 1, . . . , n.

In hypothesis 4, suppose first that H is finite-dimensional. Consider any cluster
point p∞ = (z∞, w∞

1 , . . . , w
∞
n ) of the bounded sequence {pk}. There then exists a

subsequence {pk}k∈K converging to p∞. From (3.15), we then have xki →k∈K z∞,
i = 1, . . . , n. Similarly, hypothesis 6 implies yki →k∈K w∞

i , i = 1, . . . , n. Because
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(xki , y
k
i ) ∈ graph(Ti) for all i and k, and the maximality of the operators Ti implies

that the sets graph(Ti) are closed, we then obtain w∞
i ∈ Ti(z∞) for all i = 1, . . . , n.

Furthermore, since {pk} ⊂ V and V is a closed subspace, we also have p∞ ∈ V and
thus p∞ ∈ Se(T1, . . . , Tn). Finally, we apply Proposition 3.1(3) to obtain that the
entire sequence {pk} converges to p∞ ∈ Se(T1, . . . , Tn).

Now, assume the other alternative in hypothesis 4, that T1 + · · ·+ Tn is maximal
monotone. Let p∞ be any weak cluster point of {pk}. Then there exists a subsequence
{pk}k∈K weakly convergent to p∞, and, using hypotheses 5 and 6, we conclude that
(xki , y

k
i )

w→k∈K (z∞, w∞
i ), i = 1, . . . , n. Next, we apply Proposition A.1 from Ap-

pendix A to conclude that p∞ = (z∞, w∞
1 , . . . , w

∞
n ) ∈ Se(T1, . . . , Tn). Since p∞ was

chosen arbitrarily, all weak cluster points of {pk} are in Se(T1, . . . , Tn). Then we may
apply Proposition 3.1(5) to conclude that the entire sequence {pk} converges weakly
to p∞.

In either case, the remaining conclusions follow from hypothesis 6 and
(3.15).

4. A general projective splitting scheme. To convert Algorithm 2 into an
implementable procedure for solving (1.1), we must specify a way of choosing the
(xki , y

k
i ) ∈ graph(Ti) so that the hypotheses of Proposition 3.2 are satisfied. One

simple approach, as mentioned at the end of section 2, would be to choose the unique
(xki , y

k
i ) ∈ graph(Ti) satisfying xki + yki = zk + wki . A simple generalization would be

to add a proximal parameter λki > 0, yielding

(4.1) xki + λki y
k
i = zk + λki w

k
i .

This scheme may in fact be greatly generalized without sacrificing its basic decom-
posability. Suppose for the moment that in each iteration we perform the proximal
calculations for the Ti sequentially, starting with i = 1 and finishing with i = n.
We may then wish to use the “recent” information generated in calculating (xkj , y

k
j ),

where j < i, when calculating (xki , y
k
i ). Specifically, when calculating (xki , y

k
i ), we

consider replacing zk with an affine combination of the vectors zk and xkj , j < i. In
particular, we first find the unique (xk1 , y

k
1 ) ∈ graph(T1) such that

xk1 + λk1y
k
1 = zk + λk1w

k
1 .

We next take some αk21 ∈ R and find the unique (xk2 , y
k
2 ) ∈ graph(T2) such that

xk2 + λk2y
k
2 =

(
1− αk21

)
zk + αk21x

k
1 + λk2w

k
2 .

To continue, we choose some αk31, α
k
32 ∈ R and find the unique (xk3 , y

k
3 ) ∈ graph(T3)

such that

xk3 + λk3y
k
3 =

(
1− αk31 − αk32

)
zk + αk31x

k
1 + αk32x

k
2 + λk3w

k
3

and so forth. In general, we choose (xki , y
k
i ) to satisfy the conditions

xki + λki y
k
i =

⎛
⎝1−

i−1∑
j=1

αkij

⎞
⎠ zk +

i−1∑
j=1

αkijx
k
j + λki w

k
i , yki ∈ Ti

(
xki
)
.(4.2)

In addition to the flexibility afforded by the choice of the αkij and λki , we consider
several further generalizations of (4.2):
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• We will allow errors eki ∈ H in satisfying (4.2), so long as they satisfy the
approximation criterion (4.8) below.
• The order of processing the operators may vary from iteration to iteration.

At iteration k, we process the operators in the order specified by an arbitrary
permutation πk(·) of {1, . . . , n}.

Thus, we arrive at the general scheme that, for all i = 1, . . . , n and k ≥ 0, we have
yki ∈ Ti(xki ) and

(4.3) xkπk(i) + λki y
k
πk(i) =

⎛
⎝1−

i−1∑
j=1

αkij

⎞
⎠ zk +

i−1∑
j=1

αkijx
k
πk(j) + λkiw

k
πk(i) + eki .

Note that the notion of processing the operators in some particular order πk(·) does
not necessarily preclude parallelism over i in evaluating (4.3), depending on how one
chooses the αkij . For example, if we choose αkij = 0 for all i, j and set the error terms
eki = 0, then (4.3) reduces to (4.1), which may be calculated independently and in
parallel over i.

To analyze this scheme, we will employ some standard matrix analysis: given an
n × n real matrix L, we define ‖L‖ to be its operator 2-norm and κ(L) to be the
smallest eigenvalue of its symmetric part, that is,

‖L‖ def= max
x∈R

n

‖x‖=1

‖Lx‖ symL def= 1
2 (L + L�), κ(L), def= min eig symL.

Note that it is straightforward to show that κ(L) ≤ ‖L‖ and that, for any x ∈ R
n,

〈x,Lx〉 ≥ κ(L) ‖x‖2. Analogously to the usual linear map R
n → R

n associated with
L, we can define a linear mapping Hn → Hn corresponding to L via

(4.4) Lu = L(u1, . . . , un) = (v1, . . . , vn), where vi =
n∑
j=1

�ijuj ∈ H,

with �ij denoting the elements of L. As one would intuitively expect, this mapping
retains key spectral properties that L exhibits over R

n.
Lemma 4.1. Let L be any n× n real matrix. For all u = (u1, . . . , un) ∈ Hn,

‖Lu‖ ≤ ‖L‖ ‖u‖ ,(4.5)

〈u,Lu〉 ≥ κ(L) ‖u‖2 ,(4.6)

where Lu is defined by (4.4), 〈·, ·〉 denotes the canonical inner product for Hn induced
by the inner product for H, and ‖·‖ applied to elements of Hn denotes the norm
induced by this inner product.

Appendix B proves this result. Of particular interest are the n × n matrices
Λk = diag(λk1 , λ

k
2 , . . . , λ

k
n) and Ak = [a(k)

ij ]i,j=1,...,n, where

a
(k)
ij =

⎧⎨
⎩

1, i = j,
−αkij , i > j,
0, i < j.

We will show that if there exist β, ζ > 0 such that

κ
(
Λ−1
k Ak

)
, ≥ ζ

∥∥Λ−1
k Ak

∥∥ ≤ β ∀ k ≥ 0,(4.7)
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then choosing the (xki , y
k
i ) ∈ graph(Ti) via (4.3) will meet all of the hypotheses of

Proposition 3.2, and we will obtain weak convergence. Stated in full, including the
approximate calculation criterion, the algorithm is as follows.

Algorithm 3. Choose scalars β, ζ > 0, 0 < ρ ≤ ρ < 2, and σ ∈ [0, 1). Start with
an arbitrary (z0, w0

1 , . . . , w
0
n) ∈ V , that is, z0, w0

1 , . . . , w
0
n ∈ H with w0

1 + · · ·+w0
n = 0.

Then, for k = 0, 1, . . . , repeat the following:
1. Choose scalars λki > 0, i = 1, . . . , n, and αkij, 1 ≤ j < i ≤ n, such that
κ(Λ−1

k Ak) ≥ ζ and
∥∥Λ−1

k Ak

∥∥ ≤ β, where Λk and Ak are defined as above.
Let πk(·) be any permutation of {1, . . . , n}. For i = 1, · · · , n, find (xki , y

k
i ) ∈

graph(Ti) satisfying (4.3) and

(4.8)
n∑
i=1

(
λki
)−2 ∥∥eki ∥∥2 ≤ σ2κ

(
Λ−1
k Ak

)2 n∑
i=1

∥∥xki − zk∥∥2 .
2. If xk1 = xk2 = · · · = xkn and

∑n
i=1 y

k
i = 0, let wk+1

i = yki for i = 1, . . . , n and
zk+1 = xk1 . Otherwise, continue:

3. Choose some ρk ∈ [ρ, ρ], and set

x̄k =
1
n

n∑
i=1

xki ,(4.9)

θk =
∑n
i=1

〈
zk − xki , yki − wki

〉
∥∥∑n

i=1 y
k
i

∥∥2 +
∑n
i=1

∥∥xki − x̄k∥∥2 ,(4.10)

zk+1 = zk − ρkθk
n∑
i=1

yki ,(4.11)

wk+1
i = wki − ρkθk

(
xki − x̄k

)
, i = 1, . . . , n.(4.12)

The error condition (4.8) is an n-operator generalization of the relative error toler-
ance proposed in [24, 23, 26] for modified proximal-extragradient projection methods.
Note that β’s only role in the statement of the algorithm is to guarantee ‖Λ−1

k Ak‖
remains bounded, that is, that {Λ−1

k Ak} is a bounded sequence of matrices. Such
boundedness may be assured by any sufficient condition bounding the absolute values
|a(k)
ij /λ

k
i | of all entries of {Λ−1

k Ak}. For example, if there exist λ, α ≥ 0 such that
λki ≥ λ and |αkij | ≤ α for all k ≥ 1, i = 1, . . . , n, and 1 ≤ j < i, then {Λ−1

k Ak}
must be bounded, and some β satisfying the condition ‖Λ−1

k Ak‖ ≤ β for all k ≥ 0
must exist. In practice, we may therefore substitute conditions such as λki ≥ λ and
|αkij | ≤ α for the condition ‖Λ−1

k Ak‖ ≤ β in step 3 of the algorithm. We now prove
convergence of the method.

Proposition 4.2. Suppose that either H has finite dimension or the operator
T1+· · ·+Tn is maximal. Suppose also that (1.1) has a solution. Then, in Algorithm 3,
the sequences {zk}, {xk1}, . . . , {xkn} ⊂ H all weakly converge to some z∞ solving (1.1).
For each i = 1, . . . , n, we also have wki , y

k
i

w→ y∞i , where y∞i ∈ Ti(z∞) and also
y∞1 + · · ·+ y∞n = 0.

Proof. Define auxiliary sequences {pk} ⊂ Hn+1, {uk} = {(uk1 , . . . , ukn)} ⊂ Hn,
and {vk} = {(vk1 , . . . , vkn)} ⊂ Hn via

pk
def=
(
zk, wk1 , . . . , w

k
n

)
, uki

def= xki − zk, vki
def= wki − yki(4.13)
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for all i = 1, . . . , n and k ≥ 0, and also define as in (3.6) the function

ϕk(p) = ϕk(z, w1, . . . , wn)
def=

n∑
i=1

〈
z − xki , yki − wi

〉
.

From (4.13), we immediately have

ϕk
(
pk
)

= ϕk
(
zk, wk1 , . . . , w

k
n

)
=

n∑
i=1

〈
zk − xki , yki − wki

〉

=
〈
uk, vk

〉
=

n∑
i=1

〈
uki , v

k
i

〉
.(4.14)

Further, define ek = (ek1 , . . . , e
k
n) ∈ Hn for all k ≥ 0, and observe that by taking

square roots and substitution of the definitions of ek and uk, (4.8) simplifies via the
notation (4.4) and the definition of Λk to

(4.15)
∥∥Λ−1

k ek
∥∥ ≤ σκ(Λ−1

k Ak

) ∥∥uk∥∥ .
Take any i ∈ {1, . . . , n}. Subtracting zk from both sides of (4.3) and regrouping yields

(
xkπk(i) − zk

)
+ λki y

k
πk(i) =

i−1∑
j=1

αkij

(
xkπk(j) − zk

)
+ λkiw

k
πk(i) + eki

⇔
(
xkπk(i) − zk

)
−

i−1∑
j=1

αkij

(
xkπk(j) − zk

)
− eki = λki

(
wkπk(i) − ykπk(i)

)
.

Dividing by λki and substituting the definitions of uki and vki yields

(4.16)
(

1
λki

)⎛⎝ukπk(i) −
i−1∑
j=1

αkiju
k
πk(j) − eki

⎞
⎠ = vkπk(i).

Applying the notation (4.4) to (4.16) for i = 1, . . . , n produces

(4.17) vk =
(
ΠkΛ−1

k AkΠ�
k

)
uk −

(
ΠkΛ−1

k

)
ek,

where Πk is the n × n permutation matrix corresponding to the permutation πk(·).
Substituting (4.17) into (4.14) yields

ϕk
(
pk
)

=
〈
uk, ΠkΛ−1

k AkΠ�
ku

k
〉
−
〈
uk, ΠkΛ−1

k ek
〉

≥
〈
uk, ΠkΛ−1

k AkΠ�
ku

k
〉
−
∥∥uk∥∥∥∥ΠkΛ−1

k ek
∥∥ [ Cauchy–Schwarz ]

≥ κ
(
ΠkΛ−1

k AkΠ�
k

) ∥∥uk∥∥2 −
∥∥uk∥∥∥∥ΠkΛ−1

k ek
∥∥ [ using (4.6) ]

= κ
(
Λ−1
k Ak

) ∥∥uk∥∥2 − ∥∥uk∥∥∥∥Λ−1
k ek

∥∥ [Πk orthonormal ]

≥ κ
(
Λ−1
k Ak

) ∥∥uk∥∥2 − σκ(Λ−1
k Ak)

∥∥uk∥∥2 [ using (4.15) ]

= (1− σ)κ(Λ−1
k Ak)

∥∥uk∥∥2
≥ (1− σ)ζ

∥∥uk∥∥2
. [ using (4.7) ](4.18)
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To meet hypothesis 3 of Proposition 3.2, we need to convert this lower bound on
ϕk(pk), expressed in terms of ‖uk‖2, to one expressed in terms of ‖∇ϕk‖2. To do so,
first note that since

∑n
i=1 w

k
i = 0,

(4.19)
n∑
i=1

vki =
n∑
i=1

(
wki − yki

)
= −

n∑
i=1

yki ⇒
∥∥∥∥∥
n∑
i=1

vki

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

yki

∥∥∥∥∥
2

.

Next, define

ūk
def=

1
n

n∑
i=1

uki =
1
n

n∑
i=1

(
xki − zk

)
= x̄k − zk,

and observe that for all i = 1, . . . , n and k ≥ 0,

(4.20) uki − ūk = xki − zk −
(
x̄k − zk

)
= xki − x̄k.

Substituting (4.19) and (4.20) into the expression for ‖∇ϕk‖2 arising from Lemma 2.4,
we obtain

‖∇ϕk‖2 =

∥∥∥∥∥
n∑
i=1

yki

∥∥∥∥∥
2

+
n∑
i=1

∥∥xkk − x̄k∥∥2

=

∥∥∥∥∥
n∑
i=1

vki

∥∥∥∥∥
2

+
n∑
i=1

∥∥uki − ūk∥∥2
=

1
n

∥∥Evk∥∥2
+
∥∥Muk

∥∥2
,

where we define E to be the n × n matrix of all ones and M = I − (1/n)E. Apply-
ing (4.5), it then follows that

(4.21) ‖∇ϕk‖2 ≤
1
n

∥∥Evk∥∥2 +
∥∥Muk

∥∥2 ≤ 1
n
‖E‖2

∥∥vk∥∥2 + ‖M‖2
∥∥uk∥∥2 .

Over R
n, the matrix M represents orthogonal projection onto the nontrivial subspace

T = {(t1, . . . , tn) ∈ R
n | t1 + · · ·+ tn = 0}, so we conclude ‖M‖ = 1. It also follows

that I − M represents orthogonal projection onto the nontrivial subspace T⊥, so
‖I −M‖ = 1 and ‖E‖ = ‖n(I −M)‖ = n ‖I −M‖ = n. Therefore, (4.21) reduces to

(4.22) ‖∇ϕk‖2 ≤
(

1
n

)
n2
∥∥vk∥∥2 +

∥∥uk∥∥2 = n
∥∥vk∥∥2

+
∥∥uk∥∥2 .

Starting with (4.17), we obtain∥∥vk∥∥2 =
∥∥(ΠkΛ−1

k AkΠ�
k

)
uk −ΠkΛ−1

k ek
∥∥2

≤
(∥∥(ΠkΛ−1

k AkΠ�
k

)
uk
∥∥+

∥∥ΠkΛ−1
k ek

∥∥)2 [ triangle inequality ]

≤
(∥∥ΠkΛ−1

k AkΠ�
k

∥∥∥∥uk∥∥+
∥∥Λ−1

k ek
∥∥)2 [ using (4.5) ]

≤
(∥∥Λ−1

k Ak

∥∥∥∥uk∥∥+ σκ
(
Λ−1
k Ak

) ∥∥uk∥∥)2 [ using (4.15) ]

≤
(
(1 + σ)

∥∥Λ−1
k Ak

∥∥∥∥uk∥∥)2 [κ(Λ−1
k Ak) ≤ ‖Λ−1

k Ak‖ ]

≤
(
(1 + σ)β

∥∥uk∥∥)2 [ using (4.7) ]

= (1 + σ)2β2
∥∥uk∥∥2 .(4.23)
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Combining (4.22) and (4.23) yields

‖∇ϕk‖2 ≤
(
n(1 + σ)2β2 + 1

)∥∥uk∥∥2 .
Combining this inequality with (4.18) yields

(4.24) ϕk
(
pk
)
≥ (1− σ)ζ
n(1 + σ)2β2 + 1

‖∇ϕk‖2 ,

implying that hypothesis 3 of Proposition 3.2 is satisfied by setting

ξ =
(1− σ)ζ

n(1 + σ)2β2 + 1
> 0.

Note that (4.24) implies ϕk(pk) is always nonnegative so that (4.10) is equivalent
to (3.8), even though the max{0, ·} operation is omitted. In view of (4.24), Proposi-
tion 3.2 guarantees that ∇ϕk → 0 and ϕk(pk) → 0. From (4.18), we then conclude
uk → 0, from which (4.23) implies that vk → 0. Thus, we have uki = xki − zk → 0 and
vki = wki − yki → 0 for all i = 1, . . . , n, fulfilling hypotheses 5 and 6 of Proposition 3.2.
Hypothesis 4 is satisfied by assumption, so all of the hypotheses of Proposition 3.2
hold. The (weak) convergence of the sequences {zk}, {xki }, {wki }, and {yki } then
follows from Proposition 3.2.

Note that the approximation criterion (4.8) is implied by the simpler condition

(4.25)
n∑
i=1

(
λki
)−2 ∥∥eki ∥∥2 ≤ σ2ζ2

n∑
i=1

∥∥xki − zk∥∥2 ,
which might be more convenient to use in practice. The most appropriate way to meet
either (4.8) or (4.25) will likely depend on the application. One common situation is
that only one of the operators, say, T1, has a resolvent difficult enough to warrant
approximate computation. For example, suppose F : R

m → R
m is a monotone single-

valued map, and consider converting the complementarity problem of finding x ∈ R
m

such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0(4.26)

to the form 0 ∈ T1(x)+T2(x) by setting T1 = F and T2 = NR
m
+

, as in [10]. Evaluating
the resolvent of T1 then involves solving a possibly large system of linear or nonlin-
ear equations, whereas the resolvent of T2 is simply projection onto the nonnegative
orthant. Thus, we might want to evaluate the resolvent of T1 approximately using
some iterative equation solver, while it is straightforward to evaluate the resolvent of
T2 exactly. A similar situation would occur for the problem

(4.27)
min f(x)
ST x ∈ C2 ∩C3 ∩ · · · ∩ Cn,

where f : R
m → R is a twice-differentiable convex function and C2, . . . , Cn ⊆ R

m are
closed convex sets whose individual projection maps are easy to compute. By setting
T1 = ∇f and Ti = NCi for i = 2, . . . , n, we obtain a situation where the resolvents
of T2, . . . , Tn are easy to evaluate exactly, but we may want to evaluate the resolvent
of T1 approximately using an iterative unconstrained optimization method. In cases
like (4.26) and (4.27), (4.8) simplifies to ‖eπ−1

k
(1)‖2 ≤ σ2κ(Λ−1

k Ak)
2∑n

i=1‖xki − zk‖2.
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If more than one operator is a candidate for approximate computation, one simple
option would be to require

(
λki
)−2 ∥∥eki ∥∥2 ≤ σ2κ

(
Λ−1
k Ak

)2 ∥∥xki − zk∥∥2 , i = 1, . . . , n,

since summing these inequalities yields (4.8). However, this approach may be more
restrictive than necessary. A less restrictive option would be to interleave iterations
for calculating all of the (xi, yi) ∈ graph(Ti) and terminate as soon as (4.8) itself is
satisfied.

5. Variations and special cases. Rewriting (4.3) as

xkπk(i) + λki y
k
πk(i) = zk +

i−1∑
j=1

αkij
(
xπk(j) − zk

)
+ λkiw

k
πk(i) + eki ,

it is natural to consider whether the algorithm could be further generalized by treating
the yki in a matter symmetric to the xki . That is, for some βkij , 1 ≤ j < i ≤ n, one
might try to use the ykπk(j) information generated earlier in the same iteration by
replacing (4.3) with

xkπk(i)+λ
k
i y
k
πk(i) = zk+

i−1∑
j=1

αkij
(
xπk(j) − zk

)
+λki

⎡
⎣wkπk(i) +

i−1∑
j=1

βkij

(
yπk(j) − wkπk(j)

)⎤⎦+ eki .

However, if eki ≡ 0, it turns out that this modification does not add any generality
to the algorithm. The reason is that it is possible to redefine the αkij to obtain an
equivalent recursion with βkij ≡ 0. We omit the analysis in the interest of brevity;
while more complicated, it resembles that for a similar 2-operator result in [11].

5.1. Including a scaling factor. A simple variation of the algorithm may be
obtained by multiplying the inclusion (1.1) through by any scalar η > 0, arriving at
the rescaled formulation 0 ∈ ηT1(x) + · · · + ηTn(x). Applying Algorithm 3 to this
formulation under the substitutions Ti ← ηTi, λki ← ηλki , y

k
i ← ηyki , and wki ← ηwki

yields, after some algebraic manipulation, a procedure identical to Algorithm 3, except
that (4.10)–(4.12) are modified to incorporate η:

yki ∈ Ti
(
xki
)
,(5.1)

xkπk(i) + λki y
k
πk(i) =

⎛
⎝1−

i−1∑
j=1

αkij

⎞
⎠ zk +

i−1∑
j=1

αkijx
k
πk(j) + λkiw

k
πk(i) + eki ,(5.2)

x̄k =
1
n

n∑
i=1

xki ,(5.3)

θk =
∑n

i=1

〈
zk − xki , yki − wki

〉
η
∥∥∑n

i=1 y
k
i

∥∥2 + 1
η

∑n
i=1

∥∥xki − x̄k∥∥2 ,(5.4)

zk+1 = zk − ρkθkη
n∑
i=1

yki ,(5.5)

wk+1
i = wki −

ρkθk
η

(
xki − x̄k

)
.(5.6)
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This set of recursions produces sequences guaranteed to converge under the same
conditions and in the same manner set forth in Proposition 4.2. Essentially, η sets the
relative weight the algorithm ascribes to its two main goals: achieving

∑n
i=1 y

k
i = 0

and achieving xk1 = · · · = xkn. In practice, η could be adjusted as the algorithm
runs if it appears that these goals are not properly balanced; however, our analysis
guarantees convergence only for fixed η.

Suppose n = 2, ek1 = ek2 = 0 for all k ≥ 0, and πk is the identity map on {1, 2} for
all k ≥ 0. Then, letting η = 1/

√
2 causes (5.1)–(5.6) to reduce precisely, after some

changes of notation and minor algebraic manipulations, to the two-operator projective
splitting algorithm of [11].

5.2. Spingarn’s algorithm. In [27], Spingarn presents a partial inverse method
for solving the inclusion η1T1(x) + η2T2(x) + · · ·+ ηnTn(x) � 0. With η1 = · · · = ηn,
this method reduces, in the notation of this paper, to the following set of recursions
to solve (1.1):

yki ∈ Ti
(
xki
)
, i = 1, . . . , n,(5.7)

xki + yki = zk + wki , i = 1, . . . , n,(5.8)

zk+1 =
1
n

n∑
i=1

xki ,(5.9)

wk+1
i = yki −

1
n

n∑
j=1

ykj , i = 1, . . . , n.(5.10)

The resolvent evaluations entailed in (5.7)–(5.8) are in fact the same as suggested
for the separator calculation at the end of section 2 of this paper and are clearly a
special case of our general recursion (4.3). In fact, we now demonstrate that Spingarn’s
method (5.7)–(5.10) is a special case of the scaled variant (5.1)–(5.6) of our algorithm.
Consider (5.1)–(5.6) with λki = 1, πk(i) = i, αkij = 0, eki = 0, and ρk = 1 for all k ≥ 0
and 1 ≤ j < i ≤ n. Then the main resolvent relation (5.2) reduces immediately
to (5.8). Rearranging (5.8) into zk − xki = yki − wki , we deduce that the numerator
of (5.4) is

(5.11)
n∑
i=1

〈
zk − xki , yki − wki

〉
=

n∑
i=1

∥∥zk − xki ∥∥2 .

Now, consider the denominator of (5.4). With regard to the first term, we rewrite (5.8)
as yki = zk − xki + wki and then observe that since

∑n
i=1 w

k
i = 0,

(5.12)
n∑
i=1

yki =
n∑
i=1

(
zk − xki + wki

)
= nzk −

n∑
i=1

xki = n
(
zk − x̄k

)
.
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With regard to the second term in the denominator of (5.4), we calculate
n∑
i=1

∥∥xki − x̄k∥∥2 =
n∑
i=1

∥∥(xki − zk)− (x̄k − zk)∥∥2

=
n∑
i=1

∥∥xki − zk∥∥2 − 2

〈
n∑
i=1

(
xki − zk

)
, x̄k − zk

〉
+ n

∥∥x̄k − zk∥∥2

=
n∑
i=1

∥∥xki − zk∥∥2 − 2
〈
n
(
x̄k − zk

)
, x̄k − zk

〉
+ n

∥∥x̄k − zk∥∥2

=
n∑
i=1

∥∥xki − zk∥∥2 − n ∥∥x̄k − zk∥∥2
.(5.13)

Using (5.12) and (5.13), we calculate that the denominator of (5.4) equals

n2η
∥∥zk − x̄k∥∥2 +

1
η

(
n∑
i=1

∥∥xki − zk∥∥2 − n ∥∥x̄k − zk∥∥2
)

=
(
n2η − n

η

)∥∥zk − x̄k∥∥2
+

1
η

n∑
i=1

∥∥xki − zk∥∥2 .(5.14)

Solving the equation n2η − n/η = 0, we conclude that the first term in (5.14) will
vanish if η = 1/

√
n. Combining (5.4), (5.11), and (5.14) with η = 1/

√
n, we obtain

θk =
∑n

i=1

∥∥xki − zk∥∥2
1
η

∑n
i=1

∥∥xki − zk∥∥2 = η =
1√
n
,

unless the denominator is zero, in which case (zk, wk1 , . . . , w
k
n) is already a solution

to (1.1). Substituting ρk = 1, θk = η = 1/
√
n, and (5.12) into (5.5), we obtain

zk+1 = zk − 1
n

n∑
i=1

yki = zk − 1
n

(
n
(
zk − x̄k

))
= x̄k,

which is identical to (5.9). Similarly substituting ρk = 1 and θk = η = 1/
√
n into (5.6)

yields wk+1
i = wki − (η/η)(xki − x̄k) = wki − xki + x̄k. From (5.8), wki − xki = yki − zk,

so from the definition of x̄k we then have wk+1
i = yki − zk + 1

n

∑n
i=1 x

k
i . Finally, we

rearrange (5.8) into xki = zk + wki − yki and obtain, using
∑n

i=1 w
k
i = 0, that

wk+1
i = yki −zk+

1
n

n∑
j=1

(
zk + wkj − ykj

)
= yki −zk+

1
n

⎛
⎝nzk − n∑

j=1

ykj

⎞
⎠ = yki −

1
n

n∑
j=1

ykj ,

which is identical to (5.10). Thus, we conclude that, with λki = 1, πk(i) = i, αkij = 0,
eki = 0, ρk = 1, and η = 1/

√
n, the scaled projective algorithm (5.1)–(5.6) reduces

exactly to Spingarn’s algorithm (5.7)–(5.10).

6. Rudimentary computational experiments. To demonstrate our algorith-
mic framework’s potential to produce more rapidly converging splitting algorithms,
we now describe preliminary experiments on a very simple class of example problems:
consider vectors c1, . . . , cn ∈ R

m, scalars r1, . . . , rn ≥ 0, and the closed balls

Bi
def=
{
x ∈ R

m
∣∣ ‖x− ci‖ ≤ ri } , i = 1, . . . , n.
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We consider the nonsmooth convex optimization problem of minimizing the sum of
the distances from a point x ∈ R

m to all of the balls B1, . . . , Bn:

(6.1) min
x∈Rm

n∑
i=1

dist(x,Bi),

where dist(x, Y ) def= inf {‖x− y‖ | y ∈ Y }. We may write such problems in the
form (1.1) by letting Ti = ∂ dist(·, Bi), i = 1, . . . , n, where ∂ denotes the subgra-
dient mapping; the resolvent of each such Ti can be evaluated by a simple algorithm
(requiring about 10 lines of code in MATLAB, for example). We created artificial
problem instances of the form (6.1) by randomly generating the centers ci uniformly
over [0, 10]m and the radii ri uniformly over [0, 2].

We solved these problems by both Spingarn’s method and by Algorithm 3, with
most of Algorithm 3’s parameters chosen in a random manner. It is, of course, likely
that there are much better ways to choose Algorithm 3’s parameters, but random
choices give some idea of what may be possible.

To accelerate Spingarn’s method, we did not fix ρk to 1 as in section 5.2 but
experimented with various values in [0, 2]; this variation on Spingarn’s method does
not require the entire projective framework of this paper but may be found in [9] and
later works such as [10]. Furthermore, by rescaling the problem 0 ∈ T1(x)+· · ·+Tn(x)
to 0 ∈ ηT1(x) + · · ·+ ηTn(x) as in section 5.1, we generalized (5.8) to

xki + ηyki = zk + ηwki , i = 1, . . . , n,

where η > 0 is a fixed scalar. These standard, minor generalizations gives Spingarn’s
method essentially two parameters, η > 0 and the sequence {ρk} ⊂ [0, 2]. After a
modest amount of experimentation, we found that the values η = 2.5 and ρk = 1.9
for all k seemed to yield the fastest results for the problems we generated.

For Algorithm 3, we used a different random permutation πk of {1, . . . , n} at every
iteration. At each iteration, we also independently randomly generated the proximal
parameters λki from the uniform distribution over [2.5, 3.5]. To randomly generate the
parameters αkij , we used the following procedure at each iteration k and for each row
i = 2, . . . , n:

• Generate a uniformly distributed random value ski over the interval [0, .95],
• Next, generate i−1 uniform independent random values α̂kij , j = 1, . . . , i−1,

over the interval [0, ski ].
• Finally, obtain the vector (αki1, . . . , α

k
i,i−1) by projection of the vector

(α̂ki1, . . . , α̂
k
i,i−1) onto the (i− 1)-dimensional simplex{

(t1, . . . , ti−1) ≥ 0
∣∣ t1 + · · ·+ ti−1 = ski

}
.

This procedure guarantees that the matrices Ak and Λ−1
k Ak are diagonally dominant

and hence that κ(Λ−1
k Ak) is bounded away from zero. Clearly, it also yields choices

of Λ−1
k Ak that are bounded, thus meeting the assumptions of Algorithm 3. With the

other parameters set in this manner, we experimented with various fixed values of the
parameters ρk and found that ρk ≡ 1.4 seemed to work well. We did not experiment
with the scaling factor η of (5.1)–(5.6), effectively letting η = 1.

We applied both algorithms to a single problem instance of each of the sizes
n = m = 100, 200, 300, 400, 500, terminating when√√√√∥∥∥∥∥

n∑
i=1

yki

∥∥∥∥∥
2

+
n∑
i=1

∥∥xki − x̄k∥∥2 ≤ 10−6.
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Table 6.1

Number of iterations for Spingarn’s algorithm and Algorithm 3.

n m Spingarn Algorithm 3
100 100 128 31
200 200 176 38
300 300 219 48
400 400 256 56
500 500 289 62

0

50

100

150

200

250

300

350

100 200 300 400 500

n,m

Spingarn

Projective

Fig. 6.1. Number of iterations for Spingarn’s algorithm and Algorithm 3 (“projective”).

The numbers of iterations required by the two algorithms are displayed in Table 6.1
and Figure 6.1; Algorithm 3 appears to require approximately 75–80% fewer iterations
for all 5 problems. These results suggest that our projective framework has the poten-
tial to significantly accelerate monotone operator splitting methods. To confirm this
hypothesis, the next step should be to experiment with a larger sample of problems
derived from realistic applications.

7. Conclusions and possible future research. We have proved convergence
of a very general class of projective splitting algorithms, extending the results of [11]
by allowing for more than two operators, changing the order of operator evaluation
with every iteration, and approximate calculation of resolvents using a “relative er-
ror” criterion. Some very rudimentary experiments suggest that our framework could
significantly improve the convergence of monotone operator splitting applications;
however, this hypothesis must be tested in more demanding and realistic settings.
Another key issue is to gain insight into how best to take advantage of our frame-
work’s new flexibility and larger number of parameters. Rather than setting most
of the parameters randomly as in section 6, one could imagine adjusting them to
optimize some convergence criterion or error bound which might depend on the ap-
plication. To this end, some further analysis to attempt to obtain guarantees on the
rate of convergence would also be of interest. Intuitively, attempting to maximize
ϕk(pk)/‖∇ϕk‖2, and thus the effective constant ξ in Propositions 3.2 and 4.2, would
seem to accelerate convergence, but the topic requires further study. Furthermore,
the experiments in section 6 do not include the additional scaling parameter η dis-
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cussed in section 5.1; its properties should be investigated too. Numerical experiments
with parameter settings outside the convergence zone established in Proposition 4.2
might also be of interest; for example, it should be possible to weaken the condition
κ(Λ−1

k Ak) > ζ for all k ≥ 0 to lim supk→∞ κ(Λ−1
k Ak) > 0.

There also remain many further topics to explore. At the core of our algorithm is a
simple projection method using separating hyperplanes. One possible topic for future
research is to introduce known variations on this basic projection method into the over-
all algorithmic setting. For instance, one could examine applying the techniques of [25]
to force strong convergence and perhaps to improve practical finite-dimensonal conver-
gence behavior—note that since Corollary 2.3 guarantees that intV Se(T1, . . . , Tn) = ∅
in all cases, one cannot entertain techniques like those in [19, 20], which require the
solution set to have nonempty interior to obtain strong convergence. In the spirit
of projection methods for the intersection of multiple convex sets [2], one might also
consider caching some subset of the separating hyperplanes obtained and reprojecting
onto them if they are violated in later iterations. In this same vein, one might also
consider special, more flexible treatment for those operators that are of the form NC ,
where C is a closed convex set, or use of nonorthogonal projections such as those
based on Bregman distances; see [5] and numerous later works such as [1]. Finally, a
local convergence theory for nonmonotone problems would also be of great interest.

Appendix A. A technical result for infinite dimension.
Proposition A.1. Let T1, . . . , Tn : H ⇒ H be maximal monotone, and suppose

that their sum T1 + · · ·+ Tn is also maximal. Suppose that z, w1, . . . , wn ∈ H and the
sequences {(xki , yki )}

∞
k=1 ⊂ graph(Ti), i = 1, . . . , n, have the properties(
xki , y

k
i

) w→ (z, wi), i = 1, . . . , n,(A.1)
n∑
i=1

yki → 0,(A.2)

‖xki − xkj ‖ → 0, i, j = 1, . . . , n.(A.3)

Then (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn).
Proof. First we claim that

(A.4) 0 ∈ (T1 + · · ·+ Tn)(z).

To prove this claim, take an arbitrary (z′, w′) ∈ graph(T1 + · · · + Tn). Then there
exist points w′

i ∈ Ti(z′), i = 1, . . . , n, such that w′ =
∑n
i=1 w

′
i. Since all of the Ti’s

are monotone,

(A.5)
〈
xki − z′, yki − w′

i

〉
≥ 0, i = 1, . . . , n.

Define ȳk =
∑n

i=1 y
k
i , and fix any j ∈ {1, . . . , n}. We may rewrite the i = j case

of (A.5) as 〈
xkj − z′, ȳk − w′ +

n∑
i=1
i	=j

(
w′
i − yki

)〉
≥ 0,

and so

(A.6)
〈
xkj − z′,−w′〉 ≥ − 〈xkj − z′, ȳk〉+

n∑
i=1
i	=j

〈
xkj − z′, yki − w′

i

〉
.
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For any i �= j, we have, courtesy of (A.5), that〈
xkj − z′, yki − w′

i

〉
=
〈
xki − z′, yki − w′

i

〉
+
〈
xkj − xki , yki − w′

i

〉
≥
〈
xkj − xki , yki − w′

i

〉
,

and substituting these inequalities into (A.6) yields

(A.7)
〈
xkj − z′,−w′〉 ≥ − 〈xkj − z′, ȳk〉+

n∑
i=1
i	=j

〈
xkj − xki , yki − w′

i

〉
.

We now consider taking k → ∞ in (A.7). Since xkj
w→ z by (A.1), the limit of

the left-hand side of (A.7) is 〈z − z′,−w′〉. Since the weakly convergent sequence
{xkj } must be bounded and ȳk → 0 by (A.2), we have 〈xkj − z′, ȳk〉 → 0. Similarly,
for each i �= j, we have that xkj − xki → 0 by (A.3), and the weakly convergent
sequence {yki } must be bounded so that 〈xkj − xki , yki − w′

i〉 → 0. Thus, taking the
limit in (A.7) yields 〈z − z′,−w′〉 ≥ 0. Since T1 + · · ·+ Tn is maximal monotone and
(z′, w′) ∈ graph(T1 + · · ·+ Tn) was arbitrary, we conclude that (A.4) holds.

Next, we claim that

(A.8) lim
k→∞

〈
xki , y

k
i

〉
= 〈z, wi〉, i = 1, . . . , n.

In view of (A.4), there must exist ui ∈ Ti(z), i = 1, . . . , n, such that
∑n
i=1 ui = 0.

Since the Ti’s are monotone, we have 〈xki − z, yki − ui〉 ≥ 0, i = 1, . . . , n, which we
may rearrange to obtain〈

xki , y
k
i

〉
≥
〈
z, yki − ui

〉
+
〈
xki , ui

〉
, i = 1, . . . , n.

From (A.1), it is easily deduced that the right-hand sides of the above inequalities
converge, respectively, to 〈z, wi〉. Hence,

(A.9) lim inf
k→∞

〈
xki , y

k
i

〉
≥ 〈z, wi〉 , i = 1, . . . , n.

Once again, fix some j ∈ {1, . . . , n}. Then we observe that

〈
xkj , y

k
j

〉
=
〈
xkj , ȳ

k
〉
−

n∑
i=1
i	=j

〈
xkj , y

k
i

〉

=
〈
xkj , ȳ

k
〉
−

n∑
i=1
i	=j

(〈
xki , y

k
i

〉
+
〈
xkj − xki , yki

〉)
.

We now take the lim sup as k →∞ of the above equation. Using logic resembling that
for (A.7), we observe that 〈xkj , ȳk〉 → 0 and 〈xkj − xki , yki 〉 → 0. Therefore, using (A.9),

(A.10) lim sup
k→∞

〈
xkj , y

k
j

〉
≤ −

n∑
i=1
i	=j

〈z, wi〉 = −
〈
z,

n∑
i=1
i	=j

wi

〉
.

Since yki
w→ wi, i = 1, . . . , n, we have

∑n
i=1 y

k
i

w→
∑n

i=1 wi, and therefore, also using
that

∑n
i=1 y

k
i → 0,〈

n∑
i=1

wi,

n∑
i=1

wi

〉
= lim
k→∞

〈
n∑
i=1

yki ,

n∑
i=1

wi

〉
=

〈
lim
k→∞

n∑
i=1

yki ,

n∑
i=1

wi

〉
= 0,
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so we must have
∑n
i=0 wi = 0. Thus, (A.10) implies lim supk→∞ 〈xkj , ykj 〉 ≤ 〈z, wj〉,

which, combined with (A.9), means that limk→∞〈xkj , ykj 〉 = 〈z, wj〉. Since j was
arbitrary, (A.8) holds.

Finally, we claim that wi ∈ Ti(z), i = 1, . . . , n. To prove this inclusion, take any
i ∈ {1, . . . , n} and (z′, w′

i) ∈ graph(Ti). Then the monotonicity of Ti implies〈
xki − z′, yki − w′

i

〉
=
〈
xki , y

k
i

〉
−
〈
z′, yki

〉
−
〈
xki , w

′
i

〉
+ 〈z′, w′

i〉 ≥ 0.

Applying (A.1) and (A.8) while taking the limit as k→∞ yields

〈z, wi〉 − 〈z′, wi〉 − 〈z, w′
i〉+ 〈z′, w′

i〉 ≥ 0 ,

which is equivalent to 〈z − z′, wi − w′
i〉 ≥ 0. Since the Ti’s are maximal and both

(z′, w′
i) ∈ graph(Ti) and i ∈ {1, . . . , n} were arbitrary, we conclude that we indeed

have wi ∈ Ti(z). Finally, since we have already established that
∑n
i=0 wi = 0, it

follows from wi ∈ Ti(z) that we must have (z, w1, . . . , wn) ∈ Se(T1, . . . , Tn).

Appendix B. Proof of Lemma 4.1.
Proof. If u = 0, then Lu = 0 and (4.5)–(4.6) hold trivially, so it remains to

consider the case that at least one ui is nonzero. Given any such u, let v = (v1, . . . , vn)
and �ij be defined as in (4.4). Define U ⊆ H to be the finite-dimensional subspace
spanned by u1, . . . , un in H. From (4.4), we have vi ∈ U for i = 1, . . . , n, and,
thus, u, v ∈ Un. Letting n′ ≤ n denote the dimension of U , take B = (b1, . . . , bn′)
to be some orthonormal basis for U . From B, we may create an orthonormal basis
B = (b1, . . . , bn′n) for Un via

b1 = (b1, 0, 0, . . . , 0), bn+1 = (b2, 0, 0, . . . , 0) · · · b(n′−1)n+1 = (bn′ , 0, 0, . . . , 0),

b2 = (0, b1, 0, . . . , 0), bn+2 = (0, b2, 0, . . . , 0) · · · b(n′−1)n+2 = (0, bn′ , 0, . . . , 0),
...

...
...

bn = (0, 0, . . . , 0, b1), b2n = (0, 0, . . . , 0, b2) · · · bn′n = (0, 0, . . . , 0, bn′).

Let u ∈ R
n′n be the unique representation of u with respect to this basis, that is, its

elements um, m = 1, . . . , n′n, are such that u =
∑n′n
m=1 umbm. Similarly, let v ∈ R

n′n

be the unique representation of v. By the orthonormality of the basis B, it follows
that ‖u‖ = ‖u‖, ‖v‖ = ‖v‖, and 〈u,Lu〉 = 〈u, v〉 = u�v. Let us now examine the
action of the linear mapping defined by (4.4) on the basis B, namely,

b1 = (b1, 0, 0, . . . , 0) �→ (�11b1, �21b1, . . . , �n1b1) = �11b1 + �21b2 + · · ·+ �n1bn,

b2 = (0, b1, 0, . . . , 0) �→ (�12b1, �22b1, . . . , �n2b1) = �12b1 + �22b2 + · · ·+ �n2bn,

...
bn = (0, 0, . . . , 0, b1) �→ (�1nb1, �2nb1, . . . , �nnb1) = �1nb1 + �2nb2 + · · ·+ �nnbn,

bn+1 = (b2, 0, 0, . . . , 0) �→ (�11b2, �21b2, . . . , �n1b2) = �11bn+1 + �21bn+2 + · · ·+ �n1b2n,

bn+2 = (0, b2, 0, . . . , 0) �→ (�12b2, �22b2, . . . , �n2b2) = �12bn+1 + �22bn+2 + · · ·+ �n2b2n,

...
bn′n = (0, 0, . . . , 0, bn′) �→ (�1nbn′ , �2nbn′ , . . . , �nnbn′)

= �1nb(n′−1)n+1 + �2nb(n′−1)n+2 + · · ·+ �nnbn′n.
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Thus, in terms of the basis B, the action of the linear mapping (4.4) is that of the
n′n× n′n block-diagonal matrix

L def=

⎡
⎢⎢⎢⎣

L
L

. . .
L

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
n′ times

,

and we must have v = Lu. It is easily seen that symL has the same eigenvalues as
symL, so κ(L) = κ(L). Using standard eigenvalue analysis in R

n′n, we therefore have

u�Lu ≥ κ
(
L
)
‖u‖2 = κ(L) ‖u‖2 .

Substituting ‖u‖ = ‖u‖ and 〈u,Lu〉 = 〈u, v〉 = u�v = u�Lu into this relation
yields (4.6). To establish (4.5), we observe that

∥∥L∥∥2 = max
{∥∥Lx

∥∥2 ∣∣∣ x ∈ R
n′n, ‖x‖ = 1

}

= max

⎧⎨
⎩

n′∑
j=1

‖Lxj‖2
∣∣∣∣∣∣ x1, . . . ,xn′ ∈ R

n,

n′∑
j=1

‖xj‖2 = 1

⎫⎬
⎭

= max

⎧⎨
⎩

n′∑
j=1

max
{
‖Lx‖2

∣∣∣∣ x ∈ R
n

‖x‖2 = νj

} ∣∣∣∣ ν1, . . . , νn′ ≥ 0
ν1 + · · ·+ νn′ = 1

⎫⎬
⎭

= max

⎧⎨
⎩

n′∑
j=1

νj ‖L‖2
∣∣∣∣ ν1, . . . , νn′ ≥ 0

ν1 + · · ·+ νn′ = 1

⎫⎬
⎭ = ‖L‖2 .

Thus, we may substitute
∥∥L∥∥ = ‖L‖ into the inequality

∥∥Lu
∥∥ ≤ ∥∥L∥∥ ‖u‖, along with∥∥Lu

∥∥ = ‖v‖ = ‖v‖ = ‖Lu‖ and ‖u‖ = ‖u‖, to obtain (4.5).
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A PROBLEM OF GUARDING LINE SEGMENT∗

WITOLD RZYMOWSKI†

Abstract. A line segment on the plane is guarded by n defenders. One invader wants to pass
through the line segment, but he has to keep the distance from each defender no less than a given
constant. All defenders can move along a straight line only with maximal speed 1. The invader
can move on the whole plane with maximal speed greater than 1. Other than this, no kinematic or
dynamic constraints are imposed on the defenders’ and the invader’s motions. The maximal length
of the line segment which can be guarded by defenders is established in this paper.

Key words. differential games, guarding territory problems

AMS subject classification. 49N70

DOI. 10.1137/060655857

1. Introduction. This paper deals with the following problem. An invader tries
to reach a line segment guarded by n defenders and avoid capture. By capture, we
mean that the distance between the invader and a defender (no matter which one)
is less than a given constant � > 0 after a finite time. The invader wins the game
when he can reach the guarded line segment at a moment t∗ and can avoid capture
indefinitely. The defenders win the game when, at a finite moment t∗, one of them
approaches the invader closer than � or the invader does not enter the guarded line
segment for all t ≥ 0. It is assumed that the invader and the defenders know each
other’s position.

1.1. Contributions. The motion of every defender Dk, k = 1, 2, . . . , n, is re-
stricted to the straight line R × {0}, and the guarded line segment has the form
[0,Δ]×{0}, with a Δ > 0. The invader I can move on the whole plane R

2. Admissible
trajectory of each defender Dk is represented by a function xk : [0,∞)→ R satisfying
the Lipschitz condition with constant 1. The symbol X (ak) will stand for every Dk’s
admissible trajectories satisfying the initial condition xk (0) = ak. Admissible trajec-
tory of the invader is a function y : [0,∞) → R

2 satisfying the Lipschitz condition
with a fixed constant θ > 1. The symbol Y (b) will stand for every I’s admissible
trajectories satisfying the initial condition y (0) = b. Invader I wins the game if there
exists a t∗ ≥ 0 such that

y (t∗) ∈ [0,Δ]× {0}

and

min
k=1,2,...,n

‖y (t)− (xk (t) , 0)‖ ≥ �

for all t ≥ 0, where � > 0 is a fixed capture radius and ‖·‖ stands for the euclidean
norm in R

2. Defenders D1, . . . ,Dn win the game if

y (t) /∈ [0,Δ]× {0}
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for all t ≥ 0, or if there exists a t∗ ≥ 0 such that

min
k=1,2,...,n

‖y (t∗)− (xk (t∗) , 0)‖ < �.

The problem is to determine the maximal value of Δ such that every line segment
[0,Δ′]×{0}, with Δ′ < Δ, can be guarded successfully by defenders. Similarly to how
it was done in [1, Chapter II, section 6], the game will be considered from both the
invader’s and the defenders’ points of view.

Invader’s point of view. For every t ≥ 0, invader I knows his own position
y (t), as well as each defender’s position xk (t) and velocity x′k (t) (when it exists). Let
b = (b1, b2) ∈ R

2 and (a1, . . . , an) ∈ R
n stand for the initial position of the invader

and the defenders, respectively. The invader has an advantage in velocity which allows
us to suppose that

b1 = min
k=1,2,...,n

ak − � and b2 = 0.

Roughly speaking, the invader’s trajectory y (t) will be generated by a vector field g
depending on y (t) and some xk (t) and x′k (t) until a moment τ = τ (x1, . . . , xn) > 0
such that y2 (τ) = 0. Next, he will move with maximal speed along a straight line
depending on positions of all players at time τ . Strategies of this kind are a special case
of the so-called nonanticipating functions introduced (without name) in [2]. Recall
that a function

σI : X (a1)× · · · ×Xn (an)→ Y (b)

is nonanticipating if, for each t ≥ 0 and all,

(x1, . . . , xn) , (x̂1, . . . , x̂n) ∈ X (a1)× · · · ×Xn (an) ,

with

xk (s) = x̂k (s) , 0 ≤ s ≤ t, k = 1, 2, . . . , n;

we have

σI (x1, . . . , xn) (s) = σI (x̂1, . . . , x̂n) (s) , 0 ≤ s ≤ t.

It will be shown that the invader wins the game for a Δ = Δ (�), where Δ (�) is
defined in section 2. Clearly, he then wins the game for any Δ′ > Δ (�) .

Defenders’ point of view. Let us fix an arbitrary r ∈ (0, �). It is reasonable
to suppose now that

‖b− (ak, 0)‖ > r, k = 1, 2, . . . , n.

Moreover, if the point b is placed near a guarded line segment, we may assume that
the defenders’ initial positions are chosen in a special way described in section 4. A
defender’s trajectory xk (t) will be defined by the formula

xk (t) = fk (y (t))

until, for a τ1 = τ1 (y), one of the two following possibilities takes place:

‖y (τ1)− (xk (τ1) , 0)‖ = r
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or

y2 (τ1) = 0 and xj−1 (τ1) + r < y2 (τ1) < xj (τ1)− r

for an j ∈ {2, 3, . . . , n} . Next, in the case of τ1 < ∞, all defenders will stay at
constant positions xk (τ1) , k = 1, 2, . . . , n, except in the second case, where players
Dj−1 and Dj will apply trajectories

xj−1 (t) = xj−1 (τ1) + t− τ1 and xj (t) = xj−1 (τ1)− t+ τ1,

respectively. In this connection, each defender Dk will apply a nonanticipating func-
tion

σDk
: Y (b)→ X (ak)

as his guarding strategy. It will be shown that, for Δ = Δ (r), defenders win the
game. Thus, by the equality

lim
r↑�

Δ (r) = Δ (�) ,

the number Δ (�) is the solution of the problem.

1.2. Related works. Most of the work concerning the problem of guarding
territory study problems involving the visibility of geometrical shapes, the visibility
of a moving object, or capturing an evader in an environment; see, e.g., [3], [4], [5],
[6], [7]. Our problem is rather related to old problems considered in [8]; see, e.g.,
[8, Chapter 9, Examples 9.6.3 and 9.6.4]. Moreover, it should be pointed out that
vaguely reminiscent problems are discussed now as a part of the RoboFlag game;
see [6], for example. The main tools used in solving pursuit-evasion games are the
Hamilton–Jacobi–Isaacs equation or the method of resolving functions; see [8] and [9],
respectively. Here we apply, together with standard methods of convex analysis and
ordinary differential equations theory, a geometric intuitive method which is useful
sometimes when other methods fail to work. A problem of guarding a region with
maximal area (by one defender) was solved in [10] with the aid of similar methods.

1.3. Organization. The main result (Theorem 1) and the notation used in the
paper are given in section 2. In section 3 a discontinuous vector field g generating
invasion strategy σI is constructed. It is shown there (Proposition 1) that the invader
wins the game if Δ = Δ (�) . For arbitrary r ∈ (0, �) a guarding strategy σD is
described in section 4. It is shown there (Proposition 2) that the defenders win the
game if Δ = Δ (r). The short section 5 contains a few remarks on the result obtained
and possible directions of research.

2. Notation and main result. Throughout this paper we will use the notation

hr = r sinβ0 =
r√

θ2 + 1
, δr =

r

cosβ0
=
r
√
θ2 + 1
θ

,

κr = hr (tan γ0 + cot γ0) ,
w− = (sinβ0,− cosβ0) , w+ = (sinβ0, cosβ0) ,

where θ > 1 is fixed, β0, γ0 ∈
(
0, π2

)
are such that

cosβ0 =
θ√

θ2 + 1
, sinβ0 =

1√
θ2 + 1

,

cos γ0 =
2θ

θ2 + 1
, sin γ0 =

θ2 − 1
θ2 + 1

,
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and r > 0 is an arbitrary number. Moreover, for all r > 0 and β ≥ 0, we put

Sr (β) =
r

θ2 − 1

∫ β

0

(√
θ2 − cos2 α+ sinα

)
dα,

s1 (r) = Sr (π − β0) ,
s2 (r) = Sr (π − β0)− Sr (β0) ,

s3 (r) =
hr

θ sin γ0
=
r
√
θ2 + 1

θ (θ2 − 1)
,

Λ1 (r) = s1 (r) + r (1 + cosβ0) + s3 (r) θ cos γ0,

Λ2 (r) = s2 (r) + 2s3 (r) θ cos γ0 + 2r cosβ0,

and

Δ (r) =
{

Sr (π) + 2r, when n = 1,
2Λ1 (r) + (n− 2)Λ2 (r) , when n ≥ 2.

It is easy to see that Δ : (0,∞)→ (0,∞) is a strictly increasing continuous function
satisfying the conditions

lim
r↓0

Δ (r) = 0 and lim
r↑∞

Δ (r) =∞.

We are now able to formulate the main result. For this purpose let us denote by
X (a) the set of all functions x : [0,∞) → R satisfying the Lipschitz condition with
constant 1 and the initial condition x (0) = a. For a1, . . . , an ∈ R we will write

X (a1, . . . , an) = X (a1)× · · · ×X (an)

and say that the number ak is an initial position of the defender Dk although, in
fact, the pair (ak, 0) is such a position. Similarly, denote by Y (b) the set of all
y : [0,∞)→ R

2 satisfying the Lipschitz condition with constant θ > 1 and the initial
condition y (0) = b.

If initial positions (a1, 0) , . . . , (an, 0) , b ∈ R
2, are fixed, we call any nonanticipat-

ing mapping

σD : Y (b)→ X (a1, . . . , an)

a guarding strategy. Analogously, we call any nonanticipating mapping

σI : X (a1, . . . , an)→ Y (b)

an invasion strategy.
Let us fix an r > 0.A strategy σD is said to guard the line segment [0,Δ (r)] × {0}

successfully if, for any y ∈ Y (b), the relation y (t) ∈ [0,Δ (r)]× {0} implies the exis-
tence of an s ≥ 0 such that

min
i=1,2,...,n

‖y (s)− (xi (s) , 0)‖ < �,

where (x1, . . . , xn) = σD (y) . Further, we say that a strategy σI rushes for the line
segment [0,Δ (r)]× {0} successfully if for any (x1, . . . , xn) ∈ X (a1, . . . , an) we have

min
i=1,2,...,n

‖σI (x1, . . . , xn) (t)− (xi (t) , 0)‖ ≥ �, t ≥ 0,
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and there exists an s ≥ 0 such that

σI (x1, . . . , xn) (s) ∈ (0,Δ (r))× {0} .

Definition 1. The invader wins the game, with Δ = Δ (r), if for all b ∈ R
2

and (a1, . . . , an) ∈ R
n satisfying the condition

min
k=1,2,...,n

‖b− (ak, 0)‖ ≥ �

there exists an invasion strategy σI rushing for the line segment [0,Δ (r)] × {0} suc-
cessfully.

Definition 2. The defenders win the game, with Δ = Δ (r), if for each b ∈ R
2

there exist (a1, . . . , an) ∈ R
n and a guarding strategy σD such that

0 ≤ ak ≤ Δ (r) , k = 1, 2, . . . , n,

and σD guards the line segment [0,Δ (r)]× {0} successfully.
Theorem 1. Given a capture radius � > 0, the following statements hold true:
1. The invader wins the game, with Δ = Δ (�) .
2. The defenders win the game, with Δ = Δ (r), r ∈ (0, �) .

The proof of Theorem 1 will be given in sections 3 and 4. It will use the following
basic facts from convex analysis.

For all a = (a1, a2) and b = (b1, b2) ∈ R
2 and each α ∈ R, we define

〈a, b〉 = a1b1 + a2b2, ‖a‖ =
√
〈a, a〉 =

√
a2
1 + a2

2,

B (a, r) =
{
x ∈ R

2 : ‖x− a‖ < r
}
,

Ra = (a2,−a1) , e (α) = (− cosα, sinα) .

The symbols int D, bd D, and conv D will stand for the interior, the boundary,
and the convex hull of the set D ⊂ R

2, respectively. For a nonempty set Z ⊂ R
2,

define

dist (y, Z) = inf
z∈Z
‖y − z‖ , y ∈ R

2.

It is known that

|dist (y, Z)− dist (ỹ, Z)| ≤ ‖y − ỹ‖ for all y, ỹ ∈ R
2.

If Z ⊂ R
2 is a compact convex set, then, for each y ∈ R

2
� int Z, there exists exactly

one ΠZ (y) ∈ bd Z such that

‖y −ΠZ (y)‖ = dist (y, Z) .

Moreover, ΠZ is a nonexpansive mapping, i.e.,

‖ΠZ (y)−ΠZ (ỹ)‖ ≤ ‖y − ỹ‖ for all y, ỹ ∈ R
2.

Let D ⊂ R
2 be a convex compact set with 0 ∈ int D. For each z ∈ R

2
� {0} there

exist a number λ > 0 and a vector

w (D, z) = (w1 (D, z) , w2 (D, z)) ∈ R
2
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w(D,z)

w(D,z)

Rz

D z
λz

Fig. 1. Tangent vector w(D, z).

such that

‖w (D, z)‖ = 1, 〈w (D, z) , Rz〉 > 0

and w (D, z) is tangent to the boundary of the set D at the point λz (see Figure 1).
Finally, denote by U the set of all Lebesgue measurable functions

u : [0,∞)→ [−1, 1] .

We will say that every u ∈ U is a control. It follows from the well-known Rademacher’s
theorem that each defender’s trajectory xk is differentiable almost everywhere in
[0,∞) and satisfies the condition

|x′k (t)| ≤ 1

for almost all t ∈ [0,∞). Similarly, in the case of an invader’s trajectory y we have

‖y′ (t)‖ ≤ θ

for almost all t ∈ [0,∞).

3. Attack. For every k = 1, 2, . . . , n, the capture region

B ((xk, 0) , �) = (xk, 0) +B (0, �)

corresponds to the defender Dk, located at the point (xk, 0). Clearly, it is an open
disc centered at the point (xk, 0). However, looking at the game from the invader’s
point of view, we will assign, in fact, to each defender a new extended capture region.
It is interesting that the invader should rather keep away from these new artificial
regions. It usually occurs that an accurate cooperation gives an individual benefit to
each cooperator.

For every r > 0 and each x ∈ R, we define (see Figure 2)

DL (r) = conv (B [0, r] ∪ {(δr, 0)}) , DL (x, r) = (x, 0) +DL (r) ,
DM (r) = conv (B [0, r] ∪ {(δr, 0) , (−δr, 0)}) , DM (x, r) = (x, 0) +DM (r) ,
DR (r) = conv (B [0, r] ∪ {(−δr, 0)}) , DR (x, r) = (x, 0) +DR (r) ,
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Fig. 2. Extended capture regions.

where

ξ + Z = {ξ + z : z ∈ Z}

for a nonempty set Z ⊂ R
2 and a ξ ∈ R

2.
Using sets DL (r) , DM (r), and DR (r) we will construct an invasion strategy for

the invader and guarding strategies for the defenders. The invasion strategy mentioned
above will be constructed with the aid of a discontinuous vector field. For this reason
we need a few lemmas.

Lemma 1. Let us define, for each z ∈ R
2
� {0} and for every u ∈ [−1, 1],

ψL (z, u) =
(√

θ2 − u2w2
2 (DL (r) , z)− uw1 (DL (r) , z)

)
w (DL (r) , z) ,

and let us fix a control u ∈ U.
1. The Cauchy problem

(3.1) α′ =
1
r

(√
θ2 − u2 cos2 α− u sinα

)
, α (0) = 0,

has exactly one solution α (u, ·) : [0,∞) → [0,∞), and there exists a τL1 (u)
such that

τL1 (u) = min {t > 0 : α (u, t) = π − β0} ≤ s1 (r) .

2. Let us define, for all t ≥ 0,

v (u, t) =
√
θ2 − u2 (t) cos2 β0 − u (t) sinβ0.

There exists exactly one τL2 (u) > τL1 (u) such that

(3.2)
∫ τL2(u)

τL1(u)

v (u, s) ds =
√
δ2r − r2

and

τL2 (u)− τL1 (u) ≤ s3 (r) .

3. The function zL (u, ·) : [0, τL2 (u)]→ R
2, given by the formulae

zL (u, t) = re (α (u, t)) for t ∈ [0, τL1 (u)] ,

zL (u, t) = re (π − β0) +

(∫ t

τL1(u)

v (u, s) ds

)
w− for t ∈ [τL1 (u) , τL2 (u)] ,
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is a unique solution to the Cauchy problem

(3.3) z′ = ψL (z, u) , z (0) = re (0) ,

and satisfies the conditions

zL (u, t) ∈ bd DL (r) , t ∈ [0, τL2 (u)] , zL (u, τL2 (u)) = δre (π) .

Proof. Let us fix a control u ∈ U. Note that

√
θ2 − u2 cos2 α− u sinα =

θ2 − u2

√
θ2 − u2 cos2 α+ u sinα

≥ θ2 − 1
θ + 1

= θ − 1 > 0

for all (u, α) ∈ [−1, 1]×R and the right-hand side of the differential equation (3.1) is
Lipschitzian in α. Thus, there exist exactly one solution α (u, ·) : [0,∞) → [0,∞) of
(3.1) and a number τL1 (u) > 0 such that

τL1 (u) = min {t > 0 : α (u, t) = π − β0} .

Moreover, we have

τL1 (u) =
∫ τL1(u)

0

dt = r

∫ τL1(u)

0

α′ (u, t) dt√
θ2 − u2 (t) cos2 α (u, t)− u (t) sinα (u, t)

= r

∫ τL1(u)

0

√
θ2 − u2 (t) cos2 α (u, t) + u (t) sinα (u, t)

θ2 − u2 (t)
α′ (u, t)dt

≤ r

θ2 − 1

∫ τL1(u)

0

(√
θ2 − cos2 α (u, t) + sinα (u, t)

)
α′ (u, t)dt

=
r

θ2 − 1

∫ π−β0

0

(√
θ2 − cos2 β + sinβ

)
dβ

= s1 (r) ,

which finishes the proof of part 1.
Obviously, there exists exactly one τL2 (u) > τL1 (u) satisfying condition (3.2).

Since

r

θ
=
√
δ2r − r2 =

∫ τL2(u)

τL1(u)

v (u, s)ds

≥
∫ τL2(u)

τL1(u)

(√
θ2 − cos2 β0 − sinβ0

)
ds

=
θ2 − 1√
θ2 + 1

(τL2 (u)− τL1 (u))

we obtain

τL2 (u)− τL1 (u) ≤ r

θ
�

θ2 − 1√
θ2 + 1

= s3 (r) ,

which finishes the proof of part 2.
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In order to establish the local existence and uniqueness of the Cauchy problem
(3.3), with arbitrary initial condition z (0) = 0, it is enough to see that the vector field
ψL is locally Lipschitzian with respect to the variable z in the set R

2
� ([0,∞)× {0})

and transversal to the ray (0,∞)× {0}. It follows from the relations

w (DL (r) , re (α (t))) = Re (α (t)) = (sinα (t) , cosα (t)) , t ∈ [0, τL1 (u)] ,

that the function zL (u, ·) solves problem (3.3) in the interval [0, τL1 (u)]. Analogously,
zL (u, ·) solves problem (3.3) in the interval [τL1 (u) , τL2 (u)] since

w (DL (r) , zL (u, t)) = w− = (sinβ0,− cosβ0) , t ∈ [τL1 (u) , τL2 (u)) .

The remaining properties of zL (u, ·) are easy to prove.
The next two lemmas, with v (u, ·) defined in Lemma 1, have proofs analogous to

the proof of Lemma 1.
Lemma 2. Let us define, for each z ∈ R

2
� {0} and for every u ∈ [−1, 1],

ψM (z, u) =
(√

θ2 − u2w2
2 (DM (r) , z)− uw1 (DM (r) , z)

)
w (DM (r) , z) ,

and let us fix a control u ∈ U. Then the following statements hold true:
1. There exists exactly one τM1 (u) > 0 such that∫ τM1(u)

0

v (u, s)ds =
√
δ2r − r2 and τM1 (u) ≤ s3 (r) .

2. The Cauchy problem

α′ =
1
r

(√
θ2 − u2 cos2 α− u sinα

)
, α (τM1 (u)) = β0,

has exactly one solution α (u, ·) : [τM1,∞) → [β0,∞), and there exists a
τM2 (u) such that

τM2 (u) = min {t > τM1 : α (u, t) = π − β0} ≤ τM1 (u) + s2 (r) .

3. There exists exactly one τM3 (u) > τM2 (u) such that∫ τM3(u)

τM2(u)

v (u, s)ds =
√
δ2r − r2 and τM3 (u) ≤ τM2 (u) + s3 (r) .

4. The function zM (u, ·) : [0, τM3 (u)]→ R
2, given by the formulae

zM (u, t) = δre (0) +
(∫ t

0

v (u, s)ds
)
w+, t ∈ [0, τM1 (u)] ,

zM (u, t) = re (α (u, t)) for t ∈ [τM1 (u) , τM2 (u)] ,

zM (u, t) = re (π − β0) +

(∫ t

τM2(u)

v (u, s)ds

)
w−, t ∈ [τM2 (u) , τM3 (u)] ,

is a unique solution to the Cauchy problem

z′ = ψM (z, u) , z (0) = δre (0) ,

and satisfies the conditions

zM (u, t) ∈ bd DM (r) , t ∈ [0, τM3 (u)] , zM (u, τM3 (u)) = δre (π) .
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Lemma 3. Let us define, for each z ∈ R
2
� {0} and for every u ∈ [−1, 1],

ψR (z, u) =
(√

θ2 − u2w2
2 (DR (r) , z)− uw1 (DR (r) , z)

)
w (DR (r) , z) ,

and let us fix a control u ∈ U. Then the following statements hold true:
1. There exists exactly one τR1 (u) > 0 such that

∫ τR1(u)

0

v (u, s)ds =
√
δ2r − r2 and τR1 (u) ≤ s3 (r) .

2. The Cauchy problem

α′ =
1
r

(√
θ2 − u2 cos2 α− u sinα

)
, α (τR1 (u)) = β0,

has exactly one solution α (u, ·) : [τR1 (u) ,∞) → [β0,∞), and there exists
a τR2 (u) such that

τR2 (u) = min {t > τR1 : α (u, t) = π} ≤ τR1 (u) + s1 (r) .

3. The function zR (u, ·) : [0, τR2 (u)]→ R
2, given by the formula

zR (u, t) = δre (0) +
(∫ t

0

v (u, s)ds
)
w+, t ∈ [0, τR1 (u)] ,

zR (u, t) = re (α (u, t)) for t ∈ [τR1 (u) , τR2 (u)] ,

is a unique solution to the Cauchy problem

z′ = ψR (z, u) , z (0) = δre (0) ,

and satisfies the conditions

zR (u, t) ∈ bd DR (r) , t ∈ [0, τR2 (u)] , zR (u, τR2 (u)) = re (π) .

Now we shall formulate a corollary playing a crucial role in what follows. Let D
be one of the sets DL (r) , DM (r) , DR (r) . For all y ∈ R

2 and x ∈ R, with y = (x, 0),
and for all u ∈ [−1, 1], we set

gD (y, x, u) = uw2 (D, y − (x, 0))Rw (D, y − (x, 0))

+
√
θ2 − u2w2

2 (D, y − (x, 0))w (D, y − (x, 0)) .

Note that

uw2 (D, y − (x, 0)) = 〈(u, 0) , Rw (D, y − (x, 0))〉

and

(u, 0) = 〈(u, 0) , Rw (D, y − (x, 0))〉Rw (D, y − (x, 0))
+ 〈(u, 0) , w (D, y − (x, 0))〉w (D, y − (x, 0))

= uw2 (D, y − (x, 0))Rw (D, y − (x, 0))
− uw1 (D, z)w (D, y − (x, 0))
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for each u ∈ [−1, 1]. Employing this observation and applying Lemma 1, one can
check easily that, for each a ∈ R and each x ∈ X (a), the function

y (t) = (x (t) , 0) + zL (x′, t) , t ≥ 0,

is a unique solution to the Cauchy problem

y′ = gDL(r) (y, x, x′) , y (0) = (a, 0) + re (0) ,

in the whole interval [0,∞). Moreover it satisfies the following conditions:

y (τL1 (x′)) = (x (τL1 (x′)) , 0) + re (π − β0) , y (τL2 (x′)) = (x (τL2 (x′)) , 0) + δre (π) ,

and

y (t)− (x (t) , 0) ∈ bd DL (r) , t ≥ 0.

Since the analogous statements hold true with gDL(r) replaced by gDM (r) and gDR(r),
we obtain the following.

Corollary 1. Let us fix an a ∈ R and an x ∈ X (a). Then the following
statements hold true:

1. The function

yL (x, t) = (yL1 (x, t) , yL2 (x, t)) = (x (t) , 0) + zL (x′, t) , t ≥ 0,

is a unique solution to the Cauchy problem

y′ = gDL(r) (y, x, x′) , y (0) = (a, 0) + re (0) ,

in the whole interval [0,∞), and satisfies the following conditions:

yL (x, t)− (x (t) , 0) ∈ bd DL (r) , t ≥ 0,

yL (x, τL1 (x′)) = (x (τL1 (x′)) , 0) + re (π − β0) , yL (x, τL2 (x′))
= (x (τL2 (x′)) , 0) + δre (π) ,

yL1 (x, τL1 (x′))− yL1 (x, 0) ≤ s1 (r) + r (1 + cosβ0) ,
yL1 (x, τL2 (x′))− yL1 (x, τL1 (x′)) ≤ s3 (r) θ cos γ0.

2. The function

yM (x, t) = (yM1 (x, t) , yM2 (x, t)) = (x (t) , 0) + zM (x′, t) , t ≥ 0,

is a unique solution to the Cauchy problem

y′ = gDM (r) (y, x, x′) , y (0) = (a, 0) + δre (0) ,

in the whole interval [0,∞), and satisfies the following conditions:

y (x, t)− (x (t) , 0) ∈ bd DL (r) , t ≥ 0,
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yM (x, τM1 (x′)) = (x (τM1 (x′)) , 0) + re (β0) , yM (x, τM2 (x′))
= (x (τM2 (x′)) , 0) + re (π − β0) ,

yM (x, τM3 (x′)) = (x (τM3 (x′)) , 0) + δre (π) ,

yM1 (x, τM1 (x′))− yM1 (x, 0) ≤ s3 (r) θ cos γ0,

yM1 (x, τM2 (x′))− yM1 (x, τM1 (x′)) ≤ s2 (r) + 2r cosβ0,

yM1 (x, τM3 (x′))− yM1 (x, τM2 (x′)) ≤ s3 (r) θ cos γ0.

3. The function

yR (x, t) = (yR1 (x, t) , yR2 (x, t)) = (x (t) , 0) + zR (x′, t) , t ≥ 0,

is a unique solution to the Cauchy problem

y′ = gDR(r) (y, x, x′) , y (0) = (a, 0) + δre (0) ,

in the whole interval [0,∞), and satisfies the following conditions:

y (x, t)− (x (t) , 0) ∈ bd DR (r) , t ≥ 0,

yR (x, τR1 (x′)) = (x (τR1 (x′)) , 0) + re (β0) , yR (x, τR2 (x′))
= (x (τR2 (x′)) , 0) + re (π) ,

yR1 (x, τM1 (x′))− yR1 (x, 0) ≤ s3 (r) θ cos γ0,

yM1 (x, τM2 (x′))− yM1 (x, τM1 (x′)) ≤ s1 (r) + r (1 + cosβ0) .

In the next two lemmas we analyze a situation when the invader passes, or at-
tempts to pass, through the interval having two defenders on his left and right sides;
see Figure 3.

D (x ,r)L

x1

1

y
D (x ,r)R 2

x2

Fig. 3. Invader attempts to pass between two defenders.

Lemma 4. Given a, b ∈ R, with |a− b| ≥ δr, and x ∈ X (a), define

y (t) = (b,−θt) , t ≥ 0.

Then we have

‖y (t)− (x (t) , 0)‖ ≥ r

for all t ≥ 0.
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Proof. The function x satisfies the Lipschitz condition with constant 1 so that

‖y (t)− (x (t) , 0)‖2 = (x (t)− b)2 + θ2t2 ≥ (|a− b| − t)2 + θ2t2

=
(
θ2 + 1

)
t2 − 2 |a− b| t+ |a− b|2 .

Since

min
t≥0

{(
θ2 + 1

)
t2 − 2 |a− b| t+ |a− b|2

}
= |a− b|2 θ2

θ2 + 1

we obtain

‖y (t)− (x (t) , 0)‖ ≥ δr
θ√

θ2 + 1
= r

for every t ≥ 0.
Lemma 5. For all x−, x+ ∈ R and y = (y1, y2) ∈ R

2, with

x− ≤ y1 ≤ x+, y2 ≥ 0,

and for every u ∈ [−1, 1], we define

ξ
(
y, x−, x+

)
=
{

x− if y1 <
1
2 (x− + x+),

x+ if y1 ≥ 1
2 (x− + x+)

and

g
(
y, x−, x+, u

)
=
{

gDL(r) (y, x−, u) if y1 <
1
2 (x− + x+) ,

gDR(r) (y, x+, u) if 1
2 (x− + x+) ≤ y1.

Suppose that

a−, a+ ∈ R, a− < a+, b =
(
a−, r

)
and x− ∈ X (a−), x+ ∈ X (a+) are chosen arbitrarily and satisfy the condition

x− (t) ≤ x+ (t) , t ≥ 0.

Then the Cauchy problem

y′ = f
(
y, x− (t) , x+ (t) , ξ′

(
y, x−, x+

))
, y (0) = b,

has a unique solution y defined in a maximal domain [0, τ (x−, x+)] satisfying the
following conditions:

(a) y2 (τ (x−, x+)) = 0 or y2 (τ (x−, x+)) = r.
(b)

x−
(
τ
(
x−, x+

))
+ δr = y1

(
τ
(
x−, x+

))
≤ x+

(
τ
(
x−, x+

))
− δr

and

y1
(
τ
(
x−, x+

))
− y1 (0) ≤ Sr (π − β0)− Sr

(π
2

)
+ r cosβ0 + s3 (r)

whenever y2 (τ (x−, x+)) = 0.
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(c)

y1
(
τ
(
x−, x+

))
= x+

(
τ
(
x−, x+

))
and

y1
(
τ
(
x−, x+

))
− y1 (0) < s2 (r) + 2r cosβ0 + 2s3 (r)

when y2 (τ (x−, x+)) = r.
(d)

min
{∥∥y (t)−

(
x− (t) , 0

)∥∥ , ∥∥y (t)−
(
x+ (t) , 0

)∥∥} ≥ r
for all t ∈ [0, τ (x−, x+)] .

-

x+x-

D (x ,r)L
+D (x ,r)R

Fig. 4. Vector field g with u = 0.

Proof. Note first (see Figure 4) that the domain of g is contained in R× [0,∞).
Let us fix arbitrary x− ∈ X (a−) and x+ ∈ X (a+). It follows from parts 1 and 3
of Corollary 1 that the Cauchy problem has a solution defined in a maximal domain
[0, τ ] satisfying conditions (a), (b), and (c). In view of part 2 or 3 of Corollary 1 the
uniqueness follows from condition (d). Hence, it remains to prove condition (d). By
part 1 of Corollary 1 we can define

t1 = max
{
t > 0 : y (t) ∈ bd DL

(
r, x− (t)

)}
.

Suppose y2 (t1) = 0 and y1 (t1) < 1
2 (x− (t1) + x+ (t1)). Then τ (x−, x+) = t1, which

completes the proof. In the opposite case we have

y2 (t1) ≥ 0, y1 (t1) =
1
2
(
x− (t1) + x+ (t1)

)
and

y (t1)−
(
x− (t1) , 0

)
∈ bd DL (r) , y (t1)−

(
x+ (t1) , 0

)
∈ bd DR (r) .

Hence the two cases

(d1) hr ≤ y2 (t1) ≤ r and (d2) 0 ≤ y2 (t1) < r

are possible; see Figure 5.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

826 WITOLD RZYMOWSKI

x (t )-
1

y(t )1

y(t )1

x (t )-
1

+x (t )1 +x (t )1

(t )1+D (x ,r)R(t )1+D (x ,r)R
-(t )1D (x ,r)L

-(t )1D (x ,r)L

Fig. 5. Cases (d1) and (d2).

Case (d1). By part 3 of Corollary 1, there exists a t2 > t1 such that

y2 (t2) = r and y1 (t2) = x+ (t2) .

Clearly, we have τ (x−, x+) = t2. If we show that

y′1 (t) ≥ 1
2

((
x−
)′ (t) +

(
x+
)′ (t)) a.e. in [t1, t2] ,

then we will obtain

y1 (t) ≥ 1
2
(
x− (t) + x+ (t)

)
in [t1, t2] .

This will obviously imply the needed estimate (d) because of the relations∥∥y (t)−
(
x− (t) , 0

)∥∥ ≥ ∥∥y (t)−
(
x+ (t) , 0

)∥∥ = r, t ∈ [t1, t2] .

In order to simplify the notation we put

u+ =
(
x+
)′ and u− =

(
x−
)′
.

With this notation we have

2y′1 (t)− u+ (t)− u− (t)

=
2y2 (t)
r

√
θ2 − u2

+ (t)
(x+ (t)− y1 (t))2

r2

+ 2u+ (t)
(x+ (t)− y1 (t))

r2

2

− u+ (t)− u− (t)

=
2y2 (t)
r

√
θ2 − u2

+ (t)
r2 − y2

2 (t)
r2

+ 2u+ (t)
r2 − y2

2 (t)
r2

− u+ (t)− u− (t)

=
2y2 (t)
r

√
θ2 − u2

+ (t)
(

1− y2
2 (t)
r2

)
+ u+ (t)

(
1− 2y2

2 (t)
r2

)
− u− (t)

≥ 2y2 (t)
r

√
θ2 − u2

+ (t)
(

1− y2
2 (t)
r2

)
+ u+ (t)

(
1− 2y2

2 (t)
r2

)
− 1
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for almost all t ∈ [t1, t2], since

|u+ (t)| ≤ 1 and |u− (t)| ≤ 1

almost everywhere in [0,∞) . Let us observe now that the function y2 is increasing in
the interval [t1, t2], so that

sinβ0 =
hr
r
≤ y2 (t)

r
≤ 1, t ∈ [t1, t2] .

It is not very hard to verify that

min
(u,ζ)∈[−1,1]×[sin β0,1]

{
2ζ
√
θ2 − u2 (1− ζ2) + u

(
1− 2ζ2

)}
= 1.

Thus

2y′1 (t)− u+ (t)− u− (t) ≥ 0

almost everywhere in [t1, t2], as claimed.
Case (d2). By the definition of g and by part 3 of Corollary 1, there exists a

t2 > t1 such that y2 (t2) = hr. Moreover,

y′ (t) =
〈((

x+
)′ (t) , 0) , Rw+

〉
Rw+ +

√
θ2 −

〈(
(x+)′ (t) , 0

)
, Rw+

〉2
w+

for almost all t ∈ [t1, t2] . Similarly to case (d1) it is enough to show that

2y′1 (t)−
(
x+
)′ (t)− (x−)′ (t) ≥ 0

for almost all t ∈ [t1, t2], since at the end of this interval we arrive at the situation

y1 (t2) ≥
1
2
(
x− (t2) + x+ (t2)

)
, y (t2)−

(
x+ (t2) , 0

)
∈ bd DR (r) ,

which can be treated in the same way as in case (d1).
With the notation used in case (d1), for almost all t ∈ [t1, t2], we have

2y′1 (t)−
(
x+
)′ (t)− (x−)′ (t)

= 2
√
θ2 − u2

+ (t) cos2 β0 sinβ0 + 2u+ (t) cos2 β0 − u+ (t)− u− (t)

= 2
√
θ2 − u2

+ (t) cos2 β0 sinβ0 + u+ (t) cos 2β0 − u− (t)

≥ 2
√
θ2 − u2

+ (t) cos2 β0 sinβ0 + u+ (t) cos 2β0 − 1

≥ 2
√
θ2 − cos2 β0 sinβ0 − cos 2β0 − 1

= 0,

because of the relation β0 ∈
(
0, π4

)
. The proof of Lemma 5 is complete.

We are now ready to define an invasion strategy. The strategy will be constructed
with the aid of a vector field

g : R× [0,∞)× R
n × [−1, 1]→ R

2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

828 WITOLD RZYMOWSKI

In the half-plane R× (0,∞), the invader’s trajectory will be determined by g in such
a way that he will move right with maximal speed along the boundary of the union

DL (x1 (t) , �) ∪
n−1⋃
k=2

DM (xk (t) , �) ∪DR (xn (t) , �) .

Since defender trajectories can intersect, we have to introduce a few auxiliary notions.
For

x = (x1, . . . , xn) ∈ R
n and y = (y1, y2) ∈ R

2,

we put

J− (x, y) = {j ∈ {1, 2, . . . , n} : xj ≤ y1} , J+ (x, y) = {j ∈ {1, 2, . . . , n} : xj > y1} ,

ξ− (x, y) =
{

maxj∈J−(x,y) xj , when J− (x, y) = ∅,
min {x1, . . . , xn} , when J− (x, y) = ∅,

ξ+ (x, y) =
{

minj∈J−(x,y) xj , when J+ (x, y) = ∅,
max {x1, . . . , xn} , when J+ (x, y) = ∅.

Let us define, for arbitrary

y = (y1, y2) ∈ R× [0,∞) , x = (x1, . . . , xn) ∈ R
n, u ∈ [−1, 1] ,

ξ (x, y) =
{

ξ− (x, y) , when y1 <
1
2 (ξ− (x, y) + ξ+ (x, y)) ,

ξ+ (x, y) , when y1 ≥ 1
2 (ξ− (x, y) + ξ+ (x, y))

and

g (y, x, u) =
{

gDL(�) (y, ξ (x, y) , u) , when y1 <
1
2 (ξ− (x, y) + ξ+ (x, y)) ,

gDR(�) (y, ξ (x, y) , u) , when y1 ≥ 1
2 (ξ− (x, y) + ξ+ (x, y)) .

Let us choose arbitrary a1, . . . , an ∈ R, with

a1 ≤ a2 ≤ · · · ≤ an, a1 ≤ r,

and take

b = (a1 − �, 0) .

We define now an invasion strategy

σI : X (a1, . . . , an)→ Y (b) .

Let us fix arbitrary x = (x1, . . . , xn) ∈ X (a1, . . . , an). By Corollary 1, the Cauchy
problem

y′ = g (y, x, ξ′ (x, y)) , y (0) = b,

has a unique solution η (x, ·) = (η1 (x, ·) , η2 (x, ·)) defined in a maximal interval
[0, τ (x)] and such that

η2 (x, τ (x)) = 0.
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For all t ≥ 0 we put

σI (y) (t)

=

⎧⎨
⎩

η (x, t) if 0 ≤ t ≤ τ (x) ,
η (x, τ (x)) + (t− τ (x)) (0,−θ) if t > τ (x) , J+ (x (τ (x)) , η (x, τ (x))) = ∅,
η (x, τ (x)) + (t− τ (x)) (θ, 0) if t > τ (x) , J+ (x (τ (x)) , η (x, τ (x))) = ∅.

It is easy to see that σI : X (a1, . . . , an)→ Y (b) is a nonanticipating function.
Proposition 1. Strategy σI rushes for the line segment [0,Δ (�)]× {0} success-

fully.
Proof. Let x ∈ X (a1, . . . , an) be chosen arbitrarily. Take y = σI (x) and τ (x) = t∗.

With the aid of Corollary 1 and Lemma 5 we get the estimate

min
j=1,2,...,n

‖y (t)− xj (t)‖ ≥ �, t ∈ [0, t∗] ,

and the relation

J− (x (t∗) , y (t∗)) = ∅.

By the definition of σI, if J+ (x (t∗) , y (t∗)) = ∅, then

min
j=1,2,...,n

‖y (t)− xj (t)‖ ≥ �, t ≥ t∗.

In the case of J+ (x (t∗) , y (t∗)) = ∅ we have

ξ− (x (t∗) , y (t∗)) + δr = y1 (t∗) ≤ ξ+ (x (t∗) , y (t∗)) + δr,

which in view of Lemma 4 gives

min
j=1,2,...,n

‖y (t)− xj (t)‖ ≥ �, t ≥ t∗.

Applying Corollary 1 and Lemma 5 once more we obtain

y1 (t∗)− y1 (0) < 2Λ1 (r) + (n− 2)Λ1 (r) = Δ (�) ,

which finishes the proof.
Conclusion. We have just considered a special initial situation (a, b). Since the

invader has an advantage in velocity he can always reach such a situation. Therefore
defenders are not able to defend the interval [0,Δ (�)]× {0} .

4. Defense. We will consider here the case of n ≥ 3. The case n = 1 is easier,
and the case n = 2 can be solved similarly. Let us fix an r ∈ (0, �). A guarded
interval of the form [0,Δ (r)] × {0} will be divided into n subintervals. Let y be a
trajectory of the invader. Each defender will guard his own subinterval until, for a
t∗ > 0 and a k > 1,

xk−1 (t∗) ≤ y1 (t∗) ≤ xk (t∗) and y2 (t∗) = 0.

If such a situation happens, then defenders Dk−1 and Dk will apply trajectories

xk−1 (t) = xk−1 (t∗) + t− t∗ and xk (t) = xk (t∗)− t+ t∗,
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respectively. In other words, defenders do not cooperate except when the invader
enters the interval at a point placed between two of them. The situation described
above will be analyzed from the point of view of the defenders in the following lemma.

Lemma 6. Given a−, a+ ∈ R, b = (b1, 0) ∈ R
2 satisfying the conditions

a−1 < b1 < a+
1 and a+

1 − a−1 ≤ 2δr,

define

x− (t) =
(
a− + t, 0

)
, x+ (t) =

(
a+ − t, 0

)
, t ≥ 0.

Then, for each y ∈ Y (b) , there exists a t0 ≥ 0 such that

min
{∥∥y (t0)−

(
x− (t0) , 0

)∥∥ , ∥∥y (t0)−
(
x+ (t0) , 0

)∥∥} ≤ r.
Proof. Without loss of the generality we may assume that

a− + r < b1 < a+ − r.

Let us take

t1 =
hr
θ
.

We have

x+ (t1) = a+ − t1 − r cosβ0 ≤ a− + t1 + r cosβ0 = x− (t1) ,

because of the equalities

2t1 + 2r cosβ0 = 2r
(

sinβ0

θ
+ cosβ0

)
=

2r
cosβ0

= 2δr.

Thus, there exists a t0 ≤ t1 such that

x− (t0) + r cosβ0 = y1 (t0) or x+ (t0)− r cosβ0 = y1 (t0) .

Since

|y2 (t0)| ≤ θt0 ≤ hr,

we obtain ∥∥y (t0)−
(
x− (t0) , 0

)∥∥2 ≤ r2 or
∥∥y (t0)−

(
x+ (t0) , 0

)∥∥2 ≤ r2,

which completes the proof.
Note that in the situation analyzed in Lemma 6, the invader loses the game be-

cause of the inequality r < �.We are now going to describe the subintervals mentioned
above and suitable guarding strategies.

For each r ∈ (0, �) and every k = 1, 2, . . . , n, we put

Δ1 (r) = Λ1 (r) ,
Δk (r) = Δ1 (r) + (k − 1)Λ2 (r) , k = 2, 3, . . . , n− 1,
Δn (r) = 2Λ1 (r) + (n− 2)Λ2 (r) .
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Defender Dk will guard the interval

[Δk−1 (r) ,Δk (r)]× {0} ,

where

Δ0 (r) def= 0.

We are now going to describe guarding strategies. In order to do this we will
divide the whole plane R

2 into suitable regions. First of all we put (see Corollary 1)

a+
1 (r) = Δ1 (r)− κr , c

+
1 (r) = Δ1 (r)− κr −

1
2
δr,

x1 (t) =
{

r + t if 0 ≤ t < τL2 (x′1) ,
x1 (τL2 (x′1))− t+ τL2 (x′1) if τL2 (x′1) ≤ t ≤ 2τL2 (x′1) ,

a−k (r) = Δk−1 (r) + κr, c
−
k (r) = Δk−1 (r) + κr +

1
2
δr,

a+
1 (r) = Δk (r) − κr, c

+
k (r) = Δk (r)− κr −

1
2
δr,

xk (t) =
{

Δk−1 + δr + t if 0 ≤ t < τM3 (x′k) ,
xk (τM3 (x′k))− t+ τM3 (x′k) if τM3 (x′k) ≤ t ≤ 2τM3 (x′k)

for k = 2, 3, . . . , n− 1, and

a−n (r) = Δn−1 (r) + κr , c
−
n (r) = Δn−1 (r) + κr +

1
2
δr,

xn (t) =
{

Δn−1 + δr + t if 0 ≤ t < τR2 (x′n) ,
xn (τR2 (x′n))− t+ τR2 (x′n) if τR2 (x′n) ≤ t ≤ 2τR2 (x′n) .

Partition 1. Set (see Corollary 1)

Ω1 (r) = conv yL (x1, [0, 2τL,2 (r)]) ,
CR1 (r) =

{
(y1, y2) ∈ R

2 : |y2| <
(
y1 − a+

1 (r)
)
cotγ0

}
,

C1 (r) = R
2
�CR1, Ω0

1 (r) = int (Ω1 (r) �CR1) .

Figure 6 illustrates the partition 1, with r = 1 and θ =
√

2.
Partition k. Set (see Corollary 1)

Ωk (r) = conv yM (xk, [0, 2τM,3 (r)]) ,
CLk (r) =

{
(y1, y2) ∈ R

2 : |y2| <
(
a+
k−1 (r) − y1

)
cotγ0

}
,

CRk (r) =
{
(y1, y2) ∈ R

2 : |y2| <
(
y1 − a+

k (r)
)
cot γ0

}
,

Ck (r) = R
2
� (CLk ∪ CRk) , Ω0

k (r) = int (Ω1 (r) � (CLk ∪ CRk))

for k = 2, 3, . . . , n− 1. Figure 7 illustrates the partition k, with r = 1 and θ =
√

2.
Partition n. Set (see Corollary 1)

Ωn (r) = conv yR (xn, [0, 2τR,2 (r)]) ,
CLn (r) =

{
(y1, y2) ∈ R

2 : |y2| <
(
a+
n−1 (r) − y1

)
cotγ0

}
,

Cn (r) = R
2
�CLn, Ω0

n (r) = int (Ωn (r) �CRk) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

832 WITOLD RZYMOWSKI

Fig. 6. Partition Π1.

Fig. 7. Partition Πk, for 1 < k < n − 1.

Figure 8 illustrates the partition n, with r = 1 and θ =
√

2.
Before we give the definition of guarding strategy, we have to answer some ques-

tions. For example, consider Partition k, with k ∈ {2, 3, . . . , n− 1}. Take arbitrary

b ∈ R
2
�int (Ck (r) ∩ Ωk (r)) and y ∈ Y (b) .

If z ∈ Ck (r) � int Ωk (r), then there exist exactly one ΠΩk(r) (z) ∈ bd Ωk (r) such
that

∥∥z −ΠΩk(r) (z)
∥∥ = dist (z,Ωk (r))
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Fig. 8. Partition Ππ.

Fig. 9. Invader will be captured.

and exactly one ϕk (z) ∈ [β0, π − β0] ∪ [π − β0, 2π) such that

ΠΩk(r) (z) = yM (xk, ϕk (z)) .

If z ∈ CLk (r), then, for

fLk (z) def= c−k (r) +
1
θ
dist (z, bd CLk (r)) ,

we have

dist ((fLk (z) , 0) , bd CLk (r)) =
1
θ
dist (z, bd CLk (r)) .

See Figure 9.
Similarly, if z ∈ CRk (r), then, for

fRk (z) def= c+k (r) − 1
θ
dist (z, bd CRk (r)) ,
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we have

dist ((fRk (z) , 0) , bd CRk (r)) =
1
θ
dist (z, bd CRk (r)) .

Finally, note that

fLk (z) = yM (xk, ϕk (z)) = (xk (ϕk (z)) , 0) + re (ϕk (z)) if z ∈ bd CLk (r) ,
fRk (z) = yM (xk, ϕk (z)) = (xk (ϕk (z)) , 0) + re (ϕk (z)) if z ∈ bd CRk (r) .

These observations allow us to define a Lipschitzian function fk : R
2
�Ω0

k (r)→ R by
the formula

fk (z) =

⎧⎨
⎩

fLk (z) , when z ∈ CLk (r) ,
xk (ϕk (z)) , when z ∈ Ck (r) �Ω0

k (r) ,
fRk (z) , when z ∈ CRk (r) .

Suppose that, for an interval [t1, t2], we have

y (t) ∈ Ck (r) � int Ωk (r) , t ∈ [t1, t2] .

Taking into account the fact that ΠΩk(r) is a nonexpansive mapping, one can show
that

|x′k (ϕk (y (t)))| ≤ 1
θ
‖y′M (xk, ϕk (y (t)))‖ ≤ 1

almost everywhere in [t1, t2] . Suppose now that, for an interval (t1, t2), we have

y (t) ∈ CLk (r) , t ∈ (t1, t2) .

Since the function dist(·, bd CLk (r)) satisfies the Lipschitz condition with constant 1,
we have ∣∣∣∣ ddtfLk (y (t))

∣∣∣∣ ≤ 1
θ
‖y′ (t)‖ ≤ 1

almost everywhere in (t1, t2) . Clearly, the analogous statement is true for the function
fRk. It follows from the considerations above that∣∣∣∣ ddtfk (y (t))

∣∣∣∣ ≤ 1

for almost all t ∈ Ek (y), where

Ek (y) =
{
t ≥ 0 : y (t) /∈ Ω0

k (r)
}
.

Repeating the construction described for Partitions 1 and n, we obtain functions

f1 : R
2
�Ω0

1 (r)→ R, fn : R
2
�Ω0

n (r)→ R

and multifunctions

E1 : Y (b)→ [0,∞) , En : Y (b)→ [0,∞)

with analogous properties.
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Now we are ready to define a guarding strategy. Let

b = (b1, b2) ∈ R
2
�

n⋃
k=1

int Ωk (r) ,

and let y ∈ Y (b) be chosen arbitrarily. We define

ak = fk (b) , k = 1, 2, . . . , n.

Clearly, we may assume that

‖b− (ak, 0)‖ > r, k = 1, 2, . . . , n.

The following two cases are possible:
(a) There exist a t∗ > 0 and a k ∈ {1, 2, . . . , n} such that ‖y (t)− (fk (y (t)) , 0)‖ ≤ r.
(b) ‖y (t)− (fk (y (t)) , 0)‖ > r for all t ≥ 0 and every k = 1, 2, . . . , n.
In case (a) we take

τ∗1 (y) = inf
{
t > 0 : min

k=1,2,...,n
‖y (t)− (fk (y (t)) , 0)‖ > r

}

and define, for every k = 1, 2, . . . , n,

σDk
(y) (t) =

{
fk (y (t)) for t ∈ [0, τ∗1 (y)] ,

fk (y (τ∗1 (y))) for t ≥ τ∗1 (y) ,
σD (y) (t) = (σD1 (y) (t) , . . . , σDn (y) (t)) , t ≥ 0.

In case (b) it may be
(b1) y (t) /∈ [0,Δn (r)]× {0} for all t ≥ 0, or
(b2) there exists a t∗ > 0 such that y (t∗) ∈ [0,Δn (r)]× {0} .
If case (b1) takes place, then we define, for every k = 1, 2, . . . , n,

σDk
(y) (t) = fk (y (t)) , t ≥ 0,

σD (y) (t) = (σD1 (y) (t) , . . . , σDn (y) (t)) , t ≥ 0.

In case (b2) we take

τ∗2 (y) = inf {t > 0 : y (t) /∈ [0,Δn (r)]× {0}} .

It is easy to see that it must be y1 (τ∗2 (y)) = 0 and

c+j−1 < y1 (τ∗2 (y)) < c−j

for a j ∈ {2, 3, . . . , n} . Taking into account Lemma 6 we define

σDj−1 (y) (t) =
{

fj−1 (y (t)) for t ∈ [0, τ∗2 (y)] ,
fj−1 (y (τ∗2 (y))) + t− τ∗2 (y) for t ≥ τ∗2 (y) ,

σDj (y) (t) =
{

fj (y (t)) for t ∈ [0, τ∗2 (y)] ,
fj (y (τ∗2 (y)))− t+ τ∗2 (y) for t ≥ τ∗2 (y) ,

σDk
(y) (t) =

{
fk (y (t)) for t ∈ [0, τ∗2 (y)] ,

fk (y (τ∗2 (y))) for t ≥ τ∗2 (y)
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for k ∈ {1, 2, . . . , n}� {j − 1, j}, and finally

σD (y) (t) = (σD1 (y) (t) , . . . , σDn (y) (t)) , t ≥ 0.

In this way we have defined a nonanticipating mapping σD satisfying the inequalities∣∣∣∣ ddtσDk
(y) (t)

∣∣∣∣ ≤ 1, k = 1, 2, . . . , n,

almost everywhere in [0,∞) . By virtue of what has been said,

σD : Y (b)→ X (a1, . . . , an)

is a guarding strategy.
Proposition 2. The strategy σD guards the interval [0,Δn (r)] × {0} success-

fully.
Proof. Let us fix a y ∈ Y (b) and put

x = (x1, . . . , xn) = σD (y) .

By the definition of σD it is enough to consider the case when, for a t∗ > 0,

y (t∗) ∈ (0,Δn (r))× {0} .

Without loss of generality we may assume that

y (t) /∈ (0,Δn (r))× {0} , t ∈ [0, t∗) ,

and

min
k=1,2,...,n

‖y (t)− (xk (t) , 0)‖ > r, t ∈ [0, t∗] .

Clearly, y2 (t∗) = 0 and there exists a j ∈ {2, 3, . . . , n} such that

c+j−1 < y1 (t∗) < c−j .

We claim that

min {‖y (t)− (xj−1 (s∗) , 0)‖ , ‖y (t)− (xj (s∗) , 0)‖} ≤ r

for an s∗ > t∗. In view of Lemma 6, it suffices to check the inequality

xj (t∗)− xj−1 (t∗) ≤ 2δr.

By the definition of the strategy σD we have (see Figure 9)

xj−1 (t∗) = c+j−1 + d1 < y1 (t∗) < c−j − d2 = xj (t∗) ,

where

d1 =
1
v
dist

(
y (t∗) , B+

j−1 (r)
)

and d1 =
1
v
dist

(
y (t∗) , B−

j (r)
)
.

Since

dist
(
y (t∗) , B+

j−1 (r)
)

=
(
y1 (t∗)− a+

j−1

)
cos γ0,

dist
(
y (t∗) , B−

j (r)
)

=
(
a−j − y1 (t∗)

)
cos γ0
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we have

xj (t∗)− xj−1 (t∗) = c−j − c+j−1 − (d1 + d2)

= Δj−1 (r) + κr +
1
2
δr −

(
Δj−1 (r) − κr −

1
2
δr

)

−1
v

(
a−j − a+

j−1

)
cos γ0

= 2κr + δr −
2κr

v
cos γ0

= 2δr.

Therefore, if

min
k=1,2,...,n

‖y (t)− (xk (t) , 0)‖ > r, t ≥ 0,

then

y (t∗) /∈ [0,Δn (r)]× {0} , t ≥ 0,

which means that σD guards the interval [0,Δn (r)]× {0} successfully and completes
the proof.

Conclusion. Theorem 1 follows now from Propositions 1 and 2 and the equality

lim
r↑�

Δn (r) = Δ (�) .

5. Conclusions. 1. In cases n = 1 and n = 2 we have

L1
def= Δ (�) =

r

θ2 − 1

∫ π

0

(√
θ2 − cos2 α+ sinα

)
dα

and

L2
def= Δ (�) =

2r
θ2 − 1

∫ π−β0

0

(√
θ2 − cos2 α+ sinα

)
dα

+
2rθ

(θ2 − 1)
√
θ2 + 1

+
2rθ√
θ2 + 1

,

respectively. It is not very hard to verify that L2 > 2L1, which is not a surprise. This
means that the proper cooperation gives a benefit since 2L1 is the maximal length of
an interval guarded by two defenders separately.

2. It was assumed in the paper that motion of the defenders is restricted to a
straight line. One can show, without such a restriction, that the maximal length of
a guarded interval is then greater than Δ (�) (which is also not a surprise). Unfortu-
nately we are not able to estimate the maximal length of the guarded interval.

3. It seems that guarding-line-segment games can be used as a tool in solving
pursuit-evasion games in various environments. For example, it can be shown that
optimal strategies of “wall pursuit” game (see Example 9.5.2 in [8]) coincide in an
adequate region with strategies of guarding-line-segment games with one defender,
when its motion is not restricted to a straight line. It gives an answer to the question
raised in Problem 9.5.1 of [8].
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FOCUSING WAVES IN UNKNOWN MEDIA BY MODIFIED TIME
REVERSAL ITERATION∗

MATIAS F. DAHL† , ANNA KIRPICHNIKOVA‡ , AND MATTI LASSAS§

Abstract. We study the wave equation on a bounded domain M in R
m or on a compact

Riemannian manifold with boundary. Assume that we do not know the coefficients of the wave
equation but are given only the hyperbolic Robin-to-Dirichlet map that corresponds to physical
measurements on a part of the boundary. In this paper we show that at a fixed time t0 a wave can
be cut off outside a suitable set. That is, if N ⊂ M is a union of balls in the travel time metric
having centers at the boundary, then we can modify a given Robin boundary value of a wave such
that at time t0 the modified wave is arbitrarily close to the original wave inside N and arbitrarily
small outside N . Also, at time t0 the time derivative of the modified wave is arbitrarily small in all
of M . We apply this result to construct a sequence of Robin boundary values so that at a time t0
the corresponding waves converge to a delta distribution δx̂ while the time derivative of the waves
converge to zero. Such boundary values are generated by an iterative sequence of measurements.
In each iteration step we apply time reversal and other simple operators to measured data and
compute boundary values for the next iteration step. A key feature of this result is that it does not
require knowledge of the coefficients in the wave equation, that is, of the material parameters inside
the media. However, we assume that the point x̂ where the wave focuses is known in travel time
coordinates, and x̂ satisfies a certain geometrical condition.

Key words. focusing of waves, wave equation, time reversal

AMS subject classifications. 35R30, 93B05

DOI. 10.1137/070705192

1. Introduction. Let us consider the wave equation in M that is a bounded
domain of R

m or a compact manifold:⎧⎪⎨
⎪⎩
utt(x, t) +Au(x, t) = 0 in M × R+,

u|t=0 = 0, ut|t=0 = 0,
(∂ν − σ)u|∂M×R+ = f,

(1.1)

where A is a second order elliptic partial differential operator, σ is a smooth function
σ ∈ C∞(∂M), and f ∈ L2(∂M × R+) is a boundary source. Throughout the paper,
the coefficients of A, σ, u, f , etc. are real valued. For precise definitions, see section 2.

In this paper we show how to construct Robin boundary values f such that at
time T the wave (u(T ), ut(T )) is arbitrarily close to (cδx̂, 0), where δx̂ is the Dirac
delta distribution at a suitable point x̂ ∈ M . We call such waves focusing waves. To
construct such boundary values, we assume only that we can make physical measure-
ments on a part Γ of the boundary of M . That is, for given Robin values on Γ we can
measure the Dirichlet boundary values of the wave on Γ. A focusing wave can then be
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generated by an iterative sequence of measurements. In each iteration step we apply
time reversal and other simple operators to measured data and compute boundary
values for the next iteration step.

The iteration algorithm in this paper is closely related to time reversal methods.
Let us, therefore, shortly discuss the underlying idea and the usually used approxi-
mations behind these methods. As a simple example, let us consider a domain M in
R

3, where we can measure waves and generate sources on the whole boundary of M .
Let us first assume that there is a theoretical point source at x̂ ∈M , and we measure
the wave and/or its normal derivative at the boundary of M . Assume further that
we record this signal, reverse it in time, and reemitted into M ; see [20]. Then one
can show (assuming certain approximations hold, see [20, 19, 16]) that the reemitted
wave will travel like the original wave but as if time were running backwards. This
causes the reemitted wave to focus near x̂.

This principle can also be used for imaging. To find a small scatterer D in a
relatively homogeneous domain, one sends a wave into the domain. If the scatterer
is small and the single scattering approximation is justified, the scattered wave corre-
sponds to a wave produced by a point source at D. If we record this scattered signal
at the boundary, reverse it in time, and reemit it into the domain, it will focus at
the scatterer. Furthermore, this focusing has been observed to be quite stable under
perturbations of the medium. Thus, if the reemitted wave is simulated (by computa-
tional means) in homogeneous media, it will focus at the location of D. In this way
a small scatterer can be found using relatively simple computational methods. The
above measurement procedure also shows how to approximately focus a wave onto a
scatterer. By iterating this measurement procedure, focusing has been observed to
improve, and this iterated measurement procedure is called the iterated time reversal
technique. It has been studied extensively by Fink. There are also various extensions.
For example, if the target area contains multiple scatterers, an iteration scheme can
be used to focus the wave on any of the scatterers [40].

Besides imaging, time reversal can be used to focus a wave onto a scatterer, say,
inside the human body. One application of this is litotripsy, where one breaks down
a kidney or bladder stone using a focusing ultrasonic wave. Another application is
hyperthermia, where a cancer is destroyed by an excessive heat dose generated by
a focusing wave. Let us point out that, for the wave equation, there are various
methods to estimate material parameters in travel time coordinates using boundary
measurements. These methods are, however, quite unstable [3, 30]. Therefore, they
might not be suitable for hyperthermia, where safety is crucial. An important question
is, therefore, how to focus waves in unknown media. This is the topic of the present
work.

For reviews and extensions on time reversal, see the seminal papers of Fink [17,
18, 19]. Time reversal methods have been intensively studied in random heterogeneous
media where the statistics of the random media are known; see, e.g., [6, 7, 8, 13, 14].
For time reversal in chaotic cavities, see [21]. For related analysis on time reversal
methods, see also [4, 5, 27, 22, 35, 39, 41].

Let us describe the key features of the algorithm in this paper. First, to focus a
wave onto a point x̂ inside the media, we assume that (i) x̂ is on a normal geodesic from
Γ that is distance minimizing and (ii) the travel time coordinates of x̂ are known from
the boundary. Let us emphasize that we do not assume the medium inM to be known.
However, if the medium (i.e., the coefficient functions of A) is known, the coordinates
appearing in condition (ii) can be determined for any given point ofM . If the medium
is not known explicitly (but only the Robin-to-Dirichlet map is known), then condition
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(ii) means that focusing can be done using the same coordinates in which imaging is
usually done. Indeed, in imaging algorithms for anisotropic media, the imaging using
waves cannot be done in Euclidean coordinates but only in the travel time coordinates
(or boundary normal coordinates) related to wave propagation. This is due to the
fact that one can deform the coefficients of the equation by pushing those forward
with an arbitrary diffeomorphism Φ : M → M , Φ|∂M = Id without changing the
measurements at the boundary. Physically speaking, this means that if we have two
objects such that the coefficients in the wave equations modeling these objects have
the same representation in some coordinate systems, then all boundary measurements
for the objects are the same. This invariance of the boundary measurements and the
imaging algorithms are considered in detail in [32]. We also note that, in isotropic
media, the relationship between travel time coordinates and Euclidian coordinates
in M can be written down explicitly in terms of ordinary differential equations [32,
Lemma 4.46]. The important feature of the focusing algorithm discussed in this paper
is that, as the algorithm does not rely on media parameters obtained from imaging,
errors in imaging do not accumulate into errors in focusing.

Second, the algorithm can focus a wave onto an area having no scatterer. This
differs from the usual time reversal iteration which can only focus onto a scatterer
located inside the media. Third, the algorithm is computationally cheap. In a sense,
all computations are done by the media; there is no need to solve the wave equation,
cf. [26]. We will assume that the medium is linear, nondispersive, nondissipative, and
frequency-independent and depends smoothly on location. However, we do not need
any other approximations like the single scattering approximations to prove that the
algorithm works.

A limitation of the present algorithm is that we assume self-adjointness of operator
A and time T when the wave focuses is large enough. We also impose the above
geometric conditions on x̂.

The present work is a continuation of [12] where a similar iterative scheme was
introduced, for which u(T ) focuses to a delta distribution, but the time derivative
ut(T ) was uncontrolled. The present work can also be seen as a generalization of so-
called retrofocusing in control theory, where the aim is to produce boundary sources
giving the same final state as a boundary sources sent before in the medium; see
[28, 36]. The methodology in this paper arises from boundary control methods used
to study inverse problems in hyperbolic equations [9, 10, 11, 31, 32, 33, 34]. In the
present work the seminal theorem of unique continuation due to Tataru [44, 46] plays
an important role. This result is a generalization of earlier results due to Robbiano
[42] and Hörmander [23].

The outline of this work is as follows. In section 2 we introduce notation and
review some relevant results from control theory. We also define the boundary op-
erators that are needed in the iteration scheme. In section 3 we describe the main
results (Theorems 3.2 and 3.3) and outline their proofs, and in section 4 we prove
these results.

2. Definitions and preliminary results. We assume that M is the closure
of an open C∞-smooth bounded set in R

m (m ≥ 1) with nonempty smooth bound-
ary ∂M or an m-dimensional C∞-smooth compact manifold with boundary. Fur-
thermore, we assume that M is equipped with a C∞-smooth Riemannian metric
g =

∑
jk gjk dx

j ⊗ dxk. Elements of the inverse matrix of gij are denoted by gij . Let
dVg be the smooth measure

dVg = |g(x)|1/2dx1 ∧ · · · ∧ dxm,
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where |g| = det([gjk]). Then L2(M) is defined by the inner product

〈u, v〉 =
∫
M

u(x)v(x) dV,

where dV = μdVg and μ ∈ C∞(M) is a fixed strictly positive function on M .
In wave equation (1.1), we assume that A represents the most general formally

self-adjoint elliptic partial differential operator of second order with respect to the
above inner product [32]. In local coordinates, A has the form

Av = −
m∑

j,k=1

1
μ(x)|g(x)|1/2

∂

∂xj

(
μ(x)|g(x)|1/2gjk(x) ∂v

∂xk

)
+ q(x)v,

where q is a smooth function q : M → R. For example, if μ = 1 and q = 0, then
A reduces to the Riemannian Laplace operator. Let us point out that A represents
media that is linear, nondissipative, nondispersive, and frequency-independent.

On the boundary ∂M , operator ∂ν is defined by

∂νv =
m∑
j=1

μ(x)νj
∂

∂xj
v(x),

where ν(x) = (ν1, ν2, . . . , νm) is the interior unit normal vector of the boundary
satisfying

∑m
j,k=1 gjkν

jνk = 1. To integrate functions on ∂M we use the measure dS
on ∂M induced by dVg. If B ⊂ ∂M × R+, we define

L2(B) = {f ∈ L2(∂M × R+) : supp(f) ⊂ B}

identifying functions and their zero continuations.
Suppose Σ ⊂ ∂M is a nonempty open set of ∂M , and suppose that f ∈ L2(Σ×

R+). Then wave equation (1.1) has a solution, and we denote this solution by uf .
The map f 
→ uf is linear over R, and ∂tuf = u∂tf when f, ∂tf ∈ L2(Σ,R+).

The characteristic function of a set S is denoted by χS .

2.1. Travel time metric. Let d(x, y) be the geodesic distance corresponding to
g. The metric d is also called the travel time metric because it describes how solutions
to the wave equation propagate. By the finite velocity of wave propagation (see [25]),
we have that if Σ ⊂ ∂M is open and f ∈ L2(Σ×R+), then at time t > 0 solution uf

is supported in the domain of influence

M(Σ, t) = {x ∈M : d(x,Σ) ≤ t}.

The set M(x, t) is defined by the same formula when x ∈M . The diameter of M is
defined as

diam(M) = max {d(x, y) : x, y ∈M}.

If x ∈ M and ξ ∈ TxM , then we denote by γx,ξ the arc length parametrized
geodesic in M that satisfies γx,ξ(0) = x and γ̇x,ξ(0) = ξ. Suppose z ∈ Γ for an open
set Γ ⊂ ∂M and ν = ν(z) is the interior unit normal vector at z ∈ ∂M . Then a
geodesic γz,ν is called a normal geodesic, and there is a critical value τΓ(z) > 0 such
that for t < τΓ(z) geodesic γz,ν([0, t]) is the unique shortest curve in M that connects
γz,ν(t) to Γ and for t > τΓ(z) this is no longer true. More precisely, we define

τΓ(z) = sup
{
s > 0 : d(γz,ν(s),Γ) = s, andγz,ν(0, s) ⊂M int

}
,
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where M int are the interior points of M . When t = τΓ(z), we say that t is a critical
value corresponding to z ∈ Γ and x = γz,ν(τΓ(z)) is a cut point corresponding to Γ.
The union of all cut points x is called the cut locus with respect to Γ [15].

2.2. Controllability for wave equation. The seminal result implying control-
lability is Tataru’s unique continuation result [44, 46].

Proposition 2.1 (Tataru). Let u ∈ H1
loc(M × R+) be a solution of the wave

equation

utt(x, t) +Au(x, t) = 0.

Assume that

u|Σ×(0,2τ) = 0, ∂νu|Σ×(0,2τ) = 0,

where Σ ⊂ ∂M is a nonempty open set and τ > 0. Then

u(x, τ) = 0, ∂tu(x, τ) = 0 for x ∈M(Σ, τ).

Using Tataru’s unique continuation result, one can prove the following controlla-
bility result. The proof is postponed to section 4.

Proposition 2.2 (approximate global controllability). Suppose Γ is a nonempty
open subset of ∂M . If T > 2 diam(M), then the linear subspace{(

uf(T ), uft (T )
)

: f ∈ C∞
0 (Γ× (0, T ))

}
is dense in H1(M)× L2(M).

This result yields the following controllability result; see, e.g., [32] and references
therein.

Proposition 2.3 (approximative local controllability). Let τ > 0, let Γ ⊂ ∂M be
a nonempty open subset, let Γ1, . . . ,ΓJ ⊂ Γ be nonempty open sets, and let 0 < sk < τ
for k = 1, . . . , J . Suppose

B =
J⋃
j=1

Γj × (τ − sj , τ)

and P is multiplication by the characteristic function χB,

P : L2(Γ× (0, τ))→ L2(Γ× (0, τ)),
f(x, t) 
→ χB(x, t) f(x, t).

Then the linear subspace {
uPh(τ) : h ∈ L2(Γ× (0, τ))

}
is dense in L2(N), where N =

⋃J
j=1M(Γj , sj).

2.3. Operators for boundary sources. In this section we introduce operators
for manipulating boundary sources. These will be needed both in the proof of the
main result and in the iteration scheme. Hereafter, we always assume that Γ is a
nonempty open set of ∂M where we can control the boundary sources.
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For initial boundary value problem (1.1) we define the nonstationary Robin-to-
Dirichlet map (or response operator) Λ by setting

Λf = uf |∂M×R+ , f ∈ L2(∂M × R+).

In other words, we solve the wave equation (1.1) for a boundary source f and measure
boundary values for the solution uf . In this work we need only the finite time Robin-
to-Dirichlet map restricted onto Γ. For T > 0 we define

ΛΓ
2T f = uf |Γ×(0,2T ), f ∈ L2(Γ× (0, 2T )).

The map

ΛΓ
2T : L2(Γ× (0, 2T ))→ Hs(Γ× (0, 2T ))

is bounded, where Hs(Γ × (0, 2T )) is the Sobolev space on Γ × (0, 2T ) and s = 1/3
if the dimension of M is two or larger [45, Theorem 9] and s < 1/5 if the dimen-
sion is one. To see this, let φ ∈ C∞(M) be a smooth function with boundary value
f |∂M = σ, where σ is defined in (1.1). Then v = eφuh satisfies a wave equation with
Neumann boundary condition ∂νv = 0, and the mapping properties of ΛΓ

2T follow by
[38, Theorem A].

For f ∈ L2(Γ× (0, 2T )), let

R2T f(x, t) = f(x, 2T − t),

J2T f(x, t) =
∫

[0,2T ]

J2T (s, t)f(x, s)ds,

where J2T (s, t) = 1
2χL(s, t) and

L = {(s, t) ∈ R+ × R+ : t+ s ≤ 2T, s > t}.

We call R2T the time reversal map and J2T the time filter map [12]. On L2(Γ×(0, 2T ))
with measure dS(x)dt, the adjoint of ΛΓ

2T is [12]:(
ΛΓ

2T

)∗
= R2TΛΓ

2TR2T .

The above identity follows since the Green’s function G(x, y, t) for problem (1.1)
satisfies the reciprocity condition G(x, y, t) = G(y, x, t) when x, y ∈M and t ≥ 0. For
f ∈ L2(Γ× (0, 2T )), let

Q2T f =
∫ 2T

0

g(t, s)f(x, s)ds(2.1)

be the time filter operator, where g : (0, 2T )2 → R,

g(t, s) =
1

2 (e4T − 1)

{
(et − e−t)

(
e4T e−s − es

)
, t < s,

(es − e−s)
(
e4T e−t − et

)
, t > s,

is the Green’s function for the problem{(
1− ∂2

t

)
g(t, s) = δ(t− s), t ∈ (0, 2T ),

g|t=0 = 0, g|t=2T = 0,
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where s ∈ (0, 2T ). Next, we consider ΛΓ
2T , R2T , J2T , and Q2T as operators:

ΛΓ
2T , R2T , J2T , Q2T : L2(Γ× (0, 2T ))→ L2(Γ× (0, 2T )).

Below, we often denote R2T , J2T , and Q2T by R, J, and Q, respectively. For f, h ∈
L2(Γ× (0, 2T )) the Blagovestchenskii identity states that∫

M

uf(T )uh(T ) dV =
∫

Γ×[0,2T ]

(Kf)(x, t)h(x, t) dS(x)dt,(2.2)

where K : L2(Γ× (0, 2T ))→ L2(Γ× (0, 2T )) is the bounded operator

K = R2TΛΓ
2TR2TJ2T − J2TΛΓ

2T .

For a proof, see, e.g., [12] or [32, Lemma 4.15]. The importance of this identity is that
it shows how the inner product of solutions uf (T ) and uh(T ) on M can be calculated
from data on Γ alone. Namely, on the right-hand side of the Blagovestchenskii identity
(2.2), dS is the Riemannian surface volume on ∂M and K is defined in terms of
the Robin-to-Dirichlet map Λ2T and simple operators on boundary values like time
reversal. Let us point out that since h ∈ L2(Γ × (0, 2T )), the boundary integral is
nonzero only on Γ, and, similarly, the left-hand side is nonzero only on M(Γ, T ).
Furthermore, by the Blagovestchenskii identity (2.2), operator K is self-adjoint.

The intrinsic Riemannian surface volume dS on Γ ⊂ ∂M is determined by Λ2T .
Namely, by Tataru’s unique continuation principle, the Schwartz kernel of ΛΓ

2T is
supported in

E =
{
(x, t, x′, t′) ∈ (Γ× (0, 2T ))2 : t− t′ ≥ d(x, x′)

}
,

and the boundary ∂E is in the support. The set ∂E determines the distances of
points z, z′ ∈ Γ in the same component of Γ with respect to the intrinsic metric of
the boundary (Γ, g∂M ).

3. Iterations and main results.

3.1. Cutoff of wave. In this section we describe Theorem 3.2 which can be seen
as a lemma used in the proof of Theorem 3.3.

For T > 0, let X be the Hilbert space

X = L2(Γ× (0, 2T ))× Y, Y = H1
0

(
(0, 2T );L2(Γ)

)
,

with inner product〈(
h1

a1

)
,

(
h2

a2

)〉
X

= 〈h1, h2〉L2 + 〈a1, a2〉L2 + 〈∂ta1, ∂ta2〉L2 .

Here, H1
0 ((0, 2T );L2(Γ)) is the closure of C∞

0 ((0, 2T ) × Γ) in the Sobolev space
H1((0, 2T );L2(∂M)). As operator Q in (2.1) is the inverse of 1 − ∂2

t , it can be
considered as an operator Q : Y ∗ → Y , where Y ∗ is the dual of Hilbert space Y .
Furthermore, if f ∈ Y and g ∈ Y ∗, then

〈f, g〉Y,Y ∗ = 〈f,Qg〉Y .(3.1)

Definition 3.1. Let T > 2 diam(M), and let

B =
J⋃
j=1

Γj × (T − sj , T ),
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where Γ1, . . . ,ΓJ ⊂ Γ are nonempty open sets, and 0 < sk < T for k = 1, . . . , J . Let
P = χB be the multiplication by the characteristic function of B as in Proposition 2.3,
and let L : X → X be the operator

L =
(

1 0
0 Q

)(
2PKP −PK
−KP K − ∂tK∂t

)
.(3.2)

Let α ∈ (0, 1), let ω > 0 be such that 2(1 + ‖L‖X) < ω, and let

S =
(
1− α

ω

)
I − 1

ω
L.

If f ∈ L2(Γ × R+) is a boundary source, we define a sequence
(
hn

an

)
=
(
hn(α)
an(α)

)
∈ X,

n = 1, 2, . . . , by ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
h0

a0

)
=

1
ω

(
PKf

0

)
,

(
hn

an

)
=

(
h0

a0

)
+ S

(
hn−1

an−1

)
, n = 1, 2, . . . .

(3.3)

Theorem 3.2 is the first main result of the present paper. It essentially states
that, by a suitable modification of boundary value f , we change the wave so that
uf (T ) is multiplied with the characteristic function χN for any domain of influence
N that can be written as in (3.4) and the time derivative uft (T ) is made to vanish.
Furthermore, this modification of f relies only on data that can be measured from Γ.
This gives an improvement of the retrofocusing technique [28]. For related methods,
see [36].

We call iteration (3.3) the modified time reversal iteration. The meaning of oper-
ator L appearing in it will be seen in (4.4).

Theorem 3.2 (cutoff of wave). Let a1(α), a2(α), . . . be as in Definition 3.1.
Then the sequence converges in Y ,

lim
n→∞ an(α) = a(α),

and functions a(α) ∈ Y on the right-hand side satisfy

lim
α→0

(
ua(α)(T )
u
a(α)
t (T )

)
=
(
χNu

f (T )
0

)
,

where both limits are in L2(M) and N is the domain of influence

N =
J⋃
k=1

M(Γk, sk).(3.4)

Note that here ω may depend on α. For instance, we can choose ω = 1/α.
Let us emphasize that the novelty of this theorem is the explicit iteration scheme

for a(α) depending only on boundary measurements. The scheme depends on opera-
tors J,Q, P , andK that can be calculated from measurements on Γ. The first three are
simple operators like integration and restriction. Operator K = R2TΛΓ

2TR2TJ2T −
J2TΛΓ

2T involves time reversal R2T , time filtering J2T , and two evaluations of the
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Robin-to-Dirichlet map ΛΓ
2T which correspond to two physical measurements on Γ.

Hence, the first order approximation of a(α) requires two physical measurements. Af-
ter that, each additional pair (an(α), hn(α)) requires ten additional measurements.
Thus, for approximation an(α) we need only finitely many evaluations of the Robin-
to-Dirichlet map.

The full proof of Theorem 3.2 is given in section 4.1. Let us here outline the main
ideas. For α ∈ (0, 1), boundary sources h(α), a(α) are defined as the minimum of the
functional

F(h, a, α) =
∥∥uf(T )− uPh(T )

∥∥2

L2(M)

+
∥∥uPh(T )− ua(T )

∥∥2

L2(M)
+ ‖uat (T )‖2L2(M)

+α
(
‖h‖2L2(Γ×(0,T )) + ‖a‖2L2(Γ×(0,T )) + ‖∂ta‖2L2(Γ×(0,T ))

)
.(3.5)

In what follows, when there is no danger of misunderstanding, we denote the L2-
norms in the spaces L2(M), L2(Γ × (0, T )), etc. just by ‖ · ‖. In Lemma 4.1 we
use convexity to prove that, for each α, there is a unique minimum h(α), a(α), and
by studying the Fréchet derivative of F we find a linear equation (see (4.2)) for
this minimum. In Lemma 4.2 we show that iteration scheme (3.3) converges to a
Neumann series that represents the solution to (4.2). That minimizer a(α) satisfies
the sought limit is proven in Lemma 4.3. The key step in the proof is to use the
approximative controllability results from section 2.2 to show that the first terms in
F can be arbitrarily close to ‖(1− χN )uf (T )‖2 and the next two terms can be made
arbitrarily small.

3.2. Focusing of wave. To understand how one can focus waves using Theorem
3.2, suppose we have sets B ⊂ B̃ ⊂ Γ × (0, T ) (defined in terms of Γi and si as in
Definition 3.1). Then Theorem 3.2 implies that there are boundary sources a(α) and
ã(α) such that

lim
α→0

(
ua(α)(T )
u
a(α)
t (T )

)
=
(
χNu

f (T )
0

)
,

lim
α→0

(
uã(α)(T )
u
ã(α)
t (T )

)
=
(
χÑu

f (T )
0

)
,

where the domains of influences satisfy N ⊂ Ñ at time T . As the solution operator
f 
→ uf is linear and commutes with ∂t, solution b(α) = ã(α) − a(α) satisfies

lim
α→0

(
ub(α)(T )
u
b(α)
t (T )

)
=
(
χÑ\Nu

f (T )
0

)
.(3.6)

That is, in the limit, the solution corresponding to b is supported in Ñ \ N . In the
proof we construct N and Ñ such that Ñ \N is a family of sets that shrink onto a
chosen point x̂. By further scaling b with a suitable constant depending on the volume
of Ñ \N , we obtain the delta distribution.

Notation 1. Let T > 2 diam(M) and x̂ = γẑ,ν(T̂ ), where ẑ ∈ Γ and 0 < T̂ < T .
Let Γj ⊂ Γ for j = 1, 2, . . . be open sets around ẑ such that Γj ⊃ Γj+1 and

⋂∞
j=1 Γj =

{ẑ}.
Suppose f ∈ C∞

0 (Γ × R+). Let an(α, ε) ∈ Y be functions obtained from the
iteration in Definition 3.1 when B is the set

B(ε) = Γ×
(
T −

(
T̂ − ε

)
, T
)
,
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α ∈ (0, α0) for a sufficiently small α0 ∈ (0, 1), ε > 0, and ω = 1/α. Similarly, let
an(α, j, ε) ∈ Y be functions obtained from the iteration in Definition 3.1 when B is
the set

B(j, ε) =
(
Γ×

(
T −

(
T̂ − ε

)
, T
))
∪
(
Γj ×

(
T − T̂ , T

))
,

α ∈ (0, 1), j = 1, 2, . . . , and ε > 0.
Under these assumptions, let

bn(α, j, ε) = ε−
m+1

2 (an(α, j, ε) − an(α, ε)) ∈ Y.

Theorem 3.3 is the second main result of this paper.
Theorem 3.3 (focusing wave). Let ẑ ∈ Γ, x̂ ∈ M , T̂ , and bn(α, j, ε) be as in

Notation 1. Then functions bn converge in Y ,

lim
n→∞ bn(α, j, ε) = b(α, j, ε).

If T̂ < τΓ(ẑ), then functions b(α, j, ε) ∈ Y satisfy

lim
ε→0+

lim
j→∞

lim
α→0+

(
ub(α,j,ε)(T )
u
b(α,j,ε)
t (T )

)
= C(x̂)uf (T, x̂)

(
δx̂
0

)
,(3.7)

where the inner two limits are in L2(M) and the outer limit is in D ′(M). Furthermore,
the constant C(x̂) is nonzero and independent of f , and an explicit expression for C(x̂)
is given by (4.10) in Appendix A.

If Γ = ∂M and T̂ > τΓ(ẑ), then limit (3.7) is zero.
Let us make a few comments. First, we assume that f ∈ C∞

0 (∂M ×R+). Hence,
uf ∈ C∞(M × R+) (see [37, 38]), and uf(x̂, T ) exists pointwise. Second, a function
v ∈ L2(M) is interpreted as a distribution v ∈ D ′(M) by the formula

〈v, φ〉 =
∫
M

vφdV, φ ∈ D(M).

Also, the delta distribution at y ∈M is defined by 〈δy, φ〉 = φ(y) for φ ∈ D(M).
We say that we can focus a wave onto a point x̂ = γẑ,ν(T̂ ) ∈ M provided that

limit (3.7) in Theorem 3.3 is nonzero. This is the case provided that T̂ < τΓ(ẑ).
Explicitly, we can focus a wave onto any point in the set

MΓ := {γẑ,ν(s) ∈M : ẑ ∈ Γ, s < τΓ(ẑ)} .

If we have full control of the boundary, that is, if Γ = ∂M , then we can focus on any
point that is not in the cut locus. Let us also point out that the cut locus has zero
measure in M [15, 32]. For example, on the closed disc we can focus a wave onto any
point except the center. However, if Γ = ∂M and T̂ > τΓ(ẑ), then functions bn(α, j, ε)
in Theorem 3.3 will be zero for sufficiently large j and small ε > 0 as we will see in
the proof. For example, in (3.6) this corresponds to the case when Ñ \N is empty.

In practice, Theorem 3.3 means that if α, ε are small enough and Γj ⊂ Γ is
small enough, then performing finitely many iterations of the modified time reversal
iteration will generate a wave (u, ut) that at time T is concentrated near a small
neighborhood of x̂.
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Example. Let us discuss the relation of the modified time reversal iteration and
the traditional time reversal. In the traditional time reversal one often considers a
wave v(x, t) solving{

vtt(x, t)− c(x)2Δv(x, t) = 0 in R
m × R+,

v|t=0 = φ, vt|t=0 = ψ,
(3.8)

where φ and ψ are supported in a small neighborhood B(x̂, ρ) of x̂. Assume that
M ⊂ R

n is a bounded domain containing x̂ and that there is T0 such that u(x, t) = 0
for all x ∈ M and t > T0. This happens, for instance, if dimension m is odd and
c(x) = 1 in R

m. Let us record the boundary value h(x, t) := (∂ν − σ)v(x, t)|∂M×(0,T0)

and define the time reversed function f0(x, t) = h(x, T0 − t). Then we obtain a
boundary value f0 such that(

uf0(x, T0), u
f0
t (x, T0)

)
= (φ, ψ),(3.9)

where uf0 solves (1.1) with A = −c(x)2Δ and f = f0. As φ is supported in a small
neighborhood of x̂, we can say that the wave focuses near x̂ at the time T0. This
focusing of the wave (3.9) at the time T0 is what makes traditional time reversal
interesting. Assume now that x̂ = γẑ,ν(T̂ ), where T̂ < τ∂M (ẑ). If we consider the
modified time reversal iteration introduced in Notation 1 with T = T0, Γj = Γ = ∂M ,
ε > ρ, and the starting value f = f0, then

lim
α→0

lim
n→∞ an(α, j, ε) = f1, lim

α→0
lim
n→∞ an(α, j) = 0.

Here, f1 is a boundary value that produces the same final state (φ, ψ) at time T0 as
f0 but may have a smaller norm in H1((0, T0);L2(∂M)) than f0. As Γj → {ẑ} and
ε → 0, the modified time reversal iteration produces other waves that focus at time
T0 near x̂ better and better.

4. Proofs. We start with the proof of Proposition 2.2. The proof is a relatively
direct consequence of Tataru’s unique continuation theorem and can be found, e.g.,
in the case of Dirichlet boundary conditions in [36, Lemma 2.1].

Proof of Proposition 2.2. Assume that a pair

(ψ,−φ) ∈
(
H1(M)× L2(M)

)′
= H1(M)′ × L2(M)

satisfies the duality

〈
uf(T ), ψ

〉
(H1(M),H1(M)′) +

〈
uft (T ),−φ

〉
L2(M)

= 0

for all f ∈ C∞
0 (Γ× (0, T )). Note that H1(M) is the domain of the square root of the

operator A+ cI when c is large enough, denoted by D(A1/2) and H1(M)′ is the dual
of H1(M) = D(A−1/2). Let

ett +Ae = 0 in M × (0, T ),
(∂ν − σ)e|∂M×(0,T ) = 0, e|t=T = φ, et|t=T = ψ.

By [38, Theorem F], we have that e ∈ C([0, T ];L2(M)) ∩C1([0, T ];H1(M)′) and the
trace e|∂M×(0,T ) ∈ H−2/5−ε(∂M × (0, T )), ε > 0, is well defined. Thus, we have in
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sense of distributions

0 =
∫
M×(0,T )

[
uf (ett +Ae)−

(
uftt +Auf

)
e
]

dV dt

=
∫
M

(
uft (T )φ− uf(T )ψ

)
dV +

∫
∂M×(0,T )

f e dSx dt

=
∫
M×(0,T )

f e dSx dt

for all f ∈ C∞
0 (Γ× (0, T )). This yields that

e|Γ×(0,T ) = 0 and ∂νe|∂M×(0,T ) = 0.

To apply unique continuation for e ∈ C([0, T ];L2(M)), let ε > 0 and let η ∈ C∞
0 (R)

be a function supported on (−1, 1) ⊂ R whose integral over R is one. Then

eε(x, t) =
∫

R

e(x, t′)η
(
t− t′
ε

)
dt′

satisfies (
∂2
t +A

)
eε = 0 in M × (ε, T − ε), (∂ν − σ)eε|∂M×(ε,T−ε) = 0,

and eε ∈ C∞((ε, T − ε);L2(M)). By representing eε in terms of eigenfunctions
of A (or by using bootstrap arguments for the wave equation), we see that
eε ∈ C∞((ε, T − ε);D(A∞)) ⊂ C∞(M × (ε, T − ε)). Now

eε|Γ×(ε,T−ε) = 0 and ∂νeε|Γ×(ε,T−ε) = 0.

Using Tataru’s unique continuation theorem [44] we see that if 0 < ε < T
2 − diam (M),

then

eε(x, t) = 0 when dist(x,Γ) <
T

2
− ε−

∣∣∣∣t− T

2

∣∣∣∣ .
In particular, eε(T/2) = ∂teε(T/2) = 0. Hence, eε = 0 identically on M × (0, T ).
When ε→ 0, we see that also e vanishes identically and thus φ = ψ = 0.

4.1. Proof of Theorem 3.2. On X we will study the minimization problem

min
(h,a)∈X

F(h, a, α),(4.1)

where α ∈ (0, 1) and F is defined in (3.5). By [38, Theorem A], the map h 
→ uh is
continuous L2(Γ×(0, 2T ))→ C([0, 2T ];H3/5−ε(M)), ε > 0. Thus, (h, a) 
→ F(h, a, α)
is a continuous map X → R.

Lemma 4.1. For any α ∈ (0, 1) minimization problem (4.1) has a unique mini-
mizer (h, a) ∈ X. This minimizer is the unique solution to

(α+ L)
(
h
a

)
=
(
PKf

0

)
,(4.2)

where L is defined in (3.2). Furthermore, L : X → X is nonnegative, bounded, and
self-adjoint.
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Proof. By the Blagovestchenskii identity (2.2) we have

F(h, a, α) = 〈f − Ph,K(f − Ph)〉+ 〈Ph− a,K(Ph− a)〉
+ 〈∂ta,K∂ta〉
+α(〈h, h〉+ 〈a, a〉+ 〈∂ta, ∂ta〉).

Here, K and P are self-adjoint in L2(Γ× (0, 2T )). Recall that Y is the Hilbert space
Y = H1

0 ((0, 2T );L2(Γ)). By using ∂tK∂t : Y → Y ∗ and (3.1) it follows that

〈∂ta,K∂ta〉L2(Γ×(0,2T )) = −〈∂tK∂ta, a〉Y ∗,Y = −〈Q∂tK∂ta, a〉Y .

Thus, using the inner product on X , we can rewrite F as

F(h, a, α) = 〈f,Kf〉+ 2
〈(

h
a

)
,

(
1 0
0 Q

)(
−PKf

0

)〉
X

+
〈(

h
a

)
, (α+ L)

(
h
a

)〉
X

.(4.3)

As Q : Y ∗ → Y and ∂tK∂t : Y → Y ∗ are bounded, L : X → X is bounded. A direct
calculation shows that L is self-adjoint. Setting f = 0 and α = 0 in (4.3) shows that
L is nonnegative.

The functional (h, a) 
→ F(h, a, α) is strictly convex and satisfies F(h, a, α) ≥
α
2 ‖(h, a)‖2X − C1 for some C1 > 0. Hence, the unique minimum of F is at a zero of
the Fréchet derivative [2, 47], that is, at (h, a) ∈ X where DFh,a = 0 and

DFh,a(ξ) = 2
〈(

1 0
0 Q

)(
−PKf

0

)
+ (α + L)

(
h
a

)
, ξ

〉
, ξ ∈ X.

The Fréchet derivative is invertible as L is nonnegative and self-adjoint, and, thus,
α+ L is invertible.

Let us note that if f = 0, then (4.3) implies that〈(
h
a

)
, L

(
h
a

)〉
X

= F(h, a, 0)

=
∥∥uPh(T )

∥∥2

L2(M)
+
∥∥uPh(T )− ua(T )

∥∥2

L2(M)
+ ‖uat (T )‖2L2(M)

≥ 1
4

(∥∥uPh(T )
∥∥2

L2(M)
+ ‖ua(T )‖2L2(M) + ‖uat (T )‖2L2(M)

)
.(4.4)

Lemma 4.2. Iteration scheme (3.3) converges to the unique solution to (4.2).
Proof. Using S and ω defined in Definition 3.1, we may rewrite (4.2) as

(I − S)
(
h
a

)
=

1
ω

(
PKf

0

)
.

By the nonnegativity of L, it follows that 0 < 〈x, Sx〉 < 1 when ‖x‖ = 1. Hence, as
S is self-adjoint,

‖S‖ ≤ 1− α

ω
< 1,

and h, a can be written as a convergent Neumann series.
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Lemma 4.3. Minimizer h(α), a(α) ∈ X to (4.1) satisfy

supp h(α) ⊂ B,
a(α) ∈ Range(Q),

lim
α→0

(
ua(α)(T )
u
a(α)
t (T )

)
=
(
χNu

f (T )
0

)
,

where both limits are in L2(M).
Proof. The first two claims follow by writing out (4.2) with the explicit form of

L given in (3.2). For the other results, let us define Z : X → R by

Z(h, a) =
1
2

∥∥χNuf(T )− uPh(T )
∥∥2

+
1
4

∥∥ua(T )− χNuf(T )
∥∥2

+ ‖uat (T )‖2 .
To prove the last claim, we show that for any ε > 0 there exists an α(ε) ∈ (0, 1) such
that Z(h(α), a(α)) < 4ε when α ∈ (0, α(ε)). By the finite velocity of wave propagation
[25],

uPf (T ) = χNu
Pf (T ), f ∈ L2(Γ× (0, T )).

Hence, for any (h, a) ∈ X ,

F(Ph, a, α) =
∥∥(1− χN )uf (T )

∥∥2
+
∥∥χNuf(T )− uPh(T )

∥∥2

+
∥∥uPh(T )− ua(T )

∥∥2
+ ‖uat (T )‖2

+α
(
‖Ph‖2 + ‖a‖2 + ‖∂ta‖2

)
.

It follows that, for any (h, a) ∈ X and α ∈ (0, 1),

Z(Ph, a) ≤ F(Ph, a, α)−
∥∥(1− χN )uf (T )

∥∥2
.

Here, we have estimated the second term in Z using the triangle inequality and the
inequality (s+ t)2 ≤ 2(s2 + t2). Let us fix ε ∈ (0, 1). By Proposition 2.3, there exists
an hε ∈ L2(B) such that ∥∥χNuf(T )− uPhε(T )

∥∥2
< ε,

and, by Proposition 2.2, there exists an aε ∈ H1
0 ((0, 2T );L2(Γ)) such that∥∥uaε(T )− χNuPhε(T )
∥∥2
< ε,

‖uaε
t (T )‖2 < ε.

As hε = Phε we have

F(hε, aε, α) <
∥∥(1 − χN)uf (T )

∥∥2
+ 3ε+ α

(
‖hε‖2 + ‖aε‖2 + ‖∂taε‖2

)
,

and if α ∈ (0, α(ε)), where

α(ε) =
ε

1 + ‖hε‖2 + ‖aε‖2 + ‖∂taε‖2
,

then minimizer h(α), a(α) of F satisfies

Z(h(α), a(α)) ≤ F(Ph(α), a(α), α) −
∥∥(1− χN )uf (T )

∥∥2

≤ F(hε, aε, α)−
∥∥(1 − χN )uf(T )

∥∥2

< 4ε.
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4.2. Proof of Theorem 3.3. By Theorem 3.2, the following limits exist in Y ,

a(α, ε) = lim
n→∞ an(α, ε),

a(α, j, ε) = lim
n→∞ an(α, j, ε)

and the following limits exist in L2(M),

lim
α→0

(
ua(α,ε)(T )
u
a(α,ε)
t (T )

)
=
(
χN(ε)u

f (T )
0

)
,(4.5)

lim
α→0

(
ua(α,j,ε)(T )
u
a(α,j,ε)
t (T )

)
=
(
χN(j,ε)u

f (T )
0

)
,(4.6)

where

N(ε) = M
(
Γ, T̂ − ε

)
,

N(j, ε) = M
(
Γ, T̂ − ε

)
∪M

(
Γj , T̂

)
.

We define b(α, j, ε) = limn→∞ bn(α, j, ε), whence

b(α, j, ε) = ε−
m+1

2 (a(α, j, ε)− a(α, ε)) .

Lemma 4.4. In L2(M),

lim
j→∞

lim
α→0

(
ub(α,j,ε)(T )
u
b(α,j,ε)
t (T )

)
= ε−

m+1
2

(
χJ(ε)u

f(T )
0

)
,

where

J(ε) = M
(
ẑ, T̂

)
\M

(
Γ, T̂ − ε

)
, ε > 0.

Suppose r > 0. For z ∈ ∂M , let

B(z, r) = {y ∈ ∂M : d∂M (z, y) < r},

where d∂M is the distance on manifold ∂M , and, for x ∈M , let

B(x, r) = {y ∈M : d(x, y) < r}.

The below proof relies on the fact that, for any ε > 0, we have Γk ⊂ B(ẑ, ε) for
sufficiently large k.

Proof. Since a 
→ ua is linear, it suffices to prove that, pointwise,

lim
j→∞

χM(Γj ,T̂)\M(Γ,T̂−ε)(x) = χJ(ε)(x), x ∈M.(4.7)

This is clear for x ∈ J(ε) and x /∈ M(Γ, T̂ − ε). If x /∈ M(ẑ, T̂ ), we show that
x /∈M(Γj , T̂ ) for large j. Indeed, if d(x, ẑ) > T̂ , then

Γl ⊂ B
(
ẑ,
d(x, ẑ)− T̂

2

)
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for large l. For y ∈ Γl, d(x, y) ≥ d(x, ẑ) − d(y, ẑ) > T̂ , so d(x,Γl+1) > T̂ . Hence,
d(x,Γl+1) = d(x,Γl+1) > T̂ , and x /∈M(Γl+1, T̂ ) and (4.7) follows.

The next Lemma shows that J(ε) are sets that shrink onto x̂ in the case when
T̂ < τΓ(ẑ).

Lemma 4.5 (properties of J(δ)). Let ẑ ∈ Γ and x̂ = γẑ,ν(T̂ ) for T̂ > 0. If
T̂ < τΓ(ẑ), then, for any ε > 0, there is a δ0 > 0 such that for 0 < δ < δ0,

J(δ) ⊂ B(x̂, ε),(4.8)

and {x̂} ⊂ J(δ) for all δ so that
⋂
δ>0 J(δ) = {x̂}. If Γ = ∂M and T̂ > τΓ(ẑ), then

J(δ) = ∅ for δ small enough.
Proof. We need only to prove (4.8) for δ0 as J(δ) ⊂ J(δ0) for δ < δ0. For a

contradiction, suppose that ε > 0 and x1, x2, . . . is a sequence such that

xj ∈ J(1/j), xj /∈ B(x̂, ε).

As M is compact, we can move onto a subsequence and assume that xj converges
to x ∈ M \ B(x̂, ε). Now d(xj , ẑ) ≤ T̂ and d(xj ,Γ) > T̂ − 1/j, and x 
→ d(x,Γ) is
continuous on M . Hence,

d(x, ẑ) ≤ T̂ , d(x,Γ) ≥ T̂ ,(4.9)

and T̂ ≤ d(x,Γ) ≤ d(x, ẑ) ≤ T̂ . We have shown that d(x, ẑ) = d(x,Γ) = T̂ . As M is
a compact, there is a distance minimizing curve η from ẑ to x that is parametrized
by path length and has length d(x, ẑ); see [1]. Hence, η is also a shortest curve from
x to Γ. In consequence, η((0, s)) does not intersect ∂M for some s > 0, and η((0, s))
is a geodesic in M int. Then, by [15, section 3.6], η((0, s)) is necessarily normal to Γ.
(Since ẑ is an interior point of Γ, this can be seen by a shortcut argument.) Thus, η
and γẑ,ν coincide on [0, s). Since γẑ,ν((0, T̂ ]) is contained in M int, they coincide on
[0, T̂ ] and x̂ = x. This gives a contradiction with (4.9) and the fact that x is a limit
point of {xj}. Thus, (4.8) is proven. It is also clear that x̂ ∈ J(δ) for all δ > 0.

For the last claim, we show that

M
(
ẑ, T̂

)
⊂M(∂M, T1)

for some τ∂M (ẑ) < T1 < T̂ . To see this, let y ∈M \M(∂M, T1) and T1 ∈ (τ∂M (ẑ), T̂ ).
Now d(y, ∂M) > T1, and the claim follows if

d(y, ∂M) + δ < d(y, ẑ)

for sufficiently small δ > 0. For a contradiction, assume that d(y, ∂M) = d(y, ẑ).
Similar arguments as above show that γẑ,ν is a shortest geodesic from ∂M to y. This
is a contradiction since y is beyond the critical point on γẑ,ν (see [15, section 3.2]).
Hence, d(y, ∂M) < d(y, ẑ), and the claim follows.

Proof of Theorem 3.3. Consider first the case when T̂ < τΓ(ẑ). By Appendix A,
the following limit exists:

C(x̂) = lim
ε→0

Vol(J(ε))

ε
m+1

2

.(4.10)

Here, Vol(A) =
∫
A

1 dV when A ⊂M .
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Let us also note that B(γẑ,ν(T̂− ε
2 ), ε2 ) ⊂ J(ε), so Vol(J(ε)) > 0. Thus, as uf (T, ·)

is continuous,

lim
ε→0

〈
1

ε
m+1

2

χJ(ε)u
f(T ), φ

〉
= C(x̂) lim

ε→0

1
Vol(J(ε))

∫
J(ε)

uf(T, x)φ(x)dV (x)

=
〈
C(x̂)uf (T, x̂)δx̂, φ

〉
, φ ∈ D(M).

The result follows by [24, Theorem 2.1.8].
In the case when T̂ > τΓ(ẑ), J(ε) = ∅ for ε small enough, and, thus, the limits

(4.5) and (4.6) are the same. Hence, limit (3.7) is zero.

4.3. Remark. We have shown that using the modified time reversal algorithm
it is possible to focus a wave onto a single point in M at time t = T . However, we have
not analyzed the behavior of total energy or concentration of energy for t ∈ (0, T ).
This question is important for medical applications such as litotripsy.

Appendix A. The limit C(x̂). In this appendix we show that the limit C(x̂)
in (4.10) exists. When m = 1, we have

C(x̂) = (
√
gμ)(x̂),

so we can assume that m > 1. Then we can introduce boundary normal coordinates U
around x̂. See, e.g., [15] or [32, section 2.1.17]. These are local coordinates (h, y) such
that a point p ∈M near ẑ is represented by (h, y) provided that d(p, ∂M) = h and y ∈
R
m−1 are local coordinates on ∂M for the unique point q ∈ ∂M such that d(q, p) = h.

Let us assume that ẑ = 0 (identifying points in M with their local representations in
U). Then γẑ,ν(t) = (t, 0, . . . , 0) for t < τΓ(ẑ), whence (T̂ , 0, . . . , 0) ∈ U , and we may
assume that U has the form

U = {(h, y) : h ∈ [0, D1), |y| < D2}

for constants T̂ < D1 < τΓ(ẑ) and D2 > 0. By | · | and 〈·, ·〉 we denote the Euclidean
norm and inner product in R

m−1.
The sphere

Σ =
{
x ∈ U : d(x, ẑ) = T̂

}
can be represented as

h(y) = T̂ − 1
2
〈y, L · y〉+ O

(
|y|3

)
(A.1)

for a symmetric matrix L ∈ R
(m−1)×(m−1). Here, we may use the implicit function

as d(ẑ, ·) is smooth outside the cut locus and has a nonzero gradient at x̂. The first
order term in (A.1) vanishes by Gauss’ lemma (see [43, Proposition 2.3]).

Lemma A.1. Matrix L is positive definite.
Proof. In boundary normal coordinates U the metric tensor has the form g =

diag(1, gαβ).Then there are constants 0 < c− < c+ such that metrics g± = diag(1, c±I)
satisfy g− < g(x) < g+ (x ∈ U) in the sense of positive definite matrices. Explicitly,
the T̂ -spheres of g± are given by

h±(y) =
√
T̂ 2 − c±|y|2.
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Near y = 0, we may, therefore, express the boundaries of all three T̂ -spheres as graphs.
For induced metric balls, we have B+(ẑ, T̂ ) ⊂ B(ẑ, T̂ ) ⊂ B−(ẑ, T̂ ), so near y = 0 we
have

h+(y) ≤ h(y) ≤ h−(y).

Expanding h± into the Taylor series gives〈
y,

(
c−
T̂
− L

)
· y
〉
≤ O

(
|y|3

)
,

〈
y,

(
L− c+

T̂

)
· y
〉
≤ O

(
|y|3

)
.

Hence, c−
T̂
− L ≤ 0, L− c+

T̂
≤ 0, and L is positive definite.

For a symmetric positive definite (n− 1)× (n− 1) matrix A, let

hA(y) = T̂ − 1
2
〈y,A · y〉.

For ε > 0 so small that (0, y) ∈ U when T̂ − ε ≤ hA(y), we define

J(ε,A) =
{
(h, y) ∈ U : T̂ − ε < h ≤ hA(y)

}
.

The Euclidean volume of this elliptical cap R
m can be calculated explicitly using

coordinate transformation x 
→ A−1 ·x and integrating in cylindrical coordinates (see
[29, section 9.C]). Hence,

1√
detA

inf
x∈J(ε,A)

f ≤ Vol J(ε,A)

ε
m+1

2

≤ 1√
detA

sup
x∈J(ε,A)

f,(A.2)

where, in terms of the gamma function Γ: R→ R,

f(x) =
2

m+ 1
(2π)

m−1
2

Γ
(
m+1

2

) (μ|g|1/2) (x), x ∈M.

Let us next bound Σ by ellipsoids and bound VolJ(ε) in terms of Vol J(ε,A) for
suitable choices for A. Let δi ∈ (0, 1) be a sequence such that δi → 0. For each i, let
Bi ⊂ ∂U be an open neighborhood of y = 0 such that

h(1+δi)L(y) ≤ h(y) ≤ h(1−δi)L(y), y ∈ Bi.(A.3)

Then let εi > 0 be a sequence such that sets J(εi, L), J(εi, (1 ± δi)L) are all de-
fined and εi → 0. By possibly making εi smaller we may also assume that J(εi, L),
J(εi, (1 ± δi)L) ⊂ p−1(Bi) for each i where p : U → ∂M , p(h, y) = (0, y), is the
projection onto the boundary.

Inequality (A.3) now implies that

VolJ(εi, (1 + δi)L) ≤ VolJ(εi) ≤ Vol J(εi, (1 − δi)L).

By inequality (A.2), we obtain

1√
det(1 + δi)L

inf
x∈J(εi,(1+δi)L)

f(x) ≤ Vol J(εi)

ε
m+1

2
i

≤ 1√
det(1− δi)L

sup
x∈J(εi,(1−δi)L)

f(x),

and the claim follows by taking i→∞.
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DECENTRALIZED ADAPTIVE SYNCHRONIZATION OF A
STOCHASTIC DISCRETE-TIME MULTIAGENT DYNAMIC MODEL∗

HONG-BIN MA†

Abstract. A decentralized adaptive synchronization problem for a simple yet nontrivial discrete-
time stochastic model of network dynamics is investigated, which also illustrates a general framework
for a class of adaptive control problems for complex systems with uncertainties. To describe synchro-
nization phenomena in noisy environments, several new definitions of synchronization for stochastic
systems are given and applied in our model. In the framework proposed, we prove that in four
different cases on local goals, including “deterministic tracking,” “center-oriented tracking,” “loose
tracking,” and “tight tracking,” under mild conditions on noise sequence and communication limits,
the agents in the considered model can achieve global synchronization in sense of mean by using local
estimators and controllers based on a least-squares (LS) algorithm. These results show that agents
in a complex system disturbed by noise with communication limits can autonomously achieve the
global goal of synchronization by using local LS-based adaptive controllers while they are pursuing
for their local goals.

Key words. adaptive control, decentralized adaptive synchronization, network dynamics, least-
squares algorithm, complex system, discrete-time stochastic model, coupling uncertainties

AMS subject classifications. 93C40, 93C55, 93E24, 93E35

DOI. 10.1137/070685610

1. Introduction. In this work, we will consider a decentralized adaptive syn-
chronization problem for a particular discrete-time stochastic dynamic network with
multiple agents. Our work has mainly three motivations: One comes from the recent
research on the capability and limitation of the feedback mechanism [18, 33, 34, 35,
36, 47, 48, 49, 53]; one comes from the decades of studies on traditional adaptive con-
trol [2, 10, 16, 23, 26, 27] on a single plant; one comes from the hot studies since the
1980s on complex systems (especially complex networks) [1, 3, 4, 14, 25, 28, 31, 32, 38,
40, 41, 43, 44, 46, 52].

The research on the capability and limitation of the feedback mechanism, initiated
by Guo (see Guo’s plenary talk [19] in International Congress of Mathematicians
2002 for a brief survey), focuses on revealing the fundamental relationship between
the internal uncertainties of a plant and the whole feedback mechanism (the set of all
possible feedback control laws), and the kernel problems in this direction are how much
uncertainty can be dealt with by the feedback control and what are the limitations of
the feedback mechanism. For example, in the seminal work [47], an uncertain system

(1.1) yt+1 = f(yt) + ut + wt+1

with internal uncertainties f(·) ∈ F(L) is studied, and it is proved that system (1.1) is
stabilizable if L < 2

3 +
√

2 (here Lipschitz constant L can quantitatively measure the
size of F(L)). In previous research on the capability and limitation of the feedback
mechanism, only internal uncertainties in one single plant are main uncertainties of
interests.
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Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences.
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The theory of adaptive control has been developed for decades, and many appli-
cations of adaptive control can be found. Traditional adaptive control was mainly
developed for linear systems at large, although adaptive control for nonlinear systems
has gained more interest in the research community of adaptive control than decades
ago. However, most studies on adaptive control are still devoted to dealing with var-
ious uncertainties in one single plant, and, hence, strategy of centralized control is
still the main concern. Among the seminal work on adaptive control for linear sys-
tems, a comprehensive study on discrete-time stochastic adaptive control can be found
in [10].

As to the study of complex systems, it is an emerging huge area initiated from
physical discoveries on some nonlinear phenomena, especially chaos, fractals, solitons,
turbulence, cellular automata, etc. With the development of computer technologies,
the focus of studies on complex systems was soon shifted to computer simulations
by rule-based generation systems. Several popular books [15,20,21,42] on complexity
and complex systems significantly attracted researchers from different disciplines and,
hence, pushed the interdisciplinary research on complex systems to a wide range of
backgrounds. In the study of complex systems, the so-called complex adaptive systems
theory [20,21] plays an important role, which mainly focuses on agent-based modeling
and simulations rather than rigorous mathematical analysis.

Motivated by the above issues, we try to consider adaptive control of complex
systems, and, due to our limited background, we shall put an emphasis on mathe-
matical study for such problems. Due to the complexity characteristics involved, such
as nonlinearity, multihierarchy, and uncertainties, comprehensive theory on adaptive
control of complex systems has not come out yet, although few efforts [13, 45] have
been devoted in this area. To demonstrate the increasing demand for adaptive con-
trol of complex systems, we take a simple example in our practical life—many cars
running on a crowded road. In this example, from the point of view of automatic
control, the drivers of these cars must control their cars to avoid possible collision
while keep their cars running normally. Each driver must take actions on the plant
(car) with known or unknown internal parameters (e.g., speed) and try to estimate
the speeds or “threats” of those neighboring cars so as to make the car follow a local
path. Without considering interactions among cars, driving a car is a typical control
problem; however, interactions among cars are inevitable, and, hence, this simple ex-
ample is in fact a typical adaptive control problem of complex systems, rather than
a traditional adaptive control problem, because we cannot design the control laws for
all drivers in a centralized approach.

To facilitate mathematical study on adaptive control problems of complex sys-
tems, the following simple yet nontrivial theoretical framework is adopted in our
theoretical study:

(1) The whole system consists of many dynamical agents, and evolution of each
agent can be described by a dynamic equation, i.e., state equation (with
optional output equation), in the form of a differential equation or difference
equation. Different agents may have different structures or parameters.

(2) The evolution of each agent may be influenced by other agents, which means
that the dynamic equations of agents are coupled in general. Such influence
between agents is usually restricted in local range, and the extent or intensity
of reaction can be parameterized.

(3) There exist information limits for all of the agents: (a) Each agent knows
its internal structure and values of internal parameters; however, it does not
have access to internal structure or parameters of other agents. (b) Each
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agent does not know the intensity of influence from others. (c) However,
every agent can observe the states of neighbor agents besides its own state.

(4) Under the information limits above, each agent may utilize all of the informa-
tion in hand to estimate the intensity of influence and to design local control
to change the state of itself, consequently to influence neighbor agents. Then
a basic question can be naturally raised: Is it possible for all of the agents to
achieve a global goal based on the local information and local control?

The framework above provides a basis for the study of adaptive control of com-
plex networks with uncertainties, and it can be extended further; for example, every
agent does not know its internal parameters and it must design its control law based
on estimating its internal parameters, which is a main task in traditional adaptive
control.

In [37], we have studied a multiagent adaptive control problem within the above
framework, which is focused on investigating whether local adaptive controllers based
on extended-least-square algorithms can guarantee global closed-loop stability of the
whole system, and an affirmative theoretical answer had been given there. In this
paper, within the same framework, we will study a problem of decentralized adap-
tive synchronization for a discrete-time stochastic multiagent dynamical system, and
this contribution also illustrates a basic methodology to study the adaptive control
problem in the proposed framework. The reason why we choose the adaptive syn-
chronization problem as a starting point is that synchronization, a simple global
behavior of agents, is a kind of common and important phenomenon in nature (e.g.,
chaos synchronization has been found to be useful in secure communication), and,
hence, synchronization has been extensively investigated or discussed in the literature
(e.g., [41, 46, 52]), especially chaos synchronization [1, 4, 14], delayed neural networks
synchronization [8,22], synchronization in coupled maps [25], synchronization in scale-
free or small-world dynamical networks [3,43,44], synchronization of complex dynam-
ical networks [28, 31, 32], etc. In recent years, several synchronization-related topics
(coordination, rendezvous, consensus, formation, etc.) have also become active in the
research community [5,6,9,11,24,29,30,39,50]. As for adaptive synchronization, it has
received the attention of a few researchers in recent years [7,12,51,54], and the exist-
ing work mainly focused on deterministic continuous-time systems, especially chaotic
systems, by constructing certain update laws to deal with parametric uncertainties
and applying classical Lyapunov stability theory to analyze corresponding closed-loop
systems.

The main contributions of this paper are three-fold:
(1) Framework and methodology. As an example of theoretical study on adaptive

control of complex systems, within the general problem framework stated
above, by the methodology of local analysis–global analysis–local analysis,
we shall give a rigorous study for a decentralized adaptive synchronization
problem of a simple multiagent model.

(2) Concepts and techniques. To describe synchronization for stochastic discrete-
time multiagent systems, we shall propose a series of concepts of synchroniza-
tion in sense of mean, which are not seen in previous studies on deterministic
continuous-time systems. Generally speaking, it is not easy to establish syn-
chronization in sense of mean since no convenient mathematical tools like
Lyapunov stability theory can assert such results directly. To overcome theo-
retical difficulties, based on Guo’s profound results [10,17] on the least-squares
(LS) algorithm, the order estimation techniques and the properties of the LS
algorithm are key tools in our analysis.
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(3) Algorithms and results. Decentralized adaptive synchronization for discrete-
time stochastic systems is studied for the first time, based on the frequently
used LS estimation algorithm and certainty equivalence principle, and we
mathematically established results of decentralized adaptive synchronization
in four typical cases.

We shall remark that, due to the existence of random noise in our model, the im-
portant concept of equilibrium point (usually denoted by s(t) in previous work) does
not exist as in deterministic systems; hence, generally it is not possible to design
adaptation laws and analyze properties of the overall closed-loop system based on the
synchronization errors (ei(t) = xi(t)−s(t)) as in most existing work [28,31,32,51,54].

The remainder of this paper is organized as follows: In section 2, we will formulate
the problem of adaptive synchronization in our framework, and then the main results
of this paper are presented in section 3, whose rigorous proofs are given in section 4.
Later we illustrate several simulation examples in section 5, and finally we give some
concluding remarks in section 6.

2. Problem formulation. In the framework above, as a starting point, we will
study a simple stochastic discrete-time dynamic network. In this model, there are
N subsystems, and every subsystem represents evolution of an agent. We denote
by xi(t) the state of agent i at time t, and, for simplicity, we assume that linear
influences among agents exist in this model. For convenience, we define the concepts
of “neighbor” and “neighborhood” as follows: Agent j is a neighbor of agent i if agent
j has influence on agent i. Let Ni denote the set of all neighbors of agent i and agent
i itself. Neighborhood Ni is a concept describing the communication limits between
agent i and others. (Note. Agent i is included in set Ni just for simplicity, which can
also make our model a bit more general.)

Model of the system. Suppose that each agent i (i = 1, 2, . . . , N) has the following
state equation:

(2.1) xi(t+ 1) = fi(xi(t)) + ui(t) + γix̄i(t) + w(t + 1),

where fi(·) represents the internal structure of agent i, ui(t) is the local control of
agent i, γix̄i(t) reflects the influence of the other agents towards agent i, and {w(t)}
is the unobservable random noise sequence. Here γi denotes the intensity of influence,
and x̄i(t) is the weighted average of states of agents in the neighborhood of agent i,
i.e.,

(2.2) x̄i(t) =
∑
j∈Ni

gijxj(t),

where the nonnegative constants {gij} satisfy

(2.3)
∑
j∈Ni

gij = 1.

In the framework above, agent i does not know the intensity of influence γi; however,
it can use the historical information

(2.4) {xi(t), x̄i(t), ui(t− 1), xi(t− 1), x̄i(t− 1), ui(t− 2), . . . , xi(1), x̄i(1), ui(0)}

to estimate γi and can further try to design its local control ui(t) to achieve its local
goal.
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Remark 2.1. As mentioned in the introduction, model (2.1) is partially motivated
by recent research on the capability and limitation of the feedback mechanism, and
here we want to explore the capability of adaptive control in dealing with coupling un-
certainties within multiple subsystems rather than internal uncertainties within one
single system. Although model (2.1) is simple enough, it can capture all essential
features that we want, and the simple model can be viewed as a prototype or approx-
imation of more complex models. Model (2.1) highlights the difficulties in dealing
with coupling uncertainties by feedback control. The ideas in this paper can be also
applied in more general or complex models, which may be considered in our future
work and may involve more difficulties in the design and theoretical analysis of local
adaptive controllers.

Estimation algorithm. In this paper, we assume that each agent is smart enough
and it can use the LS algorithm to estimate the unknown intensity of influence. Since
the LS algorithm is widely used in statistics, system identification, and adaptive
control, we choose the LS algorithm as a starting point to study adaptive control of
complex systems. For agent i, we denote by γ̂i(t) the estimated value of γi. Denote

(2.5) yi(t) = xi(t)− fi(xi(t− 1))− ui(t− 1)

and

(2.6)
Yi(t) = (yi(1), yi(2), . . . , yi(t))τ ,
X̄i(t) = (x̄i(0), x̄i(1), . . . , x̄i(t− 1))τ ,
W (t) = (w(1), w(2), . . . , w(t))τ ;

then we have Yi(t) = γiX̄i(t) +W (t). Naturally, define

(2.7) γ̂i(t) = arg min
γ

∥∥Yi(t)− γX̄i(t)
∥∥ ,

where (and hereafter) ‖ · ‖ represents the Euclidian norm, i.e., ‖v‖ =
√
vτv. Then it

is easy to obtain that

(2.8)

γ̂i(t) =
[
X̄τ
i (t)X̄i(t)

]−1 [
X̄τ
i (t)Yi(t)

]
=

[
t−1∑
k=0

x̄2
i (k)

]−1 [ t∑
k=1

x̄i(k − 1)yi(k)

]

which can be transformed into the recursive form

(2.9) γ̂i(t+ 1) = γ̂i(t) + āi(t)p̄i(t)x̄i(t)[yi(t+ 1)− γ̂i(t)x̄i(t)],
p̄i(t+ 1) = p̄i(t)− āi(t)[p̄i(t)x̄i(t)]2

by defining

(2.10)

āi(t)
Δ=
[
1 + p̄i(t)x̄2

i (t)
]−1

,

p̄i(t)
Δ=

[
t−1∑
k=0

x̄2
i (k)

]−1

.

The recursive LS algorithm (2.9) can efficiently update the parameter estimate γ̂i(t)
online without much computation cost. In practical use, the initial values γ̂i(0) can
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be taken arbitrarily and 0 < p̄i(0) < 1
e such that p̄−1

i (t+1) ≥ p̄−1
i (0) > e. (Hereafter,

e is the base of natural logarithm.)
Local goals and local controllers. Due to the limitation in the communication

among the agents, generally speaking, agents can only try to achieve local goals.
Naturally, we assume that agent i tries to track a local signal {zi(t)}, which can be
a known sequence or a stochastic sequence relating to other agents. Later we will
discuss several different cases. Supposing that agent i knows the intensity of influence
from others, i.e., γi, in order to track its local goal, local controller of agent i can be
naturally given by

(2.11) ûi(t) = arg min
ui(t)

E[xi(t+ 1)− zi(t)]2

which yields

(2.12) ûi(t) = −fi(xi(t)) − γix̄i(t) + zi(t)

by (2.1). Within our framework, agent i knows the function fi(·) but does not know
γi. Hence, by using the certainty equivalence principle, agent i can use the following
adaptive control law:

(2.13) ui(t) = −fi(xi(t))− γ̂i(t)x̄i(t) + zi(t),

where γ̂i(t) is updated online by recursive LS algorithm (2.9).
Synchronization problem. With the local LS-based adaptive controllers designed

via local tracking goals, we want to know whether all of the agents can autonomously
achieve the global goal of synchronization in some sense. Intuitively, synchronization
can be interpreted as follows: For every pair of agents i and j (i �= j), the difference
eij(t)

Δ=xi(t)− xj(t) approaches zero (or its minimum) asymptotically. In our model,
due to the presence of random noise, generally limt→∞ eij(t) = 0 cannot be expected.
Thus, it is necessary to introduce new concepts of synchronization in sense of mean,
some of which are defined in the following.

Definition 2.1. If the system satisfies

(2.14) lim
T→∞

1
T

T∑
t=1

|eij(t)| = 0 ∀i �= j,

then we say it achieves (strong) synchronization in sense of mean.
Definition 2.2. If the system satisfies

(2.15) lim
T→∞

1
T

T∑
t=1

eij(t) = 0 ∀i �= j,

then we say it achieves weak synchronization in sense of mean.
Definition 2.3. If the system satisfies

(2.16) lim
T→∞

1
T

T∑
t=1

|eij(t)|p = 0 ∀i �= j,

then we say it achieves synchronization in sense of pth mean. Especially when p = 2,
we will say it achieves synchronization in sense of mean squares.

Remark 2.2. Previous research on network synchronization mainly deals with
noise-free systems (see, e.g., [31, 32, 43, 46]), where a special solution (equilibrium
point) s(t) can be defined by the dynamics of each agent and, hence, synchronization
means ei(t)

Δ=xi(t)− s(t)→ 0 as t→∞. However, in our model, due to the existence
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of noise and complex control law, such equilibrium point s(t) cannot be well-defined.
This is why we introduce notions of eij(t), based on which synchronization concepts
can be defined in both deterministic cases and stochastic cases.

Remark 2.3. We can easily prove that the definitions above have the follow-
ing connections: synchronization in sense of pth mean (p > 2) =⇒ synchronization
in sense of mean squares =⇒ (strong) synchronization in sense of mean =⇒ weak
synchronization in sense of mean.

Remark 2.4. In model (2.1), the noise sequence {w(t + 1)} is common for all
agents. However, more general cases (w(t+1) replaced with wi(t+1)) can be consid-
ered without difficulties. For simplicity, we consider only common noise disturbance,
which intuitively means that the environment acts on the agents in the same way;
this can also make the definitions of synchronization in sense of mean more simple
and clear.

Local tracking goals. For the tracking signals {zi(t)}, we discuss the following
cases in this paper.

Case I (deterministic tracking). zi(t) = z∗(t), where {z∗(t)} is a sequence of
deterministic signals (bounded or even unbounded) which satisfies |z∗(t)| = O(tδ).

Case II (center-oriented tracking). zi(t) = z̄(t), where z̄(t) = 1
N

∑N
i=1 xi(t) is the

center state of all agents, i.e., average of states of all agents.
Case III (loose tracking). zi(t) = λx̄i(t), where constant |λ| < 1. This case means

that the tracking signal zi(t) is close to the average of states of neighbor agents of
agent i, and factor λ describes how close it is.

Case IV (tight tracking). zi(t) = x̄i(t). This case means that the tracking signal
zi(t) is exactly the average of states of agents in the neighborhood of agent i.

In the first two cases, all agents track a common signal sequence, and the only
differences are as follows: In Case I the sequence has nothing with every agent’s state;
however, in Case II the sequence is the center state of all of the agents. The first
two cases mean that a common “leader” of all of agents exists, who can communicate
with and send commands to all agents; however, the agents can only communicate
with one another under certain information limits. In Cases III and IV, no common
“leader” exists and all agents attempt to track the average state x̄i(t) of its neighbors,
and the difference between them is just the factor of tracking tightness.

In the remainder of this paper, we will consider the decentralized adaptive syn-
chronization problem formulated above in Cases I–IV.

3. Main results. In the above cases, under mild conditions on noise, we shall
prove that all agents can achieve synchronization in sense of mean by using the LS-
based learning and control algorithm defined above, which demonstrates that agents
in a complex system disturbed by noise with “information limits” can exhibit the
collective behavior, synchronization, by a properly designed local learning algorithm
and local adaptive controllers based on local goals.

In order to analyze the above adaptive synchronization problem, we introduce the
following assumption on the noise sequence, which allows for a wide class of stochastic
noise.

Assumption A1. The noise sequence {w(t),Ft} is a martingale difference se-
quence (with {Ft} being a sequence of nondecreasing σ-algebras) such that

(3.1) sup
t
E
[
|w(t+ 1)|β |Ft

]
<∞ a.s.

for a constant β > 2.
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Theorem 3.1. In Cases I, II, and III, suppose that system (2.1) satisfies As-
sumption A1; then the decentralized LS-based adaptive controller has the following
closed-loop properties:

(1) All of the agents can asymptotically correctly estimate the intensity of influence
from others, i.e.,

(3.2) lim
t→∞ γ̂i(t) = γi.

(2) The system can achieve synchronization in sense of mean, i.e.,

(3.3) lim
T→∞

1
T

T∑
t=1

|eij(t)| = 0 ∀i �= j.

(3) The system can achieve synchronization in sense of mean squares, i.e.,

(3.4) lim
T→∞

1
T

T∑
t=1

|eij(t)|2 = 0 ∀i �= j.

For the synchronization in Case IV, the following assumption is necessary.
Assumption A2. Matrix G = (gij) [gij = 0 if j �∈ Ni] is an irreducible primitive

matrix.
Remark 3.1. Assumption A2 excludes those cases that matrix G is reducible.

This assumption means that all of the agents should be connected so that they can
synchronize with each other in Case IV. The primitiveness of matrix G excludes those
cases where matrix G is cyclic (or periodic from the point of view of Markov chain),
which should also be avoided for the goal of synchronization in Case IV.

Theorem 3.2. In Case IV, suppose that Assumption A1 holds for system (2.1)
and Assumption A2 holds for matrix G = (gij) then the decentralized LS-based adap-
tive controller has the following closed-loop properties:

(1) All of the agents can asymptotically correctly estimate the intensity of influence
from others, i.e.,

(3.5) lim
t→∞ γ̂i(t) = γi.

(2) The system can achieve synchronization in sense of mean, i.e.,

(3.6) lim
T→∞

1
T

T∑
t=1

|eij(t)| = 0 ∀i �= j.

(3) The system can achieve synchronization in sense of mean squares, i.e.,

(3.7) lim
T→∞

1
T

T∑
t=1

|eij(t)|2 = 0 ∀i �= j.

Remark 3.2. By Remark 3.1, Assumption A2 cannot be weakened in general for
the synchronization of all agents in Case IV. From the proof of Theorem 3.2, we can
see that it is also the necessary and sufficient condition for the trivial case where there
is no noise disturbance and the parameter γi is known by agent i. In fact, in this case
it is unnecessary to estimate γi or to deal with the external disturbance, and, hence,
the control law can be taken as ui(t) = −fi(xi(t))−γix̄i(t)+ x̄i(t) and the closed-loop
system is xi(t + 1) = x̄i(t), i = 1, 2, . . . , N, whose matrix form is X(t+ 1) = GX(t).
Then obviously we cannot guarantee that all elements of X(t) synchronize if G is
reducible or cyclic.
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4. Proofs of main results. To make rigorous analysis, for i = 1, 2, . . . , N ,
denote r̄i(t) = 1 +

∑t
k=1 x̄

2
i (k) and γ̃i(t) = γi − γ̂i(t). By the recursive LS algorithm,

obviously we have r̄i(t) = p̄−1
i (t+ 1) + c0, and constant c0 is determined by p̄−1

i (0).

4.1. Auxiliary lemmas. We start with several lemmas, which will be used in
the proofs of theorems.

Lemma 4.1. Under Assumption A1, the LS estimator defined by (2.9) has the
following properties almost surely:

(1)

(4.1) p̄−1
i (t+ 1)γ̃2

i (t+ 1) + (1 + o(1))
t∑

k=1

āi(k)
[
γ̃i(k)x̄2

i (k)
]2

= σ2
t∑

k=1

āi(k)p̄i(k)x̄2
i (k) + o(log r̄i(t)) +O(1).

(2)

(4.2) p̄−1
i (t+ 1)γ̃2

i (t+ 1) = O(log r̄i(t)).

(3)

(4.3)
t∑

k=1

āi(k) [γ̃i(k)x̄i(k)]
2 =

t∑
k=1

[γ̃i(k)x̄i(k)]
2

1 + p̄i(k)x̄2
i (k)

= O(log r̄i(t)).

(4) If

(4.4) p̄i(t)x̄2
i (t)→ 0, p̄−1

i (t)→∞

as t→∞, then

(4.5) p̄−1
i (t+ 1)γ̃2

i (t+ 1) +
t∑

k=1

[γ̃i(k)x̄i(k)]2 ∼ σ2 log r̄i(t).

Proof. Denote

(4.6) Ft = σ{w(0), w(1), . . . , w(t)}.

By (2.1), (2.13), and (2.9), obviously xi(t), x̄i(t) ∈ Ft. Hence, the properties of the LS
algorithm (see [10,17]) can be applied. This lemma is just the special one-dimensional
case. Equation (4.1) corresponds to [17, Theorem 6.3.1], and (4.2)–(4.4) correspond
to Corollaries 6.3.1, 6.3.2, and 6.3.3 of [17].

By (4.2), immediately we have the following corollary.
Corollary 4.1. The estimation γ̂i(t) of γi converges to the true value γi almost

surely with the convergence rate

(4.7) |γ̃i(t)| = O
(√

log r̄i(t)
r̄i(t)

)
.

Lemma 4.2. Under Assumption A1, for i = 1, 2, . . . , N , we have

(4.8)
t∑

k=1

[xi(k)]2 →∞, r̄i(t)→∞, p̄i(t)→ 0 as t→∞ a.s.
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Proof. Under assumption A1, this lemma can be established by applying the
martingale estimation theorem to the terms in

(4.9)
t∑

k=1

[xi(k + 1)]2 =
t∑

k=1

[gi(k)]2 +
t∑

k=1

[w(k + 1)]2 + 2
t∑

k=1

gi(k)w(k + 1).

Details are omitted here to save space.
Lemma 4.3. Assume the nonnegative sequences {Xt} and {dt} satisfy Xt+1 =

O(max(Xt, dt)) as t→∞. Denote

(4.10) St =
t∑

k=1

|Xk|, Dt =
t∑

k=1

dk.

If St →∞ as t→∞, we can get

(4.11) St+1 = O(St +Dt),

and the “O” constant satisfies

(4.12) lim sup
t→∞

St+1

St +Dt
≤ lim sup

t→∞
Xt+1

Xt + dt
.

In addition, if dt+1 = O(dt) as t→∞, then

(4.13) Dt+1 = O(Dt), St+1 +Dt+1 = O(St +Dt),

and

(4.14) lim sup
t→∞

St+1 +Dt+1

St +Dt
≤ lim sup

t→∞
Xt+1 + dt+1

Xt + dt
.

Proof. According to definitions of the notations O(·) and o(·), this lemma can be
proved by using ε − δ language without much difficulty, and, hence, the details are
omitted here to save space.

Lemma 4.4. Consider the following iterative system:

(4.15) Xt+1 = AtXt +Wt,

where ‖Wt‖ = O(tδ), δ is an arbitrary nonnegative constant, and At → A as t→∞.
Assume ρ is the spectral radius of A, i.e., ρ = max{|λ(A)|}. Denote St = 1 +∑t

k=1 ||Xk||2. For arbitrary ε > 0,

(4.16) ‖Xt‖ = o
(
tδ(ρ+ ε)t

)
+O

(
tδ
)
,

St = o
(
t2δ+1(ρ+ ε)2t

)
+O

(
t2δ+1

)
.

Furthermore,
(1) if ρ ∈ [0, 1), we can get

(4.17)
logSt
t

= O

(
log t
t

)
= o(1);

(2) if ρ = 1, we can get

(4.18)
logSt
t

= o(1);
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(3) if ρ > 1, we can get

(4.19)
logSt
t

= O(1).

Proof. For arbitrary ε > 0, by the definition of ρ, there exists a matrix norm
(denoted by ‖ · ‖p) such that ‖A‖p < ρ + ε

2 ; we can get also ‖At‖p → ‖A‖p from
At → A as t→∞. Hence, for sufficiently large t,

(4.20) ‖At‖p < ‖A‖p +
ε

2
< ρ+ ε.

According to the equivalence among norms, ‖Wt‖p = O(‖Wt‖) = O(tδ); therefore, for
sufficiently large t,

(4.21) ‖Xt+1‖p ≤ ‖At‖p‖Xt‖p + ‖Wt‖p ≤ (ρ+ ε)‖Xt‖p + Cpt
δ.

Iterating the inequality above, we have

(4.22)

‖Xt‖p ≤ Cp
t−m∑
k=1

(ρ+ ε)k−1(t− k)δ + (ρ+ ε)t−m‖Xm‖p

≤ Cptδ
t−m∑
k=1

(ρ+ ε)k−1 + (ρ+ ε)t−m‖Xm‖p,

where m is a constant depending on ε and p. Obviously

(4.23)
‖Xt‖p = O

(
tδ [(ρ+ ε)t +O(1)]

)
+O ((ρ+ ε)t)

= O
(
tδ(ρ+ ε)t + tδ

)
.

By the arbitrariness of ε and the equivalence among norms, we can get

(4.24) ‖Xt‖ = o
(
tδ(ρ+ ε)t

)
+O

(
tδ
)
.

By the definition of St and the equivalence among norms, we have

(4.25)

St = O

(
t∑

k=1

‖Xt‖2p

)

= O

(
t∑

k=1

[
k2δ(ρ+ ε)2k + k2δ

])

= O
(
t2δ+1

[
(ρ+ ε)2t +O(1)

]
+ t2δ+1

)
= O

(
t2δ+1(ρ+ ε)2t + t2δ+1

)
.

Furthermore, by the arbitrariness of ε,

(4.26) St = o
(
t2δ+1(ρ+ ε)2t

)
+O

(
t2δ+1

)
.

Consequently, validity of this lemma can be easily established in all cases.
Lemma 4.5. Consider the following iterative system:

(4.27) Xt+1 = AtXt +Wt,
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where At → A as t→∞ and {Wt} satisfies

(4.28)
t∑

k=1

‖Wk‖2 = o(t).

If the spectral radius ρ(A) < 1, then

(4.29)
t∑

k=1

‖Xk‖ = o(t),
t∑

k=1

‖Xk‖2 = o(t).

Proof. By Schwartz’s inequality,

(4.30)
t∑

k=1

‖Wk‖ ≤
(

t∑
k=1

‖Wk‖2
) 1

2
(

t∑
k=1

12

) 1
2

= o(t).

Since ρ < 1, we can take a small number ε > 0 such that ρ+ ε < 1, and there exists
a matrix norm ‖ · ‖p such that ‖A‖p < ρ+ ε

2 ; in addition, ‖At‖p → ‖A‖p because of
At → A as t→∞, and, hence, for sufficiently large t,

(4.31) ‖At‖p < ‖A‖p +
ε

2
< ρ+ ε.

By the equivalence among norms, ‖Wt‖p = O(‖Wt‖), and, hence, for sufficiently large
t, we have

(4.32) ‖Xt+1‖p ≤ ‖At‖p‖Xt‖p + ‖Wt‖p ≤ (ρ+ ε)‖Xt‖p + ‖Wt‖p.

Define st =
∑t

k=1 ‖Xk‖p. Then we can obtain that

(4.33) st ≤ st+1 ≤ (ρ+ ε)st + o(t)

which implies s(t) = o(t) by ρ+ ε < 1. Consequently,

(4.34)
t∑

k=1

‖Xk‖ = o(t)

can be obtained by the equivalence among norms. By using inequality 2xy ≤ εx2+ 1
ε y

2

and

‖Xt+1‖2p ≤ ‖At‖2p‖Xt‖2p + ‖Wt‖2p + 2‖At‖p‖Xt‖p‖Wt‖p

we can similarly obtain
∑t

k=1 ‖Xk‖2 = o(t).
Lemma 4.6. Let system (2.1) satisfy Assumption A1 in Cases I, II, III, and IV.

Then, for i = 1, 2, . . . , N , we have log ri(t)
t = o(1) as t→∞ a.s.

Proof. Putting (2.13) into (2.1), we have

(4.35)
xi(t+ 1) = −γ̂i(t)x̄i(t) + zi(t) + γix̄i(t) + w(t+ 1)

= zi(t) + γ̃i(t)x̄i(t) + w(t+ 1).

Denote

(4.36)

X(t) = (x1(t), x2(t), . . . , xN (t))τ ,
Z(t) = (z1(t), z2(t), . . . , zN (t))τ ,
X̄(t) = (x̄1(t), x̄2(t), . . . , x̄N (t))τ ,

W (t+ 1) = w(t+ 1)1 = (w(t + 1), w(t+ 1), . . . , w(t+ 1))τ ,
Γ̃(t) = diag(γ̃1(t), γ̃2(t), . . . , γ̃N (t))τ .
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Then we get

(4.37) X(t+ 1) = Z(t) + Γ̃(t)X̄(t) +W (t+ 1).

According to (2.2), we have

(4.38) X̄(t) = GX(t),

where the matrix G = (gij). Furthermore, we have

(4.39) X̄(t+ 1) = GX(t+ 1) = GZ(t) +GΓ̃(t)X̄(t) +W (t+ 1).

By Corollary 4.1, we have γ̃(t)→ 0 as t→∞. Thus, Γ̃(t)→ 0.
By Assumption A1, we can deduce that

(4.40) |w(t+ 1)| = O
(
tδ
)
a.s. ∀δ ∈

(
1
β
,
1
2

)
,

which can be obtained by the Borel–Cantelli–Levy lemma because

(4.41)
∞∑
t=1

P
(
w2(t+ 1) ≥ t2δ|Ft

)
≤

∞∑
t=1

E
[
|w(t + 1)|β|Ft

]
tβδ

<∞ a.s.

Define S(t) = 1 +
∑t

k=1 ‖X̄(k)‖2. In the following we will consider four different
cases, respectively:

(I) Deterministic tracking. In this case Z(t) = z∗(t)1, where z∗(t) = O(tδ) is a
sequence of deterministic signals. Obviously

(4.42) ‖GZ(t) +W (t+ 1)‖ = O
(
tδ
)
.

Then, by Lemma 4.4, we have

(4.43)
∥∥X̄(t)

∥∥ = O
(
tδ
)
,

logS(t)
t

= O

(
(2δ + 1) log t

t

)
= o(1).

(II) Center-oriented tracking. In this case Z(t) = 1
NENX(t), where EN is a

matrix of order N with all entries being 1. Then

(4.44)
X(t+ 1) =

1
N
ENX(t) + Γ̃(t)GX(t) +W (t+ 1)

=
(

1
N
EN + Γ̃(t)G

)
X(t) +W (t+ 1).

Obviously 1
NEN + Γ̃(t)G→ 1

NEN as t→∞, noting that the spectral radius of 1
NEN

(a stochastic matrix) is 1, by Lemma 4.4, we have

(4.45)
logS(t)

t
= o(1).

(III) Loose tracking. In this case Z(t) = λX̄(t), where λ ∈ (0, 1). Then

(4.46) X̄(t+ 1) =
(
λG+GΓ̃(t)

)
X̄(t) +W (t+ 1).
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Since G is a stochastic nonnegative matrix, the spectral radius of G is 1. Noticing
that λG+GΓ̃(t)→ λG as t→∞, by Lemma 4.4, we have

(4.47)
∥∥X̄(t)

∥∥ = O
(
tδ
)
,

logS(t)
t

= O

(
(2δ + 1) log t

t

)
= o(1).

(IV) Tight tracking. In this case Z(t) = X̄(t), where

(4.48) X̄(t+ 1) =
(
G+GΓ̃(t)

)
X̄(t) +W (t+ 1).

Noticing that the spectral radius of G is 1 and G+GΓ̃(t)→ G as t→∞, therefore,
by Lemma 4.4, we have

(4.49) ‖Xt‖ = o
(
tδ(1 + ε)t

)
+O

(
tδ
)
,

logS(t)
t

= o(1).

In all of the cases above, logS(t)
t = o(1). By |x̄i(t)| = O(‖X̄(t)‖) and according

to the definitions of r̄i(t) and S(t), obviously we have r̄i(t) = O(S(t)). Hence, for
i = 1, 2, . . . , N , we have log r̄i(t)

t = o(1) as t→∞.
Lemma 4.7. Suppose that Assumption A1 holds in Cases I, II, III, and IV. Then,

in either case, for i = 1, 2, . . . , N and m ≥ 1, 0 ≤ d < m, we have

(4.50)

t∑
k=1

|γ̃i(mk − d)x̄i(mk − d)|2 = o(t) a.s.,

t∑
k=1

|γ̃i(mk − d)x̄i(mk − d)| = o(t) a.s.

Proof. By (4.3) of Lemma 4.1,

(4.51)
t∑

k=1

āi(k) [γ̃i(k)x̄i(k)]
2 = O(log r̄i(t)) a.s.

By Lemma 4.2,
∑t

j=1 x̄
2
i (j)→∞ a.s. as t→∞. Then, by Lemma 4.3,

(4.52) v̄i(k) = p̄i(k)x̄2
i (k) =

x̄2
i (k)∑k−1

j=1 x̄
2
i (j)

= O(1) a.s.

Then we have

(4.53)

t∑
k=1

[γ̃i(k)x̄i(k)]
2 =

t∑
k=1

āi(k) [γ̃i(k)x̄i(k)]
2 · [1 + v̄i(k)]

= O (log r̄i(t)) a.s.

Together with Lemma 4.6, immediately we can get

(4.54)
t∑

k=1

[γ̃i(k)x̄i(k)]
2 = o(t) a.s.
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Furthermore, by the Schwartz inequality,

(4.55)

t∑
k=1

|γ̃i(k)x̄i(k)| ≤
(

t∑
k=1

[γ̃i(k)x̄i(k)]2
) 1

2
(

t∑
k=1

12

) 1
2

= O
(√

t log r̄i(t)
)

= o(t) a.s.

Thus, the lemma is true for m = 1. As for m > 1, we need only replace t with
mt.

4.2. Proofs of theorems. Now we give the proofs of the theorems. Due to the
couplings among agents, we adopt the basic methodology of local–global–local in our
analysis.

Proof of Theorem 3.1. By (4.35), we have

(4.56) xi(t+ 1)− zi(t)− w(t+ 1) = γ̃i(t)x̄i(t).

Let eij(t)
Δ= xi(t)− xj(t), ηi(t) = γ̃i(t)x̄i(t). Then

(4.57) eij(t+ 1) = [ηi(t)− ηj(t)] + [zi(t)− zj(t)].

For convenience of later discussion, we introduce the following notations:

(4.58)

X(t) = (x1(t), x2(t), . . . , xN (t))τ ,
Z(t) = (z1(t), z2(t), . . . , zN(t))τ ,
X̄(t) = (x̄1(t), x̄2(t), . . . , x̄N (t))τ ,
Gτ = (ζ1, ζ2, . . . , ζN ),
1 = (1, 1, . . . , 1)τ ,

E(t) = (e1N (t), e2N (t), . . . , eN−1,N(t), 0)τ ,
η(t) = (η1(t), η2(t), . . . , ηN (t))τ .

Case I. Here zi(t) = z∗(t), thus,

(4.59) eij(t+ 1) = ηi(t)− ηj(t).

Consequently, by Lemma 4.7, we obtain that (i �= j)

(4.60)
t∑

k=1

|eij(k + 1)|2 = O

(
t∑

k=1

η2
i (t)

)
+O

(
t∑

k=1

η2
j (t)

)
= o(t),

and similarly
∑t

k=1 |eij(k + 1)| = o(t) also holds.
Case II. Here zi(t) = z̄(t). The proof is similar to Case I.
Case III. Here zi(t) = λx̄i(t) = λζτi X(t). Noting that ζτi 1 = 1 for any i, we have

(4.61)
ζτi X(t)− ζτjX(t) = ζτi [X(t)− xN (t)1]− ζτj [X(t)− xN (t)1] = ζτi E(t)− ζτj E(t),

and, thus,

(4.62)
eij(t+ 1) = [ηi(t)− ηj(t)] + λ[x̄i(t)− x̄j(t)]

= [ηi(t)− ηj(t)] + λ[ζτi X(t)− ζτjX(t)]
= [ηi(t)− ηj(t)] + λ[ζτi E(t)− ζτj E(t)].
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Taking j = N and i = 1, 2, . . . , N , we can rewrite (4.62) into matrix form as

(4.63) E(t+ 1) = [η(t)− ηN (t)1] + λ[G− 1ζτN ]E(t) = λHE(t) + ξ(t),

where

(4.64) H = G−GN = G− 1ζτN , ξ(t) = η(t) − ηN (t).

By Lemma 4.7, we have

(4.65)
t∑

k=1

‖η(k)‖2 = o(t).

Therefore,

(4.66)
t∑

k=1

‖ξ(k)‖2 = o(t).

Now we prove that ρ(H) ≤ 1. In fact, for any vector v such that vτv = 1, we
have

(4.67)

|vτHv| = |vτGv − vτGNv|
≤ max

(
λmax(G)‖v‖2 − λmin(GN )‖v‖2,

λmax(GN )‖v‖2 − λmin(G)‖v‖2
)

≤ max
(
‖v‖2, λmax(GN )‖v‖2

)
= 1

which implies that ρ(H) ≤ 1.
Finally, by (4.63), together with Lemma 4.5, we can immediately obtain

(4.68)
t∑

k=1

‖E(k)‖ = o(t),
t∑

k=1

‖E(k)‖2 = o(t).

Thus, for i = 1, 2, . . . , N − 1, as t→∞, we have proved

(4.69)
1
t

t∑
k=1

|eiN (k)| → 0,
1
t

t∑
k=1

[eiN (k)]2 → 0.

Proof of Theorem 3.2. Case IV is similar to Case III. We need only prove that the
spectral radius ρ(H) of H is less than 1, i.e., ρ(H) < 1; then we can apply Lemma
4.5 like in Case III.

Consider the following linear system:

(4.70) z(t+ 1) = Gz(t).

Noting that G is a stochastic matrix, then, by Assumption A2 and knowledge of the
Markov chain, we have

(4.71) lim
t→∞Gt = 1πτ ,

where π is the unique stationary probability distribution of the finite-state Markov
chain with transmission probability matrix G. Therefore,

(4.72) z(t) = Gtz0 → 1πτz0 = (πτz0)1
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which means that all elements of z(t) converge to a same constant πτz0. Furthermore,
let z(t) = (z1(t), z2(t), . . . , zN (t))τ and ν(t) = (ν1(t), ν2(t), . . . , νN−1(t), 0)τ , where
νi(t) = zi(t)− zN (t) for i = 1, 2, . . . , N . Then we can see that

(4.73) ν(t+ 1) = (G−GN )ν(t) = Hν(t)

and limt→∞ ν(t) = 0 for any initial values νi(0) ∈ R, i = 1, 2, . . . , N − 1. Obviously
ν(t) = Htν(0), and each entry in the Nth row of Ht is zero since each entry in the
Nth row of H is zero. Thus, denote

(4.74) Ht Δ=
(
H0(t) ∗

0 0

)
,

where H0(t) is an (N − 1) × (N − 1) matrix. Then, for i = 1, 2, . . . , N − 1, taking
ν(0) = ei, respectively, by lim

t→∞ ν(t) = 0 we easily know that the ith column of H0(t)
tends to zero vector as t→∞. Consequently, we have

(4.75) lim
t→∞H0(t) = 0,

and, consequently, each eigenvalue of H0(t) tends to zero too. By (4.74), eigenvalues
of Ht are identical with those of H0(t) except for zero, and, thus, we obtain that

(4.76) lim
t→∞ ρ

(
Ht
)

= 0

which implies that

(4.77) ρ(H) < 1.

This completes the proof of Theorem 3.2.

5. Simulation examples. In this section, we will illustrate several examples to
verify the effectiveness of the decentralized LS-based adaptive controller presented in
this paper.

Settings. The settings in all cases are listed in Table 5.1. In each figure, six sub-
figures are given, which illustrate the evolution process of states xi(t), control signals
ui(t), noise sequence w(t), estimates γ̂i(t) of intensity γi of influence, mean m

(1)
i (t)

of absolute values of synchronization errors {ei(t)}, and mean m
(2)
i (t) of squared

synchronization errors {ei(t)}, respectively, where

(5.1)

ei(t)
Δ= xi(t)− x1(t),

m
(1)
i (t)

Δ= 1
t

t∑
k=1

|ei(k)|,

m
(2)
i (t)

Δ= 1
t

t∑
k=1

|ei(k)|2.

Table 5.1

Settings of simulations.

number N of agents N = 5
time steps T T = 40
noise sequence {wt} randomly taken from normal distribution N(0; 1)
matrix G randomly generated stochastic matrix
intensity γi of influence randomly taken from interval [0, 1]
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Case I (deterministic tracking). zi(t) = z∗(t). Here we take z∗(t) = 10 sin t
3 . A

simulation in this case is shown in Figure 5.1.
Case II (center-oriented tracking). zi(t) = z̄(t). A simulation in this case is shown

in Figure 5.2.
Case III (loose tracking). zi(t) = λx̄i(t). Here we take constant λ = 0.7. A

simulation in this case is shown in Figure 5.3.
Case IV (tight tracking). zi(t) = x̄i(t). A simulation in this case is shown in

Figure 5.4.

Fig. 5.1. A simulation in Case I (deterministic tracking).

Fig. 5.2. A simulation in Case II (center-oriented tracking).

Fig. 5.3. A simulation in Case III (loose tracking).
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Fig. 5.4. A simulation in Case IV (tight tracking).

6. Summary. In this paper, for the sake of theoretical analysis, we first give
a general framework on adaptive control problems for complex systems with uncer-
tainties. The uncertainties may consist of noise disturbance, communication limits
parametric coupling uncertainties among agents, and even internal parametric un-
certainties or structural uncertainties in the agents themselves. Within this frame-
work, we have studied the decentralized adaptive synchronization problem for a simple
yet nontrivial discrete-time stochastic model, where agents can take effects on those
agents in its local neighborhood, and we assume that the coupling effects are linear
and unknown for each agent. For this simplest model with many agents, the follow-
ing fundamental problem is considered: Can all agents achieve global synchronization
while they are pursuing their local goals? Answers to this problem may help to un-
derstand deeply the relationship between local goals and the global goal in complex
control systems.

Although the notion of adaptive synchronization has been investigated for contin-
uous-time deterministic dynamical systems, we notice that, compared with continuous-
time deterministic models, discrete-time stochastic models usually have different fea-
tures and corresponding difficulties involved in theoretical analysis. To mathemat-
ically describe the synchronization phenomena in noisy systems, several novel defi-
nitions of synchronization in sense of mean are proposed for the study on complex
systems with noise disturbance. By applying the new concepts of synchronization
in sense of mean, we then formulate an adaptive synchronization problem mathe-
matically for the considered discrete-time stochastic model. As to the local goals,
we consider four different cases, including “deterministic tracking,” “center-oriented
tracking,” “loose tracking,” and “tight tracking,” the first two of which correspond to
cases with a hidden leader and the latter two of which correspond to leader-free cases.

Within our framework, since all agents are in the noisy environment and each
agent does not know the coupling parameter (i.e., intensity γi of influence), each
agent must use the proper learning algorithm and design its control law to reduce
the effects of uncertainties in parameters and environment. In this contribution,
agents are supposed to use local estimators and local controllers based on the LS
algorithm to achieve their local goals since the LS algorithm is one of the mostly
widely used recursive estimation algorithms in statistics, system identification, and
adaptive control.

In the first three cases, we have proved that whatever the neighborhood relation
(reflected in matrix G) is, global synchronization in sense of mean can be achieved
by the decentralized LS-based learning and control algorithm. In the last case (“tight
tracking”), we have proved that, under a weak condition on matrix G, global synchro-
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nization in sense of mean can also be achieved by the same algorithm. The condition
imposed on matrix G cannot be weakened in general since it is necessary and suffi-
cient even when there is no noise and no uncertainty in parameters γi. We should
also remark that the assumption on noise sequence in these results is also very weak,
since it allows unbounded noise including Gaussian white noise.

To the best knowledge of the author, the rigorous analysis for decentralized adap-
tive synchronization of the stochastic model in this paper is a first theoretical try
in analyzing adaptive synchronization of a discrete-time stochastic complex dynamic
network with uncertainties, which illustrates also our general framework on adaptive
control of complex dynamic networks and several new concepts of synchronization for
noisy systems. This contribution is still a starting point towards a comprehensive un-
derstanding for adaptive synchronization of discrete-time stochastic complex dynamic
networks. Many related problems still remain to be solved in the future; for example,
this paper considers only dynamical networks with fixed topology, while the study on
general dynamical networks with time-varying topology may be more interesting and
challenging.

Acknowledgment. The author is indebted to Prof. Lei Guo, who led me to the
world of complex systems and gave me valuable advice on this paper.
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STRICT EFFICIENCY IN SET-VALUED OPTIMIZATION∗

FABIÁN FLORES-BAZÁN† AND BIENVENIDO JIMÉNEZ‡

Abstract. In this paper, we develop the notion of a φ-minimizer (or strict efficiency) for a
set-valued map. Its properties and relations with other similar notions are studied. In special
circumstances, under suitable conditions, we prove that a point is a φ-minimizer of a vector function
if and only if it is a φ-minimizer of a certain family of linear scalarizations. We also establish a
characterization of strict efficiency through a nonlinear scalarization, which is a generalization of
the Gerstewitz function defined on the power set of the image space. The final part is focused on
minimizers of order one, and we provide several necessary or sufficient conditions (without convexity
assumptions) through different kinds of derivatives as contingent, radial among others. Various
illustrative examples showing the applicability of our results are also presented.

Key words. set-valued map, strict minimizer, strict efficient point, Gerstewitz function, opti-
mality conditions, contingent derivative

AMS subject classifications. 90C29, 90C46, 49A52, 49B27, 90C31

DOI. 10.1137/07070139X

1. Introduction. The notion of a strict minimizer (of order m) for a scalar
function has proved to be very fruitful in optimization. Let us recall that given a
normed space X , f : X → R and S ⊂ X , a point x0 ∈ S is said to be a strict local
minimizer of order m (m ≥ 1 integer) for f over S if there exist a neighborhood U of
x0 and α > 0 such that

(1.1) f(x) ≥ f(x0) + α‖x− x0‖m ∀x ∈ S ∩ U \ {x0}.

Since the pioneering works by Auslender [4] and Studniarski [35] for scalar functions,
the concept has also been extended and developed successfully in vector optimization
(see, for example, [14, 22, 24, 28]), where it is already an established notion.

A variant, named φ-strict minimizer, was presented by Bednarczuk [6] for vector
functions. Also the notion of minimizer of order one has been introduced for set-valued
maps by Crespi, Ginchev, and Rocca [10] following the line of Ginchev, Guerraggio,
and Rocca [14]. In this paper, we extend the notion of φ-strict minimizer to set-valued
maps, following the line of Jiménez [22], in such a way that all of them are generalized
in a unified manner.

The outline of the paper is as follows. In section 2, we introduce the notations.
In section 3, the notion of φ-strict minimizer for a set-valued map is introduced, and
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immediate properties are established. A structure theorem (Theorem 3.7) is proved for
a vector-valued function; according to it, a point is a φ-strict minimizer of f : X → Y
over a set if and only if the point is a φ-strict minimizer for a family of scalar functions
and sets, each of these functions is the composition of f with a positive, continuous and
linear functional, and the family of sets is a covering of the initial set. In this section,
the composition with a continuous positively homogeneous functional is also analyzed.

In section 4, scalarization is tackled. For this aim, we use a generalization of the
Gerstewitz function. This generalization is a function from the power set of Y (2Y )
into the real numbers, i.e., a set-to-point function. In this way we associate to the set-
valued optimization problem an ordinary scalar optimization problem with the same
feasible set, and we characterize different kinds of strict minimizers for the set-valued
problem through different kinds of strict minimizers for the scalarized problem. Some
consequences are obtained from the main result in this section.

In section 5, we pay attention on strict minimizers of order one, and several opti-
mality conditions are established. A characterization is given for a global minimizer
through the radial derivative. A sufficient condition and other necessary conditions
are proved for a local minimizer through the Shi and contingent derivatives when the
initial space is finite dimensional. In case such a space is of infinite dimension, we use
the contingent derivative under the upper-semidifferentiability condition of the set-
valued map to obtain a sufficient condition. Convexity of the set-valued map is not
required. Comparisons with other results are made, and some illustrative examples
are also provide.

2. Notations. Throughout the paper, X and Y are normed spaces. B(x, δ)
denotes the open ball centered at x ∈ X and radius δ > 0, d(x, S) is the distance
from x to the set S ⊂ X . We denote by Sc, clS, intS, bdS and coS, the algebraic
complement (i.e., Sc = X \ S), closure, interior, boundary, and convex hull of S,
respectively. The cone generated by S is coneS = {αx : α ≥ 0, x ∈ S}.

The tangent cone to S at x0 ∈ clS is
T (S, x0) = {v ∈ X : ∃tn → 0+, ∃vn → v such that x0 + tnvn ∈ S ∀n ∈ N}.
The expression tn → 0+ means tn > 0 ∀n and tn → 0.
We consider a convex cone D ⊂ Y , which defines a partial order on Y in the usual

form: y ≤D z ⇔ z − y ∈ D ∀y, z ∈ Y . We suppose that 0 ∈ D and D is a proper
cone, that is, {0} �= D �= Y . We do not assume that D is pointed (D ∩ (−D) = {0})
or closed.

We denote by 2Y the power set of Y , i.e., the set of all subsets of Y . Given a
set-valued map F : X → 2Y , we denote the graph and domain of F , respectively, by

GrF = {(x, y) ∈ X × Y : y ∈ F (x)} and DomF = {x ∈ X : F (x) �= ∅}.
If S is a subset of X , then F (S) =

⋃
x∈S F (x).

Definition 2.1. (a) A point y0 ∈ A ⊂ Y is called an efficient (resp. a weak
efficient) point of A and will be denoted by y0 ∈ MinD A (resp. y0 ∈WMinD A) if

(A− y0) ∩ (−D) ⊂ D (resp. (A− y0) ∩ (− intD) = ∅)
or equivalently, (A− y0)∩ (−D \ l(D)) = ∅, where l(D) = D∩ (−D). Of course, when
the weak efficiency notion is considered, we suppose that intD �= ∅.

(b) A point y0 ∈ A is called a strict efficient point of A, denoted by y0 ∈ StrD A,
if (A− y0) ∩ (−D \ {0}) = ∅.

Note that

StrD A ⊂MinD A ⊂WMinD A,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRICT EFFICIENCY IN SET-VALUED OPTIMIZATION 883

and if D is pointed, then StrD A = MinD A. Let us observe that, in the literature for
some authors, the set of efficient points is the set of strict efficient points even if D is
not pointed. In our notion, in the set of efficient points, we admit indifferent points.
For a different notion of strict minimality, we refer to [5].

A (nonnecessarily convex) subset B of D is a base of the cone D if 0 /∈ B and for
each y ∈ D, y �= 0, there is a unique representation y = αb, with α > 0 and b ∈ B.

The topological dual space of Y is denoted by Y ∗. The (positive) polar cone to
D is D+ = {λ ∈ Y ∗ : 〈λ, y〉 ≥ 0 ∀ y ∈ D}.

Given a set-valued map F : X → 2Y and a subset S of X , the following general
vector optimization problem is considered:

(2.1) Min{F (x) : x ∈ S}.

Definition 2.2. A point (x0, y0) ∈ GrF , with x0 ∈ S, is said to be a local
(resp. a local weak) minimizer of F over S, written (x0, y0) ∈ LMinD(F, S) (resp.
(x0, y0) ∈ LWMinD(F, S)), if there exists a neighborhood U of x0 in X such that

y0 ∈ MinD F (U ∩ S) (resp. y0 ∈WMinD F (U ∩ S)),

i.e., ∀x ∈ S∩U , (F (x)−y0)∩(−D) ⊂ D (resp. ∀x ∈ S∩U , (F (x)−y0)∩(− intD) = ∅).
The points of LMinD(F, S) and LWMinD(F, S) are also called local efficient solutions
and local weak efficient solutions, respectively.

We will say that (x0, y0) is a global minimizer or global weak minimizer when
we can choose U = X . The set of all global minimizers (resp. weak minimizers) is
denoted by MinD(F, S) (resp. WMinD(F, S)).

3. The notion of strict efficiency in optimization with set-valued maps.
In this section, we introduce the notion of φ-strict efficiency for set-valued maps that
generalizes those due to Crespi, Ginchev, and Rocca [10], Bednarczuk [6], and Jiménez
[22]. First, we recall the notion of strict minimizer.

Consider a set-valued map F : X → 2Y , a nonempty set S ⊂ X , and a proper
convex cone D ⊂ Y .

Definition 3.1. Let x0 ∈ S. We say that a pair (x0, y0) ∈ GrF is a strict local
minimizer for F over S (or strict local efficient solution for problem (2.1)), denoted
by (x0, y0) ∈ StrlD(F, S), if (i) y0 ∈ StrD F (x0) and (ii) there exists a neighborhood
U of x0 such that

(3.1) (F (x) − y0) ∩ (−D) = ∅ ∀x ∈ S ∩ U \ {x0}.

Notice that condition (i) y0 ∈ StrD F (x0) means (F (x0) − y0) ∩ (−D \ {0}) = ∅,
which is a natural requirement for the pair (x0, y0) in line with (3.1).

Recall that φ : R+ → R+ is said to be an admissible function if φ is nondecreasing,
φ(0) = 0, and φ(t) > 0 for t > 0. Such a family of functions is denoted by A.

Definition 3.2. Let φ ∈ A and x0 ∈ S. We say that the pair (x0, y0) ∈ GrF is
a strict local minimizer with respect to φ for (2.1) (in short, a φ-strict local minimizer
for F over S, or φ-strict local efficient solution), denoted by (x0, y0) ∈ StrlD(F, S;φ),
if (i) y0 ∈ StrD F (x0) and (ii) there exist a constant α > 0 and a neighborhood U of
x0 such that

(3.2) (F (x) +D) ∩B(y0, αφ(‖x − x0‖)) = ∅ ∀x ∈ S ∩ U \ {x0}.
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In particular, we will say that (x0, y0) is a strict local minimizer of order m (with
m > 0), denoted by (x0, y0) ∈ StrlD(F, S;m), if (x0, y0) is a strict local minimizer
with respect to φ(t) = tm. This generalizes to set-valued maps the notion of strict
minimum of order m given in Jiménez [22] and in Ginchev, Guerraggio, and Rocca
[14] for single-valued functions f : X → Y .

Condition (3.2) can be expressed in the following equivalent forms:

F (x) ⊂ (B(y0, αφ(‖x− x0‖))−D)c ∀x ∈ S ∩ U \ {x0},

(3.3) d(F (x) − y0,−D) ≥ αφ(‖x− x0‖) ∀x ∈ S ∩ U \ {x0},

where the distance between two sets A,B ∈ 2Y is defined by

d(A,B) = inf{d(y,B) : y ∈ A} = inf{‖y − z‖ : y ∈ A, z ∈ B}.

If we can choose U = X as neighborhood of x0 in Definitions 3.2 and 3.1, we will
call (x0, y0) a φ-strict minimizer and strict minimizer, respectively, and they will be
denoted by StrD(F, S;φ) and StrD(F, S).

When F is a single-valued map, i.e., F (x) = {f(x)}, with f : X → Y a function,
then we write x0 ∈ StrlD(f, S;φ) instead of (x0, f(x0)) ∈ StrlD(f, S;φ) and simi-
larly for the other sets of strict minimizers. Note that in this case, condition (i) in
Definitions 3.1 and 3.2 is superfluous.

In particular, if X = Y and f(y) = y, i.e., f is the identity (f = id), we say that
y0 ∈ S is a φ-strict efficient (resp. local efficient) point of S, denoted by y0 ∈ StrD(S;φ)
(resp. y0 ∈ StrlD(S;φ)), if y0 ∈ StrD(id, S;φ) (resp. y0 ∈ StrlD(id, S;φ)). Similarly,
it is defined that y0 is a strict efficient (resp. local efficient) point of S, denoted by
y0 ∈ StrD S (resp. y0 ∈ StrlD S), if y0 ∈ StrD(id, S) (resp. y0 ∈ StrlD(id, S)). Let us
observe that this is coherent with Definition 2.1(b).

Bednarczuk [6, Definitions 3.3 and 3.4] gives a similar notion to Definition 3.2 for
a function f : X → Y . We extend her notion to a set-valued map as follows.

A pair (x0, y0) ∈ GrF is said to be a φ-strict local minimizer in the sense of
Bednarczuk, denoted (x0, y0) ∈ B-StrlD(F, S;φ), if (i) y0 ∈ StrD F (x0) and (ii) there
exists a neighborhood U of x0 such that

(F (x) +D) ∩B(y0, φ(‖x− x0‖)) = ∅ ∀x ∈ S ∩ U \ {x0}.

It is obvious the equality⋃
α>0

B-StrlD(F, S;αφ) = StrlD(F, S;φ)

and consequently, B-StrlD(F, S;φ) ⊂ StrlD(F, S;φ). The difference between these
notions is slight but meaningful (for example, Proposition 3.4 is not true for the
Bednarczuk notion).

The notion of strict local minimizer of order one for a set-valued map has been
given by Crespi, Ginchev, and Rocca [10, Definition 2] (in a slightly different form),
under the name of isolated minimizer. We prefer the name strict minimizer because
in vector and in set-valued optimization, a strict minimizer is not, in general, isolated
as in scalar optimization. Moreover, it is a natural generalization of the scalar case
where the adjective strict is very usual (see, for example, [35, 38]).

In [10], the authors extend the so-called oriented distance to sets as follows:

Δ(A,B) = inf{d(y,B)− d(y, Y \B) : y ∈ A}, for A,B ∈ 2Y ,
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and define the following: the pair (x0, y0) ∈ GrF is a local isolated minimizer if there
exist a neighborhood U of x0 and α > 0 such that

(3.4) Δ(F (x) − y0,−D) ≥ α‖x− x0‖ ∀x ∈ S ∩ U.

Moreover, they require that y0 be a proper efficient point of F (x0) in the sense of
Henig instead of condition (i) in Definition 3.2. Note that (3.4) coincides with (3.3)
for φ(t) = t, since Δ(F (x) − y0,−D) = d(F (x) − y0,−D) whenever (3.4) holds.

Let us observe that if f is a scalar function, i.e., f : X → R and D = R+, then
(i) x0 ∈ Strl(f, S) if and only if there exists a neighborhood U of x0 such that

f(x) > f(x0) ∀x ∈ S ∩ U \ {x0};

(ii) x0 ∈ Strl(f, S;φ) if and only if there exist α > 0 and a neighborhood U of x0

such that

f(x) ≥ f(x0) + αφ(‖x − x0‖) ∀x ∈ S ∩ U \ {x0}.

In particular, if φ(t) = tm, we obtain (1.1), i.e., the usual notion of strict local
minimizer of order m [35, 38]. Note that for scalar functions, we write Str and Strl
instead of StrR+ and StrlR+ , respectively.

Now we present some immediate properties. Let φ, ϕ ∈ A. The following rela-
tionships are easy consequences of the above concepts:

(i) StrlD(F, S;φ) ⊂ StrlD(F, S).
(ii) StrlD(F, S;ϕ) ⊂ StrlD(F, S;φ) whenever ϕ ≥ φ on [0, δ) for some δ > 0.
(iii) StrD(F, S;φ) ⊂ StrlD(F, S;φ).
(iv) StrD(F, S) ⊂ StrlD(F, S).
(v) StrD(F, S) ⊂ MinD(F, S) and StrlD(F, S) ⊂ LMinD(F, S).
Consequently, any strict (local) notion implies (local) minimality. Other proper-

ties are as follows:
(vi) (x0, y0) ∈ StrlD(F, S;φ) if and only if there exists a neighborhood U of x0

such that (x0, y0) ∈ StrD(F, S ∩ U ;φ). Similarly for (x0, y0) in StrlD(F, S).
(vii) If K ⊂ Y is another convex cone and D ⊂ K, then StrK(F, S;φ) ⊂

StrD(F, S;φ), StrK(F, S) ⊂ StrD(F, S) and similarly for the local notions.
The so-called profile map F +D defined by (F +D)(x) = F (x) +D is used very

often in set-valued optimization and plays a crucial role in this paper. An important
property of it is the following.

Proposition 3.3. Let F : X → 2Y , x0 ∈ S ⊂ X, (x0, y0) ∈ GrF , φ ∈ A and
assume that D is pointed. Then

(a) (x0, y0) ∈ StrD(F, S;φ) ⇐⇒ (x0, y0) ∈ StrD(F +D,S;φ).
(b) (x0, y0) ∈ StrD(F, S) ⇐⇒ (x0, y0) ∈ StrD(F +D,S).
The same properties (a) and (b) are true for the local notions.
Proof. (a) Condition (3.2), with U = X , holds if and only if (3.2) holds for F +D

instead of F , since D is a convex cone. The implication y0 ∈ StrD(F (x0)+D) ⇒ y0 ∈
StrD F (x0) is always true, and the converse also holds due to the pointedness of D.
The proof of part (b) is also straightforward.

The following proposition characterizes the situation where a point is a φ-strict
minimizer in the general case, and Proposition 3.6 provides a necessary and sufficient
condition in the Paretian case, i.e., Y = R

p and D = R
p
+ is the nonnegative orthant.

We denote Limsupx→x0, x∈S F (x) as the set of all cluster points of sequences
yn ∈ F (xn), with xn → x0 and xn ∈ S \ {x0}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Proposition 3.4. Let F : X → 2Y , x0 ∈ S, y0 ∈ StrD F (x0), and φ ∈ A. Then,
(x0, y0) ∈ StrlD(F, S;φ) if and only if

(3.5) 0 �∈ Limsup
x→x0, x∈S

F (x) − y0 +D

φ(‖x − x0‖)
.

Proof. (⇒) Suppose that (3.5) is false. Then there exist sequences xn ∈ S \ {x0},
yn ∈ F (xn), dn ∈ D such that xn → x0 and limn→∞ yn−y0+dn

φ(‖xn−x0‖) = 0. Then ∀ε > 0,
∃n0 = n0(ε) such that ∀n ≥ n0 we have xn ∈ S, ‖xn− x0‖ < ε, and ‖yn− y0 + dn‖ <
εφ(‖xn − x0‖), that is, yn + dn ∈ B(y0, εφ(‖xn − x0‖)).

By assumption, (x0, y0) ∈ StrlD(F, S;φ). Then, there exist U = B(x0, δ) and
α > 0 such that (3.2) holds. Now, for ε = Min{δ, α}, there exists n0 = n0(ε) such
that for each n ≥ n0, we have xn ∈ S ∩B(x0, δ) and

yn + dn ∈ B(y0, εφ(‖xn − x0‖)) ⊂ B(y0, αφ(‖xn − x0‖)),

which contradicts (3.2).
(⇐) Suppose that (x0, y0) �∈ StrlD(F, S;φ). Then ∀δ > 0 and ∀α > 0, ∃x ∈

S ∩B(x0, δ) \ {x0} ∃y ∈ F (x) such that

(y +D) ∩B(y0, αφ(‖x − x0‖)) �= ∅.

In particular, for δ = 1/n and α = 1/n, there exist xn ∈ S ∩ B(x0, 1/n) \ {x0},
yn ∈ F (xn), and dn ∈ D such that

yn + dn ∈ B
(
y0,

1
nφ(‖xn − x0‖)

)
,

that is,

‖yn + dn − y0‖
φ(‖xn − x0‖)

<
1
n
,

and so yn+dn−y0
φ(‖xn−x0‖) → 0, which contradicts (3.5).

Remark 3.5. A direct consequence of Proposition 3.4 is the following necessary
condition for a point to be a φ-minimizer:

(x0, y0) ∈ StrlD(F, S;φ) ⇒
(

Limsup
x→x0, x∈S

F (x) − y0
φ(‖x− x0‖)

)
∩ (−D) = ∅.

The next proposition, the proof of which is similar to that of Proposition 3.5 in
Jiménez [22] and so it is omitted, provides a useful characterization of local strict
efficiency in the Paretian case. Set R

p

+ = [0,+∞]p.
Proposition 3.6. Let F : X → 2R

p

, x0 ∈ S, y0 ∈ StrR
p
+
F (x0), and φ ∈ A.

Then,

(x0, y0) ∈ StrlRp
+
(F, S;φ) ⇐⇒

(
Limsup
x→x0, x∈S

F (x) − y0
φ(‖x− x0‖)

)
∩
(
−R

p

+

)
= ∅.

The following theorem establishes a characterization of strict efficiency for a func-
tion under the assumption intD �= ∅ when efficiency is with respect to φ. The char-
acterization reduces the strict efficiency of a vector-valued function f to the strict



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRICT EFFICIENCY IN SET-VALUED OPTIMIZATION 887

efficiency of a family of scalar functions obtained by means of the composition of f
with a positive continuous linear functional (i.e., a functional of D+).

Let D be a proper closed convex cone of Y with intD �= ∅. According to
Lemma 2.2.17 in [16], the cone D+ has a weak*-compact convex base Λ. Recall
that a point λ0 ∈ Λ is an extremal point of a (convex) set Λ if there exist no different
points λ1, λ2 ∈ Λ, and t ∈ (0, 1) such that λ0 = tλ1 + (1 − t)λ2.

Theorem 3.7. Let f : X → Y be a function, D ⊂ Y be a proper closed convex
cone, x0 ∈ S ⊂ X, and φ ∈ A.

(a) Assume that intD �= ∅, let Λ be a weak*-compact convex base of D+, and let
Q be the set of extremal points of Λ. Then, x0 ∈ StrD(f, S;φ) if and only if there
exist ρ > 0 and a covering {Vλ : λ ∈ Q} of S \ {x0} such that

(3.6) 〈λ, f(x)〉 > 〈λ, f(x0)〉+ ρφ(‖x− x0‖) ∀x ∈ Vλ ∀λ ∈ Q.

(b) Let Q ⊂ D+ \ {0} and assume that D+ = cl cone coQ. Then x0 ∈ StrD(f, S)
if and only if there exists a covering {Vλ : λ ∈ Q} of S \ {x0} such that

(3.7) 〈λ, f(x)〉 > 〈λ, f(x0)〉 ∀x ∈ Vλ ∀λ ∈ Q.

Proof. (a) (⇒) By assumption, there exists α > 0 such that

(3.8) (f(x) − f(x0) +D) ∩B(0, αφ(‖x − x0‖)) = ∅ ∀x ∈ S \ {x0}.

Let e ∈ intD be a fixed point, and let β be a fixed positive number that will be
determined later. Let α0 = infλ∈Λ〈λ, e〉. The infimum is attained because Λ is weak*-
compact and is attained at an extremal point of Λ, i.e., at a point of Q. Moreover,
α0 > 0 because 〈λ, e〉 > 0 ∀λ ∈ Λ ⊂ D+ \ {0}, and so α0 = infλ∈Q〈λ, e〉 > 0.

For each λ ∈ Q, we define

(3.9) Vλ = {x ∈ X : 〈λ, f(x)〉 > 〈λ, f(x0)〉+ βφ(‖x− x0‖)α0}.

Let us see that

(3.10) S \ {x0} ⊂
⋃
λ∈Q

Vλ.

Pick any x ∈ S \ {x0} and assume that x /∈ Vλ ∀λ ∈ Q. Then 〈λ, f(x)〉 ≤ 〈λ, f(x0)〉+
βφ(‖x − x0‖)α0 ∀λ ∈ Q, and as α0 ≤ 〈λ, e〉 ∀λ ∈ Q, we have

〈λ, f(x0) + βφ(‖x − x0‖)e− f(x)〉 ≥ 0 ∀λ ∈ Q.

The same is true ∀λ ∈ D+ and by the bipolar theorem,

d := f(x0) + βφ(‖x − x0‖)e− f(x) ∈ D.

Hence,

(3.11) f(x)− f(x0) + d = βφ(‖x − x0‖)e.

By choosing β = α
2‖e‖ , we get ‖βφ(‖x − x0‖)e‖ < αφ(‖x − x0‖). But then (3.11)

contradicts (3.8). So, from (3.9) and (3.10), we deduce that (3.6) is satisfied with
ρ = βα0 = αα0/(2‖e‖).

(⇐) Let us prove that (3.8) holds for a suitable α > 0. We define α1 =
supλ∈Λ〈λ, e〉. This number is attained because Λ is a weak*-compact convex base
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of D+, and, moreover, the supremum is attained at an extremal point. So it is clear
that 0 < α1 = maxλ∈Q〈λ, e〉 < +∞ and then α−1

1 〈λ, e〉 ≤ 1 ∀λ ∈ Q. Hence, from
(3.6) it follows that

(3.12) 〈λ, f(x)〉 > 〈λ, f(x0)〉+ ρφ(‖x− x0‖) ≥ 〈λ, f(x0)〉+ α−1
1 ρφ(‖x− x0‖)〈λ, e〉

for each x ∈ Vλ and for every λ ∈ Q. Now suppose that for all α > 0, (3.8) is false.
Then there exist x′ ∈ S \ {x0} and d ∈ D such that

(3.13) f(x′)− f(x0) + d ∈ B(0, αφ(‖x′ − x0‖)).

As 0 ∈ int(e−D) and D is a cone, there exists k > 0 such that B(0, 1) ⊂ ke−D and
consequently,

B(0, αφ(‖x′ − x0‖)) ⊂ kαφ(‖x′ − x0‖)e−D.

In view of (3.13), there is d′ ∈ D such that

f(x′)− f(x0) = kαφ(‖x′ − x0‖)e− (d+ d′).

As x′ ∈ S \ {x0} ⊂ ∪λ∈QVλ, there exists λ̄ ∈ Q such that x′ ∈ Vλ̄. As Q ⊂ D+ and
d+ d′ ∈ D, it follows that〈
λ̄, f(x′)

〉
−
〈
λ̄, f(x0)

〉
= kαφ(‖x′ − x0‖)

〈
λ̄, e
〉
−
〈
λ̄, d+ d′

〉
≤ kαφ(‖x′ − x0‖)

〈
λ̄, e
〉
.

By choosing α = α−1
1 ρk−1, we obtain a contradiction to (3.12). Let us observe that

α does not depend on λ.
(b) (⇒) For each λ ∈ Q, we define

Vλ = {x ∈ X : 〈λ, f(x)〉 > 〈λ, f(x0)〉}.

Let us see that (3.10) is satisfied. Pick any x ∈ S \ {x0} and assume that x /∈
Vλ ∀λ ∈ Q. Then 〈λ, f(x)− f(x0)〉 ≤ 0 ∀λ ∈ Q, and the same inequality is true ∀λ ∈
cl cone coQ = D+. By the bipolar theorem, f(x) − f(x0) ∈ −D, which contradicts
the hypothesis. So (3.10) holds, and (3.7) is satisfied by the definition of Vλ.

(⇐) Assume that f(x) − f(x0) ∈ −D for some x ∈ S \ {x0}. Then 〈λ, f(x)〉 ≤
〈λ, f(x0)〉 ∀λ ∈ D+ (in particular, ∀λ ∈ Q). But this contradicts the assump-
tion.

Remark 3.8. (1) It is clear that Q is finite if and only if D is polyhedral.
(2) Many of the sets Vλ may be empty. As a matter of fact, only the sets Vλ

satisfying Vλ ∩ S �= ∅ are of interest. If f and φ are continuous, then the sets Vλ can
be chosen open.

(3) Note that expression (3.6) says that for each λ ∈ Q, x0 is a strict minimizer of
the scalar function λ ◦ f over Vλ ∪{x0} with respect to φ and with the same constant
ρ. The converse is also true. But if ρ depends on λ, i.e., ρ = ρλ on each Vλ, we can
only ensure the converse if infλ∈Q ρλ > 0. In particular, this is true if Q is finite.

(4) Part (b) can be rewritten as follows: x0 ∈ StrD(f, S) if and only if there exists
a covering {Vλ : λ ∈ Q} of S \ {x0} such that x0 ∈ Str(λ ◦ f, Vλ ∪ {x0}) ∀λ ∈ Q.
Notice that as a set Q satisfying the requirement in part (b) is {λ ∈ D+ : ‖λ‖ = 1} or
the set of extremal points of a convex base for D+. A convex base exists if qintD :=
{y ∈ Y : 〈λ, y〉 > 0 ∀λ ∈ D+ \ {0}} �= ∅; in such a situation a convex base is the set
{λ ∈ D+ : 〈λ, y〉 = 1} for y ∈ qintD.
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(5) If Q is finite, i.e., Q = {λi ∈ D+ : i = 1, . . . , p}, then Theorem 3.7 is also
true for the local notions. Consequently, part (a) can be written as follows:

x0 ∈ StrD(f, S;φ) ⇐⇒ ∃Vi ⊂ X, i = 1, . . . , p such that S \ {x0} ⊂ ∪pi=1Vi and
x0 ∈ Str(λi ◦ f, Vi ∪ {x0};φ),

x0 ∈ StrlD(f, S;φ) ⇐⇒ ∃Vi ⊂ X, i = 1, . . . , p such that S \ {x0} ⊂ ∪pi=1Vi and
x0 ∈ Strl(λi ◦ f, Vi ∪ {x0};φ).

(6) In particular, if we choose Y = R
p, D = R

p
+, φ(t) = tm, and Q = {λ1, . . . , λp}

as the canonical basis of R
p, then we obtain Theorem 3.7 in [22].

Theorem 3.7 can be viewed as a sort of generalization to the case of strict min-
imizers of a family of scalarizations considered, for instance, in Paragraph 3.4.3 of
[33].

To illustrate the above results, we give an example.
Example 3.9. (a) Let f : R

2 → R
3 be given by f(x) = (x2, x

2
1, x

3
2) for x =

(x1, x2) ∈ R
2, S = R

2, x0 = (0, 0), and D = {(y1, y2, y3) ∈ R
3 : y1 − y2 ≥ 0, y2 ≥

0, −y2 − y3 ≥ 0}. It is clear that the set of extremal points of a convex base of
D+ is Q = {λ1 = (1,−1, 0), λ2 = (0, 1, 0), λ3 = (0,−1,−1)}. Choosing as covering
of S \ {x0} the sets V1 = {(0, x2) : x2 > 0}, V2 = {(x1, x2) : x1 �= 0}, and
V3 = {(0, x2) : x2 < 0}, one has that x0 ∈ Str(λi ◦ f, Vi ∪ {x0}) for i = 1, 2, 3.
Therefore, by Theorem 3.7 (taking into account Remark 3.8(4)), x0 ∈ StrD(f, S).

(b) With the same data, but now f(x) = (x2, x
2
1, x2 + 2x2

1). Choosing as covering
of S \{x0} the sets V1 = {x : x2 > |x1|}, V2 = {x : |x2| < 2|x1|}, and V3 = {x : x2 <
−|x1|}, one has: x0 ∈ Strl(λ1 ◦ f, V1 ∪ {x0}; 1), x0 ∈ Strl(λ2 ◦ f, V2 ∪ {x0}; 2), and
x0 ∈ Strl(λ3 ◦ f, V3 ∪ {x0}; 1) (in order to check these claims, Theorems 6.3 and 6.4
in [17, Chapter 4] can be applied). Hence, x0 ∈ Strl(λi ◦ f, Vi ∪{x0}; 2) for i = 1, 2, 3,
and so x0 ∈ StrlD(f, S; 2) by Theorem 3.7 taking into account Remark 3.8(5).

Let us observe that in part (a), we have that x0 /∈ StrlD(f, S; 2). Indeed, if we
choose tn → 0+, xn = (t2n,−tn), dn = (tn, 0, 0) ∈ D, then limn→∞

f(xn)−f(x0)+dn

‖xn−x0‖2 = 0,
and the conclusion follows from Proposition 3.4 with φ(t) = t2.

Next, we study the composition. Let Ȳ be a normed space, and let D̄ ⊂ Ȳ be a
proper convex cone that provides to Ȳ a partial order. A function ψ : Y → Ȳ is said
to be increasing if ∀y, y′ ∈ Y , y′ ∈ y +D implies ψ(y′) ∈ ψ(y) + D̄.

Proposition 3.10. Let F : X → 2Y , x0 ∈ S ⊂ X, (x0, y0) ∈ GrF , and let
ψ : Y → Ȳ be an increasing and positively homogeneous function which is continuous
at 0 and either D̄-convex or D̄-concave. If (x0, ψ(y0)) ∈ StrD̄(ψ ◦ F, S;φ) and

(3.14) ψ−1(ψ(y0)) ∩ F (x0) = {y0},

then (x0, y0) ∈ StrD(F, S;φ).
Proof. By assumption, there exists α > 0 such that

(3.15)
(
ψ(F (x)) + D̄ − ψ(y0)

)
∩B(0, αφ(‖x − x0‖)) = ∅ ∀x ∈ S \ {x0}.

Since ψ is continuous at 0, given ε = 1 there is δ > 0 such that ψ(B(0, δ)) ⊂ B(0, 1).
As ψ is positively homogeneous, it follows that ψ(B(0, 1)) ⊂ B(0, k), with k = δ−1,
and therefore,

(3.16) ψ(B(0, r)) ⊂ B(0, kr) ∀r > 0.

Let β = αk−1, and let us prove that

(F (x) +D − y0) ∩B(0, βφ(‖x− x0‖)) = ∅ ∀x ∈ S \ {x0}.
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Suppose that this is false, i.e., there exist x ∈ S \ {x0}, y ∈ F (x), and d ∈ D such
that

(3.17) y′ := y + d− y0 ∈ B(0, βφ(‖x− x0‖)).

Then, from (3.16) we deduce that ψ(y′) ∈ B(0, kβφ(‖x− x0‖)).
Case (A). ψ is D̄-convex. From (3.17), y = y0 + y′ − d. As ψ is increasing and

D̄-convex, it follows that

ψ(y0 + y′ − d) ≤ ψ(y0 + y′) ≤ ψ(y0) + ψ(y′),

and so ψ(y) ≤ ψ(y0) + ψ(y′). This implies that there is d̄ ∈ D̄ such that ψ(y) + d̄ =
ψ(y0) + ψ(y′), i.e.,

ψ(y)− ψ(y0) + d̄ = ψ(y′) ∈ B(0, kβφ(‖x − x0‖)) = B(0, αφ(‖x − x0‖)),

which contradicts (3.15).
Case (B). ψ is D̄-concave. From (3.17), y0 = y − y′ + d. As ψ is increasing and

D̄-concave, it follows that

ψ(y − y′ + d) ≥ ψ(y − y′) ≥ ψ(y) + ψ(−y′),

and so ψ(y0) ≥ ψ(y) + ψ(−y′). This implies that there is d̄ ∈ D̄ such that ψ(y0) =
ψ(y) + ψ(−y′) + d̄, i.e.,

ψ(y)− ψ(y0) + d̄ = −ψ(−y′) ∈ B(0, kβφ(‖x− x0‖)) = B(0, αφ(‖x− x0‖)),

which contradicts (3.15).
Finally, let us see that y0 ∈ StrD F (x0). Indeed, assume that y0 /∈ StrD F (x0),

then there exists y ∈ F (x0) such that y−y0 = −d �= 0, with d ∈ D. As ψ is increasing,
ψ(y) = ψ(y0) − d̄ for some d̄ ∈ D̄. If d̄ = 0, by (3.14) it follows that y = y0, which is
a contradiction. If d̄ �= 0, the condition ψ(y) − ψ(y0) = d̄ contradicts the condition
ψ(y0) ∈ StrD̄ ψ(F (x0)), which is true by assumption.

Remark 3.11. (1) Condition (3.14) can be removed if ψ is strictly increasing, i.e.,
∀y, y′ ∈ Y , y′ ∈ y +D \ {0} implies ψ(y′) ∈ ψ(y) + D̄ \ {0}. Observe that condition
(3.14) is only used to prove that y0 ∈ StrD F (x0), and it is always satisfied if F is
single-valued.

(2) Some examples of functions ψ satisfying the assumptions in Proposition 3.10
are the following: (a) for Ȳ = R and D = R+, ψ = λ ∈ D+, ψ(y) = maxi=1,...,l〈λi, y〉
or ψ(y) = mini=1,...,l〈λi, y〉, with λi ∈ D+; (b) for a general Ȳ and D̄, ψ : Y → Ȳ
a positive (ψ(D) ⊂ D̄) continuous linear function, in particular, ψ(y) = 〈λ, y〉d̄, with
d̄ ∈ D̄ and λ ∈ D+.

In the next result, we prove the converse of Proposition 3.10 under more restrictive
conditions.

Proposition 3.12. Let Y , Ȳ be Banach spaces, D̄ ⊂ Ȳ a proper convex cone,
F : X → 2Y , x0 ∈ S ⊂ X, (x0, y0) ∈ GrF , and ψ : Y → Ȳ an onto continuous linear
function. Assume that

(3.18) D =
{
y ∈ Y : ψ(y) ∈ D̄

}
.

Then (x0, y0) ∈ StrD(F, S;φ) ⇒ (x0, ψ(y0)) ∈ StrD̄(ψ ◦ F, S;φ).
Proof. By assumption, there exists α > 0 such that

(3.19) (F (x) +D − y0) ∩B(0, αφ(‖x− x0‖)) = ∅ ∀x ∈ S \ {x0}.
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As ψ is an onto continuous linear function, by the open mapping theorem, there exists
δ > 0 such that B(0, δ) ⊂ ψ(B(0, 1)). By linearity

(3.20) B(0, r) ⊂ ψ(B(0, kr)) ∀r > 0,

with k = δ−1. Set β = αk−1, and let us prove that(
(ψ ◦ F )(x) + D̄ − ψ(y0)

)
∩B(0, βφ(‖x − x0‖)) = ∅ ∀x ∈ S \ {x0}.

Suppose that this is false, then there exist x ∈ S \ {x0}, y ∈ F (x), and d̄ ∈ D̄ such
that

(3.21) ψ(y) + d̄− ψ(y0) ∈ B(0, βφ(‖x− x0‖)).

As ψ is onto, d̄ = ψ(d) for some d ∈ Y and by assumption (3.18), d ∈ D. Replacing
in (3.21) and using (3.20), we have that

ψ(y + d− y0) ∈ B(0, βφ(‖x − x0‖)) ⊂ ψ(B(0, kβφ(‖x − x0‖))).

From here, y + d − y0 = b + u for some b ∈ B(0, kβφ(‖x − x0‖)) and u ∈ kerψ, and
therefore, y+ d− u− y0 = b, which contradicts (3.19) since d− u ∈ D by assumption
(3.18) and kβ = α.

Finally, let us see that ψ(y0) ∈ StrD̄ ψ(F (x0)). Indeed, take y ∈ F (x0) and
assume that ψ(y) − ψ(y0) ∈ −D̄. Then ψ(y − y0) ∈ −D̄, and from (3.18) it follows
that y − y0 ∈ −D. As y0 ∈ StrD F (x0) by assumption, we conclude that y − y0 = 0,
and so ψ(y)− ψ(y0) = 0.

The next corollary follows immediately from Propositions 3.10 and 3.12.
Corollary 3.13. Let F : X → 2Y , x0 ∈ S ⊂ X, (x0, y0) ∈ GrF , and ψ =

(ψ1, . . . , ψp) : Y → R
p, with ψi ∈ D+, i = 1, . . . , p. In R

p, we consider as ordering
cone R

p
+.

(a) If ψ−1(ψ(y0)) ∩ F (x0) = {y0} and (x0, ψ(y0)) ∈ StrR
p
+
(ψ ◦ F, S;φ), then

(x0, y0) ∈ StrD(F, S;φ).
(b) If Y is a Banach space, ψi, i = 1, . . . , p are linearly independent, D =

ψ−1(Rp+), and (x0, y0) ∈ StrD(F, S;φ), then (x0, ψ(y0)) ∈ StrR
p
+
(ψ ◦ F, S;φ).

The following proposition is proved using some of the ideas developed in Propo-
sitions 3.10 and 3.12, and so its proof is omitted.

Proposition 3.14. Let Y , Ȳ be Banach spaces, D̄ ⊂ Ȳ a convex cone, F : X →
2Y , x0 ∈ S ⊂ X, and (x0, y0) ∈ GrF .

(a) If ψ : Y → Ȳ is increasing, ψ−1(ψ(y0)) ∩ F (x0) = {y0} and (x0, ψ(y0)) ∈
StrD̄(ψ ◦ F, S), then (x0, y0) ∈ StrD(F, S).

(b) If ψ : Y → Ȳ is linear, D = ψ−1(D̄) and (x0, y0) ∈ StrD(F, S), then
(x0, ψ(y0)) ∈ StrD̄(ψ ◦ F, S).

Note that Propositions 3.10, 3.12, and 3.14 and Corollary 3.13 are also true for
the local notions of strict efficiency.

To illustrate the last results we provide an example.
Example 3.15. Let f = (f1, . . . , fp) : X → R

p, ∅ �= I ⊂ {1, . . . , p}, ψ : R
p → R

q

given by ψ(y1, . . . , yp) = (yi)i∈I , q being the cardinal of I, fI = (fi)i∈I = ψ ◦ f , and
x0 ∈ S ⊂ X . Consider in R

q and R
p the cones R

q
+ and D = ψ−1(Rq+), respectively.

Then
(i) x0 ∈ StrR

q
+
(fI , S) ⇔ x0 ∈ StrD(f, S),

(ii) x0 ∈ StrR
q
+
(fI , S;φ) ⇔ x0 ∈ StrD(f, S;φ),
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by Proposition 3.14 and Corollary 3.13, respectively. Moreover, as R
p
+ ⊂ D, then

(iii) x0 ∈ StrR
q
+
(fI , S) ⇒ x0 ∈ StrR

p
+
(f, S),

(iv) x0 ∈ StrR
q
+
(fI , S;φ) ⇒ x0 ∈ StrR

p
+
(f, S;φ).

As a special case, let f = (f1, f2) : X → R
2, where f1(x) = ‖x‖m and f2 is an

arbitrary function, x0 = 0, S = X , D = R+ × R. Then x0 ∈ StrD(f, S;m) because
x0 is a strict minimizer of order m of f1.

4. Scalarization. Scalarization is one of the most important procedures in vec-
tor optimization. In this section, we investigate a scalarization process that allows us
to transform some notions of strict efficiency for a set-valued map into several notions
of minimality for an ordinary scalar function, which is easier to deal with.

Let D be a proper closed convex cone with intD �= ∅, and let e ∈ intD be a fixed
point. The Gerstewitz function g : Y → R is given by

g(y) = min{t ∈ R : te ∈ y +D}.

It is continuous, convex, increasing, and strictly increasing on Y . This function is
well known and widely used in optimization (see, for example, [13, 16, 26]). The
following set-to-R map is introduced in Hernández and Rodŕıguez-Maŕın [18] and is
an extension of the Gerstewitz function.

Definition 4.1. The generalized Gerstewitz function G : 2Y → R ∪ {−∞} is
given by

G(A) = inf{t ∈ R : te ∈ A+D}.

It is not difficult to check that G(A) = infa∈A g(a).
A nonempty set A ⊂ Y is said to be D-proper if A+D �= Y .
Lemmas 4.2 and 4.4 below can be proved using the ideas of [13]. We give their

proofs for reader convenience. A slight variant of the next lemma may be found in
[18, Lemma 2.16].

Lemma 4.2. A is D-proper if and only if G(A) > −∞.
Proof. We prove only the implication G(A) = −∞ ⇒ A + D = Y , because the

converse is obvious. If G(A) = −∞, then there exists a sequence tn → −∞ such
that tne ∈ A +D ∀n. This implies that te ∈ A + D ∀t ∈ R, because if αe ∈ A +D,
then βe ∈ A + D ∀β ≥ α as can be checked. We will check that Y ⊂ A + D. Take
any y ∈ Y . Since e ∈ intD, we obtain e + t−1y ∈ intD for some t > 0, and so
y ∈ −te+ intD. Thus, by the previous remark, y ∈ A+D+ intD ⊂ A+D, which is
the desired result.

Lemma 4.3. (see [9, Lemma 2.5]) Let A be a nonempty subset of Y . Then
(i) int cl(A+D) = int(A+D) = A+ intD.
(ii) cl(A+D) = cl(A+ intD).
The following lemma was proved under the D-properness assumption in [18,

Lemma 2.17].
Lemma 4.4. Let r ∈ R, and let A be a nonempty subset of Y . The function G

has the following properties:
(i) G(A) < r ⇔ re ∈ A+ intD.
(ii) G(A) > r ⇔ re /∈ cl(A+D).
(iii) G(A) = r ⇔ re ∈ bd(A+D).
(iv) G(A) = G(A+D) = G(A+ intD) = G(cl(A+D)).
Proof. (i) (⇐) As A+intD is an open set, there exists ε > 0 such that (r− ε)e =

re− εe ∈ A+ intD ⊂ A+D. Hence, G(A) ≤ r − ε < r.
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(⇒) By the definition of G(A), there exists t ∈ R, t < r, such that te ∈ A + D.
Hence

re = te+ (r − t)e ∈ A+D + intD ⊂ A+ intD.

(ii) (⇐) By hypothesis re ∈ Y \ cl(A +D) and as Y \ cl(A +D) is an open set,
there exists ε > 0 such that (r+ ε)e = re+ εe /∈ cl(A+D). Hence, (r+ ε)e /∈ A+D,
and therefore, G(A) ≥ r + ε > r because if αe /∈ A+D, then βe /∈ A+D ∀β ≤ α as
can easily be checked.

(⇒) Suppose that re ∈ cl(A+D), and let us see that

(4.1) re+ εe ∈ A+ intD ∀ε > 0.

Indeed, one has that cl(A + D) + intD ⊂ cl(A + D) as can be verified. Using that
cl(A+D)+intD is an open set and Lemma (4.3)(i), we derive that cl(A+D)+intD ⊂
int cl(A+D) = A+ intD. Therefore, (4.1) holds.

Now, from (4.1) it follows that (r+ ε)e ∈ A+ intD and by part (i), G(A) < r+ ε
∀ε > 0, which contradicts the assumption.

(iii) It follows from parts (i) and (ii), taking into account Lemma (4.3)(i).
(iv) The equality G(A) = G(A+D) is clear from the definition of G since D+D =

D. In case A is not D-proper, we have A+D = Y = cl(A+D) and A+intD = Y by
virtue of Lemma 4.3(i), and so part (iv) follows. If A is D-proper, then G(A) = r ∈ R.
One has

M := (A+ intD) +D = A+ intD and N := cl(A+D) +D = cl(A+D).

By Lemma 4.3, int(A+D) = A+ intD, clM = cl(A+D) and intN = A+ intD. As
M is open and N is closed, the sets A+D, M , and N have the same closure and the
same interior and consequently, the same boundary, i.e.,

bd(A+D) = bd[(A + intD) +D] = bd[cl(A+D) +D].

Now, the conclusion follows from part (iii).
Remark 4.5. From parts (i) and (ii) of Lemma 4.4, one has the following equiva-

lences:

G(A) = 0 ⇔ G(A) ≤ 0 and G(A) ≥ 0 ⇔
{

0 ∈ cl(A+D),
0 /∈ A+ intD (or A ∩ (− intD) = ∅).

Lemma 4.6. Let A ⊂ Y and y0 ∈ A. Then

y0 ∈WMinD A ⇔ G(A− y0) = 0.

In particular, y0 ∈MinD A (or y0 ∈ StrD A) ⇒ G(A− y0) = 0.
The proof of this lemma is straightforward from Remark 4.5 (compare with Propo-

sition 2.20 in [18]).
Given the set-valued map F : X → 2Y and (x0, y0) ∈ GrF , we denote F̃ : X → 2Y

the set-valued map given by

F̃ (x) = F (x)− y0.

Next we characterize different kinds of minimizers for a set-valued map F through
different kinds of minimizers of the scalar function G ◦ F̃ : X → R ∪ {−∞}.
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Theorem 4.7. Let x0 ∈ S ⊂ X and (x0, y0) ∈ GrF .
(i) (x0, y0) ∈WMinD(F, S) ⇐⇒ x0 ∈ Min(G ◦ F̃ , S) and G(F̃ (x0)) = 0.
(ii) (x0, y0) ∈ StrD(F, S) if x0 ∈ Str(G ◦ F̃ , S) and y0 ∈ StrD F (x0).
The converse is true if F is D-closed valued, that is, F (x) +D is a closed set for

all x ∈ DomF .
(iii) (x0, y0) ∈ StrD(F, S;φ) ⇐⇒ x0 ∈ Str(G ◦ F̃ , S;φ) and y0 ∈ StrD F (x0).
Proof. (i) By assumption, (F (x)− y0)∩ (− intD) = ∅ ∀x ∈ S. So 0 /∈ F (x)− y0 +

intD ∀x ∈ S and by Lemma 4.4(i), it follows that G(F (x) − y0) ≥ 0 ∀x ∈ S. The
condition G(F̃ (x0)) = 0 is deduced from Remark 4.5 since 0 ∈ cl(F (x0)−y0 +D) and
0 /∈ F (x0)− y0 + intD. The converse implication follows the inverse path.

(ii) First the “if” part. As y0 ∈ StrD F (x0), by Lemma 4.6, G(F (x0) − y0) = 0.
The other hypothesis x0 ∈ Str(G ◦ F̃ , S) means that

G(F (x) − y0) > G(F (x0)− y0) = 0 ∀x ∈ S \ {x0}.

In view of Lemma 4.4(ii), 0 /∈ cl(F (x) − y0 + D). This condition implies that 0 /∈
F (x)− y0 +D and then

(F (x) − y0) ∩ (−D) = ∅ ∀x ∈ S \ {x0}.

Therefore, (x0, y0) ∈ StrD(F, S).
Second, assume that (x0, y0) ∈ StrD(F, S) and F is D-closed valued. Then

(F (x)− y0)∩ (−D) = ∅ ∀x ∈ S \ {x0}, and so 0 /∈ F (x)− y0 +D = cl(F (x)− y0 +D).
Hence, G(F (x) − y0) > 0 by Lemma 4.4(ii). The condition 0 = G(F (x0) − y0) fol-
lows from Lemma 4.6, since y0 ∈ StrD F (x0) by assumption. Therefore, G(F̃ (x)) >
G(F̃ (x0)) ∀x ∈ S \ {x0}.

(iii) (⇒) By assumption there exists α > 0 such that

(F (x) − y0 +D) ∩B(0, αφ(‖x− x0‖)) = ∅ ∀x ∈ S \ {x0}.

As B(0, αφ(‖x− x0‖)) is an open set, we have that

cl(F (x) − y0 +D) ∩B(0, αφ(‖x− x0‖)) = ∅ ∀x ∈ S \ {x0}.

This is equivalent to B(0, αφ(‖x−x0‖)) ⊂ [cl(F (x)−y0 +D)]c. As α
2‖e‖φ(‖x−x0‖)e ∈

B(0, αφ(‖x− x0‖)), we derive that α
2‖e‖φ(‖x− x0‖)e /∈ cl(F (x)− y0 +D). Once more

using Lemma 4.4(ii), we have that

(4.2) G(F (x) − y0) >
α

2‖e‖φ(‖x− x0‖).

On the other hand, as (x0, y0) ∈ StrD(F, S;φ), also it is satisfied that y0 ∈ StrD F (x0).
In view of Lemma 4.6, we have G(F (x0)− y0) = 0. From (4.2), the conclusion follows
since G(F̃ (x)) > G(F̃ (x0)) + α

2‖e‖φ(‖x− x0‖) ∀x ∈ S \ {x0}.
(⇐) Assume that there exists ρ > 0 such that

G
(
F̃ (x)

)
> G

(
F̃ (x0)

)
+ ρφ(‖x− x0‖) ∀x ∈ S \ {x0}.

As y0 ∈ StrD F (x0), by Lemma 4.6 we have G(F (x0)−y0) = 0, and so G(F (x)−y0) >
ρφ(‖x − x0‖) ∀x ∈ S \ {x0}. By Lemma 4.4(ii), ρφ(‖x − x0‖)e /∈ cl(F (x) − y0 +D),
and therefore, ρφ(‖x− x0‖)e /∈ F (x)− y0 +D. This implies that

(4.3) [ρφ(‖x− x0‖)e−D] ∩ (F (x)− y0 +D) = ∅ ∀x ∈ S \ {x0}.
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On the other hand, 0 ∈ e− intD, and so there exists δ > 0 such that B(0, δ) ⊂ e−D.
From here, we derive that B(0, δρφ(‖x− x0‖)) ⊂ ρφ(‖x− x0‖)e−D. Hence, in view
of (4.3), it follows that B(0, δρφ(‖x−x0‖))∩ (F (x)−y0 +D) = ∅ ∀x ∈ S \{x0}. This
implies that (x0, y0) ∈ StrD(F, S;φ) since y0 ∈ StrD F (x0).

If, in particular, F is single-valued, the function G becomes the Gerstewitz func-
tion g, and the following result is reached.

Corollary 4.8. Let x0 ∈ S ⊂ X, f : X → Y , and f̃(x) = f(x)−f(x0) ∀x ∈ X.
(i) x0 ∈WMinD(f, S) ⇐⇒ x0 ∈Min(g ◦ f̃ , S).
(ii) x0 ∈ StrD(f, S) ⇐⇒ x0 ∈ Str(g ◦ f̃ , S).
(iii) x0 ∈ StrD(f, S;φ) ⇐⇒ x0 ∈ Str(g ◦ f̃ , S;φ).
In particular, these results are true for the local notions and also for f the identity,

obtaining, in this case, the following corollary. For y0 ∈ Y , we denote gy0 to the
function gy0(y) = g(y − y0) ∀y ∈ Y .

Corollary 4.9. Let y0 ∈ S ⊂ Y .
(i) y0 ∈WMinD S ⇐⇒ y0 ∈Min(gy0 , S) ⇐⇒ g(y − y0) ≥ 0 ∀y ∈ S.
(ii) y0 ∈ StrD S ⇐⇒ y0 ∈ Str(gy0 , S) ⇐⇒ g(y − y0) > 0 ∀y ∈ S \ {y0}.
(iii) y0 ∈ StrD(S;φ) ⇐⇒ y0 ∈ Str(gy0 , S;φ),

y0 ∈ StrD(S;φ) ⇐⇒ ∃ρ > 0 such that g(y−y0) > ρφ(‖y−y0‖) ∀y ∈ S\{y0}.

As StrD(S;φ) ⊂ StrD S ⊂ MinD S, parts (ii) and (iii) are sufficient conditions for
efficiency.

Remark 4.10. If in Theorem 4.7(ii), F is not D-closed valued, the result may be
not true. For example, let A = {(y1, y2) ∈ R

2 : y1 < 0, y2 ≥ −1/y1}, let F : R→ 2R
2

be defined as

F (x) =
{
A if x �= 0,
{(0, 0)} if x = 0,

D = R
2
+, and e = (1, 1). Then the pair (x0, y0) = (0, (0, 0)) ∈ StrD(F,R), but

x0 /∈ Str(G ◦ F̃ ,R) because (G ◦ F̃ )(x) = 0 ∀x ∈ R. This example also shows that
Proposition 2 in [10] is wrong.

Remark 4.11. Assuming that D is pointed, several kinds of proper efficient points
for S are studied in Zaffaroni [39] and are characterized in section 4 (Theorems 4.3,
4.4, and 4.6) through the oriented distance: Δ−D(y) = d(y,−D) − d(y, Y \ (−D)).
We can reformulate some of these results in terms of φ-strict efficiency as follows (for
the definition of the new concepts, see [39]):

(i) The following statements are equivalent:
(a) y0 is superefficient in S,
(b) ∃α > 0 such that Δ−D(y − y0) > α‖y − y0‖ ∀y ∈ S \ {y0},
(c) y0 ∈ Str(S; 1).

Similar statements are true for the local notions.
(ii) The following statements are equivalent:

(a) y0 is strong efficient (we prefer this name instead of strictly efficient used
by Zaffaroni to avoid confusion) in S,

(b) ∃φ ∈ A such that Δ−D(y − y0) > φ(‖y − y0‖) ∀y ∈ S \ {y0},
(c) ∃φ ∈ A such that y0 ∈ StrD(S;φ).

Indeed, we prove only part (ii) because the proof of part (i) is similar (we apply
[39, Theorem 4.6] instead of [39, Theorem 4.4]). The equivalence (a) ⇔ (b) is [39,
Theorem 4.4]. Taking into account the relations Δ−D(y) > 0 ⇔ d(y,−D) > 0 ⇒
Δ−D(y) = d(y,−D), (b) holds if and only if ∃φ ∈ A such that d(y−y0) > φ(‖y−y0‖)
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∀y ∈ S \ {y0}, and this implies that y0 ∈ StrD(S;φ), i.e., (c) is satisfied. If (c) holds,
then ∃φ ∈ A, ∃α > 0 such that d(y − y0) > αφ(‖y − y0‖) ∀y ∈ S \ {y0}. As αφ ∈ A,
then (b) holds.

According to Corollary 4.9(iii), we can replace in statements (b) the oriented
distance Δ−D with the Gerstewitz function g.

For further information on proper efficiency and strict efficiency, see [14, 15].
To finish this section, we provide two examples.
Example 4.12. Let Y = C(I) be the normed space of all continuous real functions

on the compact interval I endowed with the max-norm, and let D ⊂ Y be the cone
of nonnegative functions: D = {y ∈ Y : y(t) ≥ 0 ∀ t ∈ I}. Let e ∈ intD given by
e(t) = 1 ∀ t ∈ I. It is easy to prove that the Gerstewitz function is g(y) = maxt∈I y(t)
∀ y ∈ Y . If we consider f : R→ Y defined by f(x)(t) = exp(x2t), x0 ∈ R, and choose
I = [−1, 1], then

(
g ◦ f̃

)
(x) = max

t∈[−1,1]

{
exp

(
x2t
)
− exp

(
x2

0t
)}

=
{

exp
(
x2
)
− exp

(
x2

0

)
if |x| ≥ |x0|,

exp
(
−x2

)
− exp

(
−x2

0

)
if |x| < |x0|.

If x0 �= 0, it is clear that x0 ∈ Strl(g ◦ f̃ ,R; 1) and so by Corollary 4.8(iii), x0 ∈
StrlD(f,R; 1), and if x0 = 0, one has that x0 ∈ Str(g ◦ f̃ ,R; 2), and so x0 ∈
StrD(f,R; 2).

If now we choose I = [0, 1], then

(
g ◦ f̃

)
(x) = max

t∈[0,1]

{
exp

(
x2t
)
− exp

(
x2

0t
)}

=
{

exp
(
x2
)
− exp

(
x2

0

)
if |x| ≥ |x0|,

0 if |x| < |x0|.

In this case, if x0 �= 0, then x0 ∈ Min(g ◦ f̃ ,R) and so by Corollary 4.8(i), x0 ∈
WMinD(f,R), and if x0 = 0, one obtains the same as above.

Example 4.13. In vector approximation, one has to approximate not only one
but several functions simultaneously. We shall consider a model already discussed in
Jahn [20] regarding the following free boundary Stefan problem:

uxx(x, t)− ut(x, t) = 0, (x, t) ∈ D(s),(4.4)
ux(0, t) = h(t), 0 < t ≤ T,(4.5)
u(s(t), t) = 0, 0 < t ≤ T,(4.6)
ux(s(t), t) = −ṡ(t), 0 < t ≤ T,(4.7)
s(0) = 0,

where h ∈ C([0, T ]) is a nonpositive function satisfying h(0) < 0 and

D(s) := {(x, t) ∈ R
2 : 0 < x < s(t), 0 < t ≤ T } for s ∈ C([0, T ])

(e.g., see [31, p. 31]). For the approximate solution of this problem, we choose

ū(x, t, a) =
l∑
i=0

aivi(x, t),

with

vi(x, t) =
[i/2]∑
k=0

i!
(i− 2k)!k!

xi−2ktk
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([i/2] stands for the biggest integer less than or equal to i/2) and

s̄(t, b) = −h(0)t+
p∑
i=1

bit
i+1.

For each a ∈ R
l+1, ū satisfies the partial differential equation (4.4) and for each

b ∈ R
p, s̄ satisfies s(0) = 0. By substituting ū, s̄ into (4.5)–(4.7), we obtain the error

functions ρ1, ρ2, ρ3 ∈ C([0, T ]), with

ρ1(t, a, b) := ūx(0, t, a)− h(t) =
l∑

i=1, i odd

ai
i!

((i− 1)/2)!
t(i−1)/2 − h(t),

ρ2(t, a, b) := ū(s̄(t, b), t, a) =
l∑
i=0

aivi(s̄(t, b), t),

and

ρ3(t, a, b) := ūx(s̄(t, b), t, a) + ˙̄s(t, b) =
l∑
i=1

aivix(s̄(t, b), t) + ˙̄s(t, b).

If ||·|| is any norm in C([0, T ]), we formulate the following vector optimization problem
for the approximate solution of the free boundary Stefan problem: determine minimal
or weakly minimal elements of the set{

(||ρ1(·, a, b)||, ||ρ2(·, a, b)||, ||ρ3(·, a, b)||) ∈ R
3 : (a, b) ∈ R

l+1 × R
p
}
,

where the vector space R
3 is ordered by the usual nonnegative orthant R

3
+.

By setting fi(a, b) = ||ρi(·, a, b)||, (a, b) ∈ R
l+1 × R

p, and f = (f1, f2, f3), we
are concerned with the scalar function g ◦ f̃ , where f̃(a, b) = f(a, b) − f(ā, b̄) and
g(y) = max1≤i≤3 yi. The function g was obtained by taking e = (1, 1, 1). By applying
Corollary 4.8, we obtain the following result.

Corollary 4.14. Consider the above free boundary Stefan problem, and let
(ā, b̄) ∈ R

l+1 × R
p. Then

(a) (ā, b̄) is a weak minimizer if and only if maxi=1,2,3{fi(a, b) − fi(ā, b̄)} ≥ 0
∀(a, b) ∈ R

l+1 × R
p.

(b) (ā, b̄) is a strict minimizer if and only if maxi=1,2,3{fi(a, b) − fi(ā, b̄)} > 0
∀(a, b) ∈ R

l+1 × R
p, with (a, b) �= (ā, b̄).

5. Optimality conditions for strict minimizers. In this section, we focus on
minimizers of order one. We provide several optimality conditions through different
kind of derivatives. In general, a derivative is a local notion, so the minimizers con-
nected are local, but we also provide some results with global derivatives for global
minimizers. Optimality conditions (specially necessary conditions) is a topic widely
treated in the literature. See [7, 10, 11, 12, 21, 27, 36, 37] as examples in a similar
framework as the one considered here.

Definition 5.1. Let (x0, y0) ∈ GrF .
(a) The radial derivative of F at (x0, y0) (see [12, 37]) is the set-valued map

DRF (x0, y0) : X → 2Y defined by u ∈ DRF (x0, y0)(v) if and only if

(5.1) ∃ tn > 0, ∃ vn → v, ∃ un → u such that yn := y0 + tnun ∈ F (x0 + tnvn) ∀ n.
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(b) (Aubin [2].) The contingent derivative of F at (x0, y0) is the set-valued map
DcF (x0, y0) : X → 2Y defined by u ∈ DcF (x0, y0)(v) if and only if

(5.2) ∃ tn → 0+, ∃ vn → v, ∃ un → u such that yn := y0+tnun ∈ F (x0+tnvn) ∀ n.

(c) (Shi [34, Definition 2.4].) The Shi derivative of F at (x0, y0) is the set-valued
map DSF (x0, y0) : X → 2Y defined by u ∈ DSF (x0, y0)(v) if and only if

(5.3) ∃ tn > 0, ∃ vn → v, ∃ un → u such that tnvn → 0 and
yn := y0 + tnun ∈ F (x0 + tnvn) ∀ n.

Condition (5.1) is equivalent to (v, u)∈ cl cone(GrF−(x0, y0)), so GrDRF (x0, y0)=
cl cone(GrF − (x0, y0)); condition (5.2) is equivalent to (v, u) ∈ T (GrF, (x0, y0)).

Some properties of the previous derivatives are collected in the following lemma.
Recall that a set-valued map F is positively homogeneous if F (tx) = tF (x) ∀t > 0,
x ∈ DomF .

Lemma 5.2. (i) The set-valued maps DRF (x0, y0), DcF (x0, y0), and DSF (x0, y0)
are positively homogeneous.

(ii) F (x) − y0 ⊂ DRF (x0, y0)(x − x0) ∀x ∈ X.
(iii) DcF (x0, y0)(v) ⊂ DSF (x0, y0)(v) ⊂ DRF (x0, y0)(v) ∀ v ∈ X.
(iv) DcF (x0, y0)(v) = DSF (x0, y0)(v) ∀ v ∈ X \ {0}.
Parts (i)–(iii) can be found in Taa [37, Remarks 2.3 and 2.5 and Theorem 2.1];

part (iv) follows easily from the definitions.
Definition 5.3. A set-valued map F is said to be compact at x0 [29] if for any

sequence (xn, yn) ∈ GrF such that xn → x0, there exists a convergent subsequence
(xnk

, ynk
) → (x0, y) for some y ∈ F (x0). Whenever this is true for each x0 ∈ A ⊂

DomF , we say that F is compact on the set A.
We point out that if F is compact on A, then F is compact-valued on A (F (x) is

compact for all x ∈ A). Indeed, take x ∈ A and a sequence yn ∈ F (x). Then choosing
xn = x, we have that (xn, yn) ∈ GrF , with xn → x, and as F is compact, there exists
a convergent subsequence (ynk

) to some y ∈ F (x).
We start by characterizing a (global) minimizer of order one for an unconstrained

problem in terms of the radial derivative.
Theorem 5.4. Let F : X → 2Y and (x0, y0) ∈ GrF . If (x0, y0) ∈ StrD(F,X ; 1),

then DRF (x0, y0)(v) ∩ (−D) = ∅ ∀ v ∈ X \ {0}. The converse is true if D is closed,
X is finite-dimensional, y0 ∈ StrD F (x0), and the set-valued map DRF (x0, y0) is
compact on the set S1 := {v ∈ X : ‖v‖ = 1}.

Proof. (⇒) By hypothesis, there exists α > 0 such that

(F (x) +D) ∩B(y0, α‖x− x0‖) = ∅ ∀x ∈ X \ {x0},

i.e., F (x)−y0
‖x−x0‖ ⊂ (B(0, α) −D)c. Assume that there is u ∈ DRF (x0, y0)(v) ∩ (−D) for

some v ∈ X \ {0}. Then (5.1) is fulfilled, and so yn−y0
tn

= un → u ∈ −D. Denoting
xn = x0 + tnvn, we have xn−x0

tn
= vn → v and

yn − y0
‖xn − x0‖

=
tn

‖xn − x0‖
· yn − y0

tn
=

1
‖vn‖

un →
1
‖v‖u ∈ −D.

On the other hand,

yn − y0
‖xn − x0‖

∈ F (xn)− y0
‖xn − x0‖

⊂ (B(0, α) −D)c.
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Since the latter set is closed, we obtain that 1
‖v‖u ∈ (B(0, α) −D)c ∩ (−D), yielding

a contradiction since (B(0, α) − D)c ∩ (−D) = ∅. This last equality holds because
−D ⊂ (−D) + B(0, α). Let us observe that v �= 0 implies that xn − x0 �= 0 for all n
sufficiently large.

(⇐) To simplify, let us denote H(v) = DRF (x0, y0)(v). Let ϕ : S1 → R be
defined by

(5.4) ϕ(v) = inf{d(u,−D) : u ∈ H(v)}.

This infimum is attained because H(v) is compact and the function Y � u �→
d(u,−D) ∈ R is Lipschitz [3] (in particular, it is continuous). Hence, there exists
u ∈ H(v) such that d(u,−D) = d(H(v),−D) = ϕ(v). Moreover, d(u,−D) > 0, since
otherwise u ∈ −D, contradicting the hypothesis.

Now, let α = inf{ϕ(v) : v ∈ S1}, and let us see that α > 0. Suppose that α = 0,
then for each n ∈ N there exist vn ∈ S1 and un ∈ H(vn) such that

(5.5) ϕ(vn) = d(un,−D) <
1
n
.

As S1 is compact, we can assume, taking a subsequence if necessary, that vn → v0
for some v0 ∈ S1. As H is compact on S1, there exists a subsequence unk

∈ H(vnk
)

converging to some u0 ∈ H(v0). As d(·,−D) is continuous, from (5.5) it follows that
d(u0,−D) = 0. But u0 ∈ H(v0) implies that 0 < ϕ(v0) ≤ d(u0,−D), and we have a
contradiction. Thus,

inf{d(DRF (x0, y0)(v),−D) : ‖v‖ = 1} = α > 0.

As DRF (x0, y0) is positively homogeneous and d(DRF (x0, y0)(v/‖v‖),−D) ≥ α ∀ v ∈
X \ {0}, we deduce that d(DRF (x0, y0)(v),−D) ≥ α‖v‖ ∀ v ∈ X . Now by Lemma
5.2(ii), F (x0 + v)− y0 ⊂ DRF (x0, y0)(v), and therefore,

d(F (x0 + v)− y0,−D) ≥ d(DRF (x0, y0)(v),−D) ≥ α‖v‖.

In other terms, d(F (x) − y0,−D) ≥ α‖x − x0‖ ∀x ∈ X \ {x0}. According to (3.3),
this proves that (x0, y0) ∈ StrD(F,X ; 1).

The second part of Theorem 5.4 improves the conclusion of Theorem 3.1(i) in
[37].

Next we establish our basic assumption (B) (in terms of the contingent derivative
of the set-valued map F+D) implying local optimality. Afterwards, we provide several
sufficient conditions related to those existing in the literature but stronger than the
basic assumption.

Assumption (B).
(B1) 0 /∈ Dc(F +D)(x0, y0)(v) ∀ v ∈ T (S, x0) \ {0}.
(B2) y0 ∈ StrD F (x0).
Theorem 5.5. Let F : X → 2Y , x0 ∈ S ⊂ X, and (x0, y0) ∈ GrF . Sup-

pose that X is finite-dimensional and that Assumption (B) holds, then (x0, y0) ∈
StrlD(F, S; 1).

Proof. Assume that the conclusion is false. Then, by Proposition 3.4, there exist
sequences xn ∈ S \ {x0}, yn ∈ F (xn), dn ∈ D such that xn → x0 and

(5.6) lim
n→∞

yn − y0 + dn
‖xn − x0‖

= 0.
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As X is finite-dimensional, we can suppose that

(5.7) vn :=
xn − x0

‖xn − x0‖
→ v ∈ T (S, x0) \ {0}.

It turns out that yn + dn − y0 ∈ (F + D)(xn) − y0, so (5.6) and (5.7) imply that
0 ∈ Dc(F +D)(x0, y0)(v), which contradicts (B1).

Although the proof of the previous theorem is somewhat simple, it contains several
important results established elsewhere, the proofs of which are rather involved.

Theorem 5.5 improves the first part of Theorem 3.2 in Durea [11] in the following
senses: the convex cone D in [11] must be closed and pointed, and the final space Y
must be finite-dimensional. We do not require these conditions. Also, our conclusion
is sharper. Moreover, in [11] a special space Y with a special topology and an extended
notion of contingent derivative are considered.

For a real function h : X → R, the lower Hadamard derivative of h at x0 in the
direction v is

dh(x0)(v) = lim inf
(t,v′)→(0+,v)

t−1(h(x0 + tv′)− h(x0)).

It is not difficult to verify that

(5.8) Dc(h+ R+)(x0, h(x0))(v) ⊂ [dh(x0)(v),+∞),

since if u = limn t
−1
n (h(x0 + tnvn)+αn−h(x0)), with (tn, vn)→ (0+, v) and αn ∈ R+,

then dh(x0)(v) ≤ lim infn t−1
n (h(x0 + tnvn)− h(x0)) ≤ u.

Corollary 5.6. Let f = (f1, . . . , fp) : X → R
p and x0 ∈ S ⊂ X. If X is

finite-dimensional and

∀ v ∈ T (S, x0) \ {0} ∃i = 1, . . . , p such that dfi(x0)(v) > 0,

then x0 ∈ StrlRp
+
(f, S; 1).

Proof. One has
(5.9)

Dc(f + R
p
+)(x0, f(x0))(v) ⊂

p∏
i=1

Dc(fi + R+)(x0, fi(x0))(v) ⊂
p∏
i=1

[dfi(x0)(v),+∞).

Indeed, the second inclusion follows from (5.8). For the first one, take u = (u1, . . . , up)
∈ Dc(f+R

p
+)(x0, f(x0))(v), then t−1

n (f(x0 + tnvn)+dn−f(x0))→ u, with (tn, vn)→
(0+, v) and dn = (dn,1, . . . , dn,p) ∈ R

p
+. Hence, t−1

n (fi(x0 + tnvn)+dn,i−fi(x0))→ ui
∀ i = 1, . . . , p and consequently, ui ∈ Dc(fi + R+)(x0, fi(x0))(v).

If (B1) is false for F = f , then 0 ∈ Dc(f + R
p
+)(x0, f(x0))(v) for some v ∈

T (S, x0) \ {0}. In view of (5.9), we have a contradiction to the hypothesis. So (B1)
holds, and the conclusion follows by applying Theorem 5.5.

The conclusion of Corollary 5.6 is somewhat weaker than Corollary 3.1(ii) in [23],
but its proof is easier. Corollary 5.6 improves the conclusion of Theorem 2.2 in [8],
and if p = 1, it also improves the conclusions of Corollary 3.2 in [11] (which is the
constrained version of Theorem 2.1 in [30]) and Theorem 2.3(i) in [19].

In order to provide some conditions implying the validity of assumption (B), let
us give a preliminary result and some definitions.

Lemma 5.7. Let F : X → 2Y , (x0, y0) ∈ GrF , and v ∈ X \ {0}. Then

0 /∈ Dc(F +D)(x0, y0)(v) ⇐⇒ Dc(F +D)(x0, y0)(v) ∩ (−D) = ∅.
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Proof. (⇐) It is obvious.
(⇒) Assume that −d ∈ Dc(F +D)(x0, y0)(v)∩ (−D). Then there exist tn → 0+,

vn → v, dn ∈ D, and yn ∈ F (xn), with xn = x0 + tnvn such that yn+dn−y0
tn

→ −d.
Thus, yn+dn+tnd−y0

tn
→ 0. Since D is a convex cone, the previous limit says that

0 ∈ Dc(F +D)(x0, y0)(v), which is a contradiction.
We have required that v �= 0 in the preceding lemma because 0 ∈ Dc(F +

D)(x0, y0)(0).
Definition 5.8. (a) [1] A set-valued map F is said to be compactly approximable

at (x0, y0) ∈ GrF if, for each v ∈ X, there exist a set-valued map R from X into
the set of all nonempty compact subsets of Y , a neighborhood V of v, and a function
r : (0, 1)× V → (0,+∞) satisfying

(i) lim(t,u)→(0+,v) r(t, u) = 0,
(ii) ∀(t, u) ∈ (0, 1)× V , one has F (x0 + tu) ⊂ y0 + t(R(v) + r(t, u) clB(0, 1)).
(b) [7, Definition 7] A set-valued map F is said to be directionally compact at

(x0, y0) ∈ GrF in the direction v ∈ X if ∀ tn → 0+, ∀ vn → v, ∀un ∈ Y , with
y0 + tnun ∈ F (x0 + tnvn) ∀n, there exists a subsequence (unk

) converging to some
u ∈ Y .

If F is single-valued and Fréchet differentiable at x0, then F is directionally
compact at (x0, y0) in any direction v ∈ X .

In connection to Assumption (B), we have two sets of conditions:
Assumption (A).

(A1) DcF (x0, y0)(v) ∩ (−D) = ∅ ∀ v ∈ T (S, x0) \ {0}.
(A2) F is directionally compact at (x0, y0) in each direction v ∈ T (S, x0) \ {0}.
(A3) y0 ∈ StrD F (x0).

Assumption (S).
(S1) DcF (x0, y0)(v) ∩ (−D) = ∅ ∀ v ∈ T (S, x0) \ {0}.
(S2) DSF (x0, y0)(0) ∩ (−D) = {0}.
(S3) D has a compact base.
Theorem 5.9. The following assertions hold:
(a) Assumption (S) ⇒ assumption (B),
(b) Assumption (A) ⇒ assumption (B).

Consequently, if X is finite-dimensional, each of the assumptions (S) and (A) ensure
that (x0, y0) ∈ StrlD(F, S; 1).

Proof. (S)⇒ (B). According to Proposition 3.1 in Shi [34] (his result is still valid
without the pointedness of D), (S2) and (S3) imply the following condition:

(BC) Dc(F +D)(x0, y0)(v) = DcF (x0, y0)(v) +D ∀v ∈ X.

Now, let us prove that

(5.10) (S1) + (BC) ⇒ (B1).

Indeed, (S1) is equivalent to

[DcF (x0, y0)(v) +D] ∩ (−D) = ∅ ∀v ∈ T (S, x0) \ {0}

as can be easily checked. Using (BC), this is equivalent to

Dc(F +D)(x0, y0)(v) ∩ (−D) = ∅ ∀v ∈ T (S, x0) \ {0}

and by Lemma 5.7, it is equivalent to condition (B1).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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We need only to prove condition (B2). Assume that y0 /∈ StrD F (x0), then there
is y ∈ F (x0) such that y − y0 ∈ −D \ {0}. Choose the following sequences: tn = 1,
vn = 0, and yn = y ∈ F (x0 + tnvn) ∀n. Then vn → 0, tnvn → 0, and yn−y0

tn
→ y− y0,

so y − y0 ∈ DSF (x0, y0)(0) ∩ (−D), which contradicts (S2).
(A)⇒ (B). By Proposition 5 in [7], (A2) implies (BC). Now since (A1) = (S1),

from (5.10) we have (B1), and as (A) = (B2), the proof is completed.
Remark 5.10. (1) A condition which is more easy verifiable than (A2) is the

following:
(A2′) F is compactly approximable at (x0, y0).
More precisely, we have that (A2′) implies (A2). Indeed, choose sequences (tn),

(vn), and (un) satisfying Definition 5.8(b), and let yn = y0 + tnun. By assumption,
there exist sequences wn ∈ R(v), rn > 0, and bn ∈ clB(0, 1) such that

yn − y0
tn

= wn + rnbn and rn → 0+.

As R(v) is a compact set of Y , (wn) possesses a convergent subsequence wnk
→ w ∈ Y .

Hence,

unk
=
ynk
− y0
tnk

= wnk
+ rnk

bnk
→ w,

since rnk
bnk
→ 0.

(2) If F is compact at (x0, y0) ∈ GrF , y0 ∈ StrD F (x0), and DcF (x0, y0)(0) ∩
(−D) = {0}, then (S2) holds. This follows from Theorem 2.1 in Taa [37]. We require
y0 ∈ StrD F (x0) instead of y0 ∈ MinD F (x0) so that the proof of this author is valid
for a nonpointed cone D.

(3) Condition (BC) plays a crucial role in the proof of the theorem. We refer to
Bednarczuk and Song [7] for other conditions implying (BC).

By taking into account Lemma 5.2(iii), Theorem 5.9, under Assumption (S),
generalizes Theorem 4.1 in Taa [36] established for an unconstrained problem (S = X).

If f : X → Y is Hadamard differentiable at x0, i.e., for any v ∈ X there ex-
ists df(x0)(v) = limt→0+, v′→v t

−1(f(x0 + tu) − f(x0)), then Theorem 5.9, under
Assumption (A), collapses into the sufficient conditions of Theorem 4.1 in [24], be-
cause Dcf(x0, f(x0))(v) = {df(x0)(v)} and f is obviously compactly approximable at
(x0, f(x0)).

In order to obtain more verifiable conditions than (S2), we introduce the notion
of D-calmness for a set-valued map.

Definition 5.11. A set-valued map F : X → 2Y is said to be D-calm at
(x0, y0) ∈ GrF if there exist a neighborhood U of x0 and a constant L > 0 such
that

(5.11) F (x) ⊂ y0 +D + L‖x− x0‖ clB(0, 1) ∀x ∈ U.

If F is single-valued and D = {0}, this concept is the usual notion of calmness
[32, section F, Chapter 8] also named stable function (see, e.g., [25]).

Lemma 5.12. If D is closed and F is D-calm at (x0, y0) ∈ GrF , then

DSF (x0, y0)(0) ⊂ D.

Proof. Take u ∈ DSF (x0, y0)(0), then there exist sequences tn > 0, vn → 0,
and un → u such that tnvn → 0 and yn := y0 + tnun ∈ F (x0 + tnvn). Hence,
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yn−y0
tn

= un → u and for n large enough, xn := x0+tnvn ∈ U , where U satisfies (5.11).
Therefore, there exist dn ∈ D and bn ∈ clB(0, 1) such that yn = y0+dn+L‖xn−x0‖bn.
Consequently,

yn − y0
tn

=
dn
tn

+ L‖vn‖bn,

and as L‖vn‖bn → 0, we have that u = lim t−1
n dn ∈ D since D is a closed cone.

Corollary 5.13. Let F : X → 2Y and x0 ∈ S ⊂ X. Suppose that X is finite-
dimensional, D has a compact base and is pointed, and F is D-calm at (x0, y0) ∈ GrF .
If

DcF (x0, y0)(v) ∩ (−D) = ∅ ∀ v ∈ T (S, x0) \ {0},

then (x0, y0) ∈ StrlD(F, S; 1).
Proof. As D has a compact base, D is closed. By Lemma 5.12, we see that

DSF (x0, y0)(0) ⊂ D, and as D is pointed, we have that condition (S2) is satisfied.
Now the result follows from Theorem 5.9.

Corollary 5.13 is a generalization of Theorem 5.9 in [25] and Theorem 3.3 in [8],
which are valid for stable functions f : X → Y , but this class of functions is D-calm.

Now, we present a result that is very close to the converse of Theorem 5.5. To
that purpose, we recall that the cone of attainable directions to S at x0 ∈ clS is

A(S, x0) = {v ∈ X : ∀ tn → 0+, ∃ vn → v such that x0 + tnvn ∈ S ∀ n ∈ N}.

It is said that S is derivable at x0 ∈ S if T (S, x0) = A(S, x0). We also need a new
notion.

Definition 5.14. A set-valued map F : X → 2Y is said to be D-pseudo Lipschitz
at (x0, y0) ∈ GrF if there exist neighborhoods U of x0 and V of y0 and a constant
L > 0 such that

(5.12) F (x) ∩ V ⊂ F (x′) +D + L‖x− x′‖ clB(0, 1) ∀x, x′ ∈ U.

This notion is new in our knowledge and weaker than other similar ones, as the
following relations and example show:

(i) F Lipschitz ⇒ F pseudo Lipschitz ⇒ F D-pseudo Lipschitz.
(ii) F Lipschitz ⇒ F D-Lipschitz ⇒ F + D D-Lipschitz ⇒ F + D D-pseudo

Lipschitz ⇒ F D-pseudo Lipschitz.
Recall that F is pseudo Lipschitz if (5.12) holds with D = {0}, F is D-Lipschitz

[10] if (5.12) holds with V = Y , and F is Lipschitz if (5.12) holds with V = Y and
D = {0}.

Example 5.15. (a) Let f : R → R
2 be given by f(x) = (x, 3

√
x), x0 = 0,

y0 = (0, 0), and D = R+ × R. Then f is D-pseudo Lipschitz at (x0, y0), but f is not
pseudo Lipschitz at (x0, y0). To check the first assertion, it is enough to observe that
d(f(x), f(x′) + D) = max{x′ − x, 0} ≤ |x − x′|. For the second assertion, choose a
sequence tn → 0+, and let sn = tn/2. Then

wn :=
f(tn)− f(sn)

tn − sn
=

(
1,

1
3 3
√
c2n

)
,

for some cn ∈ (sn, tn), and therefore, for any L > 0, wn /∈ L clB(0, 1) for all n large
enough.
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(b) Let F : R→ 2R be given by

F (x) =
{
{0} if x �= 0,
{−1, 0} if x = 0,

x0 = 0, y0 = 0, and D = R+. Then F is D-pseudo Lipschitz at (x0, y0), but F +D is
not D-pseudo Lipschitz at (x0, y0) as can be verified.

There is no relationship between D-calmness and D-pseudo Lipschitzianity: the
set-valued map F of Example 5.15(b) is D-pseudo Lipschitz at (0, 0), but it is not
D-calm at (0, 0); F is D-calm at (0,−1), but it is not D-pseudo Lipschitz at (0,−1).
However, if f is a function, f D-pseudo Lipschitz at (x0, f(x0)) implies f is D-calm
at (x0, f(x0)).

Theorem 5.16. Let F : X → 2Y , x0 ∈ S ⊂ X, and (x0, y0) ∈ GrF . If F is
D-pseudo Lipschitz at (x0, y0) and (x0, y0) ∈ StrlD(F, S; 1), then

(5.13) DcF (x0, y0)(v) ∩ (−D) = ∅ ∀ v ∈ A(S, x0) \ {0}.

Proof. F is D-pseudo Lipschitz at (x0, y0) means that there exist neighborhoods
U of x0 and V of y0 and a constant L > 0 such that (5.12) holds. Assume that there
is u ∈ DcF (x0, y0)(v) ∩ (−D) for some v ∈ A(S, x0) \ {0}. Then there exist tn → 0+,
vn → v, and yn ∈ F (x0 + tnvn) such that un = yn−y0

tn
→ u. From here,

(5.14)
yn − y0 − tnu

tn
→ 0.

Let us observe that yn → y0 and putting xn = x0 + tnvn ∈ X , we have xn → x0.
As v ∈ A(S, x0), for the sequence (tn), there exists v′n → v such that x′n :=

x0 + tnv
′
n ∈ S. From these expressions, it results that

(5.15)
‖x′n − x0‖

tn
→ ‖v‖.

As yn ∈ F (xn)∩V , xn, x′n ∈ U for all n large enough, it follows from (5.12) that there
exist y′n ∈ F (x′n), dn ∈ D, bn ∈ clB(0, 1) such that yn = y′n + dn + Ltn‖vn − v′n‖bn.
Now,

tn
‖x′n − x0‖

· yn − y0 − tnu
tn

=
y′n + dn + Ltn‖vn − v′n‖bn − y0 − tnu

‖x′n − x0‖

=
y′n − y0 + dn − tnu
‖x′n − x0‖

+ L‖vn − v′n‖
tn

‖x′n − x0‖
bn.

From here, taking into account (5.14), (5.15), and that ‖vn− v′n‖ → 0, it follows that
y′n−y0+dn−tnu

‖x′
n−x0‖ → 0, with y′n ∈ F (x′n), dn − tnu ∈ D, x′n → x0, and x′n ∈ S and by

applying Proposition 3.4 with φ(t) = t, we conclude that (x0, y0) /∈ StrlD(F, S; 1),
which is a contradiction.

We present a characterization for strict minimizers of order one under very general
conditions.

Corollary 5.17. Let F : X → 2Y , x0 ∈ S ⊂ X, and (x0, y0) ∈ GrF . Assume
that D is pointed, X is finite-dimensional, F + D is D-pseudo Lipschitz at (x0, y0),
and S is derivable at x0. Then, (x0, y0) ∈ StrlD(F, S; 1) if and only if Assumption (B)
is satisfied.
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Proof. The “if” part is clear from Theorem 5.5. Let us see the “only if”
part. Condition (B2) is obvious from the definition of StrlD(F, S; 1). By hypoth-
esis (x0, y0) ∈ StrlD(F, S; 1) and by Proposition 3.3, (x0, y0) ∈ StrlD(F +D,S; 1). By
taking into account that A(S, x0) = T (S, x0), Theorem 5.16 applied to F +D instead
of F implies that

Dc(F +D)(x0, y0)(v) ∩ (−D) = ∅ ∀ v ∈ T (S, x0) \ {0}.

In view of Lemma 5.7, this last condition is equivalent to (B1).
To illustrate the above results, we give some examples.
Example 5.18. Let l2 be the Hilbert space of sequences of real numbers (ai) such

that a2
1 + a2

2 + · · · <∞, and let f : R→ l2 be defined by

f(x) =
{
|x|en if 2−n−1 < |x| ≤ 2−n, n = 1, 2, . . . ,
|x|e1 if |x| > 2−1 or x = 0,

with en = (0, . . . , 0, 1, 0, . . . ) ∈ l2 (where 1 stands on the nth place). Let D ⊂ l2 be
the cone of all sequences with nonnegative terms x0 = 0, y0 = f(x0) = 0, and S = R.
Then one can prove that Dc(f + D)(x0, y0)(v) = ∅ ∀v �= 0. So, by Theorem 5.5, it
follows that x0 ∈ StrlD(f, S; 1).

Example 5.19. (a) Theorem 5.5 is applicable even when the cone D is not pointed
(in this sense is better than [10, Theorem 3]). Let us consider the following data:
f : R → R

2 is given by f(x) = (|x|, 1/x) for x �= 0 and f(0) = (0, 0), S = R,
x0 = 0, y0 = (0, 0), and D = {(y1, y2) : y1 ≥ 0}. An easy calculation shows that
Dc(f +D)(x0, y0)(v) = (|v|, 0)+D ∀ v ∈ R. Hence, Assumption (B) is satisfied ((B2)
is always true for a function), and so x0 ∈ StrlD(f, S; 1). This conclusion can also be
obtained from Proposition 3.10 by choosing ψ(y1, y2) = y1. Proposition 3.10 asserts
that x0 ∈ StrD(f, S; 1), i.e., a global minimizer of order one, because x0 is a global
minimizer of order one of (ψ ◦ f)(x) = |x|. So, it is stronger than the conclusion
obtained from Theorem 5.5.

(b) Let us observe that if we take (Example 2 in [10]) f(x) = (x2, 1/x2) for x �= 0
and f(0) = (0, 0), and S, x0, y0, and D as above, then condition (B1) is not satisfied
for F = f +D, since F +D = F and Dc(f +D)(x0, y0)(v) = R+ × R ∀ v ∈ R. Since
f +D is D-pseudo Lipschitz at (x0, y0) (in fact, f is D-Lipschitz at x0) and (5.13) is
not satisfied, we conclude that (x0, y0) /∈ StrlD(f +D,S; 1) because of Theorem 5.16.

Moreover, using the linear functional ψ(y1, y2) = y1 and considering now F = f ,
we see that x0 /∈ Strl(ψ ◦ f, S; 1), and from Proposition 3.12 it follows that x0 /∈
StrlD(f, S; 1). But by applying Proposition 3.10, as x0 ∈ Str(ψ ◦ f, S; 2), we deduce
that x0 ∈ StrD(f, S; 2). In addition, as f is D-pseudo Lipschitz at (x0, y0), (5.13) is
satisfied since Dcf(x0, y0)(v) = ∅ ∀v ∈ R \ {0} and x0 /∈ StrlD(f, S; 1), we conclude
that the converse of Theorem 5.16 is not true. On the other hand, we also conclude
that we cannot remove the pointedness of D in Corollary 5.17.

Before establishing a sufficient condition when the initial space is not necessarily
finite-dimensional, we introduce one notion taken from [27].

The set-valued map F is said to be upper semidifferentiable at (x0, y0) ∈ GrF
[27] if for any sequence (xn, yn) ∈ GrF \{(x0, y0)} converging to (x0, y0), there exist a
subsequence (xnk

, ynk
) and a sequence tk → 0+ such that (xnk

−x0

tk
,
ynk

−y0
tk

)→ (v, u) ∈
X × Y , with (v, u) �= (0, 0).

The following theorem largely improves the second part of Theorem 2.1 in Luc
[27] in two features: firstly, Theorem 5.20 considers an arbitrary set S ⊂ X while
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Luc’s result is for S = X , and secondly, the conclusion of Theorem 5.20 provides
more information than that in Luc, which asserts only that (x0, y0) ∈ LMinD(F,X).

Theorem 5.20. Let F : X → 2Y , x0 ∈ S ⊂ X, (x0, y0) ∈ GrF , y0 ∈ StrD F (x0)
and assume that D is closed and F is compact at x0 and upper-semidifferentiable at
(x0, y0). If

DcF (x0, y0)(v) ∩ (−D) = ∅ ∀v ∈ T (S, x0) \ {0},(5.16)
DcF (x0, y0)(0) ∩ (−D) = {0},(5.17)

then (x0, y0) ∈ StrlD(F, S; 1).
Proof. Suppose that (x0, y0) /∈ StrlD(F, S; 1), then by Proposition 3.4, there exist

sequences xn ∈ S \ {x0}, yn ∈ F (xn), and dn ∈ D such that xn → x0 and

(5.18) lim
n→∞

yn − y0 + dn
‖xn − x0‖

= 0.

Since F is compact at x0, there is a subsequence (xnk
, ynk

)→ (x0, ȳ), with ȳ ∈ F (x0).
From (5.18), we deduce that limn→∞(yn − y0 + dn) = 0 because ‖xn − x0‖ → 0.
As limk→∞ ynk

= ȳ, we have ȳ − y0 = limk→∞(−dnk
) ∈ −D because D is closed.

Since y0 ∈ StrD F (x0) and ȳ ∈ F (x0), we deduce that ȳ = y0. Using the upper-
semidifferentiability of F , there is a sequence tk → 0+ such that

(
xnk
− x0

tk
,
ynk
− y0
tk

)
→ (v, u), with (v, u) �= (0, 0).

From here, v ∈ T (S, x0) and

(5.19)
‖xnk

− x0‖
tk

→ ‖v‖.

Using the equality

ynk
− y0 + dnk

tk
=
ynk
− y0 + dnk

‖xnk
− x0‖

· ‖xnk
− x0‖
tk

,

from (5.18) and (5.19) it follows that limk→∞ t−1
k (ynk

− y0 + dnk
) = 0. Therefore,

u = limk→∞ t−1
k (ynk

−y0) = limk→∞−t−1
k dnk

∈ −D. As u ∈ DcF (x0, y0)(v), we have
a contradiction to (5.16) if v �= 0. If v = 0, from (5.17) it follows that u = 0, and this
contradicts the condition (v, u) �= (0, 0).

Corollary 5.21. If X and Y are finite-dimensional, f : X → Y is continuous at
x0 ∈ S ⊂ X, D is closed, and (5.16)–(5.17) hold for F = f , then x0 ∈ StrlD(f, S; 1).

Proof. As X and Y are finite-dimensional, from Proposition 1.1 in [27] it follows
that f is upper-semidifferentiable at (x0, f(x0)). The continuity of f at x0 implies
that f is compact at (x0, f(x0)) and now the result follows from Theorem 5.20.

This corollary can be also deduced from Theorem 5.9 taking into account Re-
mark 5.10(2).
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Abstract. Immunotherapy is set as an asymptotic target control problem under mixed state-
control constraints with tumor dynamics given by a general ODE. Then a set-valued approach based
on Aubin viability theory is used to design feedback protocols with which density of cancer cells may
decrease to zero. Existence of such protocols involves a condition C on initial data; otherwise it is
shown that either cancer cells cannot be eliminated or condition C may be achieved at a certain
instant, in which case the above protocols can then be used. In order to illustrate the approach two
examples are studied.
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1. Introduction and statement of the problem. Nowadays, there is a grow-
ing recognition that mathematical modeling [10, 20, 21] can play a central role in can-
cer research. It can guide laboratory investigations and give scientists deeper insight
into how tumors develop and spread.

Immunotherapy, also referred to as biological therapy, stands for a treatment that
stimulates the body’s immune system to produce antibodies to fight cancer or lessen
the side effects associated with some cancer treatments. Mathematical models of such
a process abound in the literature and are submitted to continuous improvements; see,
for instance, [5, 7, 14, 15, 17, 18, 19] and the references therein. They give rise to
numerous studies which investigate immunotherapy control by using the well-known
methods of control theory.

For instance, in [4, 9] the authors state an adequate objective functional and
use Hamilton–Jacobi equations to derive a bang-bang optimal protocol. An ODE
system of five equations is considered in [5] as a model for tumor-immune interaction
and vaccine, then the immunotherapy control problem is set and solved in the Bolza
context. In [16] geometric methods of nonlinear control are applied to deal with a
mathematical model for antiangiogenic treatments.

Moreover, we refer to [8], which uses spreading control techniques [12] in order to
deal with the PDE model of [17] by seeking to expand the zones without tumor cells
to the entire tissue.

Alternatively to the approaches cited above, a set-valued method is applied in [13]
to show, in the particular case of the model established in [14], that feedback protocol
laws can be provided as selections of a parameter set-valued map. Unfortunately, the
method works only for the initial data that satisfy a condition, interpreted there as
the cancer is less developed at the beginning of the therapy.

The aim of this paper is to investigate a general class of immunotherapy ODE
models in the framework of the set-valued approach which was developed by [13].
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Furthermore, it addresses the issue of how initial data can condition existence of
protocols with which cancer cells may be eliminated.

Most of the ODE models of immunotherapy, encountered in the literature [5, 7,
13, 14, 19], can be expressed as the nonlinear control system

ẋ = f(x, τ) +G(x, τ)u,(1.1a)

τ̇ = τψ(x, τ),(1.1b)

where x .= (x1, . . . , xn)′, u = (u1, . . . , up)′, and f .= (f1, . . . , fn)′ for integers n, p with
p ≤ n. The xi’s denote densities of cell populations which compete with tumor cells.
Among them, an external source of p populations are infused in the cancerous tissue
with rates ui. Density of tumor cells is denoted by τ .

The operator G maps R
n
+ × R+ into L(Rp,Rn). Both functions fi and ψ map

R
n
+ × R+ into R and are continuous. The initial data are given by

(1.2)
xi(0) = x0

i for each i = 1, . . . , n,

τ(0) = τ0,

where all numbers x0
i and τ0 are positive.

In this context, a successful immunotherapy consists of finding a protocol uθ which
satisfies

uθ : [0,∞)→ K,(1.3a)

τθ decreases on [0,∞) ,(1.3b)

lim
t→∞ τθ(t) = 0,(1.3c)

where (xθ, τθ) denotes a solution to system (1.1) for control uθ and

K
.=

p∏
i=1

[0, umax
i ]

for positive numbers umax
i .

Condition (1.3a) allows one to keep the toxicity to the normal tissue acceptable
and (1.3c) expresses that cancer cells are destroyed at a terminal time, while (1.3b)
may be optional and aims at reducing undesirable effects on the patient.

Throughout this paper, the Euclidean norm is denoted ‖‖, and 〈, 〉 is the usual
inner product. For a vector z we denote by zi its ith component. Let T be a linear
operator, and we denote its adjoint operator by T � and its norm by ‖T ‖. Furthermore
we consider the notation

∇xψ .=
(
∂ψ

∂x1
, . . . ,

∂ψ

∂xn

)′
,

such that for each (x, τ) and (y, ξ) in R
n
+ × R+ we have

ψ̇(x, τ)(y, ξ) = 〈∇xψ(x, τ), y〉 + ξ
∂ψ

∂τ
(x, τ).
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Given a set-valued map Q : D → 2R
m

and an integer m, the mapping s : D → R
m

is called a selection of Q if s(p) ∈ Q(p) for each p. The minimal selection of the map
Q is given by

s�(p) = πQ(p)(0) for all p ∈ D.

Here π stands for the operator of best approximation.
The layout of this paper is as follows: In the next section we give some background

on viability theory along with some facts from set-valued analysis, and an exposition
of the main elements of our approach is provided in section 3. In section 4 we prove
some topological properties of the feedback map. In section 5 we focus on protocol
laws, and section 6 contains the main results on immunotherapy control. Finally in
section 7 two models of immunotherapy are studied in order to illustrate the results
established.

2. Definitions and preliminary results. Let D denote a subset of the Eu-
clidean space R

k with k ≥ 1. The contingent cone [6] at p ∈ D is defined by

TD(p) .=
{
q ∈ R

k | lim inf
h↓0

d(p+ hq,D)
h

= 0
}
,

where

d(r,D) .= inf
q∈D
‖q − r‖ for each r ∈ R

k.

We need to recall the following facts we will use throughout the paper.
1. If a subset D is closed and convex, then it is a sleek subset. The latter property

consists of that the map TD : D → 2R
k

is lower semicontinuous (in short, lsc), i.e.,
for each p ∈ D and any sequence (pn)n ⊂ D which converges to p, then for each
q ∈ TD(p) there exists a sequence qn ∈ TD(pn) that converges to q.

2. The result below is due to [2, section 11.2.5].
Lemma 2.1. Let L ⊂ R

l and M ⊂ R
m (for integers l,m) be two closed sleek

subsets and let ϕ : R
l → R

m be a continuously differentiable mapping. If p ∈ L ∩
ϕ−1(M) satisfies the transversality condition

(2.1) ϕ̇(p)TL(p)− TM (ϕ(p)) = R
m,

then

(2.2) TL∩ϕ−1(M)(p) = TL(p) ∩ ϕ̇(p)−1TM (ϕ(p)).

3. Let ϕ : R
k → R

k. Then D is said to be locally viable under the system

(2.3)
ξ̇ = ϕ(ξ),

ξ(0) = ξ0

if for all ξ0 ∈ D there exist t̄ > 0 and a solution to system (2.3), ξ̄(·) on [0, t̄) which
is viable in D (i.e., satisfies ξ̄(t) ∈ D for all t). Such a property can be characterized
in terms of contingent subsets.

Lemma 2.2 (see [1]). Assume that ϕ is continuous on the closed subset D. Then
D is locally viable under system (2.3) if and only if

(2.4) ϕ(ξ) ∈ TD(ξ) for each ξ ∈ D.
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4. Next, given the control system

(2.5)
ξ̇ = ϕ(ξ) +B(ξ)w,

w ∈ W (ξ),

where w takes values in R
m and denotes the control, B : R

k → L(Rm,Rk), and W (·)
stands for the set-valued map of constraints, define the feedback map

(2.6) F(p) .= {w ∈ W (p) | ϕ(p) +B(p)w ∈ TD(p)} .

Assume that ϕ and B(·) are continuous on D; then any continuous selection of the
feedback map F provides a control law that leads to a viable solution to system (2.5)
in D. This is so for the minimal selection whenever it is continuous. Otherwise we
can use [2, Theorem 4.3.2] as follows.

Lemma 2.3. Assume that the feedback map F(·) is lsc with nonempty closed
convex values. Then system (2.5) with feedback control w = πF(ξ)(0) has a locally
viable solution in D.

5. Let F be a set-valued map from R
k to R

k. Then consider the differential
inclusion

(2.7)

∣∣∣∣∣ ż ∈ F (z),
z(0) = z0.

Definition 2.4 (see [2]). The capture basin of D under F is denoted by
captF (D) and stands for the set of all initial states z0 ∈ R

k such that subset D
is reached by one solution to differential inclusion (2.7).

3. A set-valued approach. In a ready manner we verify that condition (1.3b)
can be written as ψ(x(t), τ(t)) ≤ 0 for each t ∈ [0,∞). Thereby it reduces to the
viability of the subset

D0
.=
{
(x, τ) ∈ R

n
+ × R+ | ψ(x, τ) ≤ 0

}
.

Being inspired by the theory of Lyapunov functions as studied in [1, section 9.2], we
introduce the family of subsets

(3.1) Dν
.=
{
(x, τ) ∈ R

n
+ × R+ | ψ(x, τ) ≤ −ν

}
for each ν ≥ 0.

Now, let ν > 0 and suppose that protocol uθ : [0,∞)→ K leads to a solution (xθ, τθ)
which is globally viable in Dν ; then uθ solves Problem (1.3). Indeed, it is obvious
that uθ and τθ satisfy (1.3a) and (1.3b), respectively. As for (1.3c), thanks to (1.1b)
we have

τθ(t) = τθ(0) exp
(∫ t

0

ψ(xθ(s), τθ(s))ds
)

for each t ≥ 0,

which yields the estimate

(3.2) 0 ≤ τθ(t) ≤ τ0 exp(−νt) for each t ≥ 0.

Remark 3.1. We notice that the parameter ν in formula (3.2) can be interpreted
as the average speed of the therapy. The greater it is, the smaller the therapy horizon.
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Definition 3.2. The mapping σ : Dν → K is said to be an immunotherapy
protocol law (in short, itp law) if the feedback control u = σ(x, τ) is a solution to
problem (1.3) for all (x0, τ0) ∈ Dν .

According to (2.6) the feedback map can be given for each ν > 0 by

(3.3) Fν(x, τ) .= {u ∈ K | (f(x, τ) +G(x, τ)u, τψ(x, τ))′ ∈ TDν (x, τ)}

for each (x, τ) ∈ Dν .
Thus, thanks to Lemma 2.2, itp laws can be provided by selections σ of the map

Fν(·) for which system (1.1) with u = σ(x, τ) has a globally viable solution in Dν .
Next we proceed to express the contingent cone TDν (·). First of all, by considering

(3.1) we get Dν = L ∩ ψ−1(Mν), where

L
.= R

n
+ × R+ and Mν

.= (−∞,−ν].

Since L andMν are closed and convex, they are sleek subsets as required by Lemma 2.1,
and their contingent cones are given by

(y, ξ) ∈ TL(x, τ) ⇐⇒
∣∣∣∣∣ yi ≥ 0 if xi = 0 for i = 1, . . . , n,
ξ ≥ 0 if τ = 0

and

z ∈ TMν (m)⇐⇒ z ≤ 0 if m = −ν

for all (x, τ) ∈ L and m ∈ Mν. Moreover, we can easily see that the transversality
condition in Lemma 2.1 is satisfied whenever the following conditions hold:

(3.4a) ψ is of class C1 on Dν ,

and

(3.4b)

∣∣∣∣∣∣∣∣∣

for all (x, τ) ∈ Dν there exists

j ∈ {1, . . . , n+ 1} such that
∂ψ

∂ζj
(x, τ) < 0,

where ζ = (x, τ).

Lemma 3.3. Let ν > 0 and suppose that condition (3.4) is satisfied. Then for
each (x, τ) ∈ Dν we have

(3.5) (y, ξ) ∈ TDν (x, τ)⇐⇒

∣∣∣∣∣∣∣∣
yi ≥ 0 if xi = 0 for i = 1, . . . , n,
ξ ≥ 0 if τ = 0 and

〈∇xψ(x, τ), y〉 + ξ
∂ψ

∂τ
(x, τ) ≤ 0 if ψ(x, τ) = −ν.

4. The feedback map. This section involves the main results we need in order
to carry out our approach. First of all, we seek to determine a useful expression of
the feedback map Fν(·) given by (3.3). Define the functions

h(x, τ) .= −G�(x, τ)∇xψ(x, τ),(4.1a)

�(x, τ) .= 〈∇xψ(x, τ), f(x, τ)〉 + τψ(x, τ)
∂ψ

∂τ
(x, τ)(4.1b)
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and the map

(4.1c) C(x, τ) .= {u ∈ K | 〈h(x, τ), u〉 ≥ �(x, τ)}

for each (x, τ) ∈ R
n
+ × R+. In addition we consider the assumption

(4.2)

∣∣∣∣∣ x = (x1, . . . , xn)′

xi = 0 and τ ≥ 0
⇒ fi(x, τ) + (G(x, τ)u)i ≥ 0 for all u ∈ K

for all i = 1, . . . , n.
Proposition 4.1. Let ν > 0 be such that (3.4) and (4.2) hold true. Then for

each (x, τ) ∈ Dν we have

(4.3) Fν(x, τ) =

∣∣∣∣∣ K if ψ(x, τ) < −ν,
C(x, τ) if ψ(x, τ) = −ν.

Proof. First, by (4.1) we remark that

ψ̇(x, τ)(f(x, τ) +G(x, τ)u, τψ(x, τ))′ = −〈h(x, τ), u〉 + �(x, τ).

By (3.3) and Lemma 3.3 we get

u ∈ Fν(x, τ)⇐⇒

∣∣∣∣∣∣∣
fi(x, τ) + (G(x, τ)u)i ≥ 0 if xi = 0 for i = 1, . . . , n,
τψ(x, τ) ≥ 0 if τ = 0,
−〈h(x, τ), u〉+ �(x, τ) ≤ 0 if ψ(x, τ) = −ν.

Thanks to (4.2), it follows that

u ∈ Fν(x, τ)⇐⇒ 〈h(x, τ), u〉 ≥ �(x, τ) if ψ(x, τ) = −ν,

ending the proof of the proposition.
Subsequently, let us consider the assumption

(4.4)

∣∣∣∣∣ for each (x, τ) ∈ Dν there exists
u ∈ K such that 〈h(x, τ), u〉 > �(x, τ),

where the functions h and � are given by (4.1).
Lemma 4.2. The map C(·) given by (4.1c) is lsc on Dν whenever condition (4.4)

is satisfied.
Proof. We rewrite the map C in the context of [3, Proposition 1.5.2]. We get

C(x, τ) = {u ∈ F̄ (x, τ) |f̄(x, τ, u) ∈ Ḡ(x, τ)},

where, for each (x, τ) ∈ Dν , we have

F̄ (x, τ) .= K, f̄(x, τ, u) .= 〈h(x, τ), u〉, and Ḡ(x, τ) .= [�(x, τ),∞).

Thereafter, we easily check the hypotheses of the cited proposition as follows:
(i) The map F̄ is lsc with convex values.
(ii) f̄ is continuous.
(iii) For all (x, τ) ∈ Dν , the mapping u→ f̄(x, τ, u) is affine.
(iv) For all (x, τ), Ḡ(x, τ) is convex and its interior is nonempty.
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(v) The graph of the map (x, τ) ∈ Dν → int(Ḡ(x, τ)) is open.
(vi) For all (x, τ) ∈ Dν , there exists u ∈ F̄ (x, τ) such that f̄(x, τ, u) ∈ int

(Ḡ(x, τ)).
Note that (vi) is due to condition (4.4), whence the map C is lsc.

Lemma 4.3. Let ν > 0 be such that condition (4.4) holds true. Then the minimal
selection of the map C is continuous on Dν .

Proof. By Lemma 4.2 the map C is lsc. Then we can use [11, Theorem 4.1] by
verifying that the subset

Kε
.= {(x, τ) ∈ Dν | ∃u ∈ C(x, τ) s.t. ‖u‖ ≤ ε}

is closed in Dν for all ε > 0. Indeed, let ((xn, τn))n be a sequence in Kε which
converges to (x̄, τ̄ ). Then there exists a sequence (un)n ⊂ K such that

(4.5) ‖un‖ ≤ ε and 〈h(xn, τn), un〉 ≥ �(xn, τn) for all n.

Now, as (un)n is bounded it has a subsequence (uk)k which converges to ū. Then by
noting that h and � are continuous and letting k →∞ in (4.5), we get

‖ū‖ ≤ ε and 〈h(x̄, τ̄), ū〉 ≥ �(x̄, τ̄ ).

This implies that (x̄, τ̄ ) ∈ Kε and therefore Kε is closed.
Lemma 4.4. Let ν > 0 and suppose that condition (4.4) holds true. Then the

map Fν(·) as given by (4.3) is lsc on Dν .
Proof. Let (xn, τn)n be a sequence of Dν that converges to (x, τ) ∈ Dν and

u ∈ Fν(x, τ). We have to seek a sequence (un)n that satisfies

(4.6)

∣∣∣∣∣ un ∈ Fν(xn, τn) for each n,
and un → u.

Assume that ψ(x, τ) < −ν. Since the function ψ is continuous and (xn, τn)→ (x, τ)
we can consider the smallest number n0 such that

ψ(xn, τn) < −ν for all n ≥ n0.

Then the sequence defined by

un
.=

∣∣∣∣∣ u if n ≥ n0,

vn if n < n0,

where

vn ∈ C(xn, τn) for all n < n0,

merely satisfies (4.6) due to the fact that ψ(xn, τn) = −ν whenever n < n0.
Now suppose that ψ(x, τ) = −ν; then u ∈ C(x, τ). By Lemma 4.2 the map C(·)

is lsc as condition (4.4) holds true. It follows that there exists a sequence (un)n such
that un ∈ C(xn, τn) for each n and un → u. Thanks to (4.3) we get un ∈ Fν(xn, τn)
for all n, as required in (4.6).
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5. Immunotherapy protocol laws. This section is entirely dedicated to itp
laws. We know from section 3 that these laws can be provided as selections of the
feedback map Fν(·), which lead to global solutions to the system. For that end, we
consider the linear growth assumption on Dν ,

(5.1) ‖f(x, τ)‖ ≤ m1(τ)(‖x‖ + 1) and ‖G(x, τ)‖ ≤ m2(τ),

where m1 and m2 denote positive functions that map bounded subsets into bounded
images.

Lemma 5.1. Assume that (5.1) holds and let σ : Dν → K be such that feedback
control u = σ(x, τ) leads to a locally viable solution (x̄, τ̄) to system (1.1) for all
(x0, τ0) ∈ Dν . Then that solution is global for all (x0, τ0) ∈ Dν .

Proof. Let (x̄, τ̄) be defined over a maximal interval [0, t1). We have to show that
t1 =∞. Indeed, assume that t1 <∞. As the nonnegative function τ̄ is decreasing on
[0, t1) it follows that τ̄ (t) ≤ τ0 for all t ∈ [0, t1). Then there exists m̄ > 0 such that

m1(τ(t)) ≤ m̄ and m2(τ(t)) ≤ m̄ on [0, t̄) .

It follows that the right-hand side of (1.1a) satisfies the estimate

‖f(x, τ) +G(x, τ)σ(x, τ)‖ ≤ m̄
(
‖x‖+ sup

0≤i≤p
(umax
i ) + 1

)
,

which yields a linear growth for (1.1a). This implies that

x̄(t)→ x1 when t→ t1.

As τ̄(·) is a nonnegative decreasing function, we have

τ̄ (t)→ τ1 when t→ t1.

Therefore

(x̄(t), τ̄ (t))→ (x1, τ1) when t→ t1,

and (x1, τ1) ∈ Dν because Dν is closed. Now, by considering (x1, τ1) as an initial
data, it follows that system (1.1) admits a viable solution in Dν , which starts from
(x1, τ1) at time t1, contradicting the fact that the interval [0, t1) is maximal.

For all ν > 0, the minimal selection of the map Fν(·) of (4.3) is given for all
(x, τ) ∈ Dν by

(5.2) s�ν(x, τ)
.=

∣∣∣∣∣ 0 if ψ(x, τ) < −ν,
πC(x,τ)(0) if ψ(x, τ) = −ν.

Although s�ν is not continuous, we will see next that it can provide an itp law.
Theorem 5.2. Let ν > 0 and assume both conditions (4.4) and (5.1). Then s�ν

given by (5.2) stands for an itp law.
Proof. Lemma 4.4 implies that Fν(·) is lsc. Since it has closed convex values, we

can use Lemma 2.3. Thus, by using feedback control u = s�ν(x, τ), system (1.1) has
a local solution which is viable in Dν . Now, by virtue of Lemma 5.1, s�ν(·) is an itp
law.

We now establish a result on continuous itp laws.
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Theorem 5.3. Assume that conditions (4.4) and (5.1) are satisfied. Let σ be a
continuous selection of the map C and let ζ : R

+ → [0, 1] be continuous such that
ζ(0) = 1. Then a continuous itp law can be given by

(5.3) sν(x, τ)
.= ζ(−ψ(x, τ) − ν)σ(x, τ) for each (x, τ) ∈ Dν .

Proof. We notice first that sν is continuous as being the composite of continuous
functions. Since 0 ≤ ζ(−ψ(x, τ) − ν) ≤ 1 for all (x, τ) ∈ Dν , then sν(x, τ) ∈ K if
ψ(x, τ) < −ν. Otherwise we get sν(x, τ) = σ(x, τ) ∈ C(x, τ), whence sν is a selection
of the map Fν(·). Now we use Lemma 5.1 to conclude that sν is an itp law.

Remark 5.4. As an application of Theorem 5.3, let ζ(z) = e−μz for some positive
parameter μ and let σ stand for the minimal selection of the map C (continuous
thanks to Lemma 4.3). Then we get an important family of continuous itp laws on
Dν as follows:

(5.4) σν(x, τ)
.= eμ(ψ(x,τ)+ν)πC(x,τ)(0) for each (x, τ) ∈ Dν .

We emphasize that these laws are slightly higher than the minimal itp law s�ν given
by (5.2). This is due to the exponential decay in formula (5.4).

6. Immunotherapy control. In this section we examine the implications of
our set-valued approach on the treatment of the immunotherapy control problem
(1.3a)–(1.3c). First of all, we define the set-valued map

(6.1a) F (x, τ) .= {(f(x, τ) +G(x, τ)u, τψ(x, τ))′ | u ∈ K}

for all (x, τ) ∈ R
n
+×R+. Therefore solutions to system (1.1) are also given as solutions

to the differential inclusion

(6.1b)

∣∣∣∣∣ (ẋ, τ̇) ∈ F (x, τ),
x(0) = x0, τ(0) = τ0,

and vice versa. Then we let

(6.2) Σ .= Ω+ ∩ captF (Ω−),

where the subset captF (·) stands for the capture basin as provided by Definition 2.4,
and the subsets Ω− and Ω+ are given by

(6.3a) Ω−
.=
{
(x, τ) ∈ R

n
+ × R+ | ψ(x, τ) < 0

}
and

(6.3b) Ω+
.=
{
(x, τ) ∈ R

n
+ × R+ | ψ(x, τ) ≥ 0

}
.

Then we can state the following result.
Theorem 6.1. Consider system (1.1) with initial data (x0, τ0), and let ν0

.=
−ψ(x0, τ0). Then either of the following situations may hold:

(i) (x0, τ0) ∈ Ω−: in this case s�ν0(·) and sν0(·) as given by (5.2) and (5.3),
respectively, are itp laws whenever conditions (4.4) and (5.1) hold true for ν0.

(ii) (x0, τ0) ∈ Σ: if condition (4.4) is satisfied on D0, then a protocol which
satisfies (1.3a) and (1.3c) exists, and it is given by an itp law after an instant tim.
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(iii) (x0, τ0) ∈ Ω+ \ Σ: then there is no protocol which solves problem (1.3a)–
(1.3c).

Proof. (i) We are in a position to apply Theorems 5.2 and 5.3, respectively.
(ii) Since (x0, τ0) ∈ captF (Ω−) then there exists a solution (x̄, τ̄) to differential

inclusion (6.1b), which satisfies

(x̄(tim), τ̄ (tim)) ∈ Ω− at an instant tim.

Let ū : [0,∞) → K be a control which leads to such a solution in accord with (6.1).
Let xim

.= x̄(tim) and τim
.= τ̄ (tim). Then as (xim, τim) ∈ Ω− one can use (i) to get

an itp law for (xim, τim) as initial data, say sim : Dνm → K, with νm
.= −ψ(xim, τim).

Subsequently, a control that solves problem (1.3a)–(1.3c) can be given by

(6.4)

∣∣∣∣∣ ū(t) if 0 ≤ t < tim,

sim(x(t), τ(t)) if t ≥ tim.

(iii) For such initial data (x0, τ0) all solutions (x̄, τ̄ ) to differential inclusion (6.1b)
are viable in subset Ω+, that is to say,

(6.5) ψ(x̄(t), τ̄ (t)) ≥ 0 for all t ≥ 0.

As a result, any control u taking values in K will lead to such a solution. Now by
using (1.1b) and (6.5) we get

τ̄ (t) ≥ τ0 for each t ≥ 0;

therefore τ̄(t) �→ 0 when t→∞.
Next, we show how protocol ū and instant tim, which are involved by the proof

of Theorem 6.1 (ii), can be determined. For each α > 0, let us define the set-valued
map

(6.6) Cα(x, τ) .= {v ∈ K | 〈h(x, τ), v〉 − �(x, τ) ≥ α}

for all (x, τ) ∈ R
n
+ × R+, where h and � are as in (4.1a) and (4.1b).

Proposition 6.2. Let (x0, τ0) ∈ Ω+ and assume the statements below:
(i) σ is a continuous selection of the map Cα(·) given by (6.6) for some α > 0.
(ii) System (1.1) with feedback control u = σ(x, τ) admits a solution on an

interval [0, tim], where tim satisfies

(6.7) tim >
ψ(x0, τ0)

α
.

Then the protocol given by u .= σ(x, τ) steers system (1.1) from (x0, τ0) to Ω− at time
tim, that is, (x0, τ0) ∈ Σ.

Proof. Let (x̄, τ̄) denote the solution which is provided by (ii). Then we get

ψ(x̄(tim), τ̄(tim)) = ψ(x0, τ0)+
∫ tim

0

[
〈∇xψ(x̄(s), τ̄ (s)), ˙̄x(s)〉 + ˙̄τ(s)

∂ψ

∂τ
(x̄(s), τ̄ (s))

]
ds.

Next, by putting ū .= σ(x̄, τ̄), we use formulas (4.1a) and (4.1b) to get

ψ(x̄(tim), τ̄ (tim)) = ψ(x0, τ0)−
∫ tim

0

[〈h(x̄(s), τ̄ (s)), ū(s)〉 − �(x̄(s), τ̄ (s))] ds.
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Since σ is a selection of the map Cα(·) then (6.6) yields

ψ(x̄(tim), τ̄ (tim)) ≤ ψ(x0, τ0)− αtim.

Thanks to (6.7) it follows that ψ(x̄(tim), τ̄ (tim)) < 0.
Remark 6.3. We can adapt Lemmas 4.3 and 4.2 to get similar results relative to

the map Cα(·). We need to replace condition (4.4) by∣∣∣∣∣ For all (x, τ) ∈ R
n
+ × R+ there exists

u ∈ K such that 〈h(x, τ), u〉 − �(x, τ) > α,

and then use α+ � instead of �.
Ultimately, as a noteworthy fact in cancer modeling, the results above show that

any one of the three instances below may arise for a patient having a cancer at the
stage (x0, τ0) (see Figure 6.1):

(A) (x0, τ0) ∈ Ω−: This means that the tumor is less developed with respect to
the immune system. It can be cured with an itp law as derived from Theorem 6.1 (i).
The notable advantage is that tumor cells will decrease during the therapy, in keeping
with the patient’s quality of life. Moreover, one may either use the minimal itp law
(5.2) in order to reduce the amounts of the administered cells or else be interested in
the continuous protocols provided in Remark 5.4 whenever smoothness is required to
avoid undesirable effects.

(B) (x0, τ0) ∈ Σ: The cancer is more developed. The protocol law σ given by
Proposition 6.2 will bring the cancer to a better stage (x1, τ1) ∈ Ω− at an instant tim.
This hereby allows one to use an itp law after tim, as in instance (A). Note that a
sudden change in the variation of tumor cells may occur within horizon tim, as their
density is not necessarily decreasing.

(C) (x0, τ0) ∈ Ω+ \Σ: The cancer is so advanced that it is not curable, as shown
by Theorem 6.1 (iii).

Fig. 6.1. In gray: plot of the zone Ω+ which corresponds to immunotherapy model (7.1),
described by both cases (B) and (C) above. The complimentary zone provides instance (A).
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7. Examples. We begin by investigating the model of [14], which is given by

ẏ = cτ − μ2y +
p1yz

g1 + z
+ s1u1,(7.1a)

ż =
p3yτ

g3 + τ
− μ3z + s2u2,(7.1b)

τ̇ = r2τ(1 − bτ)−
ayτ

g2 + τ
,(7.1c)

with normalized initial conditions

(7.1d) y(0) = 1, z(0) = 1, τ(0) = 1,

where y(·) stands for density of the activated immune system cells, or effector cells
(ECs). Concentration of Interleukin-2 (IL-2) is denoted by z(·) and tumor cells (TCs)
by τ(·). All parameters are positive constants; see [14] for their values and units.

In the first differential equation the parameter c models the antigenicity of the
tumor, the second term represents the natural death of the effector cells at the rate
of μ2, the third term is of Michaelis–Menton form to indicate the saturated effects
of the immune response whereby effector cells are stimulated by IL-2, and the final
term involves the strength of the treatment s1 and the control u1(·) that represent an
external source of ECs.

The second equation gives the rate of change for the concentration of IL-2, the
IL-2 source is modeled by another Michaelis–Menton term in which the TCs stimulate
the interaction with the ECs to produce more IL-2, the second term represents the
loss of these cells at the rate of μ3, and the last term involves both the strength of
the treatment s2 and the supply rate of IL-2, u2(·).

The third equation includes a logistic term in order to model the rate of change
of TCs. The loss of tumor cells is represented by a Michaelis–Menton term to indicate
the limited interaction between the tumor and ECs.

We then see that model (7.1) is involved in our approach by taking n = p = 2,
and the functions f , ψ, and G in system (1.1) are given by

f(x, τ) .=
(
cτ − μ2y +

p1yz

g1 + z
,
p3yτ

g3 + τ
− μ3z

)′

and

ψ(x, τ) .= r2(1 − bτ)−
ay

g2 + τ
, G(x, τ) .= diag (s1, s2)

for all (x, τ) ∈ R
2
+ × R+ and x = (y, z)′. We have

∇xψ(x, τ) =
(
− a

g2 + τ
, 0
)′
,

∂ψ

∂τ
(x, τ) = −r2b+

ay

(g2 + τ)2

for each (x, τ) ∈ R
2
+ × R+. It follows that condition (3.4b), which is needed in

Lemma 3.3, is satisfied because

∂ψ

∂y
(x, τ) = − a

g2 + τ
< 0.
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The functions h and � of formulas (4.1) are given by

h(x, τ) .=
(

s1a

g2 + τ
, 0
)′

and

�(x, τ) .= − a

g2 + τ

(
cτ − μ2y +

p1yz

g1 + z

)

+ τ

(
r2(1− bτ)−

ay

g2 + τ

)(
−r2b+

ay

(g2 + τ)2

)
.

Then the map C of (4.1c) can be expressed by

C(x, τ) .=
{
u ∈ [0, u1

max] | uh(x, τ) ≥ �(x, τ)
}
×
[
0, u2

max

]
,

and thereby the minimal selection of Fν(·) is as follows:

s�ν(x, τ)
.=

∣∣∣∣∣ (0, 0)′ if ψ(x, τ) < −ν,
(�(x, τ), 0)′ if ψ(x, τ) = −ν,

where

�(x, τ) .= max
(
− 1
s1

(
cτ − μ2y +

p1yz

g1 + z

)
− ντ

s1a

(
−r2b(g2 + τ) +

ay

(g2 + τ)

)
, 0
)
.

As a result, the map Fν(·) admits a continuous selection given by

sν(x, τ)
.=
(

min
(

(g2 + τ) exp(ψ(x, τ) + ν)max(�(x, τ), 0)
s1a

, umax
1

)
, 0
)′
.

As for condition (5.1), it is also satisfied by taking

m1(τ)
.= max(p1 + p3 + μ2, μ3, cτ) and m2(τ)

.= max(s1, s2).

It follows that the conditions of Theorem 6.1 hold true whenever (x0, τ0) ∈ Dν .
We now turn to examine the family of immunotherapy models studied in [7]:

ẋ = β(τ)x − μ(τ)x + σq(τ) + u(t),(7.2a)

τ̇ = τ(g(τ) − φ(τ)x),(7.2b)

where x(·) and τ(·), respectively, stand for the densities of ECs and TCs, and g(τ)
summarizes many widely used models of tumor growth rates, such as the Stepanova
model ∣∣∣∣∣ g(τ)

.= α > 0, φ(τ) .= 1, β(τ) .= β1τ,

q(τ) .= 1 and μ(τ) .= μ0 + μ2τ
2.

As regards the de Vladar–Gonzalez model, it is similar except that

g(τ) .= α log(K/τ).
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The Kuznetsor model consists of taking∣∣∣∣∣ g(τ)
.= α(1 − τ/K), φ(τ) .= 1, β(τ) .= β∞τ/(m+ τ),

μ(τ) .= μ(0) + μ1τ, and q(τ) .= 1,

We can easily see that system (7.2) represents a particular case of (1.1) where the
functions f , ψ, and G are given as

f(x, τ) .= β(τ)x − μ(τ)x + σq(τ), G(x, τ) .= 1,

and

ψ(x, τ) .= g(τ)− φ(τ)x

for all (x, τ) ∈ R+×R+. Thereby we can apply our set-valued approach by proceeding
as in the preceding example. The partial derivatives of ψ are given by

∂ψ

∂x
(x, τ) = −φ(τ)

and
∂ψ

∂τ
(x, τ) = ġ(τ) − φ̇(τ)x.

We can see that conditions (4.2) and (3.4b) are satisfied. Consequently we get

�(x, τ) .= −φ(τ)(β(τ)x − μ(τ)x + σq(τ)) + τ(ġ(τ) − φ̇(τ)x)(g(τ) − φ(τ)x)

and

h(x, τ) .= φ(τ).

Then the map C of (4.1c) is given by

C(x, τ) .= {u ∈ [0, umax] | uφ(τ) ≥ �(x, τ)} .
Therefore the minimal itp law can be expressed by

s�ν(x, τ)
.=

∣∣∣∣∣ 0 if ψ(x, τ) < −ν,
�(x, τ) if ψ(x, τ) = −ν,

where

�(x, τ) .= min
(

max
(
�(x, τ)
φ(τ)

, 0
)
, umax

)
.

We can use Theorem 5.3 to get the continuous itp law

(7.3) sν(x, τ)
.= exp(ψ(x, τ) + ν)�(x, τ).

In addition, we notice that condition (5.1) is also fulfilled. In Figures 7.1, 7.2, and 7.3
we summarize numerical results of the Kuznetsov model that represents a particular
case of system (7.2) in which∣∣∣∣∣ g(τ) = 1.636(1− τ/100), β(τ) = 1.131τ/(20.19 + τ),

μ(τ) = 0.347 + 0.0311τ, q(τ) = 1, and σ = 0.6,

with the initial cells densities given by

x0 = 1 and τ0 = 70,

where the function ψ takes the negative value −0.5092. We use the law s0.5092 given
by (7.3).
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Fig. 7.1. Dose of infused ECs.
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Fig. 7.2. Density of ECs.
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Fig. 7.3. Density of TCs.
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A NECESSARY CONDITION FOR DYNAMIC EQUIVALENCE∗

JEAN-BAPTISTE POMET†

Abstract. If two control systems on manifolds of the same dimension are dynamic equivalent,
we prove that either they are static equivalent, i.e., equivalent via a classical diffeomorphism, or they
are both ruled; for systems of different dimensions, the one of higher dimension must be ruled. A
ruled system is one whose equations define at each point in the state manifold a ruled submanifold
of the tangent space. Dynamic equivalence is also known as equivalence by endogenous dynamic
feedback or by a Lie–Bäcklund transformation when control systems are viewed as underdetermined
systems of ordinary differential equations; it is very close to absolute equivalence for Pfaffian systems.
It was already known that a differentially flat system must be ruled; this was a particular case of the
present result, in which one of the systems was assumed to be “trivial” (or linear controllable).

Key words. control systems, ordinary differential equations, underdetermined systems, dynamic
equivalence, absolute equivalence, ruled submanifolds
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1. Introduction. We consider time-invariant control systems or underdeter-
mined systems of ordinary differential equations (ODEs) where the independent vari-
able is time. Static equivalence refers to equivalence via a diffeomorphism in the vari-
ables of the equation, or in the state and control variables, with a triangular structure
that induces a diffeomorphism (preserving time) in the state variables too. It is also
known as “feedback equivalence.” Dynamic equivalence refers to equivalence via in-
vertible transformations in jet spaces that do not induce any diffeomorphism in a finite
number of variables, except when it coincides with static equivalence; these transfor-
mations are also known as endogenous dynamic feedback [15, 6], or Lie–Bäcklund
transformations [1, 6, 16], although this terminology is more common for systems
of partial differential equations; dynamic equivalence is also very close to absolute
equivalence for Pfaffian systems [4, 18, 19].

The literature on classification and invariants for static equivalence is too large
to be quoted here; let us recall only that, as evidenced by all detailed studies and
mentioned in [21], each equivalence class (within control systems on the same manifold
or germs of control systems) is very very thin; indeed, it has infinite codimension
except in trivial cases. Since dynamic equivalence is a priori more general, it is
natural to ask how more general it is. Systems on manifolds of different dimension
may be dynamic equivalent but not static equivalent. Restricting our attention to
systems on the same manifold and considering dynamic equivalence instead of static,
how much bigger are the equivalence classes?

The literature on dynamic feedback linearization [11, 5], differential flatness [6,
15], or absolute equivalence [18] tends to describe the classes containing linear con-
trollable systems or “trivial” systems. The authors of [6, 15, 18] made the link with
deep differential geometric questions dating back to [9, 4, 10]; see [2] for a recent
overview. Despite these efforts, no characterization is available except for systems
with one control, i.e., whose general solution depends on one function of one variable;
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there are many systems that one suspects to be nonflat, i.e., dynamic equivalent to
no trivial system, while no proof is available; see the remark on (23) in section 4.1.
There is, however, one powerful necessary condition [17, 20]: a flat system must be
ruled; i.e., its equations must define a ruled submanifold in each tangent space. As
pointed out in [17], this proves that the equivalence class of linear systems for dynamic
equivalence, although bigger than for static equivalence, still has infinite codimension.

Deciding whether two general systems are dynamic equivalent is at least as dif-
ficult. There is no method to prove that two systems are not dynamic equivalent.
The contribution of this paper is a necessary condition for two systems to be dynamic
equivalent that generalizes [17, 20]: if they live on manifolds of the same dimension,
either they are static equivalent or they are both ruled; if not, the one of higher di-
mension must be ruled. Besides being useful to prove that some pairs of systems are
not dynamic equivalent, it also implies that “generic” equivalence classes for dynamic
equivalence are the same as for static equivalence.

Outline. Notations on jet bundles and differential operators are recalled in sec-
tion 2; the notions of systems, ruled systems, and dynamic and static equivalence
are precisely defined in section 3. Our main result is stated and commented on in
section 4 and proved in section 5.

2. Miscellaneous notations. Let M be an n-dimensional manifold, either C∞

(infinitely differentiable) or Cω (real analytic).

2.1. Jet bundles. Using the notations and definitions of [8, Chapter II, sec-
tion 2], Jk(R,M) denotes the kth jet bundle of maps R → M . It is a bundle both
over R and over M . If (x1, . . . , xn) is a system of coordinates on an open subset of M ,
coordinates on the lift of this open subset are given by t, x1, . . . , xn, ẋ1, . . . , ẋn, . . . ,
(x1)(k), . . . , (xn)(k), where t is the projection on R.

As an additive group, R acts on Jk(R,M) by translation of the t-component; the
quotient by this action is well defined, and we denote it by

(1) Jk(M) = Jk(R,M)
/

R .

Since we study only time-invariant systems, we prefer to work with Jk(M). Quo-
tienting indeed drops the t information: local coordinates on Jk(M) are given by
x1, . . . , xn, ẋ1, . . . , ẋn, . . . , (x1)(k), . . . , (xn)(k); for short, we write x, ẋ, . . . , x(k). For
� < k, there is a canonical projection

(2) πk,� : Jk(M)→ J�(M)

that makes Jk(M) a bundle over J�(M); in particular, it is a bundle overM = J0(M)
and over TM = J1(M). In coordinates,

πk,�

(
x, ẋ, . . . , x(�), . . . , x(k)

)
=
(
x, ẋ, . . . , x(�)

)
.

Notation. To a subset Ω ⊂ Jk(M), we associate, for all �, a subset Ω� ⊂ J�(M)
in the following manner (obviously, Ωk = Ω):

(3) Ω� =
{
πk,�(Ω) if � ≤ k,
π�,k

−1(Ω) if � ≥ k.
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2.2. The kth jet of a smooth (C∞) map x(.) : I → M . With I ⊂ R a time
interval, it is a smooth map jk(x(.) ) : I → Jk(M) (see again [8]); in coordinates,

jk(x(.) ) (t) =
(
x(t), ẋ(t), ẍ(t), . . . , x(k)(t)

)
.

By a smooth map whose kth jet remains in Ω, for some Ω ⊂ Jk(M), we mean a
smooth x(.) : I →M such that jk(x(.) )(t) ∈ Ω for all t in I.

2.3. Differential operators. If Ω is an open subset of Jk(M) and M ′ is a
manifold of dimension n′, a smooth (C∞ or Cω) map Φ : Ω→M ′ defines the smooth
differential operator of order1 k

(4) DkΦ = Φ ◦ jk .

Obviously, DkΦ sends smooth maps I →M whose kth jet remains in Ω to smooth maps
I → M ′. In coordinates, the image of t �→ x(t) is t �→ Φ(x(t), ẋ(t), ẍ(t), . . . , x(k)(t)).
Note that we do not require that k be minimal, so Φ might not depend on x(k).

We call jr ◦ DkΦ the rth prolongation of the differential operator DkΦ; it sends
smooth maps I → M whose kth jet remains in Ω to smooth maps I → Jr(M ′); it
is indeed the differential operator Dk+r

Φ[r] , of order k + r, with Φ[r] the unique smooth
map πk+r,k−1(Ω)→ Jr(M ′) such that

(5) jr ◦ Φ ◦ jk = Φ[r] ◦ jk+r .

We call Φ[r] the rth prolongation of Φ. One has πr,0 ◦ Φ[r] = Φ ◦ πk+r,k and more
generally, for s < r,

(6) πr,s ◦ Φ[r] = Φ[s] ◦ πk+r,k+s .

3. Systems and equivalence.

3.1. Systems.
Definition 3.1. A C∞ or Cω regular system with m controls on a smooth

manifold M is a C∞ or Cω subbundle Σ of the tangent bundle TM

(7)
Σ

i
↪→ TM
π↘ ↓

M

with fiber Υ, a C∞ or Cω manifold of dimension m (e.g., an open subset of R
m).

The velocity set at a point x ∈M is the fiber Σx = π−1({x}), a submanifold of TxM
diffeomorphic to Υ.

Definition 3.2 (solutions of a system). A solution of system Σ on the real
interval I is a smooth (C∞) x(.) : I →M such that j1(x(.))(t) ∈ Σ for all t ∈ I.

Although a general solution of a system need not be smooth, we consider only
smooth solutions. They form a rich enough class in the sense that systems are fully
characterized by their set of smooth solutions.

Locally, one may write “explicit” equations of Σ in the following form. Of course,
there are many choices of coordinates, and the map f depends on this choice.

Proposition 3.3. For each ξ ∈ Σ, with Σ ↪→ TM a regular system (7), there
are

1“Of order no larger than k” would be more accurate: if Φ does not depend on kth derivatives,
the order in the usual sense would be smaller than k. See, for instance, Ψ in example (22).
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• an open neighborhood U of ξ in TM , U0 its projection on M ,
• a system of local coordinates (xI, xI) on U0, with xI a block of dimension n−m

and xI of dimension m,
• an open subset U of R

n+m and a smooth (C∞ or Cω) map f : U → R
n−m

such that the equation of Σ ∩ U in these coordinates is

(8) ẋI = f(xI, xI, ẋI) , (xI, xI, ẋI) ∈ U .

Proof. The proof is a consequence of the implicit function theorem.
Control systems. A more usual representation of a system with m controls is

(9) ẋ = F (x, u) , x ∈M , u ∈ B ,

with B an open subset of R
m and F : M × B → TM smooth enough. It can be

brought locally, in block coordinates (xI, xI), to the form

(10) ẋI = f(xI, xI, u) , ẋI = u,

modulo a static feedback on u, at least around nonsingular points (x, u) where

(11) rank
∂F

∂u
(x, u) = m .

Equation (8) can be obtained by eliminating the control u in (10).
If (11) holds, (9) defines a system in the sense of Definition 3.1. All results on

systems in that sense may easily be translated to control systems (9).
Implicit systems of ODEs. A smooth system of n−m ODEs on M : R(x, ẋ) = 0

with R : TM → R
n−m also defines a system in the sense of Definition 3.1 if it is

nonsingular, i.e., rank ∂R
∂ẋ (x, ẋ) = n−m.

Singularities. With the above rank assumptions or the one that Σ is a subbundle
in Definition 3.1, we carefully avoid singular systems. This paper does not apply to
singular control systems or singular implicit systems of ODEs.

Prolongations of Σ. For integers k ≥ 1, we denote by Σk the prolongation
of the system Σ to kth order; it is the subbundle Σk ↪→ Jk(M) with the following
property: for any smooth map x(.) : I →M , with jk(x(.)) defined in section 2.2,

(12) j1(x(.))(t) ∈ Σ , t ∈ I ⇔ jk(x(.))(t) ∈ Σk , t ∈ I .

The left-hand side means that x(.) is a solution of Σ according to Definition 3.2.
Obviously, Σ1 = Σ. We may describe Σk in coordinates.

Proposition 3.4. Let K be a positive integer. There is a unique subbundle
ΣK ↪→ JK(M) such that

(13)
a smooth map x(.) : I →M is a solution of system Σ on the real interval I
if and only if jK(x(.))(t) ∈ ΣK for all t ∈ I.

For all ξ ∈ ΣK , its projection ξ1 = πK,1(ξ) is in Σ and, with U the neighborhood of
ξ1, (xI, xI) the coordinates on U0, U the open subset R

n+m, and f : U → R
m the map

given by Proposition 3.3, the equations of UK∩ΣK in JK(M) are, in the coordinates
(xI, xI, ẋI, ẋI, . . . , x

(K)
I , x

(K)
I

) induced on U by (xI, xI),

(14)
x

(i)
I = f (i−1)

(
xI, xI, ẋI, . . . , x

(i)
I

)
, 1 ≤ i ≤ K ,(

xI, xI, ẋI, . . . , x
(K)
I

)
∈ U × R

(K−1)m ,
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where, for a smooth map f : U → R
n−m and � ≥ 0, f (�) is the smooth map U×R

Km →
R
n−m defined by f (0) = f and, for i ≥ 1,

(15) f (i)
(
xI, xI, ẋI, . . . , x

(i+1)
I

)
=
∂f (i−1)

∂xI
f (xI, xI, ẋI) +

i∑
i=0

∂f (i−1)

∂x
(i)
I

x
(i+1)
I

.

Proof. The proof is classical and obvious in coordinates.
Remark 3.5. Each Σk+1 (k ≥ 1) is an affine bundle over Σk and may be viewed

as an affine subbundle of TΣk; i.e., it is a system in the sense of section 3.1 on the
manifold Σk instead of M .

In particular, Σ2 ↪→ TΣ is the system obtained by “adding an integrator in each
control” of the system Σ ↪→ TM . It is an affine system (i.e., affine subbundle) even
when Σ is not.

3.2. Ruled systems. Recall that a smooth submanifold of an affine space is
ruled if and only if it is a union of straight lines, i.e., if through each point of the
submanifold passes a straight line contained in the submanifold. Such a manifold
must be unbounded; since we want to consider the intersection of a submanifold with
an arbitrary open set and allow this patch to be “ruled,” we use the same slightly
abusive notion as [14]: a submanifold N is ruled if and only if, through each point
of it, passes a straight line which is contained in N “until it reaches the boundary of
N .” Here, the boundary of the submanifold N is ∂N = N \N .

A system will be called ruled if and only if Σx is, for all x, a ruled submanifold
of TxM . This is formalized below in a self-contained manner.

Definition 3.6. Let O be an open subset of TM . System Σ (see (7)) is ruled in
O if and only if, for all (x, ẋ) ∈ (O ∩ Σ), there are a nonzero vector w ∈ TxM \ {0}
and two possibly infinite numbers λ− ∈ [−∞, 0) and λ+ ∈ (0,+∞] such that
(x, ẋ + λw) ∈ O ∩ Σ for all λ, λ− < λ < λ+ and

(16) λ− > −∞⇒ (x, ẋ+ λ−w) ∈ ∂ (O ∩Σ) ,
λ+ < +∞⇒ (x, ẋ+ λ+w) ∈ ∂ (O ∩ Σ) .

Recall that, by definition, ∂ (O ∩ Σ) = O ∩ Σ \ (O ∩Σ).
We shall need the following characterization.
Proposition 3.7 (see [14]). Let O be an open subset of TM . Σ is ruled in O

if and only if, for all ξ = (x, ẋ) in Σ ∩ O, there is a straight line in TxM passing
through ẋ that has contact of infinite order with Σx at ẋ.

Proof. From [14, Theorem 1], a “patch of” submanifold of dimension m in a
manifold of dimension n is ruled if and only if there is, through each point, a straight
line that has contact of order n+ 1. This is of course implied by infinite order.

3.3. Dynamic equivalence. The following notion is usually called dynamic
equivalence or equivalence by (endogenous) dynamic feedback transformations in con-
trol theory; see [15, 7, 12, 16]. It is in fact also the notion of a Lie–Bäcklund trans-
formation, limited to ordinary differential equations, as noted in [7] or [16].

Definition 3.8. Let k = ∞ or k = ω. Let Σ ↪→ TM and Σ′ ↪→ TM ′ be
Ck regular systems (see (7)) on two manifolds M and M ′, K,K ′ two integers, and
Ω ⊂ JK(M) and Ω′ ⊂ JK′

(M ′) two open subsets.
Systems Σ and Σ′ are dynamic equivalent over Ω and Ω′ if and only if there exists

two mappings of class Ck:

(17) Φ : Ω→M ′ , Ψ : Ω′ →M



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

930 JEAN-BAPTISTE POMET

inducing differential operators DKΦ and DK′
Ψ (see (4)) such that, for any interval I,

• for any solution x(.) : I →M of Σ whose Kth jet remains inside Ω,
DKΦ (x(.) ) is a solution of Σ′ whose K ′th jet remains inside Ω′

and DK′
Ψ (DKΦ (x(.) ) ) = x(.);

• for any solution z(.) : I →M ′ of Σ′ whose K ′th jet remains inside Ω′,
DK′

Ψ ( z(.) ) is a solution of Σ whose Kth jet remains inside Ω
and DKΦ (DK′

Ψ ( z(.) ) ) = z(.).
Remark 3.9. Since all properties are tested on solutions, only the restriction of Φ

and Ψ to ΣK and ΣK′ (see Proposition 3.4) matter; for instance, Φ can be arbitrarily
modified away from ΣK without changing any conclusions. Borrowing this language
from the literature on Lie–Bäcklund transformations, Φ and Ψ above are “external”
correspondences.

In [7] or in [16], the “internal” point of view prevails: for instance, Φ and Ψ are
replaced, in [7], by diffeomorphisms between diffieties. This is more intrinsic because
maps are defined only where they are to be used. However, the definitions are equiv-
alent because these internal maps admit infinitely many “external” prolongations.

Here, this external point of view is adopted because it makes the statement of
the main result less technical. Note, however, that, as a preliminary to the proofs, an
“internal” translation is given in section 5.1.

Remark 3.10. In the theorems, we shall require that Ω and Ω′ satisfy

(18) Ω1 ∩ Σ ⊂ (Ω ∩ΣK)1 and Ω′
1 ∩Σ′ ⊂ (Ω′ ∩ Σ′

K′)1 ;

i.e., any (jet of) solution whose first jet is in Ω1 lifts to at least one (jet of) solution
whose Kth jet is in Ω. Note the following facts about this requirement.

- These inclusions are equalities, for the reverse inclusions always hold.
- Replacing the original Ω with Ω\((Ω1 ∩ Σ) \ (Ω ∩ ΣK)1)K and Ω′ accordingly

forces (18); alternatively, keeping arbitrary open sets, Theorems 4.2 and 4.1
would hold with Ω1 replaced with Ω1 \ (Ω1 ∩ Σ) \ (Ω ∩ ΣK)1.

- When Σ′ = TM ′ is the trivial system (see section 3.5), any open Ω′ satisfies
(18).

3.4. Static equivalence.
Definition 3.11. Let O ⊂ TM and O′ ⊂ TM ′ be open subsets. Systems Σ and

Σ′ are static equivalent over O and O′ if and only if there is a smooth diffeomorphism
Φ : O0 → O′

0 such that the following holds:

(19) a smooth map t �→ x(t) is a solution of Σ whose first jet remains in O
if and only if t �→ Φ(x(t)) is a solution of Σ′ whose first jet remains in O′.

}

Definition 3.12 (local static equivalence). Let O ⊂ TM and O′ ⊂ TM ′ be open
subsets. Systems Σ and Σ′ are locally static equivalent over O and O′ if and only if
there are coverings of O ∩ Σ and O′ ∩ Σ′ :

Σ ∩O ⊂ Σ ∩
⋃
α∈A
Oα , Σ′ ∩ O′ ⊂ Σ′ ∩

⋃
α∈A
O′α,

where A is a set of indices and Oα and O′α are open subsets of O and O′ such that,
for all α, systems Σ and Σ′ are static equivalent over Oα and O′α.

This definition, stated in terms of solutions, is translated into point (a) below
that relies only on the geometry of Σ and Σ′ as submanifolds. Point (b) is used, for
instance, in [13, 22] where the “centro-affine” geometry of each Σx is studied.
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Proposition 3.13. (a) Systems Σ and Σ′ are static equivalent over O ⊂ TM
and O′ ⊂ TM ′ if and only if there is a smooth diffeomorphism Φ : O0 → O′

0 such
that Φ� maps O ∩ Σ to O′ ∩ Σ′.

(b) If systems Σ and Σ′ are static equivalent over O ⊂ TM and O′ ⊂ TM ′, there
is, for each x ∈ O0, a linear isomorphism TxM → TΦ(x)M

′ that maps Σx to Σ′
Φ(x).

(c) Static equivalence preserves ruled systems.
Proof. (b) and (c) are easy consequences of (a), which in turn is clear by differ-

entiating solutions in Definition 3.2.

3.5. Examples. 1. We call trivial system on a smooth manifold M the tangent
bundle itself TM . Any smooth x(.) : I →M is a solution of this system; it corresponds
to “no equation,” to the control system ẋ = u, or to the “affine diffieties” in [7].
Following [6, 7], a system Σ ↪→ TM is called differentially flat (on Ω ⊂ JK(M)) if
and only if it is dynamic equivalent (over Ω and Ω′) to the trivial system TM ′ for
some manifold M ′.

2. Any system Σ ↪→ TM is dynamic equivalent to the one obtained by “adding
integrators.” It was described in Remark 3.5 as an affine subbundle Σ2 ↪→ TΣ; Σ and
Σ2 are equivalent in the sense of Definition 3.8 with M ′ = Σ, K = 1, K ′ = 0, and
Ω an open neighborhood of Σ in J1(M) = TM such that there is a Φ : Ω → Σ that
coincides with identity on Σ, Ω′ = M ′ = Σ, and Ψ = π (see (7)).

This may be easier to follow in the coordinates of Proposition 3.3. The prolonga-
tion of (8) has state (yI, yI) ∈ U , with yI a block of dimension n and yI of dimension m,
and equation ẏI = (f(yI, yI) , yI) . In coordinates, the transformations Φ : J1(U0)→ U
and Ψ : U → U0 are given by (yI, yI) = Φ(xI, xI, ẋI, ẋI) = (x, ẋI) and x = Ψ(y) = yI,
respectively.

Static equivalence between these systems of different dimension does not hold.
3. Let us now give, mostly to illustrate the role of the integers K,K ′ and the

open sets Ω and Ω′, two more specific examples of systems Σ ↪→ TR
3 and Σ′ ↪→

TR
3 with the following equations in TR

3, with coordinates (x1, x2, x3, ẋ1, ẋ2, ẋ3) or
(y1, y2, y3, ẏ1, ẏ2, ẏ3), clearly defining subbundles with fiber diffeomorphic to R

2:

(20) Σ : ẋ1 = x2 , Σ′ : ẏ1 = y2 + (ẏ2 − y1ẏ3) ẏ3 .

These equations are even globally in the “explicit” form given by Proposition 3.3.
First of all, Σ is dynamic equivalent to the trivial system Σ′′ = TR

2, with
Φ : R

3 → R
2 defined by Φ(x1, x2, x3) = (x1, x3) and Ψ : J1(R2) → R

3 given by
Ψ(z1, z2, ż1, ż2) = (z1, ż1, z2). Here, K = 0,K ′ = 1,Ω = R

2, and Ω′ = J1(R2).
Also, with K = 1 and K ′ = 2, systems Σ and Σ′ are dynamic equivalent over

Ω ⊂ J1(R3) and Ω′ ⊂ J2(R3) defined by

Ω =
{
(x1, x2, x3, ẋ1, ẋ2, ẋ3), 1− ẋ2 − x2

3 �= 0
}
,

Ω′ =
{
(y1, y2, y3, ẏ1, ẏ2, ẏ3, ÿ1, ÿ2, ÿ3), 1− ÿ3 − ẏ3

3 �= 0
}
.

The maps Φ : Ω→ R
3 and Ψ : Ω′ → R

3 are given by

Φ(x1, x2, x3, ẋ1, ẋ2, ẋ3) =
(

(1− ẋ2)x3 + x2 ẋ3

1− ẋ2 − x2
3

,
x2

2 x3 + ẋ3

1− ẋ2 − x2
3
, x1

)
,(21)

Ψ(y1, y2, y3, ẏ1, ẏ2, ẏ3, ÿ1, ÿ2, ÿ3) = ( y3 , ẏ3 , y1 − ẏ3 y2 ) .(22)

Remark 3.14. Since Ψ does not depend on second derivatives, K ′ = 2 is not the
order of the differential operator DK′

Ψ in the usual sense; this illustrates the footnote
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after (4); it is, however, necessary to go to second jets to describe the domain Ω′

where the restriction to solutions of Σ′ of this first order operator can be inverted.
Finally, note that systems Σ and Σ′ are not static equivalent because, from Propo-

sition 3.13(b), this would imply that each Σx is sent to some Σ′
y by a linear isomor-

phism TxM → TyM ′, which is not possible because each Σx is an affine subspace of
TxM and Σ′

y a nondegenerate quadric of TyM ′.
4. Consider two more systems Σ ↪→ TR

3 and Σ′ ↪→ TR
3 described as in (20):

(23) Σ : ẋ1 = x2 + (ẋ2 − x1ẋ3)2 ẋ 2
3 , Σ′ : ẏ1 = y2 + (ẏ2 − y1ẏ3)2 ẏ3 .

System Σ is ruled (each Σy is the union of lines ẏ2 − y1ẏ3 = λ, ẏ1 = y2 + λ2 ẏ3 for λ
in R), while Σ′ is not. Hence, from point (c) of Proposition 3.13, Σ and Σ′ are not
static equivalent. We shall come back to these two systems from the point of view of
flatness and dynamic equivalence in sections 4.1 and 4.3.

4. Necessary conditions.

4.1. The case of flatness. It has been known since [17, 20] that a system
which is dynamic equivalent to a trivial system (see the beginning of section 3.5; such
a system is called differentially flat) must be ruled; of course, at least in the smooth
case, this is true only on the domain where equivalence is assumed.

Theorem 4.1 (see [17, 20]). If Σ is dynamic equivalent to the trivial system
Σ′=TM ′ over Ω ⊂ JK(M) and Ω′ ⊂ JK′

(M ′) satisfying (18), then Σ is ruled in Ω1.
Application. Since Σ in (23) is not ruled, this theorem implies that it is not flat,

i.e., not dynamic equivalent to the trivial system TR
2. On the contrary, Σ′ in (23) is

ruled, and, hence, the result does not help to decide if it is flat or not; in fact, one
conjectures that this system is not flat, but no proof is available; see [3].

4.2. Main idea of the proofs. Our main result, stated in the next section,
studies what remains of Theorem 4.1 when Σ′ is not the trivial system. Due to many
technicalities concerning regularity conditions, the main ideas may be difficult to grasp
in the proof given in section 5.2. In order to enlighten these ideas and even the result
itself, let us first sketch the proof of the above theorem following the line of [17] (itself
inspired from [10]), but without assuming a priori that Σ′ is trivial.

Take two arbitrary systems Σ and Σ′, and assume that they are dynamic equiv-
alent. From Proposition 3.3, one may use locally the explicit forms

Σ : ẋI = f(xI, xI, ẋI) , Σ′ : żI = g(zI, zI, żI) .

Recall that n and n′ denote the dimensions of x and z; assume n ≤ n′. Since we
work only on solutions (see Remark 3.9 and also section 5.1) and the above equations
allow one to express each time derivative x(j)

I , j ≥ 1, as a function of xI, xI, ẋI, . . . ,
x

(j)
I

, we may work with the variables xI, xI, ẋI, ẍI, x
(3)
I
, . . . and zI, zI, żI, z̈I, z

(3)
I
, . . . only.

The map Φ of Definition 3.8 translates, in these coordinates, into a correspondence
zI = φI(xI, xI, ẋI, . . . , x

(K)
I

), zI = φI(xI, xI, ẋI, . . . , x
(K)
I

); here, the number K is chosen
such that the dependence of φ versus x(K)

I
is effective.

If K = 0, this reads z = φ(x), and n < n′ is absurd because it would imply
(around points where the rank of φ is constant) some nontrivial relations R(z) = 0.
Hence, n = n′, φ is a local diffeomorphism, and static equivalence holds locally.

If K ≥ 1, note that Φ mapping solutions of Σ to solutions of Σ′ implies (plug the
expression of z given by φ into state equations of Σ′) the following identity, valid for
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all xI, xI, ẋI, . . . , x
(K+1)
I

:

∂φI

∂xI
f(xI, xI, ẋI) +

∂φI

∂xI

ẋI +
∂φI

∂ẋI

ẍI + · · ·+ ∂φI

∂x
(K)
I

x
(K+1)
I

= g

(
φI, φI,

∂φI

∂xI
f(xI, xI, ẋI) +

∂φI

∂xI

ẋI +
∂φI

∂xI

ẍI + · · ·+ ∂φI

∂x
(K)
I

x
(K+1)
I

)
,

where φI and φI depend on xI, xI, ẋI, . . . , x
(K)
I

only and, at least at generic points,
( ∂φI

∂x
(K)
I

, ∂φI

∂x
(K)
I

) �= (0, 0). Fixing such xI, xI, ẋI, . . . , x
(K)
I

and, consequently, z = φ(xI,

xI, ẋI, . . . , x
(K)
I

) and examining Σ′
z as a submanifold of TzM ′ with equation żI =

g(z, żI), it is clear that moving x
(K+1)
I

in a direction which is not in the kernel of
∂φI

∂x
(K)
I

(xI, xI, ẋI, . . . , x
(K)
I

) provides a straight line of TzM ′ contained in Σ′
z and, since

this covers all points of Σ′
z, proves that the latter is a ruled submanifold of TzM ′ and

finally that system Σ′ is ruled. We examined only regular points; see section 5.2 for
a proper proof.

Collecting the two cases, we have proved that, if n ≤ n′, either Σ′ is ruled or
n = n′ and Σ′ is static equivalent to Σ. This is stated formally in Theorem 4.2.

4.3. The result for general systems. The contribution of this paper is the
following strong necessary condition for dynamic equivalence between two general
systems. Ω1 and Ω′

1 are defined by (3).
Theorem 4.2. Let Σ and Σ′ be systems on manifolds of dimension n and n′,

K,K ′ two integers, and Ω ⊂ JK(M), Ω′ ⊂ JK′
(M ′) two open subsets satisfying (18).

If Σ and Σ′ are dynamic equivalent over Ω and Ω′, then
if n > n′, system Σ is ruled in Ω1;
if n < n′, system Σ′ is ruled in Ω′

1;
if n = n′, then (see Definition 3.12 for “locally static equivalent”)

- in the real analytic case and if Ω1∩Σ and Ω′
1∩Σ′ are connected, either systems Σ

and Σ′ are ruled in Ω1 and Ω′
1, respectively, or they are locally static equivalent

over Ω1 and Ω′
1;

- in the smooth (C∞) case, there are open subsets R,S of Ω1 and R′,S′ of Ω′
1

such that Ω1 and Ω′
1 are covered as

(24) Ω1 = R∪ S = R∪ S , Ω′
1 = R′ ∪ S′ = R′ ∪ S′

and the systems have the following properties on these sets:
1. Σ and Σ′ are ruled in R and R′, respectively;
2. Σ and Σ′ are locally static equivalent over S and S′.

Proof. See section 5.2.
A few remarks are in order:
1. Theorem 4.1 is a consequence. Indeed, n′=m′ because Σ′ is trivial, dynamic

equivalence implies m′=m (this is common knowledge; see [4], [7] or [16, Theorem 1]),
and n ≥ m for any system; hence, n ≥ n′ and Theorem 4.2 directly implies that Σ is
ruled except if the systems are static equivalent, but this also implies that Σ is ruled
from point (c) of Proposition 3.13 and the fact that the trivial system Σ′ is ruled.

Static equivalence still appears explicitly in Theorem 4.2 because two general
systems can be static equivalent without being ruled.

2. The part “n > n′ or n < n′” can be rephrased as follows: if a system is
not ruled, it cannot be dynamic equivalent to any system of smaller dimension. No
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necessary condition is given on the system of lower dimension; indeed, any system is
dynamic equivalent to at least its first prolongation; see example 2 in section 3.5.

3. The case n = n′ states that dynamic equivalence, except when it reduces to
static equivalence, forces both systems to be ruled (in the real analytic case, the added
rigidity prevents the two situations from occurring simultaneously).

In other words, if two systems are not static equivalent and at least one of them is
not ruled, they are not dynamic equivalent. Since the two conditions can be checked
rather systematically, this yields a new and powerful method for proving that two sys-
tems are not dynamic equivalent, a difficult task in general because very few invariants
of dynamic equivalence are known.

For instance, to the best of our knowledge, the state of the art does not allow one
to decide whether Σ and Σ′ in (23) are dynamic equivalent or not. In section 3.5, it
was noted that they are not static equivalent and Σ′ is not ruled. This implies the
following corollary.

Corollary 4.3. Σ and Σ′ in (23) are not dynamic equivalent over any domains.
4. Since being ruled is nongeneric [17], we have the following general consequence

(in terms of germs of systems because the conclusion in the theorem is only local).
Corollary 4.4. Generic static equivalence classes for germs of systems of the

same dimension at a point are also dynamic equivalence classes.
Note that this is in the mathematical sense of “generic”: this does not prevent

many interesting systems from being dynamic equivalent without being static equiv-
alent. It might even be that the “most interesting systems” fall in this case!

5. Proofs. Recall that subscripts always refer to the order of the jet space. The
notation (3) is constantly used.

5.1. Preliminaries: A reformulation of dynamic and static equivalence.
The maps Φ and Ψ are always applied to jets of solutions, and, according to (12), the
Kth jets of solutions of Σ remain in ΣK ; hence, the only information to retain about
Φ and Ψ is their restriction to, respectively,

(25) Ω̃ = Ω ∩ ΣK and Ω̃′ = Ω′ ∩ Σ′
K′ .

We need one more piece of notation: according to section 2.3, the �th prolongation
of a smooth map Φ̃ : Ω̃→M ′ is a map π −1

K+�,�(Ω̃)→ J�M ′; again, only its restriction
to Ω̃K+� will matter; for this reason, the notations Φ̃[�] and Ψ̃[�] will not stand for the
prolongations as defined earlier but rather for these restrictions:

Φ̃[�] : Ω̃K+� → J�(M ′) , Ψ̃[�] : Ω̃′
K′+� → J�(M) ,(26)

with Ω̃K+� = ΩK+� ∩ ΣK+� , Ω̃′
K′+� = Ω′

K′+� ∩ Σ′
K′+� .(27)

We may now state the following proposition. Smooth (C∞ or Cω) maps on Ω̃K+�

or Ω̃′
K′+� can be defined in a standard way because, from Proposition 3.3, these are

smooth embedded submanifolds.
Proposition 5.1 (dynamic equivalence). Let K,K ′ be integers and Ω ⊂ JK(M)

and Ω′ ⊂ JK′
(M ′) two open subsets. Systems Σ and Σ′ are dynamic equivalent over Ω

and Ω′ if and only if, with Ω̃, Ω̃′ defined in (25), there exist two smooth (real analytic,
in the real analytic case) mappings

Φ̃ : Ω̃→M ′ and Ψ̃ : Ω̃′ →M
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such that

(28) Φ̃[1]
(
Ω̃K+1

)
⊂ Σ′ , Ψ̃[1]

(
Ω̃′
K′+1

)
⊂ Σ

and, with Φ̃[K] and Ψ̃[K] defined by (26),

Φ̃[K′]
(
Ω̃K+K′

)
⊂ Ω′ , Ψ̃[K]

(
Ω̃′
K+K′

)
⊂ Ω ,(29)

Ψ̃ ◦ Φ̃[K′] = πK+K′, 0

∣∣∣
Ω̃K+K′

, Φ̃ ◦ Ψ̃[K] = πK+K′, 0

∣∣∣
Ω̃′

K+K′
.(30)

Proof. If the above conditions on Φ and Ψ are satisfied and x(.) : I → M is a
solution of Σ whose Kth jet remains inside Ω, then the first part of (28) implies that
DKΦ (x(.) ) is a solution of Σ′, the first part of (29) implies that its Kth jet remains
inside Ω′, and the first part of (30) implies that DK′

Ψ (DKΦ (x(.) ) ) = x(.). This proves
the first item of Definition 3.8; the second item follows in the same way from the
second part of (28), (29), and (30).

Conversely, if Φ and Ψ satisfy the properties of Definition 3.8, their restrictions
Φ̃ and Ψ̃ to Ω̃ and Ω̃′, respectively, satisfy the above relations because through each
point in Ω̃K+1, Ω̃′

K′+1, Ω̃K+K′ , or Ω̃K+K′ passes a jet of order K + 1, K ′ + 1, or
K +K ′ of a solution of Σ or Σ′; differentiating yields the required relations.

Proposition 5.2 (static equivalence). With Ω1 ⊂ J1(M) = TM and Ω′
1 ⊂

J1(M ′) = TM two open subsets, systems Σ and Σ′ are static equivalent over Ω1 and
Ω′

1 if and only if, with Ω̃1, Ω̃′
1 defined in (25), there exist a smooth diffeomorphism

Φ0 : Ω̃0 → Ω̃′
0 and its inverse Ψ0 such that Φ̃[1]

0 (Ω̃1) = Ω̃′
1 (and Ψ̃[1]

0 (Ω̃′
1) = Ω̃1).

Proof. The proof is a rephrasing of point (a) of Proposition 3.13.

5.2. Proof of Theorem 4.2. Assume that Σ and Σ′ are dynamic equivalent
over the open sets Ω ⊂ JK(M) and Ω′ ⊂ JK′

(M ′); let Φ̃ : Ω̃→M ′ and Ψ̃ : Ω̃′ →M
be the smooth maps given by Proposition 5.1 (recall that Ω̃ and Ω̃′ are open subsets
of ΣK and Σ′

K′). We define open subsets Ω̃S ⊂ Ω̃ and Ω̃′S ⊂ Ω̃′ and state four lemmas
concerning these:

ξ ∈ Ω̃S ⇔ There is a neighborhood V of ξ in Ω̃ and a smooth map
Φ̃0 : V0 →M ′ such that Φ̃

∣∣∣
V

= Φ̃0 ◦ πK,0 ,
(31)

ξ′ ∈ Ω̃′S ⇔ There is a neighborhood V ′ of ξ′ in Ω̃′ and a smooth map
Ψ̃0 : V ′

0 →M such that Ψ̃
∣∣∣
V ′

= Ψ̃0 ◦ πK,0 .
(32)

Lemma 5.3. In the analytic case and if Ω̃ = Ω∩Σ and Ω̃′ = Ω′∩Σ′ are connected,
one has either Ω̃S = Ω̃ or Ω̃S = ∅, and either Ω̃′S = Ω̃′ or Ω̃′S = ∅.

Lemma 5.4. One has the following identities, where the two first ones hold for
any subsets S ⊂ Ω̃, S′ ⊂ Ω̃′ and any integer �, 0 ≤ � ≤ K +K ′:

πK+K′,�

(
Φ̃[K′]−1

(S′)
)

= Ψ̃[�]
(
S′
K′+�

)
, πK+K′,�

(
Ψ̃[K]−1

(S)
)

= Ψ̃[�] (SK+�) ,

(33)

Φ̃[1]
(
Ω̃K+1

)
= Ω̃′

1 , Ψ̃[1]
(
Ω̃′
K′+1

)
= Ω̃1 .(34)

Lemma 5.5. If n < n′, then Ω̃S = ∅. If n > n′, then Ω̃′S = ∅.
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If n = n′, there are, for all ξK ∈ Ω̃S, a neighborhood V1 of ξ1 = πK,1(ξK) in Ω1

and an open subset V ′
1 of Ω′

1 such that systems Σ and Σ′ are static equivalent over
V1 and V ′

1. There are also, for all ξ′K′ ∈ Ω̃′S, a neighborhood W ′ of ξ′1 = πK′,1(ξ′K′)
in Ω′

1 and an open subset W1 of Ω1 such that systems Σ and Σ′ are static equivalent
over W1 and W ′

1. Finally,

πK+K′,K′
(
Ψ̃[K]−1

(
Ω̃S
))

= Φ̃[K′]
(
Ω̃SK+K′

)
= Ω̃′S ,(35)

πK+K′,K

(
Φ̃[K′]−1 (

Ω̃′S
))

= Ψ̃[K]
(
Ω̃′S
K′+K

)
= Ω̃S .(36)

Lemma 5.6. For all ξK+1 ∈ Ω̃K+1 such that ξK = πK+1,K(ξK+1) ∈ Ω̃\ Ω̃S, there
is a straight line in TΦ̃(ξK)M

′ that has contact of infinite order with Σ′ at Φ̃[1](ξK+1).
These lemmas will be proved later. Let us finish the proof of the theorem.
If n < n′, (34) implies the existence, for each ξ′ ∈ Ω̃′

1 = Ω1 ∩ Σ′, of some
ξK+1 ∈ Ω̃K+1 such that Φ̃[1](ξK+1) = ξ′, and, finally, since Ω̃S is empty according
to Lemma 5.5, Lemma 5.6 yields a straight line in Tξ′0M

′ that has contact of infinite
order with Σ′ at ξ′; from Proposition 3.7, this implies that system Σ′ is ruled over
Ω1. If n > n′, one concludes in the same way.

Now assume n = n′. For all ξ′ in Φ̃[1]((Ω̃ \ Ω̃S)K+1), there is, according to
Lemma 5.6, a straight line in Tξ′0M

′ that has contact of infinite order with Σ′ at ξ′.
By continuity, this is also true for all ξ′ in the topological closure

R̃′ = Φ̃[1]

((
Ω̃ \ Ω̃S

)
K+1

)
= πK+K′,1

(
Ψ̃[K]

−1
(
Ω̃ \ Ω̃S

))
,(37)

where the second equality comes from (33). Let i(R̃′) be the interior of R̃′ for the
induced topology on Σ′; since R̃′ = i(R̃′), there is an open subset R′ of Ω′

1 ⊂ TM ′,
enjoying the property that it is the interior of its topological closure and such that
R′ ∩Σ′ = i(R̃′) and R′ ∩Σ′ = R̃′. From Proposition 3.7, Σ′ is ruled over R′. Setting
S′ = Ω′

1 \ R′, one has Ω′
1 = R′ ∪ S′ = R′ ∪ S′. Along the same lines, Σ is ruled over

R, open subset of Ω1 ⊂ TM such that R∩ Σ is the relative interior of

R̃ = Ψ̃[1]

((
Ω̃′ \ Ω̃′S

)
K′+1

)
= πK+K′,1

(
Φ̃[K′]−1

(
Ω̃′ \ Ω̃′S

))
(38)

and such that Ω1 = R∪ S = R∪ S with S = Ω1 \ R.
We have proved (24) and point 1 of Theorem 4.2; let us prove point 2. Obviously,

S ∩ Σ ⊂ πK+K′,1

(
Φ̃[K′]−1 (

Ω̃′S
))

and S′ ∩Σ′ ⊂ πK+K′,1

(
Ψ̃[K]−1

(
Ω̃S
))

.

Using identities (35) and (36), this implies

(39) S ∩ Σ ⊂ πK,1
(

Ω̃S
)

and S′ ∩ Σ′ ⊂ πK′,1

(
Ω̃′S

)
.

For all ξ in S ∩ Σ, there are one ξK ∈ Ω̃S such that ξ = πK,1(ξK) and, from
Lemma 5.5, a neighborhood Vξ1 of ξ in Ω1 and an open subset V ′ ξ

1 of Ω′
1 such that

systems Σ and Σ′ are static equivalent over Vξ1 and V ′ ξ
1 . For all ξ′ in S′ ∩ Σ′, there

are one ξ′K′ ∈ Ω̃′S such that ξ′ = πK′,1(ξ′K′) and, from Lemma 5.5, a neighborhood
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W ′ ξ′ of ξ′1 = πK′,1(ξ′K′) in Ω′
1 and an open subsetWξ′

1 of Ω1 such that systems Σ and
Σ′ are static equivalent over Wξ′

1 and W ′ ξ
1 .

Now, (Vξ1 )ξ∈S∩Σ is an open covering of S ∩ Σ and (W ′ ξ′
1 )ξ′∈S′∩Σ′ is an open

covering of S′∩Σ′. Take for (S̃α)α∈A the union of (Vξ1 )ξ∈S∩Σ and (Wξ′
1 )ξ′∈S′∩Σ′ ; take

for (S̃′α)α∈A the union of (V ′ ξ
1 )ξ∈S∩Σ and (W ′ ξ′

1 )ξ′∈S′∩Σ′ .
This proves the smooth case and obviously implies the real analytic one from

Lemma 5.3.
Let us now prove the four lemmas used in the above proof.
Proof of Lemma 5.3. If Ω̃S �= ∅, then there is at least an open subset of Ω̃ in which

the derivatives of Φ̃ along any vertical vector field (preserving fibers of ΣK →M) are
identically zero; since these are real analytic, they must be zero all over Ω̃, assumed
connected, and, hence, Ω̃S = Ω̃. The proof is similar in Ω̃′.

Proof of Lemma 5.4. The first relation in (33) is a consequence of the two identities

(40) πK′+�,K′ ◦ Φ̃[K′+�] = Φ̃[K′] ◦ πK+K′+�,K+K′ and Ψ̃[�] ◦ Φ̃[K′+�] = πK+K′+�,� ,

respectively, (6) with (r, s) = (K ′ + �,K ′), and the �th prolongation of (30). The
second relation follows from interchanging K,Φ, S with K ′,Ψ, S′.

From (28) and (29), one has, for any positive integer �,

(41) Φ̃[�]
(
Ω̃K+�

)
⊂ Ω̃′

� and Ψ̃[�]
(
Ω̃′
K′+�

)
⊂ Ω̃�

(for instance, (28) implies Φ̃[�](Ω̃K+�) ⊂ Σ′
�, (29) implies Φ̃[�](Ω̃K+�) ⊂ Ω′

�, and,
hence, the first relation above because Ω̃′

� = Ω′
� ∩ Σ′

�). We need only to prove the
reverse inclusions for � = 1. Let us do it for the second one. The second relation in
(40) for � = 1 implies Ω̃1 = Ψ̃[1](Φ̃[K′+1](Ω̃K+K′+1)), and finally Ω̃1 ⊂ Ψ̃[1](Ω̃′

K′+1)
from the first relation in (40) with � = K ′ + 1.

Proof of Lemma 5.5. Assume, for instance, that Ω̃S is nonempty; then it contains
an open subset V and there is a smooth Φ̃0 : V0 →M ′ such that, in restriction to V ,
Φ̃ = Φ̃0 ◦πK,0. Hence, (30) implies, on the open subset V ′ = (Ψ̃[K])−1(V ) of Σ′

K+K′ ,

(42) Φ̃0 ◦ πK,0 ◦ Ψ̃[K] = πK+K′, 0|V ′ .

The rank of the map on the left-hand side is n′ while the rank on the right-hand side is
no larger than n (rank of πK,0), and, hence, Ω̃S �= ∅ implies n′ ≤ n. By interchanging
the two systems, this proves the fist sentence of the lemma.

Let us now turn to the case where n = n′. Consider ξK in Ω̃S . By definition of
Ω̃S , there are a neighborhood V and a smooth (real analytic in the real analytic case)
map Φ̃0 : V0 →M ′ such that Φ̃ = Φ̃0 ◦ πK,0 on V . Let V ′ be defined from V as

(43) V ′ = πK+K′,K′
(
Ψ̃[K]−1

(V )
)

= Φ̃[K′](VK+K′) ,

where the second equality comes from (33). Applying Ψ̃ and Ψ̃[1] to both sides of the
first equality in (6) and using (43) with (r, s) = (K, 0) and (r, s) = (K, 1) yields

(44) Ψ̃(V ′) = V0 , Ψ̃[1](V ′
K′+1) = V1 .

Substituting Φ̃ = Φ̃0 ◦ πK,0 in (30), one has Φ̃0 ◦ Ψ̃ ◦ πK+K′,K′ = πK+K′,0 on

Ψ̃[K]
−1

(V ) , and, finally,

(45) Φ̃0 ◦ Ψ̃ = πK′,0 on V ′ ;
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in a similar way, substituting Φ̃[1] = Φ̃[1]
0 ◦ πK+1,1 in the first prolongation of (30),

(46) Φ̃[1]
0 ◦ Ψ̃[1] = πK′+1,1 on V ′

K′+1 .

Applying Φ̃0 to both sides of the first relation and Φ̃[1]
0 to both sides of the second

relation in (44), one has, using (45) and (46),

(47) Φ̃0(V0) = V ′
0 , Φ̃[1]

0 (V1) = V ′
1 .

Since the rank of πK′,0 on the right-hand side of (45) is n′ = n at all points of V ′,
Φ̃0 must be a local diffeomorphism at all points of Ψ̃(V ′) = V0 and, in particular,
at ξ0: by the inverse function theorem, there are a neighborhood O of ξ0 = πK,0(ξ)
in V0 and a neighborhood O′ of Φ0(ξ0) in M ′ such that Φ0 defines a diffeomorphism
O → O′.

Let us now replace V with V ∩ πK,0−1(O), a smaller neighborhood of ξK ; V ′ is
still defined by (43) from this smaller V , one has V0 = O, the former Φ̃0 is replaced
by its restriction to this smaller V0, and the above relations still hold. In particular,
O′ = Φ̃0(O) must be all V ′

0 according to (47); i.e., Φ̃0 defines a diffeomorphism
V0 → V ′

0 ; let Ψ̃0 be its inverse. Composing each side of (45) with Ψ̃0, one gets
Ψ̃ = Ψ̃0 ◦ πK′,0 on V ′; hence, by (32), one has V ′ ⊂ Ω̃′S and, since this is true for all
ξK in Ω̃S , one has

(48) πK+K′,K′
(
Ψ̃[K]−1

(Ω̃S)
)

= Φ̃[K′](Ω̃SK+K′) ⊂ Ω̃′S .

Let V1 and V ′
1 be open subsets of Ω1 and Ω′

1 such that

(49) V1 = Σ ∩ V1 , V ′
1 = Σ ∩ V ′

1 .

From Proposition 5.2, the second relation in (47) implies that systems Σ and Σ′ are
static equivalent over V1 and V ′

1. Interchanging the two systems, one proves that

(50) πK+K′,K

(
Φ̃[K′]−1

(Ω̃′S)
)

= Ψ̃[K](Ω̃′S
K+K′) ⊂ Ω̃S

and that, for all ξ′K′ ∈ Ω̃′S , there are a neighborhood W ′ of ξ′1 = πK′,1(ξ′K′) in Ω′
1

and an open subset W1 of Ω1 such that systems Σ and Σ′ are static equivalent over
W1 and W ′

1.

Now, Φ̃[K′](Ω̃SK+K′) ⊂ Ω̃′S in (48) implies Ω̃SK+K′ ⊂ Φ̃[K′]−1
(Ω̃′S), and, hence,

Ω̃S ⊂ πK+K′,K(Φ̃[K′]−1
(Ω̃′S)). Hence, (48) implies the converse inclusion in (50); in

a similar way (50) implies the converse inclusion in (48). This proves (35) and (36)
and ends the proof of Lemma 5.5.

Proof of Lemma 5.6. Denote by ξ̄K+1 the point ξK+1 in the lemma statement,
and set ξ̄K = πK+1,K(ξ̄K+1) ∈ Ω̃ \ Ω̃S , ξ̄0 = πK,0(ξ̄K+1), and ξ̄1 = πK,1(ξ̄K+1). From
Proposition 3.4 and after possibly shrinking UK so that it is contained in Ω, there
exist a neighborhood UK ⊂ Ω of ξ̄K in JK(M), coordinates (xI, xI) on U0 = πK,0(UK)
inducing coordinates (xI, xI, ẋI, ẋI, . . . , x

(K)
I , x

(K)
I

) on UK , and an open subset UK ⊂
R
n+Km such that the equations of ŨK = UK ∩ΣK in JK(M) in these coordinates are

(51)
x

(i)
I = f (i−1)(xI, xI, ẋI, . . . , x

(i)
I

) , 1 ≤ i ≤ K ,

(xI, xI, ẋI, . . . , x
(K)
I

) ∈ UK .
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By substitution, there is a unique smooth map φK : UK → M ′ such that Φ̃(ξ) =
φK(xI, xI, ẋI, . . . , x

(K)
I

) for all ξ in ŨK with coordinate vector (xI, xI, . . . , x
(K)
I , x

(K)
I

).

Let Xi = (xI, xI, ẋI, ẋI, . . . , x
(i)
I , x

(i)
I

) be the coordinate vector of ξ̄i for i ≤ K + 1
and ρ̄ the smallest integer such that φK does not depend on x(ρ̄+1)

I
, . . . , x

(K)
I

on at least
one neighborhood of XK . Shrinking UK to this neighborhood and ŨK accordingly,
we may define φ : Uρ̄ → M ′, with Uρ̄ the projection of UK on R

n+ρ̄ m, such that
Φ̃(ξ) = φK(xI, xI, ẋI, . . . , x

(K)
I

) = φ(xI, xI, ẋI, . . . , x
(ρ̄)
I

). If ρ̄ was zero, one would have
Φ̃(ξ) = φ(xI, xI), and, hence, the right-hand side of (31) would be satisfied for ξ = ξ̄K
with V = ŨK ; this is impossible because we assumed ξ̄K ∈ Ω̃ \ Ω̃S . Hence, ρ̄ ≥ 1.

For all ξK+1 in ŨK+1 with coordinate vector (xI, xI, . . . , x
(K+1)
I

), one has

(52) Φ̃[1](ξK+1) = χ
(
xI, xI, ẋI, . . . , x

(ρ̄)
I
, x

(ρ̄+1)
I

)
with χ : Uρ̄+1 → TM ′ the map defined by

χ
(
xI, . . . , x

(ρ̄+1)
I

)
=

(
φ
(
xI, . . . , x

(ρ̄)
I

)
, a
(
xI, . . . , x

(ρ̄)
I

)
+

∂φ

∂x
(ρ̄)
I

(
xI, . . . , x

(ρ̄)
I

)
x

(ρ̄+1)
I

)(53)

with a = ∂φ
∂xI

f +
∑ρ̄−1

i=0
∂φ

∂x
(i)
I

x
(i+1)
I

. According to (29), (51), and (52), Σ′ contains

χ(Uρ̄+1). Now, for any (xI, . . . , x
(ρ̄+1)
I

) ∈ Uρ̄+1 such that the linear map

∂φ

∂x
(ρ)
I

(
xI, . . . , x

(ρ̄)
I

)
: R

m → T
φ
(
xI,...,x

(ρ̄)
I

)M ′

is nonzero, picking w �= 0 in its range, (53) implies that the straight line Δ in
T
φ(xI,...,x

(ρ̄)
I

)
M ′ passing through χ(xI, . . . , x

(ρ̄+1)
I

) with direction w has a segment

around χ(xI, . . . , x
(ρ̄+1)
I

) contained in Σ′, and, hence, in particular, Δ has contact
of infinite order with Σ′ at point χ(xI, . . . , x

(ρ̄+1)
I

). To sum up, we have proved
so far that, for all ξK+1 in ŨK+1 with coordinate vector (xI, xI, . . . , x

(K+1)
I

) such
that ∂φ

∂x
(ρ)
I

(xI, . . . , x
(ρ̄)
I

) is nonzero, there is a straight line ΔξK+1 in TΦ̃(ξK)M
′ passing

through Φ̃[1](ξK+1) that has contact of infinite order with Σ′ at Φ̃[1](ξK+1). The set of
such points ξK+1 may not contain ξ̄K+1, but its topological closure does by minimal-
ity of ρ̄; taking a sequence of points ξK+1 that converges to ξ̄K+1, any accumulation
point of the compact sequence (ΔξK+1) is a straight line in TΦ̃(ξ̄K)M

′ passing through

Φ̃[1](ξ̄K+1) that has contact of infinite order with Σ′ at Φ̃[1](ξ̄K+1).

Acknowledgment. The author is indebted to the anonymous reviewer who sug-
gested to include a sketch of the proof (section 4.2) that clarifies the main ideas.
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l’Ensemble des Solutions, Ph.D. thesis, University de Nice - Sophia Antipolis, Nice, France,
2005.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

940 JEAN-BAPTISTE POMET

[3] D. Avanessoff and J.-B. Pomet, Flatness and Monge parameterization of two-input systems,
control-affine with 4 states or general with 3 states, ESAIM Control Optim. Calc. Var., 13
(2007), pp. 237–264.
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and flatness of nonlinear systems, IEEE Trans. Automat. Control, 44 (1999), pp. 922–937.

[8] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Grad. Texts in
Math. 14, Springer-Verlag, New York, 1973.

[9] E. Goursat, Sur le problème de Monge, Bull. Soc. Math. France, 33 (1905), pp. 201–210.
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OPTIMAL STOPPING PROBLEM FOR STOCHASTIC
DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS∗
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Abstract. An optimal stopping problem for stochastic differential equations with random co-
efficients is considered. The dynamic programming principle leads to a Hamiltion–Jacobi–Bellman
equation, which, for the current case, is a backward stochastic partial differential variational inequal-
ity (BSPDVI, for short) for the value function. Well-posedness of such a BSPDVI is established, and
a verification theorem is proved.
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stochastic partial differential variational inequality, verification theorem
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1. Introduction. Throughout this paper, we let (Ω,F ,F,P) be a complete fil-
tered probability space on which a d-dimensional standard Brownian motion W (·) is
defined, with F ≡ {Ft}t≥0 being its natural filtration augmented by all the P-null sets
in F . Let S[0, T ] be the set of all F-stopping times taking values in [0, T ]. For any
τ1, τ2 ∈ S[0, T ], with τ1 ≤ τ2 almost surely and P{τ1 < τ2} > 0, let

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S[τ1, τ2]
Δ={τ ∈ S[0, T ]|τ1 ≤ τ ≤ τ2 a.s. },

S(τ1, τ2]
Δ={τ ∈ S[τ1, τ2]|τ1 < τ a.s. on {τ1 < τ2}},

S[τ1, τ2)
Δ={τ ∈ S[τ1, τ2]|τ < τ2 a.s. on {τ1 < τ2}},

S(τ1, τ2)
Δ={τ ∈ S[τ1, τ2]|τ1 < τ < τ2 a.s. on {τ1 < τ2}}.

(1.1)

Next, for any s ∈ S[0, T ] and p ≥ 1, denote

X ps ≡ L
p
Fs

(Ω; Rn) Δ= {ξ : Ω→ R
n|ξ is Fs-measurable, E|ξ|p <∞} .(1.2)

For any s ∈ S[0, T ) and ξ ∈ X ps , consider the following stochastic differential equation
(SDE, for short):

{
dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t), t ∈ [s, T ],
X(s) = ξ,

(1.3)

where b : [0, T ] × R
n × Ω → R

n and σ : [0, T ] × R
n × Ω → R

n×d are given maps.
We refer to the above as the state equation. Under proper conditions (which will be
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assumed shortly), the above SDE admits a unique strong solution X(·) ≡ X(· ; s, ξ).
Introduce the following cost functional:

Js,ξ(τ) = E

[∫ τ

s

g(t,X(t; s, ξ))dt+ h(τ,X(τ ; s, ξ))
∣∣Fs

]
, τ ∈ S[s, T ],(1.4)

where g, h : [0, T ]×R
n×Ω→ [0,∞) are some given nonnegative maps satisfying proper

conditions. The two terms on the right-hand side of (1.4) represent the running cost
and the terminal cost, respectively. We point out that all the involved maps b, σ, g,
and h in our discussion are allowed to be random. With the above setting, we can
now pose the following optimal stopping problem.

Problem (S). For given s ∈ S[0, T ) and ξ ∈ X ps , find the smallest τ̄ ∈ S[s, T ]
such that

Js,ξ(τ̄ ) = inf
τ∈S[s,T ]

Js,ξ(τ) ≡ V (s, ξ).(1.5)

Any τ̄ ∈ S[s, T ] satisfying (1.5) is referred to as an optimal stopping time, and
the smallest one is referred to as the smallest optimal stopping time. We compatibly
define

V (T, ξ) = h(T, ξ) ∀ξ ∈ X ps .(1.6)

Random field V (· , ·) defined by (1.5)–(1.6) is called the value function of Problem (S).
We point out that for the maps g and h, a nonnegativity condition can be relaxed
to the boundedness from below. On the other hand, it is not hard to see that if
h = 0 and g > 0, then any optimal stopping time of Problem (S) must be the smallest
one. But, in general, the optimal stopping time of Problem (S) is not necessarily
unique (one can modify Example D.14 of [14]). Hence, to be definite, our Problem
(S) is to find the smallest optimal stopping time. We also note that, due to the fact
that the coefficients are allowed to be random and our cost functional is defined by a
conditional expectation, our value function V (· , ·) is actually a random field.

In the case where all the coefficients are deterministic, one can prove the dy-
namic programming principle which leads to a partial differential variational inequal-
ity (PDVI, for short), as the corresponding HJB equation for the value function (which
is deterministic). Moreover, it can be shown that the value function is the unique
viscosity solution to the PDVI. In the case where the diffusion is uniformly nonde-
generate, the value function is the (unique) classical solution of the PDVI, provided
that some mild smoothness conditions are assumed for the coefficients. On the other
hand, one can independently establish the well-posedness of the corresponding PDVI,
as well as a verification theorem. These will then provide a solution to the original
optimal stopping time problem (see [2] and the references cited therein).

We also note that, by some pure probabilistic approach, one can study an opti-
mal stopping time problem for general continuous-time stochastic processes. Optimal
stopping time is characterized by means of the so-called Snell’s envelope, super mar-
tingale, and so on, without using the dynamic programming principle. In such an
approach, no HJB equation is involved, which is natural because no dynamic equa-
tion is assumed for the considered stochastic processes (see [14]). We refer to [9], [10],
[25], [3], [24], [8], [28], [22], [29], [18], [1], [5], [23], [4], [27], [7], [11] for relevant results
on stochastic optimal stopping and optimal control problems.

For the problem under our consideration, since we have more structures on the
stochastic process (satisfying an SDE, etc.), it is expected to have more detailed char-
acterization on the optimal stopping time. On the other hand, due to the randomness
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of the coefficients, the usual technique of the dynamic programming principle together
with theories of PDVIs, do not directly apply. In this paper, inspired by [21], we will
formally derive the corresponding HJB equation for the value function V (· , ·), which
is now a backward stochastic partial differential variational inequality (BSPDVI, for
short). Using a result of semilinear backward stochastic partial differential equations
(BSPDEs, for short) from [26], together with a standard penalty technique for (de-
terministic) PDVIs (see [12]), we will obtain the well-posedness of our BSPDVI in
a certain sense. At the same time, a verification theorem will be established, which
says that, under proper conditions, the solution to the BSPDVI coincides with the
value function of Problem (S). Then an optimal stopping time can be characterized.
See [20] for some results concerning backward stochastic variational inequalities in an
abstract framework.

The rest of the paper is organized as follows: Some preliminary results, including
certain basic properties of the value function will be presented in section 2. In sec-
tion 3, we will formally derive the BSPDVI and formally prove a verification theorem.
Notions of adapted solutions will be introduced in section 4. The well-posedness of
the BSPDVI will be established in section 5. Finally, in section 6, the adapted weak
solution of the BSPDVI will be identified as the value function of Problem (S).

2. Some preliminary results. In this section, we are going to present some
preliminary results related to value function V (· , ·) of Problem (S). To begin with,
for any p ≥ 1, s ∈ S[0, T ), and τ ∈ S(s, T ], we let Lp

F
(Ω;C([s, τ ]; Rn)) be the set of

all processes ϕ : [s, τ ]→ R
n having continuous paths and

E

[
sup
t∈[s,τ ]

|ϕ(t)|p
]
<∞.

It is clear that Lp
F
(Ω;C([s, τ ]; Rn)) is a Banach space. Next, for p ≥ 1, we denote

(recall (1.2))

Dp =
{
(s, ξ) ∈ S[0, T ]×X pT

∣∣ s ∈ S[0, T ], ξ ∈ X ps
}
.

Now, we introduce the following standing assumption concerning the coefficients of
state equation (1.3).

Assumption (H1). Maps b : [0, T ]×R
n×Ω→ R

n and σ : [0, T ]×R
n×Ω→ R

n×d

are measurable and they satisfy the following:
(a) For each x ∈ R

n, t 	→ (b(t, x), σ(t, x)) is F-progressively measurable and for
some p > 1,

E

(∫ T

0

|b(t, 0)|dt
)p

+ E

(∫ T

0

|σ(t, 0)|2dt
) p

2

<∞.(2.1)

(b) There exists an L > 0 such that

|b(t, x, ω)− b(t, y, ω)|+ |σ(t, x, ω)− σ(t, y, ω)| ≤ L|x− y|,
a.e. t ∈ [0, T ], ∀x, y ∈ R

n, a.s. ω ∈ Ω.(2.2)

Concerning the maps appearing in the cost functional, we introduce the following
assumption.

Assumption (H2). Maps g, h : [0, T ]×R
n×Ω→ [0,∞) are measurable, and they

satisfy the following:
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(a) For each x ∈ R
n, t 	→ (g(t, x), h(t, x)) is F-progressively measurable; for each

x ∈ R
n and a.s. ω ∈ Ω, t 	→ h(t, x) is continuous, and

E

[∫ T

0

g(t, 0)dt+ sup
t∈[0,T ]

h(t, 0)

]
<∞.(2.3)

(b) There exists an L > 0 such that

|g(t, x, ω)− g(t, y, ω)|+ |h(t, x, ω)− h(t, y, ω)| ≤ L|x− y|,
a.e. t ∈ [0, T ], ∀x, y ∈ R

n, a.s. ω ∈ Ω,(2.4)

and there exists a continuous nondecreasing function ρ : [0,∞)→ [0,∞), with ρ(0) =
0 such that

|h(t, x, ω)− h(s, x, ω)| ≤ (1 + |x|)ρ(|t − s|), ∀t, s ∈ [0, T ], x ∈ R
n, a.s.(2.5)

The following result is pretty standard (see [13]).
Proposition 2.1. Let (H1) hold. Then, for each (s, ξ) ∈ Dp, state equation (1.3)

admits a unique (strong) solution X(·) ≡ X(· ; s, ξ) ∈ Lp
F
(Ω;C([s, T ]; Rn)). Moreover,

E

[
sup
t∈[s,T ]

|X(t; s, ξ)|p
∣∣ Fs

]
≤ C (1 + |ξ|p) ∀(s, ξ) ∈ Dp,(2.6)

E

[
sup
t∈[s,T ]

|X(t; s, ξ)−X
(
t; s, ξ̄

)
|p

∣∣ Fs
]
≤ C

∣∣ξ − ξ̄∣∣p ∀(s, ξ),
(
s, ξ̄

)
∈ Dp,(2.7)

and when p > 1,

E

[
sup
t∈[s,τ ]

|X(t; s, ξ)− ξ|p̄
∣∣ Fs

]
≤ C

(
1 + |ξ|p̄

){
E

[
|τ − s|

pp̄
2(p−p̄)

∣∣ Fs]} p−p̄
p

,

∀(s, ξ) ∈ Dp, τ ∈ S[s, T ], p̄ ∈ [1, p),

(2.8)

E

[
sup

t∈[s∨s̄,T ]

|X(t; s, ξ)−X(t; s̄, ξ)|p̄
∣∣ Fs∧s̄

]
≤ C(1 + |ξ|p̄)

{
E

[
|s− s̄|

pp̄
2(p−p̄)

∣∣ Fs∧s̄]} p−p̄
p

,

∀s, s̄ ∈ S[0, T ], ξ ∈ X ps∧s̄, p̄ ∈ [1, p),
(2.9)
hereafter, C > 0 represents a generic constant which can be different from line to
line.

A simple consequence of the above is that

(t,X(t; s, ξ)) ∈ Dp, t ∈ S[s, T ], ∀(s, ξ) ∈ Dp.(2.10)

We also note that if both s, s̄ ∈ [0, T ] are deterministic, then

E

[
sup

t∈[s∨s̄,T ]

|X(t; s, ξ)−X(t; s̄, ξ)|p
∣∣ Fs∧s̄

]
≤ C(1 + |ξ|p)|s− s̄|

p
2 ∀ξ ∈ X ps∧s̄.

(2.11)

The following proposition collects some basic results concerning value function
V (· , ·).

Proposition 2.2. Let (H1)–(H2) hold. Then
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(i) For any (s, ξ) ∈ Dp and τ ∈ S[s, T ], Js,ξ(τ) is a well-defined Fs-measurable
random variable. Moreover, there exists a τ̄ (s, ξ) ∈ S[s, T ] such that

V (s, ξ) ≡ inf
τ∈S[s,T ]

Js,ξ(τ) = Js,ξ(τ̄ (s, ξ)).(2.12)

Consequently, for any (s, ξ) ∈ Dp, V (s, ξ) is Fs-measurable.
(ii) Value function V (· , ·) satisfies the following:

|V (s, ξ)| ≤ C(1 + |ξ|) ∀(s, ξ) ∈ Dp,(2.13)

∣∣V (s, ξ)− V
(
s, ξ̄

)∣∣ ≤ C ∣∣ξ − ξ̄∣∣ ∀(s, ξ),
(
s, ξ̄

)
∈ Dp,(2.14)

and when p > 1,

∣∣E [
V (s, ξ)− V (s̄, ξ)

∣∣ Fs∧s̄]∣∣ ≤ C(1 + |ξ|)
{[

E

(
|s− s̄|

p
2(p−1)

∣∣ Fs∧s̄)] p−1
p

+ E
[
ρ(|s− s̄|) + |s− s̄|

∣∣ Fs∧s̄]
}
, ∀s, s̄ ∈ S[0, T ], ξ ∈ X ps∧s̄.

(2.15)

(iii) For any s ∈ S[0, T ) and any ϕ(·) ∈ L1
F
(Ω;C([0, T ]; Rn), map t 	→ V (t, ϕ(t))

is F-adapted on [s, T ]. In particular, for any (s, ξ) ∈ Dp, map t 	→ V (t,X(t; s, ξ)) is
F-adapted.

Proof. (i) By Proposition 2.1 and (H2), we see that, for any fixed (s, ξ) ∈ Dp,

|Js,ξ(τ)| ≤ E

[∫ τ

s

|g(r,X(r; s, ξ))|dr + |h(τ,X(τ ; s, ξ))|
∣∣ Fs

]
≤ C(1+|ξ|), τ ∈ S[s, T ].

Hence, Js,ξ(τ) is a well-defined Fs-measurable random variable. Next, it is clear that
t 	→ Js,ξ(t) is continuous. Thus, by Theorem D.12 of [14] (see also [8]), with a minor
modification, we have the existence of an optimal stopping time τ̄ (s, ξ) for Problem
(S).

(ii) For any (s, ξ), (s, ξ̄) ∈ Dp, by (H2) and Proposition 2.1, we can get

|Js,ξ(θ)− Js,ξ̄(θ)| ≤ E

[∫ θ

s

∣∣g(r,X(r; s, ξ))− g
(
r,X

(
r; s, ξ̄

))∣∣ dr
+

∣∣h(θ,X(θ; s, ξ))− h
(
θ,X

(
θ; s, ξ̄

))∣∣ ∣∣ Fs
]

≤ CE

[
sup
t∈[s,θ]

∣∣X(t; s, ξ)−X
(
t; s, ξ̄

)∣∣ ∣∣ Fs
]
≤ C

∣∣ξ − ξ̄∣∣ ∀θ ∈ S[s, T ],

(2.16)

with C > 0 being an absolute constant. Hence, (2.14) follows. Next, let s, s̄ ∈ S[0, T ],
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ξ ∈ X ps∧s̄, and θ ∈ S[s ∧ s̄, T ]. Observe the following:∣∣E [
Js,ξ(s ∨ θ)− Js̄,ξ(s̄ ∨ θ)

∣∣ Fs∧s̄]∣∣
=

∣∣∣∣∣E
[
h(s ∨ θ,X(s ∨ θ; s, ξ))− h(s̄ ∨ θ,X(s̄ ∨ θ; s̄, ξ))

+
∫ s∨θ

s

g(t,X(t; s, ξ))dt−
∫ s̄∨θ

s̄

g(t,X(t; s̄, ξ))dt
∣∣ Fs∧s̄

]∣∣∣∣∣
=

∣∣∣∣∣E
{
I(s∨s̄≤θ) [h(θ,X(θ; s, ξ))− h(θ,X(θ; s̄, ξ))]

+ I(s<θ<s̄) [h(θ,X(θ; s, ξ))− h(s̄, ξ)] + I(s̄<θ<s) [h(s, ξ)− h(θ,X(θ; s̄, ξ))]

+ I(s∨s̄≤θ)

[∫ s∨s̄

s

g(t,X(t; s, ξ))dt−
∫ s∨s̄

s̄

g(t,X(t; s̄, ξ))dt

+
∫ θ

s∨s̄
(g(t,X(t; s, ξ))dt− g(t,X(t; s̄, ξ))) dt

]

+ I(s<θ<s̄)

∫ θ

s

g(t,X(t; s, ξ))dt− I(s̄<θ<s)
∫ θ

s̄

g(t,X(t; s̄, ξ))dt
∣∣ Fs∧s̄

}∣∣∣∣∣
≤ E

{
I(s∨s̄≤θ)L|X(θ; s, ξ)−X(θ; s̄, ξ)|+ I(s<θ<s̄) [L|X(θ; s, ξ)− ξ|+ (1 + |ξ|)ρ(|s− s̄|)]

+ I(s̄<θ<s) [L|X(θ; s̄, ξ)− ξ|+ (1 + |ξ|)ρ(|s− s̄|)]

+ C

(
1 + sup

t∈[s,T ]

|X(t; s, ξ)|+ sup
t∈[s̄,T ]

|X(t; s̄, ξ)|
)
|s− s̄|

+ I(s∨s̄≤θ)

∫ θ

s∨s̄
L|X(t; s, ξ)−X(t; s̄, ξ)|dt

∣∣ Fs∧s̄
}

≤ C
{

(1 + |ξ|)
[
E

(
|s− s̄|

p
2(p−1)

∣∣ Fs∧s̄)] p−1
p

+ (1 + |ξ|)E
[
ρ(|s− s̄|)

∣∣ Fs∧s̄]
+ (1 + |ξ|)E

[
|s− s̄|

∣∣ Fs∧s̄] + (1 + |ξ|)
[
E

(
|s− s̄|

p
2(p−1)

∣∣ Fs∧s̄)] p−1
p

}

≤ C(1 + |ξ|)
{[

E

(
|s− s̄|

p
2(p−1)

∣∣ Fs∧s̄)] p−1
p

+ E
[
ρ(|s− s̄|) + |s− s̄|

∣∣ Fs∧s̄]
}
.

(2.17)

Hence, taking θ = τ̄(s̄, ξ), we obtain (note τ̄ (s̄, ξ) ≥ s̄)
E
[
V (s, ξ)− V (s̄, ξ)

∣∣ Fs∧s̄] ≤ E
[
Js,ξ(s ∨ τ̄ (s̄, ξ))− Js̄,ξ(τ̄(s̄, ξ))

∣∣ Fs∧s̄]
≤ C(1 + |ξ|)

{[
E

(
|s− s̄|

p
2(p−1)

∣∣ Fs∧s̄)] p−1
p

+ E
[
ρ(|s− s̄|) + |s− s̄|

∣∣ Fs∧s̄]
}
.

(2.18)

Exchanging the roles of s and s̄, we obtain (2.15).
(iii) is clear.

3. Principle of optimality and BSPDVI. We now would like to formally
derive the equation that value function V (· , ·) should satisfy. To this end, we first
state the following principle of optimality.

Theorem 3.1. Let (H1)–(H2) hold.
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(i) For any (s, ξ) ∈ Dp,

V (s, ξ) ≤ h(s, ξ) a.s.,(3.1)

and

V (s, ξ) ≤ inf
τ∈T [s,T ]

E

[∫ τ

s

g(r,X(r; s, ξ))dr + V (τ,X(τ ; s, ξ))
∣∣Fs

]
a.s.(3.2)

(ii) For any (s, ξ) ∈ Dp, if θ̄ ∈ S[s, T ] is an optimal stopping time of Problem (S)
for the initial point (s, ξ), then

V
(
θ̄, X

(
θ̄; s, ξ

))
= h

(
θ̄, X

(
θ̄; s, ξ

))
a.s.(3.3)

Hence, the following is the smallest optimal stopping time of Problem (S) correspond-
ing to (s, ξ):

τ̄ (s, ξ) = inf
{
t ∈ [s, T ]

∣∣ V (t,X(t; s, ξ)) = h(t,X(t; s, ξ))
}
.(3.4)

Moreover,

P ({τ̄ (s, ξ) > s}Δ{V (s, ξ) < h(s, ξ)}) = 0,(3.5)

where AΔB = (A \B) ∪ (B \A), for any A,B ∈ F , and

V (θ,X(θ; s, ξ)) = E

[∫ τ

θ

g(r,X(r; s, ξ))dr + V (τ,X(τ ; s, ξ))
∣∣Fθ

]
,

∀θ ∈ S[s, τ̄ (s, ξ)], τ ∈ S[θ, τ̄ (s, ξ)], a.s.
(3.6)

The above results are basically known (see [8]). For the readers’s convenience, we
sketch a proof in the appendix.

Note that (3.5) tells us the following: Up to a P-null set, one has

{τ̄ (s, ξ) > s} = {V (s, ξ) < h(s, ξ)}.(3.7)

Consequently, up to a P-null set, the following holds:

{τ̄ (s, ξ) = s} = {V (s, ξ) = h(s, ξ)}.(3.8)

On the other hand, (3.2) implies that

V (θ,X(θ; s, ξ)) +
∫ θ

s

g(r,X(r; s, ξ))dr

≤ E

[
V (τ,X(τ ; s, ξ)) +

∫ τ

s

g(r,X(r; s, ξ))dr
∣∣Fθ

]
,

∀θ ∈ S[s, T ], τ ∈ S[θ, T ].

(3.9)

This means that

θ 	→ V (θ,X(θ; s, ξ)) +
∫ θ

s

g(r,X(r; s, ξ))dr

is an F-submartingale on [s, T ]. Likewise, (3.6) implies that
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V (θ,X(θ; s, ξ)) +
∫ θ

s

g(r,X(r; s, ξ))dr

= E

[
V (τ,X(τ ; s, ξ)) +

∫ τ

s

g(r,X(r; s, ξ))dr
∣∣Fθ

]
,

∀θ ∈ S[s, τ̄ (s, ξ)], τ ∈ S[θ, τ̄ (s, ξ)],

(3.10)

which means that

θ 	→ V (θ,X(θ; s, ξ)) +
∫ θ

s

g(r,X(r; s, ξ))dr

is an F-martingale on [s, τ̄(s, ξ)].
Next, we would like to derive the HJB equation for value function V (· , ·). To this

end, let us first make a convention: for any differentiable map f : R
n → R

m, with
m > 1, gradient fx : R

n → R
m×n, and for m = 1, fx : R

n → R
n. Now, we recall a

special case of Itô–Kunita’s formula (see [15], [21]).
Theorem 3.2. Let F : [0, T ]× R

n × Ω→ R satisfy the following:
(1) (t, x) 	→ F (t, x, ω) is continuous a.s.;
(2) x 	→ F (t, x, ω) is C2 for each t ∈ [0, T ] a.s.;
(3) For each x ∈ R

n, t 	→ F (t, x, ·) is a continuous semimartingale, with

F (t, x) = F (0, x) +
∫ t

0

q0(r, x)dr +
∫ t

0

〈 q(r, x), dW (r) 〉, (t, x) ∈ [0, T ]× R
n

for some q0(·) and q(·) satisfying the following: For each x ∈ R
n, t 	→ (q0(t, x), q(t, x))

is F-adapted, taking values in R×R
d, and for almost all (t, ω) ∈ [0, T ]×Ω, x 	→ q(t, x)

is C1. Then

F (t,X(t)) = F (0, X(0)) +
∫ t
0

{
q0(r,X(r)) + 〈 b(r,X(r)), Fx(r,X(r)) 〉

+
1
2
tr

[
σ(r,X(r))σ(r,X(r))TFxx(r,X(r))

]
+tr [σ(r,X(r))qx(r,X(r))]

}
dr

+
∫ t

0

〈
q(r,X(r)) + σ(r,X(r))TFx(r,X(r)), dW (r)

〉
.

(3.11)
According to our convention, qx is taking values in R

d×n, and Fx is taking values
in R

n. Now, for any (s, ξ) ∈ Dp, suppose τ̄ (s, ξ) is the corresponding minimum optimal
stopping time. Suppose value function V (· , ·) admits the following representation:

V (t, x) = V (s, x) +
∫ t

s

q0(r, x)dr +
∫ t

s

〈 q(r, x), dW (r) 〉, (t, x) ∈ [s, T ]× R
n,

with q0(·) and q(·) being undetermined. Then, by Itô–Kunita’s formula, for any
t ∈ S[s, T ],

V (t,X(t; s, ξ)) = V (s, ξ) +
∫ t

s

{
q0(r,X(r; s, ξ)) + 〈 b(r,X(r; s, ξ)), Vx(r,X(r; s, ξ)) 〉

+
1
2
tr

[
σ(r,X(r; s, ξ))σ(r,X(r; s, ξ))T Vxx(r,X(r; s, ξ))

]
+ tr [σ(r,X(r; s, ξ))qx(r,X(r; s, ξ))]

}
dr

+
∫ t

s

〈
q(r,X(r; s, ξ)) + σ(r,X(r; s, ξ))TVx(r,X(r; s, ξ)), dW (r)

〉
.

(3.12)
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Hence, by (3.2), we have

0 ≤ E

[∫ t

s

g(r,X(r; s, ξ))dr + V (t,X(t; s, ξ))− V (s, ξ)|Fs
]

= E

[ ∫ t

s

{
g(r,X(r; s, ξ)) + q0(r,X(r; s, ξ)) + 〈 b(r,X(r; s, ξ)), Vx(r,X(r; s, ξ)) 〉

+
1
2
tr

[
σ(r,X(r; s, ξ))σ(r,X(r; s, ξ))T Vxx(r,X(r; s, ξ))

]
+ tr [σ(r,X(r; s, ξ))qx(r,X(r; s, ξ))]

}
dr

∣∣∣ Fs
]
.

(3.13)

Dividing it by (t− s) and sending t→ s, we obtain

0 ≤ g(s, ξ) + q0(s, ξ) + Vx(s, ξ)b(s, ξ) +
1
2
tr

[
σ(s, ξ)σ(s, ξ)T Vxx(s, ξ)

]
+ tr [σ(s, ξ)qx(s, ξ)] a.s., ∀(s, ξ) ∈ Dp.

(3.14)

On the other hand, on the set {V (s, ξ) < h(s, ξ)}, one has τ̄ (s, ξ) > s, and

θ 	→ V (θ,X(θ; s, ξ)) +
∫ θ

s

g(t,X(t; s, ξ))dt

is a martingale on [s, τ̄ (s, ξ)). Hence, it is necessary that

0 = g(s, ξ) + q0(s, ξ) +
〈
b(s, ξ), Vx(s, ξ)T

〉
+

1
2
tr

[
σ(s, ξ)σ(s, ξ)T Vxx(s, ξ)

]
+ tr [σ(s, ξ)qx(s, ξ)] a.s. on {V (s, ξ) < h(s, ξ)}, ∀(s, ξ) ∈ Dp.

(3.15)

Therefore, it is reasonable to require that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0(r, x) ≥ −1
2
tr

[
σ(r, x)σ(r, x)T Vxx(r, x)

]
−〈 b(r, x), Vx(r, x) 〉

− tr [σ(r, x)qx(r, x)]−g(r, x) a.s., (r, x) ∈ [0, T ]× R
n,

q0(r, x) = − 1
2
tr

[
σ(r, x)σ(r, x)T Vxx(r, x)

]
− 〈 b(r, x), Vx(r, x) 〉

− tr [σ(r, x)qx(r, x)]−g(r, x) as on {V (r, x) < h(r, x)},

(r, x) ∈ [0, T ]×R
n.

(3.16)

If we let β : R→ [0,+∞] be a monotone graph defined by

β(ρ) =

⎧⎨
⎩
φ, ρ > 0,
[0,+∞), ρ = 0,
0, ρ < 0,

(3.17)

then we should have

q0(r, x) ∈ −1
2
tr

[
σ(r, x)σ(r, x)T Vxx(r, x)

]
− 〈 b(r, x), Vx(r, x) 〉 − tr [σ(r, x)qx(r, x)]

+ β (V (r, x)− h(r, x)) − g(r, x), a.s. (r, x) ∈ [0, T ]× R
n,

(3.18)
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which is understood as follows:⎧⎪⎪⎨
⎪⎪⎩
q0(r, x) = −1

2
tr

[
σ(r, x)σ(r, x)T Vxx(r, x)

]
− 〈 b(r, x), Vx(r, x) 〉 − tr [σ(r, x)qx(r, x)]

+ ζ(r, x) − g(r, x) a.s. (r, x) ∈ [0, T ]× R
n,

ζ(r, x) ∈ β (V (r, x)− h(r, x)) a.s. (r, x) ∈ [0, T ]× R
n.

(3.19)

In the above, ζ(·, x) is required to be F-adapted. Consequently, we should have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V (t, x)=h(T, x)+
∫ T

t

{
1
2
tr

[
σ(r, x)σ(r, x)TVxx(r, x)

]
+〈 b(r, x), Vx(r, x)〉

+ tr [σ(r, x)qx(r, x)]

− ζ(r, x) + g(r, x)
}
dr −

∫ T

t

〈 q(r, x), dW (r) 〉, t ∈ [0, T ], x ∈ R
n,

ζ(t, x) ∈ β (V (t, x)− h(t, x)) , t ∈ [0, T ], x ∈ R
n.

(3.20)

We call (3.20) a BSPDVI. Note that, in (3.20), the unknown is the triple of F-adapted
random fields (V, q, ζ) : [0, T ]×R

n×Ω→ R×R
d×R. Note that the last inclusion in

(3.20) is equivalent to the following:{
V (t, x) − h(t, x) ≤ 0, ζ(t, x) ≥ 0, (t, x) ∈ [0, T ]× R

n a.s.,
[V (t, x) − h(t, x)] ζ(t, x) = 0, (t, x) ∈ [0, T ]× R

n a.s.(3.21)

4. Adapted solutions. In this section, we will introduce notions of adapted
solutions for BSPDVI (3.20) and will carry out some preliminary studies. To begin
with, let us make a little preparation.

By a multi-index α, we mean α = (α1, . . . , αn), with each αi being nonnegative
integers, and we define |α| =

∑n
i=1 αi. We write x = (x1, . . . , xn) for any generic

point in R
n. For any multi-index α ≡ (α1, . . . , αn) and any smooth function f(·),

denote

∂αf(x) = ∂α1
x1
· · ·∂αn

xn
f(x).(4.1)

For any domain G ⊆ R
n (G is allowed to be R

n), let Ck(G,R) be the set of all
functions f : G→ R such that

sup
x∈G, |α|≤k

|∂αf(x)| <∞.(4.2)

We may similarly define spaces Ck(G; Rn) and Ck(G; Rn×d), etc. Clearly, these are
Banach spaces. Next, we let Wm,p(G; R) be the usual Sobolev space of all functions
f(·) such that

‖f(·)‖pWm,p(G) ≡
∑

|α|≤m

∫
G

|∂αf(x)|pdx <∞,(4.3)

and Hm(Rn) = Wm,2(Rn). For any Banach space B, let L∞
F

(0, T ;B) be the space of
all bounded F-progressively measurable maps f : [0, T ]× Ω→ B, with the norm

‖f(·)‖L∞
F

(0,T ;B) = esssup
(t,ω)∈[0,T ]×Ω

‖f(t, ω)‖B.(4.4)

Here, B could be Ck(G; Rn), say. Similarly, we let CF(0, T ;B) be the space of all
B-valued F-adapted continuous processes, which is a closed subspace of L∞

F
(0, T ;B).

We now introduce the following definition.
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Definition 4.1. (i) A triple of random fields (V, q, ζ) is called an adapted strong
solution of (3.20) if for each x ∈ R

n, t 	→ (V (t, x), q(t, x), ζ(t, x)) is F-adapted
and for almost all (t, x, ω) ∈ [0, T ] × R

n × Ω, x 	→ V (t, x, ω) is twice differen-
tiable, x 	→ q(t, x, ω) is once differentiable such that (3.20) is satisfied for almost
all (x, ω) ∈ R

n × Ω.
(ii) An adapted strong solution (V, q, ζ) of (3.20) is called an adapted classical

solution of (3.20) if for almost all (t, ω) ∈ [0, T ] × Ω, x 	→ V (t, x, ω) is C2, x 	→
q(t, x, ω) is C1, and x 	→ ζ(t, x) is continuous.

Once we have the well-posedness of our BSPDVI (which will be treated in the
next section), it is natural to ask if solution V (· , ·) to the BSPDVI has anything to do
with our Problem (S)? The following result answers this question: Under appropriate
conditions, the solution of BSPDVI (3.20) coincides with the value function of Problem
(S), via which an optimal stopping time can be identified.

Theorem 4.2. Let (H1)–(H2) hold. Suppose (V, q, ζ) is an adapted classical
solution to BSPDVI (3.20). Then V (· , ·) is the value function of Problem (S). Con-
sequently, part V (· , ·) of adapted classical solution (V, q, ζ) to (3.20) is unique. More-
over, the following gives the smallest optimal stopping time of Problem (S):

τ̄ (s, ξ) = inf
{
t ∈ [s, T ]

∣∣ V (t,X(t; s, ξ)) = h(t,X(t; s, ξ))
}
.(4.5)

Proof. Let (s, ξ) ∈ Dp, and define τ̄(s, ξ) by (4.5). By the Itô–Kunita formula,
together with BSPDVI (3.20), we have

V (s, ξ) = E

[∫ τ

s

g(r,X(r; s, ξ))dr + V (τ,X(τ ; s, ξ))
∣∣Fs

]
∀τ ∈ S[s, τ̄ (s, ξ)].(4.6)

Hence, taking τ = τ̄ (s, ξ), we have

V (s, ξ) = E

[
V (τ̄ (s, ξ), X(τ̄ (s, ξ); s, ξ)) +

∫ τ̄(s,ξ)

s

g(r,X(r; s, ξ))dr
∣∣ Fs

]

= E

[
h(τ̄ (s, ξ), X(τ̄(s, ξ); s, ξ)) +

∫ τ̄(s,ξ)

s

g(r,X(r; s, ξ))dr
∣∣ Fs

]
= Js,ξ(τ̄ (s, ξ)).

(4.7)
This means that τ̄ (s, ξ) is an optimal stopping time for our Problem (S). From the
above, we further conclude that part V (· , ·) of adapted solution (V, q, ζ) to BSPDVI
(3.20) is unique, and from (4.5), τ̄(s, ξ) has to be the smallest optimal stopping time
(noting (ii) of Theorem 3.1).

Next, we would like to make a reduction which will be very useful below. To this
end, let

h(t, x) = h(0, x) +
∫ t

0

μ0(r, x)dr +
∫ t

0

〈μ(r, x), dW (r) 〉, t ∈ [0, T ](4.8)

for some suitable μ0(·) and μ(·). Suppose (V, q, ζ) is an adapted classical solution
to BSPDVI (3.20), and all the coefficients have required order of derivatives. We fix
p ≥ 2, and let⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V̄ (t, x) =
V (t, x) − h(t, x)

1 + |x|p ,

q̄(t, x) =
q(t, x) − μ(t, x)

1 + |x|p .

ζ̄(t, x) =
ζ(t, x)
1 + |x|p .

(t, x) ∈ [0, T ]× R
n a.s.,(4.9)
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Note that, in the case x 	→ V (t, x) − h(t, x) grows at most linearly, x 	→ V̄ (t, x) will
be L2-integrable over R

n. According to the above, one has⎧⎨
⎩
V (t, x) = (1 + |x|p)V̄ (t, x) + h(t, x),
q(t, x) = (1 + |x|p)q̄(t, x) + μ(t, x),
ζ(t, x) = (1 + |x|p)ζ̄(t, x).

(4.10)

Consequently (suppressing (t, x)),⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vx = (1 + |x|p) V̄x + p|x|p−2V̄ x+ hx,

Vxx = (1 + |x|p) V̄xx + p|x|p−2
[(
xV̄x

)T + xV̄x

]
+

[
p(p− 2)|x|p−4xxT + p|x|p−2I

]
V̄ +hxx,

qx = (1 + |x|p) q̄x + p|x|p−2q̄xT + μx.

(4.11)

Hence,

V̄ (t, x) ≡ (1 + |x|p)−1 [V (t, x) − h(t, x)]

= (1 + |x|p)−1

(
h(T, x)− h(t, x) +

∫ T

t

{
1
2
tr

[
σ(r, x)σ(r, x)T Vxx(r, x)

]
+ 〈 b(r, x), Vx(r, x) 〉+ tr [σ(r, x)qx(r, x)]−ζ(r, x)+g(r, x)

}
dr

−
∫ T

t

〈 q(r, x), dW (r) 〉
)

=
∫ T

t

μ0(r, x)
1 + |x|p dr +

∫ T

t

〈
μ(r, x)
1 + |x|p , dW (r)

〉
+

∫ T

t

{
1
2
tr
[
σ(r, x)σ(r, x)T

·
(
V̄xx +

p|x|p−2[xV̄ Tx + V̄xx
T ]

1 + |x|p +
p|x|p−4[(p− 2)xxT + |x|2I]V̄ + hxx

1 + |x|p

)]

+
〈
b(r, x), V̄x +

p|x|p−2V̄ x+ hx
1 + |x|p

〉
+ tr

[
σ(r, x)

(
q̄x +

p|x|p−2q̄xT + μx
1 + |x|p

)]

−ζ(r, x)− g(r, x)
1 + |x|p

}
dr −

∫ T

t

〈
q(r, x)
1 + |x|p , dW (s)

〉

=
∫ T

t

{
1
2
tr

[
σ(r, x)σ(r, x)T V̄xx

]
+

〈
b(r, x) +

p|x|p−2σ(r, x)σ(r, x)T x
1 + |x|p , V̄x

〉

+
p|x|p−4[(p− 2)|σ(r, x)T x|2 + |x|2|σ(r, x)|2] + 2p|x|p−2 〈 b(r, x), x 〉

2(1 + |x|p) V̄

+ tr [σ(r, x)q̄x] +
〈
p|x|p−2σ(r, x)T x

1 + |x|p , q̄

〉
− ζ̄

+ (1+|x|p)−1

[
1
2
tr

(
σ(r, x)σ(r, x)T hxx(r, x)

)
+ 〈 b(r, x), hx(r, x) 〉

+ tr (σ(r, x)μx(r, x)) + μ0(r, x) + g(r, x)
]}
dr−

∫ t

s

〈 q̄(r, x), dW (s) 〉

≡
∫ t

s

{
1
2
tr

[
σ(r, x)σ(r, x)T V̄xx(r, x)

]
+

〈
b̃(r, x), V̄x(r, x)

〉
+ b̃0(r, x)V̄ (r, x)

+ tr [σ(r, x)q̄x(r, x)]+〈 σ̃0(r, x), q̄(r, x) 〉 −ζ̄(r, x) + g̃(r, x)
}
dr

−
∫ t

s

〈 q̄(r, x), dW (s) 〉,
(4.12)
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̃(r, x) = b(r, x) +
p|x|p−2σ(r, x)σ(r, x)T x

1 + |x|p ,

b̃0(r, x) =
p|x|p−4[(p− 2)|σ(r, x)T x|2 + |x|2|σ(r, x)|2] + 2p|x|p−2 〈 b(r, x), x 〉

2(1 + |x|p) ,

σ̃0(r, x) =
p|x|p−2σ(r, x)T x

1 + |x|p ,

g̃(r, x) = (1 + |x|p)−1

[
1
2
tr

(
σ(r, x)σ(r, x)T hxx(r, x)

)
+ 〈 b(r, x), hx(r, x) 〉

+ tr (σ(r, x)μx(r, x)) + μ0(r, x) + g(r, x)
]
.

(4.13)
Note that, by the definition of β, we see that

ζ(t, x) ∈ β (V (t, x)− h(t, x)) , (t, x) ∈ [0, T ]× R
n a.s.(4.14)

is equivalent to

ζ̄(t, x) ∈ β
(
V̄ (t, x)

)
, (t, x) ∈ [0, T ]× R

n a.s.(4.15)

Next, we have {
tr

(
σσT V̄xx

)
= ∇ ·

(
σσT V̄x

)
−

〈
∇ ·

(
σσT

)
, V̄x

〉
,

tr (σq̄x) = ∇ · (σq̄)− 〈∇ · σ, q̄ 〉,(4.16)

where (with σ = (σ1, . . . , σd), each σi takes values in R
n)

∇ · σ = (∇ · σ1 , . . . ,∇ · σd)T(4.17)

and

∇ ·
(
σσT

)
=

d∑
k=1

∇ ·
(
σkσ

T
k

)
=

d∑
k=1

(∇ · (σ1kσk) , . . . ,∇ · (σnkσk))T

=
d∑
k=1

(σ1k(∇ · σk), . . . , σnk(∇ · σk))T +
d∑
k=1

(
σTk (σ1k)x, . . . , σTk (σnk)x

)T

=
d∑
k=1

(∇ · σk)σk +
d∑
k=1

(σk)xσk =
d∑
k=1

[(∇ · σk)I + (σk)x]σk.

(4.18)

Then, we can get

1
2
tr

(
σσT V̄xx

)
+

〈
b̃, V̄x

〉
+ b̃0V̄ + tr (σq̄x) +

〈
σ̃0, q̄

〉
− ζ̄ + g̃

=
1
2
∇ ·

(
σσT V̄x

)
+

〈
b̃−∇ ·

(
σσT

)
, V̄x

〉
+ b̃0V̄ +∇ · (σq̄) +

〈
σ̃0 −∇ · σ, q̄

〉
− ζ̄ + ḡ.

(4.19)

According to the above reduction, we have the following divergence form of our
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BSPDVI:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̄ (t, x) =
∫ T
t

{
1
2∇ ·

[
σ(r, x)σ(r, x)T V̄x(r, x)

]
+

〈
b̄(r, x), V̄x(r, x)

〉
+ b̄0(r, x)V̄ (r, x)

+ ∇ · [σ(r, x)q̄(r, x)] + 〈 σ̄0(r, x), q̄(r, x) 〉 −ζ̄(r, x) + ḡ(r, x)
}
dr

−
∫ T

t

〈q̄(r, x), dW (r)〉 , t ∈ [0, T ], x ∈ R
n,

ζ̄(t, x) ∈ β
(
V̄ (t, x)

)
, t ∈ [0, T ], x ∈ R

n,
(4.20)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b̄(r, x) = b̃(r, x)−∇·
[
σ(r, x)σ(r, x)T

]
= b(r, x)−∇·

[
σ(r, x)σ(r, x)T

]
+
p|x|p−2σ(r, x)σ(r, x)T x

1 + |x|p ,

b̄0(r, x) = b̃0(r, x)

=
p|x|p−4[(p− 2)|σ(r, x)T x|2 + |x|2|σ(r, x)|2] + 2p|x|p−2 〈 b(r, x), x 〉

2(1 + |x|p) ,

σ̄0(r, x) = σ̃0(r, x)−∇ · σ(r, x) =
p|x|p−2σ(r, x)T x

1 + |x|p −∇ · σ(r, x) ,

ḡ(r, x) = g̃(r, x) = (1 + |x|p)−1

[
1
2
tr

(
σ(r, x)σ(r, x)T hxx(r, x)

)
+ 〈 b(r, x), hx(r, x) 〉

+ tr (σ(r, x)μx(r, x)) + μ0(r, x) + g(r, x)
]
.

(4.21)

In order for the above reduction to be possible and for the purpose of some other
further discussions, we introduce the following assumption.

Assumption (H3). For some k > 2 + n
2 , maps b(·), σ(·), g(·), μ0(·), μ(·), and

h(0, ·) satisfy the following:{
b(·) ∈ L∞

F

(
0, T ;Ck(Rn; Rn)

)
, σ(·), μ(·) ∈ L∞

F

(
0, T ;Ck(Rn; Rn×d)

)
,

g(·), μ0(·) ∈ L∞
F

(
0, T ;Ck(Rn; R)

)
, h(0, ·) ∈ Ck(Rn; R).

(4.22)

Under (H3), we see that{∣∣b̄(t, x)∣∣ +
∣∣b̄0(t, x)∣∣ +

∣∣σ̄0(t, x)
∣∣ ≤ C,

|ḡ(t, x)| ≤ C(1 + |x|p)−1,
(t, x) ∈ (t, x) ∈ [0, T ]× R

n a.s.(4.23)

In what follows, we will choose p > 2, which will lead to∫
Rn

|ḡ(t, x)|dx ≤ C ∀t ∈ [0, T ] a.s.(4.24)

We may introduce adapted classical and strong solutions to the divergence form of
BSPDVI (4.20), similar to Definition 4.1. On the other hand, let us now introduce
the following notion.

Definition 4.3. A triple(
V̄ , q̄, ζ̄

)
∈ L2

F

(
0, T ;H1(Rn)

)
× L2

F

(
0, T ;L2

(
R
n; Rd

))
× L2

F

(
0, T ;L2(Rn)

)
(4.25)
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is called an adapted weak solution of (4.20) if, for any ϕ ∈ H1(Rn),

∫
Rn

V̄ (t, x)ϕ(x)dx =
∫ T

t

∫
Rn

{
−

〈
1
2
σ(r, x)T V̄x(r, x) + q̄(r, x), σ(r, x)Tϕx(x)

〉
+[

〈
b̄(r, x), V̄x(r, x)

〉
+ b̄0(r, x)V̄ (r, x)

+
〈
σ̄0(r, x), q̄(r, x)

〉
+ ḡ(r, x) − ζ̄(r, x)]ϕ(x)

}
dxdr

−
∫ T

t

〈∫
Rn

q̄(r, x)ϕ(x)dx, dW (r)
〉
, t ∈ [0, T ],

(4.26)

and {
V̄ (t, x) ≤ 0, ζ̄(t, x) ≥ 0, (t, x) ∈ [0, T ]× R

n a.s.,
V̄ (t, x)ζ̄(t, x) = 0, a.e. (t, x) ∈ [0, T ]× R

n a.s.(4.27)

We point out that any adapted strong solution (V̄ , q̄, ζ̄) of (4.20) must be an
adapted weak solution of (4.20). Similar to [16], we can show, by an argument using
integration by parts, that an adapted weak solution is an adapted strong (classical)
solution if it has the regularity that the latter requires.

5. Well-posedness of the BSPDVI. In this section, we are going to discuss
the issue of the well-posedness of BSPVDI. First, we have the following.

Theorem 5.1. Suppose (H3) holds. Let (V̄ , q̄, ζ̄) and (Ṽ , q̃, ζ̃) be adapted weak
solutions to (4.20), with

⎧⎨
⎩
V̄ , Ṽ ∈ L2

F

(
0, T ;H1(Rn)

)
,

q̄, q̃ ∈ L2
F

(
0, T ;L2(Rn; Rd)

)
,

ζ̄, ζ̃ ∈ L2
F

(
0, T ;L2(Rn)

)
.

(5.1)

Then

V̄ (t, x) = Ṽ (t, x), q̄(t, x) = q̃(t, x), ζ̄(t, x) = ζ̃(t, x), (t, x) ∈ [0, T ]× R
n, a.s.

(5.2)

Proof. Suppose (V̄ , q̄, ζ̄) and (Ṽ , q̃, ζ̃) are two adapted weak solutions to BSPDVI
(4.20). Set

V̂ = V̄ − Ṽ , q̂ = q̄ − q̃, ζ̂ = ζ̄ − ζ̃.(5.3)

Then (V̂ , q̂, ζ̂) is an adapted weak solution to the following linear BSPDE:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V̂ (t, x) =
∫ T

t

{
1
2
∇ ·

[
σ(r, x)σ(r, x)T V̂x(r, x)

]
+

〈
b̄(r, x), V̂x(r, x)

〉
+ b̄0(r, x)V̂ (r, x)

+ ∇ · [σ(r, x)q̂(r, x)] +
〈
σ̄0(r, x), q̂(r, x)

〉
− ζ̂(r, x)

}
dr

−
∫ T

t

〈 q̂(r, x), dW (r) 〉, t ∈ [0, T ], x ∈ R
n.

(5.4)
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By Itô’s type formula (see [16] for details), we have

E

∫
Rn

∣∣∣V̂ (t, x)
∣∣∣2 dx = E

∫ T

t

∫
Rn

{
−

∣∣∣σT V̂x∣∣∣2 + [2b̄0 − (∇ · b̄)]V̂ 2 − 2
〈
q̂, σT V̂x

〉
+ 2

〈
σ̄0, q̂

〉
V̂ − 2ζ̂V̂ − |q̂|2

}
dxdr

= E

∫ T

t

∫
Rn

{
−

∣∣∣σT V̂x + q̂ − σ̄0V̂
∣∣∣2 +

∣∣σ̄0
∣∣2 V̂ 2

− 2
〈
σT V̂x, σ̄

0V̂
〉

+ [2b̄0 −
(
∇ · b̄

)
]V̂ 2 − 2ζ̂V̂

}
dxdr

= E

∫ T

t

∫
Rn

{
−

∣∣∣σT V̂x + q̂ − σ̄0V̂
∣∣∣2

+
[∣∣σ̄0

∣∣2 +∇ ·
(
σσ̄0

)
+ 2b̄0 −

(
∇ · b̄

)]
V̂ 2 − 2ζ̂V̂

}
dxdr.

(5.5)

Note that

V̂ (t, x)ζ̂(t, x) ≡
[
V̄ (t, x)− Ṽ (t, x)

] [
ζ̄(t, x) − ζ̃(t, x)

]
= −V̄ (t, x)ζ̃(t, x) − Ṽ (t, x)ζ̄(t, x) ≥ 0.

(5.6)

Thus, the above implies that

E

∫
Rn

∣∣∣V̄ (t, x) − Ṽ (t, x)
∣∣∣2 dx ≤ CE

∫ T

t

∫
Rn

∣∣∣V̄ (r, x)− Ṽ (r, x)
∣∣∣2 dxdr.(5.7)

Hence, by Gronwall’s inequality, we obtain that

V̄ (t, x) = Ṽ (t, x), (t, x) ∈ [0, T ]× R
n, a.s.(5.8)

Further, (5.5) implies that

q̄(t, x) = q̃(t, x), (t, x) ∈ [0, T ]× R
n, a.s.(5.9)

Then, by virtue of (5.4), we have

ζ̄(t, x) = ζ̃(t, x), (t, x) ∈ [0, T ]× R
n, a.s.(5.10)

which proves our conclusion.
To establish the existence of an adapted weak solution, we define

η(ρ) =

⎧⎪⎨
⎪⎩

0, ρ ∈ (−∞, 0]
⋃

(2,∞),
ρ, ρ ∈ (0, 1],
2− ρ, ρ ∈ (1, 2],

(5.11)

and define

ψ(ρ) =
∫ ρ

0

∫ τ

0

η(r)drdτ =
∫ ρ

0

(ρ− r)η(r)dr, ρ ∈ R.(5.12)

Thus, ψ : R→ R is C2, nondecreasing, and convex.
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Now, for any ε > 0, we consider the following semilinear BSPDE:

V ε(t, x) =
∫ T

t

{
1
2
∇ ·

(
σσTV εx

)
+

〈
b̄, V εx

〉
+ b̄0V ε +∇ · (σqε) +

〈
σ̄0, qε

〉

+ ḡ − ψ
(
V ε

ε

)}
dr −

∫ T

t

〈 qε, dW (r) 〉, (t, x) ∈ [0, T ]× R
n.

(5.13)

The unknown of semilinear BSPDE (5.13) is the pair (V ε, qε) of F-adapted random
fields. The following is a special case of a relevant result found in [26].

Theorem 5.2. Let (H3) hold. Then, semilinear BSPDE (5.13) admits unique
adapted classical solution (V ε, qε). Moreover, for any p > 1 and any compact set
K ⊆ R

n,

E

[
sup

t∈[0,T ], x∈K
|∂αV ε(t, x)|p

]
+ E

∫ T

0

sup
x∈K
|∂αqε(t, x)|pdt <∞ ∀|α| ≤ 2.(5.14)

We hope that unique adapted classical solution (V ε, qε) of (4.20) will converge
to (V̄ , q̄) in some sense, where (V̄ , q̄, ζ̄) is the adapted weak solution to our BSPDVI
(4.20). Moreover, it is a hope that value function V of Problem (S) can be identified
by V̄ through (4.10). However, we note that, in the above estimate (5.14), the bound
of the left-hand side depends not only on compact set K, but also depends on ε > 0,
in general. Hence, we first would like to establish some estimates for (V ε, qε) (on the
whole space [0, T ] × R

n), which are uniform in ε > 0. To this end, we begin with
several lemmas whose technical proofs will be given in the appendix.

Lemma 5.3. Let θ : R→ [0,∞) be convex and piecewise smooth. Suppose that

0 = θ(0) = min
ρ∈R

θ(ρ)(5.15)

and

[θ′(ρ)]2 ≤ Cθ(ρ)θ′′(ρ) a.e. ρ ∈ R(5.16)

for some constant C > 0. Let (V ε, qε) be the adapted classical solution to BSPDE
(5.13). Then

E

∫
Rn

θ (V ε(t, x)) dx+ E

∫ T

t

∫
Rn

{
θ′′(V ε(r, x))

∣∣ σ(r, x)T V εx (r, x) + qε(r, x)
∣∣2

+ θ′(V ε(r, x))ψ
(
V ε(r, x)

ε

)}
dxdr ≤ CE

∫ T

t

∫
Rn

|θ′(V ε(r, x))|

(|V ε(r, x)| + |ḡ(r, x)|) dxdr, t ∈ [0, T ].

(5.17)

The above lemma can be used to establish several interesting estimates for (V ε, qε).
Lemma 5.4. Let (H3) hold and (V ε, qε) be the classical solution to BSPDE

(5.13). Then there exists a constant C > 0, independent of m ≥ 1 and ε > 0 such
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that

sup
t∈[0,T ]

E

∫
Rn

|V ε(t, x)|2mdx+E

∫ T

0

∫
Rn

m2|V ε(r, x)|2m−2

[
|σ(r, x)T V εx (r, x)+qε(r, x)|2

+ mV ε(r, x)ψ
(
V ε(r, x)

ε

)]
dxdr≤CeCmE

∫ T

0

∫
Rn

|ḡ(r, x)|2mdxdr, ∀ε > 0, m ≥ 1,

(5.18)

sup
t∈[0,T ]

E

∫
Rn

(
V ε(t, x)+

)2
dx+ E

∫ T

0

∫
Rn

{ ∣∣ σ(r, x)T V εx (r, x) + qε(r, x)
∣∣2 I{V ε>0}

+ V ε(r, x)+ψ
(
V ε(r, x)

ε

)}
dxdr ≤ CE

∫ T

0

∫
Rn

|ḡ(r, x)|2I{V ε>0}dxdr, ∀ε > 0,

(5.19)

sup
t∈[0,T ]

E

∫
Rn

V ε(t, x)ψ
(
V ε(t, x)

ε

)
dx

+ E

∫ T

0

∫
Rn

ψ

(
V ε(r, x)

ε

)2

dxdr ≤ CE

∫ T

0

∫
Rn

|ḡ(r, x)|2dxdr.(5.20)

Next, differentiating BSPDE (5.13) with respect to xk, we get

V εxk
(t, x) =

∫ T

t

{
1
2
∇ ·

(
σσT

(
V εxk

)
x

)
+

〈
b̄,
(
V εxk

)
x

〉
+ b̄0V εxk

+∇ ·
(
σqεxk

)
+

〈
σ̄0, qεxk

〉
− ψ′

(
V ε

ε

)
V εxk

ε
+

1
2
∇ ·

((
σσT

)
xk
V εx

)
+

〈
b̄xk

, V εx
〉

+ b̄0xk
V ε

+ ∇ · (σxk
qε) +

〈
σ̄0
xk
, qε

〉
+ ḡxk

}
dr −

∫ T

t

〈
qεxk

, dW (r)
〉
.

(5.21)
We have the following result.

Lemma 5.5. Let (H3) hold and (V ε, qε) be the classical solution to BSPDE (5.13).
Then there exists a constant C > 0, independent of ε > 0 such that

E

∫
Rn

|V εx (t, x)|2dx

+ E

∫ T

t

∫
Rn

{ ∣∣σ(r, x)T V εxx(r, x) + qεx(r, x)
T
∣∣2 +

|V εx (r, x)|2

ε
ψ′

(
V ε(r, x)

ε

)}
dxdr

≤ CE

∫ T

t

∫
Rn

(
|ḡ(r, x)|2 + |ḡx(r, x)|2

)
dxdr ∀ε > 0, t ∈ [0, T ].

(5.22)

Note that, in [16] (see [17] also), to obtain an estimate similar to (5.22), a sym-
metric condition was assumed. Our proof above removes such a condition. Next, the
result gives the monotonicity of the sequence {V ε(· , ·)}ε>0 in ε > 0.

Lemma 5.6. Let (H3) hold and 0 < ε < δ. Let (V ε, qε) be the adapted classical
solution of BSPDE (5.13) and (V δ, qδ) be the adapted classical solution of (5.13) with
ε replaced by δ. Then,

V ε(t, x) ≤ V δ(t, x), (t, x) ∈ [0, T ]× R
n, a.s.(5.23)

Proof. We observe that, by the definition of ψ(·), one has

ψ
(v
ε

)
≥ ψ

(v
δ

)
, ∀0 < ε < δ, v ∈ R.(5.24)
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Hence, by letting

V ε,δ = V ε − V δ, qε,δ = qε − qδ,(5.25)

we have

V ε,δ(t, x) =
∫ T

t

{
1
2
∇ ·

(
σσTV ε,δx

)
+

〈
b̄, V ε,δx

〉
+ b̄0V ε,δ +∇ ·

(
σqε,δ

)
+

〈
σ̄0, qε,δ

〉
−

[
ψ

(
V ε

ε

)
− ψ

(
V δ

δ

)]}
dr −

∫ T

t

〈
qε,δ, dW (r)

〉
, (t, x) ∈ [0, T ]× R

n.

(5.26)
Note that

−
[
ψ

(
V ε

ε

)
− ψ

(
V δ

δ

)]
= −

[
ψ

(
V ε

ε

)
− ψ

(
V δ

ε

)
+ ψ

(
V δ

ε

)
− ψ

(
V δ

δ

)]

= −
[∫ 1

0

ψ′
(
λV ε + (1− λ)V δ

ε

)
dλ

]
V ε,δ

ε

−
[
ψ
(
V δ

ε

)
− ψ

(
V δ

δ

)]
,

(5.27)

with

−
[
ψ

(
V δ

ε

)
− ψ

(
V δ

δ

)]
≤ 0.(5.28)

Hence, by a comparison theorem for linear BSPDEs (see [16]), we have

V ε,δ(t, x) ≤ 0, (t, x) ∈ [0, T ]× R
n a.s.,(5.29)

which proves our conclusion.
Having estimates (5.18)–(5.20), (5.22), and (5.23) for (V ε, qε), we are now ready

to prove the following result.
Theorem 5.7. Let (H3) hold. Then, BSPDVI (4.20) admits an adapted weak

solution (V̄ , q̄, ζ̄).
Proof. First of all, by Lemma 5.6, we see that

lim
ε→0

V ε(t, x) = V̄ (t, x) ∀(t, x) ∈ [0, T ]× R
n a.s.(5.30)

for some F-adapted random field V̄ (· , ·), with (t, x) 	→ V̄ (t, x) being upper semicon-
tinuous a.s. Next, by taking the 2mth root in both sides of (5.18) and then sending
m→∞, we get

esssup
(t,x,ω)∈[0,T ]×Rn×Ω

|V ε(t, x, ω)| ≤ C esssup
(t,x,ω)∈[0,T ]×Rn×Ω

|ḡ(t, x, ω)| ∀ε > 0.(5.31)

Hence, by taking m = 1 in (5.18) and combining it with (5.22) and (5.31), we have

esssup
(t,x,ω)∈[0,T ]×Rn×Ω

|V ε(t, x, ω)|2 + sup
t∈[0,T ]

E

∫
Rn

|V εx (t, x)|2dx

+ E

∫ T

0

∫
Rn

{ ∣∣σ(r, x)TV εxx(r, x) + qεx(r, x)
T
∣∣2 + |qε(r, x)|2

+
V ε(r, x)[V ε(r, x) − ε] + |V εx (r, x)|2

ε
I{V ε≥2ε}

}
dxdr

≤ C
[

esssup
(t,x,ω)∈[0,T ]×Rn×Ω

|ḡ(t, x, ω)|2 + E

∫ T

0

∫
Rn

|ḡx(r, x)|2dxdr
]

∀ε > 0.

(5.32)
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Next, by (5.32) and (5.20), together with the above, we know that with the V̄ as in
(5.30), and for some q̄ and ζ̄, one has⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V ε → V̄ strongly in L2
F

(
0, T ;L2(Rn)

)
,

V εx → V̄x weakly in L2
F

(
0, T ;L2

(
R
n; R1×n)),

qε → q̄ weakly in L2
F

(
0, T ;L2

(
R
n; Rd

))
,

ψ

(
V ε

ε

)
→ ζ̄ weakly in L2

F

(
0, T ;L2(Rn)

)
,

(5.33)

and

E

∫ T

0

∫
Rn

{
[V ε(r, x) − ε]2 + |V εx (r, x)|2

}
I(V ε≥2ε)dxdr ≤ Cε.(5.34)

This yields{
[(V ε − ε) + |V εx |] I{V ε≥2ε} → 0 strongly in L2

F

(
0, T ;L2 (Rn)

)
,

[V ε(t, x) + |V εx (t, x)|] I{V ε≥2ε} → 0 a.e. (t, x) ∈ [0, T ]× R
n a.s.(5.35)

Then it is necessary that

V̄ (t, x) ≤ 0, (t, x) ∈ [0, T ]× R
n, a.s.,(5.36)

and together with (5.30), we have

{
V̄ < 0

}
=

⋃
ε>0

{V ε < 0}.(5.37)

Also, it is necessary that

ζ̄(t, x) ≥ 0, a.e. (t, x) ∈ [0, T ]× R
n, a.s.(5.38)

On the other hand, by applying the dominated convergence theorem to (5.19), we
obtain ⎧⎪⎪⎨

⎪⎪⎩
(V ε)+ψ

(
V ε

ε

)
= V εψ

(
V ε

ε

)
→ 0 strongly in L1

F

(
0, T ;L1(Rn)

)
,

V ε(t, x)ψ
(
V ε(t, x)

ε

)
→ 0 a.e. (t, x) ∈ [0, T ]× R

n a.s.
(5.39)

Hence, it is necessary that

V̄ (t, x)ζ̄(t, x) = 0, a.e. (t, x) ∈ [0, T ]× R
n, a.s.(5.40)

Now, for any ϕ(·) ∈ C∞
0 (Rn), we have from (5.13) that

∫
Rn

V ε(t, x)ϕ(x)dx =
∫ T

t

∫
Rn

{
−

〈
1
2
σTV εx + qε, σTϕx

〉
+

[ 〈
b̄, V εx

〉
+ b̄0V ε

+
〈
σ̄0, qε

〉
+ ḡ − ψ

(
V ε

ε

)]
ϕ

}
dxdr

−
∫ T

t

〈∫
Rn

qεϕdx, dW (r)
〉
, t ∈ [0, T ].

(5.41)
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Then, letting ε→ 0, along a sequence, we obtain∫
Rn

V̄ (t, x)ϕ(x)dx =
∫ T

t

∫
Rn

{
−

〈
1
2
σT V̄x + q̄, σTϕx

〉

+
[〈
b̄, V̄x

〉
+ b̄0V̄ +

〈
σ̄0, q̄

〉
+ ḡ − ζ̄

]
ϕ

}
dxdr

−
∫ T

t

〈∫
Rn

q̄ϕdx, dW (r)
〉
, t ∈ [0, T ].

(5.42)

Hence, (V̄ , q̄, ζ̄) is the adapted weak solution of (4.20).
From the above, we see that, for any ϕ(·) ∈ C∞

0 (Rn), map t 	→
∫

Rn V̄ (t, x)ϕ(x)dx
is continuous.

6. Identification of the value function. In this section, we are going to iden-
tify the weak adapted solution of BSPDVI as the value function V (· , ·) of Problem
(S). Suppose (V ε(·), qε(·)) is the adapted classical solution of (5.13). Let{

Ṽ ε(t, x) = (1 + |x|p)V ε(t, x) + h(t, x),
q̃ ε(t, x) = (1 + |x|p)qε(t, x) + μ(t, x),

(t, x) ∈ [0, T ]× R
n.(6.1)

Then

Ṽ ε(t, x) = h(T, x) +
∫ T

t

{
1
2
tr

[
σ(r, x)σ(r, x)T Ṽ εxx(r, x)

]
+

〈
b(r, x), Ṽ εx (r, x)

〉

+ tr [σ(r, x)q̃ εx (r, x)]−ψ
(
Ṽ ε(r, x)−h(r, x)

ε

)
+g(r, x)

}
dr

−
∫ T

t

〈 q̃ ε(r, x), dW (r) 〉

≡ h(T, x) +
∫ T

t

q̃ 0,ε(r, x)dr −
∫ T

t

〈 q̃ ε(r, x), dW (r) 〉, (t, x) ∈ [s, T ]× R
n.

(6.2)
Consequently, by Itô–Kunita’s formula, we have

Ṽ ε(t,X(t; s, ξ)) = Ṽ ε(s, ξ) +
∫ t

s

{
q̃ 0,ε(r,X(r; s, ξ))

+
〈
b(r,X(r; s, ξ)), Ṽ εx (r,X(r; s, ξ))

〉
+

1
2
tr

[
σ(r,X(r; s, ξ))σ(r,X(r; s, ξ))T Ṽ εxx(r,X(r; s, ξ))

]

+ tr [σ(r,X(r; s, ξ))q̃ εx (r,X(r; s, ξ))]
}
dr

+
∫ t

s

〈
q̃ ε(r,X(r; s, ξ)) + σ(r,X(r; s, ξ))T Ṽ εx (r,X(r; s, ξ)), dW (r)

〉

= Ṽ ε(s, ξ) +
∫ t

s

{
ψ

(
Ṽ ε(r,X(r; s, ξ))− h(r,X(r; s, ξ))

ε

)

− g(r,X(r; s, ξ))

}
dr

+
∫ t

s

〈
q̃ ε(r,X(r; s, ξ)) + σ(r,X(r; s, ξ))T Ṽ εx (r,X(r; s, ξ)), dW (r)

〉
.

(6.3)
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Thus, for any τ ∈ S[s, T ],

Js,ξ(τ) = E
[∫ τ
s
g(r,X(r; s, ξ))dr + h(τ,X(τ ; s, ξ))

∣∣Fs]
= Ṽ ε(s, ξ) + E

[∫ τ

s

ψ

(
Ṽ ε(r,X(r; s, ξ))− h(r,X(r; s, ξ))

ε

)
dr

∣∣Fs
]

+ E

[
h(τ,X(τ ; s, ξ)) − Ṽ ε(τ,X(τ, s, ξ))

∣∣Fs] .
(6.4)

By our discussion above, we know that under (H3),

Ṽ ε(t, x) ↓V ∗(t, x), ∀(t, x) ∈ [0, T ]× R
n, a.s.,(6.5)

with (t, x) 	→ V ∗(t, x) being upper semicontinuous, and by (5.36),

V ∗(s, ξ) = (1 + |x|p)V̄ (s, ξ) + h(s, ξ) ≤ h(s, ξ), a.s., ∀(s, ξ) ∈ Dp.(6.6)

Now, sending ε→ 0 in (6.4), we have

Js,ξ(τ) = V ∗(s, ξ) + E

[∫ τ

s

ζ∗(r,X(r; s, ξ))dr
∣∣Fs

]
+ E

[
h(τ,X(τ ; s, ξ)) − V ∗(τ,X(τ, s, ξ))

∣∣Fs] ,(6.7)

with

ζ∗(t, x) ∈ β (V ∗(t, x) − h(t, x)) , (t, x) ∈ [0, T ]× R
n, a.s.(6.8)

Hence,

Js,ξ(τ) ≥ V ∗(s, ξ), (s, ξ) ∈ Dp, τ ∈ S[s, T ],(6.9)

which leads to

V (s, ξ) ≥ V ∗(s, ξ), (s, ξ) ∈ Dp.(6.10)

Next, let (s, ξ) ∈ Dp be fixed. We define

τ∗(s, ξ) = inf
{
r ∈ [s, T ]

∣∣ V ∗(r,X(r; s, ξ)) = h(r,X(r; s, ξ))
}
.(6.11)

Since t 	→ V ∗(r,X(r; s, ξ)) − h(r,X(r; s, ξ)) is F-progressively measurable, by Début
Theorem (see [6], [19]), τ∗(s, ξ) ∈ S[s, T ]. Then, taking τ = τ∗(s, ξ) in (6.7), we
obtain

V (s, ξ) ≤ Js,ξ(τ∗(s, ξ)) = V ∗(s, ξ).(6.12)

Hence, combining the above with (6.10), one must have the following:

V ∗(s, ξ) = V (s, ξ) ∀(s, ξ) ∈ Dp.(6.13)

That means V ∗(· , ·) must be the value function V (· , ·) of Problem (S). Consequently,
(t, x) 	→ V ∗(t, x) = V (t, x) must be continuous itself. Moreover, the smallest optimal
stopping time can be identified through (3.4).
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7. Appendix. In this appendix, we collect some proofs.
Sketch proof of Theorem 3.1. (i) For any τ ∈ S[s, T ], we have

V (s, ξ) ≤ Js,ξ(τ) ≡ E

[∫ τ

s

g(r,X(r; s, ξ))dr + h(τ,X(τ))
∣∣Fs

]
.(7.1)

In particular, taking τ = s, one obtains (3.1). Next, for any τ ∈ S[s, T ], take θ ∈
S[τ, T ]. One has

V (s, ξ) ≤ Js,ξ(θ) = E

[∫ τ

s

g(r,X(r; s, ξ))dt + Jτ,X(τ ;s,ξ)(θ)
∣∣Fs

]
.(7.2)

Taking infimum with respect to θ ∈ S[τ, T ] yields

V (s, ξ) ≤ E

[∫ τ

s

g(r,X(r; s, ξ))dr + V (τ,X(τ ; s, ξ))
∣∣Fs

]
.(7.3)

Hence, (3.2) holds.
(ii) Suppose θ̄ ∈ S[θ, T ] is optimal for initial point (s, ξ) ∈ Dp. Then

V (s, ξ) = Js,ξ(θ̄) ≥ E

[∫ θ̄

s

g(r,X(r; s, ξ))dr + V (θ̄, X(θ̄; s, ξ))
∣∣Fs

]

≥ inf
τ∈S[s,T ]

E

[∫ τ

s

g(r,X(r; s, ξ))dr + V (τ,X(τ ; s, ξ))
∣∣Fs

]
≥ V (s, ξ).

(7.4)

Hence, the equalities in the above have to hold, which implies

E
[
V

(
θ̄, X

(
θ̄; s, ξ

)) ∣∣Fs] = E
[
h
(
θ̄, X

(
θ̄; s, ξ

)) ∣∣Fs] .(7.5)

Combining the fact

V
(
θ̄, X

(
θ̄; s, ξ

))
≤ h

(
θ̄, X

(
θ̄; s, ξ

))
a.s.,

we obtain (3.3). Next, for (3.5), if there exists a Ω0 ⊆ {V (s, ξ) < h(s, ξ)}, with
P(Ω0) > 0 such that

τ̄ (s, ξ) = s on Ω0,(7.6)

then, trivially,

V (s, ξ(ω)) = h(s, ξ(ω)), ω ∈ Ω0,(7.7)

which contradicts the choice of Ω0. Conversely, if Ω0 ⊆ {τ̄(s, ξ) > s}, with P(Ω0) > 0
such that (7.7) holds, then (7.6) has to be true (by definition of τ̄ (s, ξ)), a contradiction
to the choice of Ω0. Hence, (3.5) holds.

We now show (3.6). To this end, let (s, ξ) ∈ Dp. Define τ̄(s, ξ) by (3.4), and
suppose P{s < τ̄(s, ξ)} > 0. The case θ = τ̄ (s, ξ) is trivial. Thus, we fix θ ∈
S[s, τ̄ (s, ξ)), and let τ ∈ S[θ, τ̄ (s, ξ)]. From (3.3), we know that any μ ∈ S[θ, T ], with
P{μ < τ} > 0 is not optimal for initial point (θ,X(θ; s, ξ)). Hence,

V (θ,X(θ; s, ξ)) = inf
μ∈S[τ,T ]

E

[∫ τ

θ

g(r,X(r; s, ξ))dr + Jτ,X(τ ;s,ξ)(μ)
∣∣Fθ

]

= E

[∫ τ

θ

g(r,X(r; s, ξ))dr + V (τ,X(τ ; s, ξ))
∣∣Fθ

]
,

(7.8)

proving (3.6).
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Finally, by taking θ = s and τ = τ̄ (s, ξ) in (3.6), we see that

V (s, ξ) = E

[∫ τ̄(s,x)

s

g(s,X(s; s, ξ))ds+ h(τ̄ (s, ξ), X(τ̄(s, x); s, ξ))
∣∣Fs

]
= Js,ξ(τ̄ (s, ξ)),

(7.9)
which means that τ̄ (s, ξ) is an optimal stopping time of Problem (S) for the initial
point (s, ξ), and it must be the smallest one.

Proof of Lemma 5.3. By (5.16), we may assume that

θ′(ρ)
θ′′(ρ)

=
θ′(ρ)
θ′′(ρ)

I{θ′′(ρ)>0} ∀ρ ∈ R,(7.10)

since θ : R→ [0,∞) is convex and piecewise smooth. Applying Itô’s formula to θ(V ε),
we have

−E
∫

Rn θ (V ε(t, x)) dx

= − E

∫ T

t

∫
Rn

{
θ′(V ε)

[
1
2
∇ ·

(
σσTV εx

)
+

〈
b̄, V εx

〉
+ b̄0V ε +∇ · (σqε) +

〈
σ̄0, qε

〉
+ ḡ − ψ

(
V ε

ε

) ]
− 1

2θ
′′(V ε)|qε|2

}
dxdr

=
1
2

E

∫ T

t

∫
Rn

{
θ′′(V ε)

∣∣σTV εx ∣∣2 + 2
〈
qε, θ′′(V ε)σTV εx − θ′(V ε)σ̄0

〉
+ θ′′(V ε)|qε|2

+ 2
(
∇ · b̄

)
θ(V ε) + 2θ′(V ε)

[
ψ

(
V ε

ε

)
− b̄0V ε − ḡ

]}
dxdr

=
1
2

E

∫ T

t

∫
Rn

{
θ′′(V ε)

[∣∣σTV εx ∣∣2 + 2
〈
qε, σTV εx −

θ′(V ε)
θ′′(V ε)

σ̄0

〉
+ |qε|2

]

+ 2
(
∇ · b̄

)
θ(V ε) + 2θ′(V ε)

[
ψ

(
V ε

ε

)
− b̄0V ε − ḡ

]}
dxdr

=
1
2

E

∫ T

t

∫
Rn

{
θ′′(V ε)

∣∣∣∣ σTV εx + qε − θ′(V ε)
θ′′(V ε)

σ̄0

∣∣∣∣
2

+ 2
[(
∇ · b̄

)
−∇ ·

(
σσ̄0

)]
θ(V ε)

− |θ
′(V ε)|2
θ′′(V ε)

∣∣σ̄0
∣∣2 + θ′(V ε)

[
ψ

(
V ε

ε

)
− b̄0V ε − ḡ

]}
dxdr

≥ 1
2

E

∫ T

t

∫
Rn

{
θ′′(V ε)

2

∣∣ σTV εx + qε
∣∣2 + 2

[(
∇ · b̄

)
−∇ ·

(
σσ̄0

)]
θ(V ε)

− 2|θ′(V ε)|2
θ′′(V ε)

∣∣σ̄0
∣∣2 + θ′(V ε)

[
ψ

(
V ε

ε

)
− b̄0V ε − ḡ

]}
dxdr

≥ 1
2

E

∫ T

t

∫
Rn

{
θ′′(V ε)

∣∣σTV εx + qε
∣∣2 + θ′(V ε)ψ

(
V ε

ε

)

− Cθ(V ε)− C|θ′(V ε)| (|V ε|+ |ḡ|)
}
dxdr.

(7.11)
In the above, we have used the fact that |a − b| ≥ 1

2 |a| − |b|. Note that, under our
conditions,

θ′(ρ)ψ
(ρ
ε

)
≥ 0 a.e. ρ ∈ R.(7.12)

Hence, by Gronwall’s inequality, we obtain (5.17).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL STOPPING FOR SDEs WITH RANDOM COEFFICIENTS 965

Proof of Lemma 5.4. For any m ≥ 1, taking

θ(ρ) = |ρ|2m, ρ ∈ R
n.(7.13)

Then (5.15) and (5.16) hold. Hence, by Lemma 5.3, we obtain

E

∫
Rn

V ε(t, x)2mdx+ E

∫ T

t

∫
Rn

{
2m(2m− 1)(V ε)2m−2

∣∣ σTV εx + qε
∣∣2

+ 2m(V ε)2m−1ψ

(
V ε

ε

)}
dxdr ≤ CE

∫ T

t

∫
Rn

2m|V ε|2m−1| (|V ε|+ |ḡ|) dxdr

≤ CE

∫ T

t

∫
Rn

{
(4m− 1)(V ε)2m + |ḡ|2m

}
dxdr.

(7.14)

Then, by Gronwall’s inequality, one has

E

∫
Rn

V ε(t, x)2mdx + E

∫ T

t

∫
Rn

{
2m(2m− 1)(V ε)2m−2

∣∣σTV εx + qε
∣∣2

+ 2m(V ε)2m−1ψ

(
V ε

ε

)}
dxdr ≤ CeCmE

∫ T

t

∫
Rn

ḡ2mdxdr,

(7.15)

which implies (5.18).
Next, by taking

θ(ρ) =
(
ρ+

)2
, ρ ∈ R,(7.16)

we have

θ′(ρ) = 2ρ+, θ′′(ρ) = 2I{ρ>0},(7.17)

which leads to

θ′(ρ)2 = 4
(
ρ+

)2 = 2θ(ρ)θ′′(ρ).(7.18)

Thus, (5.15) and (5.16) hold. Hence, by Lemma 5.3, we have

E

∫
Rn

(
V ε(t, x)+

)2
dx+ E

∫ T

t

∫
Rn

{
2I{V ε>0}

∣∣σTV εx + qε
∣∣2 + 2(V ε)+ψ

(
V ε

ε

)}
dxdr

≤ CE

∫ T

t

∫
Rn

2(V ε)+| [|V ε|+ |ḡ|] dxdr ≤ CE

∫ T

t

∫
Rn

[(
(V ε)+

)2 + |ḡ|2I{V ε>0}
]
dxdr.

(7.19)

It follows from Gronwall’s inequality that

E

∫
Rn

(
V ε(t, x)+

)2
dx+ E

∫ T

0

∫
Rn

{∣∣σTV εx + qε
∣∣2 I{V ε>0} + (V ε)+ψ

(
V ε

ε

)}
dxdr

≤ CE

∫ T

0

∫
Rn

|ḡ(r, x)|2I{V ε>0}dxdr, ∀ε > 0,

(7.20)

with C > 0 independent of ε > 0, which leads to (5.19).
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Finally, we take

θ(ρ) = ρψ
(ρ
ε

)
=
ρ2

ε

∫ ρ/ε

0

η(r)dr − ρ
∫ ρ/ε

0

rη(r)dr.

Then

0 ≤ θ′(ρ) = ψ
(ρ
ε

)
+
ρ

ε
ψ′

(ρ
ε

)

=
ρ

ε

∫ ρ/ε

0

η(r)dr −
∫ ρ/ε

0

rη(r)dr +
ρ

ε

∫ ρ/ε

0

η(r)dr

=
2ρ
ε

∫ ρ/ε

0

η(r)dr −
∫ ρ/ε

0

rη(r)dr,

(7.21)

and

0 ≤ θ′′(ρ) =
2
ε
ψ′

(ρ
ε

)
+

ρ

ε2
ψ′′

(ρ
ε

)
=

2
ε

∫ ρ/ε

0

η(r)dr +
ρ

ε2
η
(ρ
ε

)
.(7.22)

Note that

θ′(ρ)2−Cθ(ρ)θ′′(ρ)=
[
ψ
(ρ
ε

)
+
ρ

ε
ψ′

(ρ
ε

)]2

−Cψ
(ρ
ε

)[
2ρ
ε
ψ′

(ρ
ε

)
+
ρ2

ε2
ψ′′

(ρ
ε

)]
.

(7.23)

Now, for ρ ∈ (−∞, 0], we have

θ′(ρ)2 − Cθ(ρ)θ′′(ρ) = 0(7.24)

for any C > 0. For ρ ∈ (0, ε],

θ′(ρ)2 − Cθ(ρ)θ′′(ρ) =
[
ρ3

6ε3
+
ρ

ε

ρ2

2ε2

]2

− C ρ3

6ε3

[
2ρ
ε

ρ2

2ε2
+
ρ3

ε3

]
=

ρ6

9ε6
(4− 3C) ≤ 0,

(7.25)

provided C ≥ 4
3 . For ρ ∈ (ε, 2ε], since both ψ(·) and ψ′(·) are nondecreasing,

θ′(ρ)2 − Cθ(ρ)θ′′(ρ) =
[
ψ
(ρ
ε

)
+
ρ

ε
ψ′

(ρ
ε

)]2

− Cψ
(ρ
ε

) [
2ρ
ε
ψ′

(ρ
ε

)
+
ρ2

ε2
ψ′′

(ρ
ε

)]

≤ [ψ(2) + 2ψ′(2)]2 − 2Cψ(1)ψ′(1) = 9− C

6
≤ 0,

(7.26)

provided C ≥ 54, and for ρ ∈ [2ε,∞),

θ′(ρ)2 − Cθ(ρ)θ′′(ρ) =
[
2ρ
ε
− 1

]2

− C
(ρ
ε
− 1

) 2ρ
ε
≤ 4ρ2

ε2
− 4ρ

ε
+ 1− 2C

ρ2

ε2
+ 2C

ρ

ε

= −(C − 2)
2ρ
ε

(ρ
ε
− 1

)
+ 1 ≤ −4(C − 2) + 1 = −4C + 9 ≤ 0,

(7.27)
provided C ≥ 9

4 . Further, we claim that

ρ

ε
ψ′

(ρ
ε

)
≤ 3ψ

(ρ
ε

)
+ 1, ρ ∈ R.(7.28)
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In fact, the above holds for ρ ≤ 0. Now, for ρ ∈ (0, ε],

ρ

ε
ψ′

(ρ
ε

)
=

ρ3

2ε3
= 3ψ

(ρ
ε

)
,(7.29)

and for ρ ∈ (ε,∞),

ρ

ε
ψ′

(ρ
ε

)
=
ρ

ε

[
1− (2− ρ)2

2
I{ρ≤2ε}

]
≤ ρ

ε
= ψ

(ρ
ε

)
+ 1.(7.30)

Hence, by Lemma 5.3,

E

∫
Rn

V ε(t, x)ψ
(
V ε(t, x)

ε

)
dx + E

∫ T

t

∫
Rn{[

2
ε
ψ′

(
V ε

ε

)
+
V ε

ε2
ψ

(
V ε

ε

)] ∣∣ σTV εx + qε
∣∣2

+
[
ψ

(
V ε

ε

)
+
V ε

ε
ψ′

(
V ε

ε

)]
ψ

(
V ε

ε

)}
dxdr

≤ CE

∫ T

t

∫
Rn

[
ψ

(
V ε

ε

)
+
V ε

ε
ψ′

(
V ε

ε

)]
(|V ε|+ |ḡ|) dxdr

≤ CE

∫ T

t

∫
Rn

ψ

(
V ε

ε

)
(V ε + |ḡ|) dxdr, t ∈ [0, T ].

(7.31)

Then, by Gronwall’s inequality, together with Cauchy–Schwarz inequality, we obtain

E

∫
Rn

V ε(t, x)ψ
(
V ε(t, x)

ε

)
dx+ E

∫ T

t

∫
Rn

ψ

(
V ε

ε

)2

dxdr

≤ CE

∫ T

t

∫
Rn

|ḡ|2dxdr, t ∈ [0, T ].
(7.32)

This leads to (5.20).
Proof of Lemma 5.5. Applying Itô’s formula to |V εxk

(t, x)|2 yields

−E

∫
Rn

|V εxk
(t, x)|2dx

= − E

∫ T

t

∫
Rn

{
2V εxk

[
1
2
∇ ·

(
σσT

(
V εxk

)
x

)
+

〈
b̄,
(
V εxk

)
x

〉
+ b̄0V εxk

+∇ ·
(
σqεxk

)
+

〈
σ̄0, qεxk

〉
− ψ′

(
V ε

ε

)
V εxk

ε
+

1
2
∇ ·

((
σσT

)
xk
V εx

)
+

〈
b̄xk

, V εx
〉

+ b̄0xk
V ε

+ ∇ · (σxk
qε) +

〈
σ̄0
xk
, qε

〉
+ ḡxk

]
− |qεxk

|2
}
dxdr

= E

∫ T

t

∫
Rn

{ ∣∣σT (
V εxk

)
x

∣∣2 + 2
〈
qεxk

, σT
(
V εxk

)
x
− V εxk

σ̄0
〉

+ |qεxk
|2 + 2

〈
qε, σTxk

(
V εxk

)
x
− V εxk

σ̄0
xk

〉
+

[(
∇ · b̄

)
− 2b̄0

] (
V εxk

)2 − 2V εxk
ḡxk

+ 2ψ′
(
V ε

ε

) (
V εxk

)2

ε
+

〈
(V εx )xk

,
(
σσT

)
xk
V εx

〉

− 2V εxk

〈
b̄xk

, V εx
〉

+ b̄0xkxk
(V ε)2

}
dxdr.

(7.33)
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Note that (recalling σ = (σ1, . . . , σd), with each σi taking values in R
n)

∇ ·
[
V εxk

σxk

]
=

(
∇ · [V εxk

(σ1)xk
], . . . ,∇ · [V εxk

(σd)xk
]
)T

=
( 〈(

V εxk

)
x
, (σ1)xk

〉
+ V εxk

∇ · [(σ1)xk
], . . . ,〈(

V εxk

)
x
, (σd)xk

〉
+ V εxk

∇ · [(σd)xk
]
)T

= σTxk

(
V εxk

)
x

+ V εxk
∇ · (σxk

).

(7.34)

Hence (recall that qεx takes values in R
d×n),

E

∫ T

t

∫
Rn

〈
qε, σTxk

(
V εxk

)
x

〉
dxdr = E

∫ T

t

∫
Rn

〈
qε,∇ ·

[
V εxk

σxk

]
− V εxk

∇ · σxk

〉
dxdr

= −E

∫ T

t

∫
Rn

V εxk
{tr (σxk

qεx) + 〈 qε,∇ · σxk
〉} dxdr.

(7.35)

On the other hand,[〈(
σσT

)
xk
V εx , V

ε
x

〉]
xk

=
〈(
σσT

)
xkxk

V εx , V
ε
x

〉
+

〈(
σσT

)
xk

(V εx )xk
, V εx

〉
+

〈(
σσT

)
xk
V εx , (V

ε
x )xk

〉
=

〈(
σσT

)
xkxk

V εx , V
ε
x

〉
+ 2

〈(
σσT

)
xk
V εx , (V

ε
x )xk

〉
,

(7.36)

which implies that

E

∫ T

t

∫
Rn

〈
(V εx )xk

,
(
σσT

)
xk
V εx

〉
dxdr = −1

2
E

∫ T

t

∫
Rn

〈(
σσT

)
xkxk

V εx , V
ε
x

〉
dxdr.

(7.37)

Thus, (7.33) can be written as

−E

∫
Rn

|V εxk
(t, x)|2dx

= E

∫ T

t

∫
Rn

{ ∣∣σT (V εxk
)x
∣∣2 + 2

〈
qεxk

, σT
(
V εxk

)
x
− V εxk

σ̄0
〉

+ |qεxk
|2 − 2V εxk

tr (σxk
qεx)

+ 2
〈
qε, σ̄0

xk
−∇ · σxk

〉
V εxk

+
[(
∇ · b̄

)
− 2b̄0

] (
V εxk

)2 − 2V εxk
ḡxk

+ 2ψ′
(
V ε

ε

) (
V εxk

)2

ε

− 1
2

〈(
σσT

)
xkxk

V εx , V
ε
x

〉
− 2V εxk

〈
b̄xk

, V εx
〉

+ b̄0xkxk
(V ε)2

}
dxdr.

(7.38)

In what follows, we let

〈A,B 〉 = tr
(
ABT

)
=

n∑
k=1

aTk bk, ∀A ≡

⎛
⎜⎝
aT1
...
aTn

⎞
⎟⎠ , B ≡

⎛
⎜⎝
bT1
...
bTn

⎞
⎟⎠ ∈ R

n×m.

Then one has

|A|2 = tr
(
ATA

)
=

n∑
i=1

m∑
j=1

|aij |2 ∀A ≡ (aij) ∈ R
n×m.
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Now, summing (7.38) up with respect to k, we obtain (recall that qx takes values in
R
d×n)

−E

∫
Rn

|V εx (t, x)|2dx

=
n∑
k=1

E

∫ T

t

∫
Rn

{ ∣∣σT (
V εxk

)
x

∣∣2 + 2
〈
qεxk

, σT
(
V εxk

)
x
− V εxk

σ̄0
〉

+ |qεxk
|2 − 2V εxk

tr (σxk
qεx)

+ 2
〈
qε, σ̄0

xk
−∇ · σxk

〉
V εxk

+
[(
∇ · b̄

)
− 2b̄0

] (
V εxk

)2 − 2V εxk
ḡxk

+ 2ψ′
(
V ε

ε

) (
V εxk

)2

ε

− 1
2

〈(
σσT

)
xkxk

V εx , V
ε
x

〉
− 2V εxk

〈
b̄xk

, V εx
〉

+ b̄0xkxk
(V ε)2

}
dxdr

= E

∫ T

t

∫
Rn

{∣∣σTV εxx∣∣2 + 2 tr
[
(qεx)

T σTV εxx

]
+ |qεx|

2

− 2 tr

[
(qεx)

T

(
σ̄0V εx −

n∑
k=1

V εxk
σTxk

)]
+ 2

〈
qε,

(
σ̄0 −∇ · σ

)
x
V εx

〉
+

[(
∇ · b̄

)
− 2b̄0

]
|V εx |

2 − 2 〈V εx , ḡx〉+ 2ψ′
(
V ε

ε

)
|V εx |

2

ε

− 1
2
〈[

Δ
(
σσT

)]
V εx , V

ε
x

〉
− 2

〈
b̄xV

ε
x , V

ε
x

〉
+

(
Δb̄0

)
|V ε|2

}
dxdr

= E

∫ T

t

∫
Rn

{∣∣∣∣∣σTV εxx + qεx − σ̄0V εx −
n∑
k=1

V εxk
σTxk

∣∣∣∣∣
2

−
∣∣∣∣∣σ̄0V εx +

n∑
k=1

V εxk
σTxk

∣∣∣∣∣
2

+ 2 tr

[
V εxx

(
σσ̄0V εx +

n∑
k=1

V εxk
σσTxk

)]
+ 2

〈
qε,

(
σ̄0 −∇ · σ

)
x
V εx

〉
− 2 〈V εx , ḡx 〉

+ 2ψ′
(
V ε

ε

)
|V εx |2
ε
−

〈[
1
2
Δ

(
σσT

)]
+ b̄x + b̄Tx −

((
∇ · b̄

)
− 2b̄0

)
I]V εx , V

ε
x

〉

+
(
Δb̄0

)
|V ε|2

}
dxdr.

Note that

E

∫ T

t

∫
Rn

tr
[
V εxxσσ̄

0 (V εx )T
]
dxdr = E

∫ T

t

∫
Rn

(V εxxV
ε
x )T σσ̄0dxdr

=
1
2

E

∫ T

t

∫
Rn

[(
|V εx |2

)
x

]T
σσ̄0dxdr

= −1
2

E

∫ T

t

∫
Rn

|V εx |2
(
∇ ·

[
σσ̄0

])
dxdr

≥ −CE

∫ T

t

∫
Rn

|V εx |2dxdr.

(7.39)

Also, we note that

tr
[
V εxxσσ

T
xk

]
= tr

[(
V εxxσσ

T
xk

)T ]
= tr

[
σxk

σTV εxx
]

= tr
[
V εxxσxk

σT
]
.(7.40)
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Now, if we denote Φk = σσTxk
+ σxk

σT , then it is R
n×n-valued, symmetric, and

tr
[
V εxxV

ε
xk

Φk
]

= tr
[(
V εxk

ΦkV εx
)
x

]
−

〈
∇ ·

(
V εxk

Φk
)
, V εx

〉
= ∇ ·

(
V εxk

ΦkV εx
)
− 〈V εxk

∇ · Φk, V εx 〉− 〈Φk (V εx )xk
, V εx 〉

= ∇ ·
(
V εxk

ΦkV εx
)
− 〈V εxk

∇ · Φk, V εx 〉−
1
2

[〈ΦkV εx , V εx 〉]xk

+
1
2
〈(Φk)xk

V εx , V
ε
x 〉 .

(7.41)

Thus,

E

∫ T

t

∫
Rn

tr

[
V εxx

n∑
k=1

V εxk
σσTxk

]
dxdr

=
1
2

E

∫ T

t

∫
Rn

tr

[
V εxx

n∑
k=1

V εxk

(
σσTxk

+ σxk
σT

)]
dxdr

= E

∫ T

t

∫
Rn

{
− 1

2

〈
n∑
k=1

V εxk
∇ ·

[
σσTxk

+ σxk
σT

]
, V εx

〉

+
1
4

〈(
n∑
k=1

[
σσTxk

+ σxk
σT

]
xk

)
V εx , V

ε
x

〉}
dxdr

≥ − CE

∫ T

t

∫
Rn

|V εx |2dxdr.

(7.42)

Consequently, making use of (5.18) with m = 1, we obtain

−E

∫
Rn

|V εx (t, x)|2dx ≥ E

∫ T

t

∫
Rn

{∣∣∣∣∣σTV εxx + qεx − σ̄0(V εx )T −
n∑
k=1

V εxk
σTxk

∣∣∣∣∣
2

− |qε|2

+ 2ψ′
(
V ε

ε

)
|V εx |2
ε
− C|V εx |2 − C|V ε|2 − |ḡx|2

}
dxdr

≥ E

∫ T

t

∫
Rn

{ ∣∣σTV εxx + qεx
∣∣2 + 2ψ′

(
V ε

ε

)
|V εx |2
ε

− C|V εx |2 − |ḡx|2 − C|ḡ|2
}
dxdr.

By Gronwall’s inequality, we obtain (5.22).
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INTERVAL∗
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Abstract. This paper studies the exact controllability and the stabilization of the cubic
Schrödinger equation posed on a bounded interval. Both internal and boundary controls are consid-
ered, and the results are given first in a periodic setting, and next with Dirichlet (resp., Neumann)
boundary conditions. It is shown that the systems with either an internal control or a boundary
control are locally exactly controllable in the classical Sobolev space Hs for any s ≥ 0. It is also
shown that the systems with an internal stabilization are locally exponentially stabilizable in Hs for
any s ≥ 0.
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ternal controllability, exponential stabilization
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1. Introduction. In this paper we study the nonlinear Schrödinger equation

iut + λ|u|2u+ uxx = 0,(1.1)

where u = u(x, t) is a complex-valued function of two real variables x and t, the
subscripts denote the corresponding partial derivatives, and the parameter λ is a
nonzero real constant. The equation arises in various physical contexts as a model for
propagation of nonlinear waves. In optics, it may serve as a model of wave propagation
in fiber optics, the function u represents a wave, and the equation describes the
propagation of the wave through a nonlinear medium. The equation is also used as
a model for some water waves to describe the evolution of the envelope of modulated
wave groups. The value of the nonlinearity parameter λ depends on the relative water
depth. For deep water, with the water depth large compared to the wave length of
the water waves, λ is positive and envelope solitons may occur [27].

Our main concern in this paper is control and stabilization of the system described
by (1.1). Consideration will be first given to internal control of the Schrödinger
equation

iut + λ|u|2u+ uxx = f(1.2)

posed on the finite interval (−π, π) with periodic boundary conditions

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t),(1.3)

or posed on the finite interval (0, π) with either the Dirichlet boundary conditions

u(0, t) = 0, u(π, t) = 0,(1.4)
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or the Neumann boundary conditions

ux(0, t) = 0, ux(π, t) = 0.(1.5)

Here f = f(x, t) is a given function considered as a control input. Without loss of
generality, we assume that λ takes the value of 1 or −1 and restrict our attention to
controls of the form

f(x, t) = iGh := ig(x)h(x, t),(1.6)

where g, called a controller, is a given nonzero real-valued smooth function with its
support contained in the domain (−π, π) in the case of periodic boundary conditions,
or in the domain (0, π) in the case of Dirichlet boundary conditions or Neumann
boundary conditions, and h(x, t) is a new control input.

Then we will turn to boundary control of the nonlinear Schrödinger equation

iut + uxx + λ|u|2u = 0(1.7)

posed on the finite interval (0, π) with either the Dirichlet boundary conditions

u(0, t) = h(t), u(π, t) = 0(1.8)

or the Neumann boundary conditions

ux(0, t) = h(t), ux(π, t) = 0,(1.9)

where the boundary value function h will be considered as a control input.
In this paper, the focus of our study is the following two control problems.

Exact controllability problem: Let T > 0 be given. Given the initial
state u0 and the terminal state u1 in an appropriate space, can one find a
control h such that system (1.2)–(1.3) (resp., system (1.2)–(1.4) or system
(1.2)–(1.5)) admits a solution u(x, t) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x)?

Stabilizability problem: Can one find a linear feedback control law h = Ku
such that the resulting closed-loop system is exponentially stable?

Control and stabilization problems of the Schrödinger equation have received a
lot of attention in the past decade.1 While significant progresses have been made for
the linear Schrödinger equation on its controllability and stabilizability properties (cf.,
e.g., [4, 10, 8, 11, 12, 13, 14, 15, 17, 16, 20, 21]), there are only a few results for the
nonlinear Schrödinger equation. Illner, Lange, and Teismann [6, 7] considered internal
controllability of the nonlinear Schrödinger equation posed on a finite interval with pe-
riodic boundary conditions. They showed that the system (1.2)–(1.3) is locally exactly
controllable in the space H1

p (−π, π) := {v ∈ H1(−π, π) : v(−π) = v(π)}. Their ap-
proach is based on the well-known Hilbert uniqueness method (HUM) and Schauder’s
fixed point theorem. Later, Lange and Teismann [9] considered internal control of the
nonlinear Schrödinger equation (1.2) posed on a finite interval with the homogeneous
Dirichlet boundary conditions (1.4) and established local exact controllability of the
system (1.2)–(1.4) in the space H1

0 (0, π) around a special ground state of the system.

1The readers are referred to Zuazua [29] for an excellent review on recent progresses of this
subject up to 2003.
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Recently Dehman, Gérard, and Lebeau [5] studied internal control and stabilization
of a class of defocusing nonlinear Schrödinger equations posed on a two-dimensional
compact Riemannian manifold M without boundary. They demonstrated, in particu-
lar, that the system is semiglobally exact controllable and semiglobally exponentially
stabilizable in the space H1(M) assuming both the geometric control condition and
the unique continuation property2 are satisfied.

There are two natural energy spaces associated with the nonlinear Schrödinger
equation (1.2), namely L2(I) or H1(I). Here I stands for either the interval (−π, π)
or the interval (0, π). Indeed, let u be a smooth solution of (1.2) with the control
input h ≡ 0 satisfying one of the boundary conditions (1.3), (1.4), and (1.5). Then it
satisfies the following two conservation laws:

E0(t) :=
∫
I

|u(x, t)|2dx = E0(0)

and

E1(t) :=
∫
I

|ux(x, t)|2dx−
λ

2

∫
I

|u(x, t)|4dx = E1(0)

for any t ∈ R. While the local exact controllability of (1.2) has been established in
the space H1(I) in [7] and [9], it would be interesting to know whether the nonlin-
ear Schrödinger equation (1.2) is exactly controllable in the space L2(I) or in other
Sobolev spaces Hs(I) with s ≥ 0.

One of our main objectives is to establish local exact controllability of (1.2) in
the space Hs(I) for any s ≥ 0. In order to describe precisely our results, we introduce
the following notations.

Let

φk(x) =
1√
2π
eikx k = 0,±1,±2, . . . .

Then {φk}+∞
k=−∞ forms an orthonormal basis in the space L2(−π, π). We may define

the Sobolev space Hs
p := Hs

p(−π, π) of order s (s ≥ 0) as the space of all 2π-periodic
functions

v(x) =
∞∑

k=−∞
vkφk(x)

such that { ∞∑
k=−∞

|vk|2(1 + |k|)2s
} 1

2

<∞.(1.10)

The left-hand side of (1.10) is a Hilbert norm for Hs
p ; we denote it by ‖v‖s. In

addition, let

C∞
odd(0, π) =

{
v ∈ C∞[0, π]; v(2k)(0) = v(2k)(π) = 0, k = 0, 1, 2, . . .

}
and

C∞
even(0, π) =

{
v ∈ C∞[0, π]; v(2k+1)(0) = v(2k+1)(π) = 0, k = 0, 1, 2, . . .

}
.

2See [5] for exact descriptions of these two conditions.
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Obviously, both C∞
odd(0, π) and C∞

even(0, π) are subspaces of Hs(0, π) for any s ≥ 0.
Let Hs

odd(0, π) and Hs
even(0, π) be the closure of C∞

odd(0, π) and C∞
even(0, π) in the

space Hs(0, π), respectively. Note that H0
odd(0, π) = H0

even(0, π) = L2(0, π) and
H1
odd(0, π) = H1

0 (0, π).
We have the following local controllability result for system (1.2)–(1.3).
Theorem 1.1. Let T > 0 and s ≥ 0 be given. There exists a δ > 0 such that for

any u0, u1 ∈ Hs
p(−π, π) satisfying

‖u0‖s ≤ δ, ‖u1‖s ≤ δ,

there exists a control h ∈ L2([0, T ];Hs
p(−π, π)) such that the system (1.2)–(1.3) admits

a solution u ∈ C([0, T ];Hs
p(−π, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

For the Schrödinger equation (1.2) posed on the finite interval (0, π) with the
Neumann boundary conditions (1.5), we have the following local controllability result.

Theorem 1.2. Let T > 0 and s ≥ 0 be given. There exists a δ > 0 such that for
any u0, u1 ∈ Hs

even(0, π) satisfying

‖u0‖Hs(0,π) ≤ δ, ‖u1‖Hs(0,π) ≤ δ,

there exists a control h ∈ L2([0, T ];Hs(0, π)) such that the system (1.2)–(1.5) admits
a solution u ∈ C([0, T ];Hs

even(0, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

A similar result holds for the Schrödinger equation (1.2) posed on the finite in-
terval (0, π) with the Dirichlet boundary conditions (1.4).

Theorem 1.3. Let T > 0 and s ≥ 0 be given. There exists a δ > 0 such that for
any u0, u1 ∈ Hs

odd(0, π) satisfying

‖u0‖Hs(0,π) ≤ δ, ‖u1‖Hs(0,π) ≤ δ,

there exists a control h ∈ L2([0, T ];Hs(0, π)) such that the system (1.2)–(1.4) admits
a solution u ∈ C([0, T ];Hs

odd(0, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

For s ≥ 0, let Hs
e,π be the closure of the set {v ∈ C∞[0, π]; v(2k)(π) = 0, k =

0, 1, 2, . . .} in the space Hs(0, π) and Hs
o,π be the closure of the set {v ∈ C∞[0, π];

v(2k+1)(π) = 0, k = 0, 1, 2, · · ·} in the space Hs(0, π) for any s ≥ 0. Then we have the
following boundary controllability results for the systems (1.7)–(1.8) and (1.7)–(1.9).

Theorem 1.4. Let s ≥ 0 and T > 0 be given. There exists a δ > 0 such that
(a) for any u0, u1 ∈ Hs

e,π(0, π) satisfying and

‖u0‖Hs(0,π) ≤ δ, ‖u1‖Hs(0,π) ≤ δ,

there exists a boundary control h such that the system (1.7)–(1.8) admits a
solution u ∈ C([0, T ];Hs

e,π(0, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x);
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(b) for any u0, u1 ∈ Hs
o,π(0, π) satisfying

‖u0‖Hs(0,π) ≤ δ, ‖u1‖Hs(0,π) ≤ δ,

there exists a boundary control h such that the system (1.7)–(1.9) admits a
solution u ∈ C([0, T ];Hs

o,π(0, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x).

Remarks.
(i) The same results hold if we apply a boundary control h on the right end of

the domain x = π.
(ii) As it will be demonstrated in the proof in section 3, the boundary control h

is taken as the trace of a function w ∈ C([0, T ];Hs(−ε, π)) at x = 0, which is
a solution of the system{

iwt + wxx + λ|w|2w = ig(x)h(x, t), x ∈ (−ε, π),
w(−ε, t) = w(π, t), wx(−ε, t) = wx(π, t).

Our other main objective in this paper is to study stabilizability of system (1.2)–
(1.3). We will show that it is locally stabilizable in Hs

p(−π, π) (s ≥ 0) by the feedback
law

h(x, t) = −g(x)u(x, t).

Theorem 1.5. Let s ≥ 0 be given. There exist some positive constants δ, C, and
ν such that every solution of the system

iut + uxx + λ|u|2u = −ig2(x)u, u(x, 0) = u0(x)(1.11)
u(−π, t) = u(π, t), ux(−π, t) = u(π, t)(1.12)

issued from an initial state u0 ∈ Hs
p(−π, π) with ||u0||s ≤ δ satisfies

||u(t)||s ≤ Ce−νt||u0||s ∀t ≥ 0.(1.13)

Remarks.
(i) In Theorem 1.5, the regularity of g may be weakened to g ∈ L∞(−π, π) for

s = 0, and to g ∈ Hs
p(−π, π) for s > 1/2. The solution of (1.11)–(1.12) is

proved to exist and to be unique in some restricted Bourgain space.
(ii) The L2 norm of any solution of (1.11)–(1.12) is nondecreasing whatever be

λ. Indeed, a simple computation gives

∫ π

−π
|u(T, x)|2dx−

∫ π

−π
|u0(x)|2dx = −2

∫ T

0

∫ π

−π
|u(x, t)|2g(x) dx.

We conjecture that when s = 0 Theorem 1.5 is valid for any δ > 0, i.e., that
a semiglobal stabilization occurs in L2(−π, π).

(iii) Similar results may be derived for the systems with either Dirichlet or Neu-
mann boundary conditions.

Our next theorem presents a local stabilization result for a general nonlinearity
in the Sobolev space Hs

p(−π, π) with s > 1/2.
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Theorem 1.6. Let s > 1/2, and let F : C → C be a continuous function such
that for some positive constants r, C, and N it holds

||F (u)− F (v)||s ≤ C
(
||u||Ns + ||v||Ns

)
||u− v||s

for all u, v ∈ Hs
p(−π, π) with ||u||s < r, ||v||s < r. For any μ > 0, let Bμ denote the

space

Bμ =
{
u ∈ C

(
R

+;Hs
p(−π, π)

)
;
∥∥eμtu(t)

∥∥
L∞(R+,Hs

p(−π,π))
<∞

}
endowed with its natural norm. Let the function g be as in Theorem 1.5. Then there
exist positive constants δ, μ, and K such that for any u0 ∈ Hs

p(−π, π) with ||u0||s < δ,
the system

iut + uxx + F (u) = −ig2(x)u, u(x, 0) = u0(x)(1.14)
u(−π, t) = u(π, t), ux(−π, t) = u(π, t)(1.15)

admits a unique solution u ∈ Bμ, and it holds

||u(t)||s ≤ Ke−μt||u0||s ∀t ≥ 0.

To prove the above theorems we use the approach developed earlier by Russell
and Zhang [25] in dealing with control and stabilization problem of the Korteweg–
de Vries equation posed on a periodic domain. The associated linear systems are
studied first using the classical moment method which enables us to establish the
exact controllability of the associated linear systems in the space Hs(I) for any s ≥ 0.
The linear results are then extended to the nonlinear systems. During this process,
the Bourgain smoothing property [2, 3] for solutions of the Schrödinger equation
posed on a periodic domain plays a key role. In particular, this Bourgain smoothing
property seems indispensable in establishing the exact controllability of the system
(1.2)–(1.3) in the space L2(−π, π). The proof of exact controllability for systems
(1.2)–(1.4) and (1.2)–(1.5) is based on the following observation (see [1] for more detail
and its application in establishing well-posedness of nonhomogeneous boundary value
problems of the nonlinear Schrödinger equation posed on a bounded domain):

If u ∈ C([0, T ];Hs
p(−π, π)) is an odd (even) function with respect to x-variable

and solves (1.1), then its restriction w = w(x, t) on the interval (0, π) belongs to the
space C([0, T ];Hs(0, π)) and is a solution of the system (1.1)–(1.4) (system (1.1)–
(1.5)). On the other hand, if w ∈ C([0, T ];Hs(0, π)) solves system (1.1)–(1.4) (or
system (1.1)–(1.5)) and u is its odd (or even) extension to the interval (−π, π), then
u ∈ C([0, T ];Hs

p(−π, π)) and solves system (1.1)–(1.3).
Thus, one can reduce exact control problem of systems (1.2)–(1.4) and (1.2)–

(1.5) to that of system (1.2)–(1.3). Theorem 1.2 and Theorem 1.3 can be considered
as corollaries of Theorem 1.1. As for boundary control systems (1.7)–(1.8) and (1.7)–
(1.9), their exact controllability follows from internal controllability of systems (1.2)–
(1.4) and (1.2)–(1.5) by a standard procedure.

The paper is outlined as follows. In section 2, we establish the exact internal
controllability of the linear Schrödinger equation with periodic boundary conditions by
using the moment approach. In section 3, we derive the (internal or boundary) exact
controllability of the cubic Schrödinger equation with various boundary conditions.
The internal stabilization is investigated in section 4. In particular, the proof of
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Theorem 1.5 is presented in this section. As for Theorem 1.6, its proof is similar to
the one in [18, Theorem 1.1] and is, therefore, omitted.

Finally, the readers are referred to [19, 22, 23, 24, 25, 28] and references therein
for the study of control and stabilization of another important nonlinear dispersive
wave equation, the Korteweg–de Vries equation.

2. Linear systems. We first consider the associated linear open loop control
system of the Schrödinger equation posed on (−π, π) with the periodic boundary
conditions: {

ivt + vxx = iGh, v(x, 0) = v0(x),
v(−π, t) = v(π, t), vx(−π, t) = vx(π, t),

(2.1)

where the operator G is defined by (1.6) and h is the applied control function.
Let A denote the operator

Aw = iw′′(2.2)

on the domain D(A) = H2
p (−π, π). It generates a strongly continuous group W (t)

in the space L2(−π, π); the eigenfunctions are simply the orthonormal Fourier basis
functions in L2(−π, π)

φk(x) =
1√
2π
eikx, k = 0,±1,±2, . . . .

We have the following exact controllability result for the system (2.1).
Theorem 2.1. Let T > 0 and s ≥ 0 be given. For any v0, v1 ∈ Hs

p(−π, π), there
exists a control h ∈ L2([0, T ];Hs

p(−π, π)) such that the system (2.1) admits a unique
solution

v ∈ C
(
[0, T ];Hs

p(−π, π)
)

satisfying

v(x, T ) ≡ v1(x).

Proof. The system (2.1) can be rewritten as an abstract control system in the
space Hs

p(−π, π),

d

dt
v(t) = Av(t) +Gh, v(0) = v0.(2.3)

By the standard semigroup theory, for any s ≥ 0, T > 0, v0 ∈ Hs
p(−π, π), and

h ∈ L2(0, T ;Hs
p(−π, π)), (2.2) admits a unique solution v ∈ C([0, T ];Hs

p(−π, π)). It
is familiar that the operator A, as defined in (2.2), has eigenvalues

λk = −ik2

with the corresponding eigenfunctions φk for −∞ < k < ∞. Relative to the basis
{φk}∞−∞, the initial state v0 and the terminal state v1 have the expansions, convergent
in Hs

p(−π, π),

vj =
∞∑

k=−∞
vk,jφk, vk,j =

∫ π

−π
vj(x)φk(x)dx for j = 0, 1(2.4)
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and the solution v has the expansion

v(x, t) =
+∞∑

k=−∞
vk,0e

λktφk(x) +
+∞∑

k=−∞

∫ t

0

eλk(t−τ)(Gh)k(τ)dτφk(x),

where

(Gh)k(t) =
∫ π

−π
g(x)h(x, t)φk(x)dx, k = 0,±1,±2, . . . .

In order to find an appropriate control input h such that v(x, T ) = v1(x), it suffices
to solve the following moment problem:

vk,1 − vk,0eλkT =
∫ T

0

eλk(T−τ)(Gh)k(τ)dτ(2.5)

for k = 0,±1, . . . .
Defining pk(t) = eλkt, P ≡ {pk | 0 ≤ k <∞} may be seen, from the result in [26],

to form a Riesz basis for its closed span, PT , in L2(0, T ). We let Q ≡ {qk | 0 ≤ k <∞}
be the unique dual Riesz basis for P in PT , which fulfills

∫ T

0

qj(t)pk(t)dt = δkj , 0 ≤ j, k <∞.(2.6)

We take the control h in (2.1) to have the form

h(x, t) =
+∞∑
j=−∞

hjqj(t)(Gφj)(x),(2.7)

where q−j = qj for j ≥ 0 and the coefficients hj are to be determined so that, among
other things, the series (2.7) is appropriately convergent. Substituting (2.7) into (2.5)
yields, using the biorthogonality (2.6),

v0,1 − v0,0 =
+∞∑
j=−∞

hj

∫ T

0

eλ0tqj(t)
∫ π

−π
G(Gφj)(x)φ0(x)dxdt = h0

∫ π

−π
|(Gφ0)(x)|2 dx

(2.8)
and for −∞ < k <∞, k �= 0,

vk,1 − vk,0eλkT = eλkT
+∞∑
j=−∞

hj

∫ T

0

eλktqj(t)
∫ π

−π
G(Gφj)(x)φk(x)dxdt

= hke
λkT

∫ π

−π
|(Gφk)(x)|2 dx+ h−keλkT

∫ π

−π
Gφ−k(x)Gφk(x)dx(2.9)

as G is a self-adjoint operator in L2(−π, π). Since∫ π

−π
|Gφk(x)|2 dx =

1
2π

∫ π

−π
g2(x)dx := a,∫ π

−π
Gφ−k(x)Gφk(x)dx =

1
2π

∫ π

−π
g2(x)e−2ikxdx := bk



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

980 LIONEL ROSIER AND BING-YU ZHANG

for −∞ < k <∞, (2.8)–(2.9) may be rewritten as

c0 = h0a(2.10) {
ck = ahk + bkh−k
c−k = b−khk + ah−k

k = 1, 2, . . . ,(2.11)

where ck = vk,1e
−λkT − vk,0. As βk := a2 − bkb−k �= 0 for any k > 0 and

lim
k→∞

|βk| = a2,

there exists a γ > 0 such that

|βk| > γ ∀ k > 0.

Thus, it follows from (2.10)–(2.11) by the Gram’s rule that

h0 = a−1c0, hk = β−1
k (ack − c−kbk), k = ±1,±2, . . . .(2.12)

It remains to show that h defined by (2.7) and (2.12) belongs to L2([0, T ];Hs
p(−π, π))

provided that v0, v1 ∈ Hs
p(−π, π). To this end, let us write

Gφj(x) =
+∞∑

k=−∞
ajkφk(x),(2.13)

where

ajk =
∫ π

−π
Gφj(x)φk(x)dx, −∞ < j, k <∞.

Thus,

h(x, t) =
+∞∑
j=−∞

+∞∑
k=−∞

hjajkqj(t)φk(x)

and

‖h‖2L2([0,T ];Hs
p(−π,π)) =

∫ T

0

+∞∑
k=−∞

(1 + |k|)2s
∣∣∣∣∣∣

+∞∑
j=−∞

ajkhjqj(t)

∣∣∣∣∣∣
2

dt

=
+∞∑

k=−∞
(1 + |k|)2s

∫ T

0

∣∣∣∣∣∣
+∞∑
j=−∞

ajkhjqj(t)

∣∣∣∣∣∣
2

dt

≤ c
+∞∑

k=−∞
(1 + |k|)2s

+∞∑
j=−∞

|hj|2|ajk|2

≤ c
+∞∑
j=−∞

|hj |2
+∞∑

k=−∞
(1 + |k|)2s|ajk|2,(2.14)

where the constant c comes from the Riesz basis property of Q in PT . However,

|ajk| =
∣∣(Gφj , φk)L2(−π,π)

∣∣ = ∣∣(gφj , φk)L2(−π,π)

∣∣ =
∣∣∣∣ 1√

2π
gk−j

∣∣∣∣ ,
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where

g =
+∞∑

m=−∞
gmφm.

Hence,

|ajk|2 ≤ c|gk−j |2

and

+∞∑
k=−∞

(1 + |k|)2s|ajk|2 ≤ c
+∞∑

k=−∞
(1 + |k|)2s|gk−j |2

≤ c
+∞∑

k=−∞
(1 + |k + j|)2s|gk|2

≤ c(1 + |j|)2s
+∞∑

k=−∞
(1 + |k|)2s|gk|2

≤ c(1 + |j|)2s‖g‖2s.

We have by (2.14)

‖h‖2L2([0,T ];Hs
p(−π,π)) ≤ c

⎛
⎝ +∞∑
j=−∞

(1 + |j|)2s|hj |2
⎞
⎠ ‖g‖2s

≤ c

⎛
⎝ +∞∑
j=−∞

(1 + |j|)2s
∣∣e−λjT vj,1 − vj,0

∣∣2
|βj |2

⎞
⎠ ‖g‖2s

≤ c sup
j �=0
|βj |−2‖g‖2s

+∞∑
j=−∞

(1 + |j|)2s
(
|vj,1|2 + |vj,0|2

)

≤ c sup
j �=0

1
|βj |2

‖g‖2s
(
‖v1‖2s + ‖v0‖2s

)
.

With this the proof is complete.
Corollary 2.1. Equations (2.5), (2.7), and (2.12) define, for s ≥ 0, a bounded

operator Φ :

h = Φ(v0, v1), ∀v0, v1 ∈ Hs
p(−π, π)

from Hs
p(−π, π) ×Hs

p(−π, π) to L2([0, T ];Hs
p(−π, π)) such that

W (T )v0 +
∫ T

0

W (T − τ)(G(Φ(v0, v1)))(·, τ)dτ = v1(2.15)

for any (v0, v1) ∈ Hs
p(−π, π)×Hs

p(−π, π) and

‖Φ(v0, v1)‖L2([0,T ];Hs
p(−π,π)) ≤ c(‖v0‖s + ‖v1‖s),(2.16)

where c depends only on T and g.
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The following observation, while simple, is important to study the control proper-
ties of the linear Schrödinger equation posed on the finite interval with either Dirichlet
boundary conditions or Neumann boundary conditions.

Corollary 2.2. Assume that the control structure function g is an even func-
tion. If both the initial state v0 and the terminal state v1 are even (odd) functions
of the x variable, then the control input h constructed in the proof of Theorem 2.1 is
also an even (odd) function of the x variable and so is the corresponding solution v.

Now we consider the linear Schrödinger equation posed on the finite interval (0, π)

iut + uxx = iQh(x, t), u(x, 0) = u0(x), x ∈ (0, π), t ≥ 0(2.17)

with either the Dirichlet boundary conditions

u(0, t) = 0, u(π, t) = 0(2.18)

or the Neumann boundary conditions

ux(0, t) = 0, ux(π, t) = 0,(2.19)

where again Qh(x, t) = q(x)h(x, t), q(x) is a given smooth function supported in a
subinterval of (0, π).

Theorem 2.2. Let s ≥ 0 and T > 0 be given. For any u0, u1 ∈ Hs
odd(0, π), there

exists

h ∈ L2(0, T ;Hs(0, π))

such that (2.17)–(2.18) admits a unique solution u ∈ C([0, T ];Hs(0, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x), x ∈ (0, π).

Theorem 2.3. Let s ≥ 0 and T > 0 be given. For any u0, u1 ∈ Hs
even(0, π),

there exists

h ∈ L2(0, T ;Hs(0, π))

such that (2.17)–(2.19) admits a unique solution u ∈ C([0, T ];Hs(0, π)) satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x), x ∈ (0, π).

We provide just the proof of Theorem 2.2. The proof of Theorem 2.3 is similar
and is, therefore, omitted.

Proof of Theorem 2.2. Note that if u0, u1 ∈ Hs
odd(0, π), let v0 and v1 be the

odd extension of u0 and u1, respectively, from (0, π) to (−π, π), then both v0 and
v1 belong to the space Hs

p(−π, π). Let g be the even extension of q from (0, π) to
(−π, π) and consider the control system (2.1)–(2.2). According to Corollary 2.2, the
corresponding control input h(x, t) is also an odd (or even) function in the x variable.
Consequently, the corresponding solution v(x, t) is an odd function in the x variable,
which, when restricted to the interval (0, π), is a solution of the IBVP (2.17)–(2.18).
The controllability results regarding (2.17)–(2.18) as described in Theorem 2.3, thus,
follow from Theorem 2.1. The proof is complete.
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3. Exact controllability for NLS. In this section, we intend to extend the
controllability results obtained for the linear Schrödinger equation to the nonlinear
Schrödinger equation.

Consideration is first given to the system described by the nonlinear Schrödinger
equation posed on the interval (−π, π) with the periodic boundary conditions:{

iut + uxx + λ|u|2u = iGh, x ∈ (−π, π), t ∈ (0, T ),
u(x, 0) = u0(x), u(−π, t) = u(π, t), ux(−π, t) = ux(π, t).

(3.1)

According to Bourgain [2, 3], for given s ≥ 0, u0 ∈ Hs
p(−π, π), and h ∈ L1

loc

(R;Hs
p(−π, π)), (3.1) admits a unique solution u ∈ C(R;Hs

p(−π, π)). Our main con-
cern is the exact controllability of (3.1) as a distributive control system.

Recall that W (t) is the C0-group generated by the operator A, defined by (2.2),
on the space L2(−π, π), with which, the system (3.1) has the following equivalent
integral equation form:

u(t) = W (t)u0 +
∫ t

0

W (t− τ)(Gh)(τ)dτ + iλ

∫ t

0

W (t− τ)(|u|2u)(τ)dτ.(3.2)

As it has been pointed out in the introduction, a smoothing property is needed for
the operator from f to v:

v(t) =
∫ t

0

W (t− τ)f(τ)dτ.

This needed smoothing property was provided in Bourgain’s work [2, 3] where he
dealt with the Cauchy problem for the periodic Schrödinger equation.

Let b and s be two given real numbers. For a function w : (−π, π) × R, define
the quantity

Λb,s(w) =

( ∞∑
n=−∞

(1 + |n|)2s
∫ ∞

−∞
|ŵ(n, λ)|2(1 + |λ+ n2|)2bdλ

)1/2

,

where ŵ(n, λ) denotes the Fourier transform of w(x, t) with respect to both the x and
t variables. Following Bourgain [2, 3], we introduce the following space:

Xb,s =
{
w ∈ L2(R;Hs

p(−π, π)); Λb,s(w) <∞
}

(3.3)

with the norm ‖ · ‖Xb,s := Λb,s(·). For any given T > 0, Xb,s
T denotes the restriction

space of Xb,s on the time interval (0, T ) with the associated quotient norm. It is clear
that Xb,s

T is a Hilbert space,

X0,s
T = L2(0, T ;Hs

p(−π, π))

and

Xb1,s
T ⊂ Xb2,s

T

if b1 > b2.
Before we proceed to show the exact controllability results, we present the fol-

lowing technical lemmas due to Bourgain [2, 3] which will play important roles in the
proof of Theorem 1.1.
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Lemma 3.1. Let T > 0, s ≥ 0, and 0 ≤ b ≤ 1 be given. There exists a constant
C > 0 depending only on s and b such that

‖W (t)φ‖Xb,s
T
≤ C‖φ‖s

for any φ ∈ Hs
p(−π, π).

Lemma 3.2. Let T > 0, s ≥ 0, and b ∈ (3
8 ,

5
8 ) and 5

8 > b′ > max{ 1
2 , b} be given.

There exists a constant C > 0 depending only on s, b, and b′ such that∥∥∥∥
∫ t

0

W (t− τ)f(τ)dτ
∥∥∥∥
Xb,s

T

≤ C‖f‖
Xb′−1,s

T

for any f ∈ Xb′−1,s
T .

Lemma 3.3. Let s ≥ 0 and b ∈ (3
8 ,

5
8 ) and 5

8 > b′ > max{ 1
2 , b} be given. There

exist some constants C > 0 and α > 0 depending only on s, b, and b′ such that

‖uvw‖
Xb′−1,s

T

≤ CTα‖u‖Xb,s
T
‖v‖Xb,s

T
‖w‖Xb,s

T

for any T > 0 and u, v, w ∈ Xb,s
T .

Now we are in a position to prove Theorem 1.1.
Proof of Theorem 1.1. Define

ω(T, u) := −iλ
∫ T

0

W (T − τ)
(
|u|2u

)
(τ)dτ.(3.4)

According to Corollary 2.1, for given u0, u1 ∈ Hs
p(−π, π), if one chooses

h = Φ(u0, u1 + ω(T, u))(3.5)

in (3.2), then

u(t) = W (t)u0 +
∫ t

0

W (t− τ)(GΦ(u0, u1 + ω(T, u)))(τ)dτ

+ iλ

∫ t

0

W (t− τ)
(
|u|2u

)
(τ)dτ(3.6)

and

u(0) = u0, u(T ) = u1(3.7)

by virtue of the definition of the operator Φ (cf. Corollary 2.1). This suggests that
we consider the map

Γ(u) = W (t)u0 +
∫ t

0

W (t− τ)(G(Φ(u0, u1 + ω(T, u))))(τ)dτ

+ iλ

∫ t

0

W (t− τ)
(
|u|2u

)
(τ)dτ.(3.8)

If the map Γ is shown to be a contraction in an appropriate space, then its fixed point
u is a solution of (1.2)–(1.3) with h = Φ(u0, u1+ω(T, u)) and satisfies u(x, T ) ≡ u1(x).
We show this is the case in the space Xb,s

T .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTROL OF NONLINEAR SCHRÖDINGER EQUATION 985

Note that X0,s
T = L2(0, T ;Hs

p(−π, π)) and Xb1,s
T is continuously imbedded into

Xb2,s
T if b2 < b1. Applying Lemma 3.1, Lemma 3.2, and Lemma 3.3 with 5

8 > b′ >
b > 1

2 to (3.8) yields

‖Γ(u)‖Xb,s
T
≤ c‖u0‖s + c‖G(Φ(u0, u1 + ω(T, u)))‖

Xb′−1,s
T

+ c
∥∥|u|2u∥∥

Xb′−1,s
T

.

It follows from the definitions of the operator Φ that

‖G(Φ(u0, u1 + ω(T, u)))‖
Xb′−1,s

T

≤ c ‖GΦ(u0, u1 + ω(T, u))‖L2(0,T ;Hs
p)

≤ c (‖u0‖s + ‖u1‖s + ‖ω(T, u)‖s) .

Using Lemmas 3.1, 3.2, and 3.3, it follows that (note that λ = 1 or −1)

‖ω(T, u)‖s = ‖
∫ T

0

W (T − τ)(|u|2u)(τ)dτ‖s

≤ sup
t∈[0,T ]

‖
∫ t

0

W (t− τ)(|u|2u)(τ)dτ‖s

≤ ‖
∫ t

0

W (t− τ)(|u|2u)(τ)dτ‖Xb,s
T

≤ c‖|u|2u‖
Xb′−1,s

T

≤ c‖u‖3
Xb,s

T

Consequently,

‖Γ(u)‖Xb,s
T
≤ c (‖u0‖s + ‖u1‖s) + c ‖u‖3

Xb,s
T

.(3.9)

For M > 0, let SM be a bounded subset of Xs:

SM =
{
v ∈ Xb,s

T , ‖v‖Xb,s
T
≤M

}
.

Then, for any u ∈ SM ,

‖Γ(u)‖Xb,s
T
≤ c‖u0‖s + c‖u1‖s + cM3.

We choose δ > 0 and M > 0 such that

2cδ + cM3 ≤M, cM2 < 1/2.(3.10)

Then,

‖Γ(u)‖Xb,s
T
≤M,

for any u ∈ SM , if ‖u0‖s ≤ δ and ‖u1‖s ≤ δ. In addition, for any u, v ∈ SM , since

Γ(u)− Γ(v) =
∫ t

0

W (t− τ)(GΦ(0, ω(T, u)− ω(T, v)))(τ)dτ

+ iλ

∫ t

0

W (t− τ)
(
|u|2(u− v) + vu(u− v) + (u − v)v2

)
(τ)dτ
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and

ω(T, u)− ω(T, v) =
∫ T

0

W (T − τ)
(
|u|2(u − v) + vu(u − v) + (u− v)v2

)
(τ)dτ,

a similar argument shows that

‖Γ(u)− Γ(v)‖Xb,s
T
≤ c(‖u‖Xb,s

T
+ ‖v‖Xb,s

T
)2‖u− v‖Xb,s

T

≤ cM2‖u− v‖Xb,s
T

≤ 1
2
‖u− v‖Xb,s

T
.

Thus, the map Γ is a contraction on SM provided that δ and M are chosen according
to (3.10) and ‖u0‖s ≤ δ, ‖u1‖s ≤ δ. As a result, its fixed point u ∈ SM is the unique
solution of the integral equation (3.8). The proof is complete.

Next our attention is turned to the system described by the nonlinear Schrödinger
equation posed on the finite interval (0, π) with the Dirichlet boundary conditions:{

ivt + vxx + λ|v|2v = Qh1, x ∈ (0, π), t ≥ 0,
v(x, 0) = v0(x), v(0, t) = 0, v(π, t) = 0.(3.11)

It has been shown in [1] that for given s ≥ 0 and v0 ∈ Hs
odd(0, π) and h1 ∈

L1
loc(R;Hs(0, π)), (3.11) admits a unique solution v ∈ C(R;Hs(0, π)). Moreover, if

we let g be the even extension of q from the interval (0, π) to the interval (−π, π),
and u0 be the odd extension of v0 from the interval (0, π) to the interval (−π, π). If
u = u(x, t) is the odd extension solution v(x, t) of (3.11) from the interval (0, π) to the
interval (−π, π) with respect to the x-variable, then u ∈ C(R;Hs

p(−π, π)) and solves
(3.1) with h being the odd extension of h1 from the interval (0, π) to the interval
(−π, π) with respect to the x-variable. On the other hand, if g is an even function,
u0 ∈ Hs

p(−π, π) is an odd function and h is also an odd function with respect to the
x-variable in (3.1), then the corresponding solution u of (3.1) is also an odd function.
If we let v(x, t) be its restriction on the interval (0, π), then v solves (3.11) with v0, q
and h1 being the restrictions of u0, g, and h on the interval (0, π), respectively.

Proof of Theorem 1.2. For given v0 and v1 ∈ Hs
odd(0, π), let u0 and u1 be their

odd extensions from (0, π) to (−π, π). We have u0, u1 ∈ Hs
p(−π, π). In addition,

let g be the even extension of q from (0, π) to (−π, π). It is sufficient to show that
there exists a control input h ∈ L2(0, T ;Hs

p(−π, π)), which is odd with respect to the
x-variable, such that (3.1) admits a solution u ∈ C([0, T ];Hs

p(−π, π)) which is odd
with respect to the x-variable and satisfies

u(x, T ) = u1(x).

Indeed, if this is the case, let v be the restriction of u to (0, π) with respect to the
x-variable. Then v ∈ C([0, T ];Hs(0, π)) solves (3.11) and satisfies

v(x, T ) = v1(x).

To this end, as in the proof of Theorem 1.2, consider the map

Γ(u) = W (t)u0 +
∫ t

0

W (t− τ)(G(Φ(u0, u1 + ω(T, u))))(τ)dτ

+ iλ

∫ t

0

W (t− τ)
(
|u|2u

)
(τ)dτ
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for any

u ∈ SM,o =
{
v ∈ Xb,s

T ; v is odd with respect to x-variable, ‖v‖Xb,s
T
≤M

}
where, we recall that

ω(T, u) := iλ

∫ T

0

W (T − τ)
(
|u|2u

)
(τ)dτ.

Note that ω(T, u) is an odd function of x if u is an odd function of x. Thus, by
Corollary 2.2, G(Φ(u0, u1 + ω(T, u))) is an odd function of x, and consequently, Γ(u)
is an odd function of x for any u ∈ SM,o. Then the same argument as in the proof of
Theorem 1.1 shows that Γ has a fixed point in the set SM,o as long as ‖u0‖s + ‖u1‖s
is small enough and M is chosen accordingly. The proof is complete.

Now we consider the system described by the nonlinear Schrödinger equation
posed on the finite interval (0, π) with the Neumann boundary conditions:{

iwt + wxx + λ|w|2w = Qh1, x ∈ (0, π), t ≥ 0,
w(x, 0) = w0(x), wx(0, t) = 0, wx(π, t) = 0.(3.12)

It has been shown in [1] that for given s ≥ 0 and w0 ∈ Hs
even(0, π) and h1 ∈

L1
loc(R;Hs(0, π), (3.12) admits a unique solution v ∈ C(R;Hs(0, π)). Moreover, if

we let g be the even extension of q from the interval (0, π) to the interval (−π, π),
and u0 be the even extension of w0 from the interval (0, π) to the interval (−π, π), if
u = u(x, t) denotes the even extension solution of w(x, t) from the interval (0, π) to the
interval (−π, π) with respect to the x-variable, then u ∈ C(R;Hs

p(−π, π)) and solves
(3.1) with h being the even extension of h1 from the interval (0, π) to the interval
(−π, π) with respect to the x-variable. On the other hand, if g is an even function,
u0 ∈ Hs

p(−π, π) is an even function and h is also an even function with respect to the
x-variable in (3.1), then the corresponding solution u of (3.1) is also an even function.
If we let w(x, t) be its restriction on the interval (0, π), then v solves (3.12) with w0,
q, and h1 being the restrictions of u0, g and h to the interval (0, π), respectively. This
leads us to the proof of Theorem 1.3.

Proof of Theorem 1.3. It is exactly the same as the one of Theorem 1.2, except
that all the odd extensions become even extensions. The proof is complete.

Finally, we consider the boundary control of the nonlinear Schrödinger equation
posed on the interval (0, π) with the Dirichlet boundary conditions:{

iut + uxx + λ|u|2u = 0, x ∈ (0, π), t ≥ 0,
u(x, 0) = u0(x), v(0, t) = h(t), u(π, t) = 0(3.13)

or with the Neumann boundary conditions:{
iwt + wxx + λ|w|2w = 0, x ∈ (0, π), t ≥ 0,
w(x, 0) = w0(x), wx(0, t) = h(t), wx(π, t) = 0.(3.14)

Proof of Theorem 1.4. We prove only part (a). The proof of part (b) is similar.
Consider the nonlinear Schrödinger equation posed on the finite interval (−π, π) with
Dirichlet boundary conditions:⎧⎨

⎩
iwt + wxx + λ|w|2w = ig(x)μ(x, t), x ∈ (−π, π), t ∈ R,
w(x, 0) = ũ0(x), x ∈ (−π, π),
w(−π, t) = 0, w(π, t) = 0, t ∈ R.

(3.15)
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where g is supported in the interval (−π, 0) and μ(x, t) is a control input, and ũ0 is
an extension of u0 ∈ Hs(0, π) to the space Hs(−π, π) satisfying ũ0(−π) = 0. For
given u1 ∈ Hs(0, π) let ũ1 be its extension to the space Hs(−π, π). According to
Theorem 1.2, one can find μ ∈ L2(0, T ;Hs(−π, π)) such that (3.15) admits a unique
solution w ∈ C([0, T ];Hs(−π, π)) such that

w(x, 0) = ũ0(x), w(x, T ) = ũ1(x).

Let u = u(x, t) be the restriction of w(x, t) to the interval (0, π). Then u ∈ C([0, T ];
Hs(0, π)) solves (3.13) with h(t) := w(0, t), and satisfies

u(x, 0) = u0(x), u(x, T ) = u1(x), x ∈ (0, π).

The proof is complete.

4. Stabilization. In this section we study long-time behavior of the closed-loop
system ⎧⎨

⎩
iut + uxx + λ|u|2u = −ig2u, x ∈ (−π, π), t ∈ R,
(u(x, 0) = u0(x), x ∈ (−π, π),
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t).

(4.1)

We first consider the associated linear system:⎧⎨
⎩
iut + uxx = −ig2u, x ∈ (−π, π), t ∈ R,
u(x, 0) = u0(x), x ∈ (−π, π),
u(−π, t) = u(π, t), ux(−π, t) = ux(π, t).

(4.2)

For given s ≥ 0, define an operator Ag in the space Hs(−π, π) by

Ag = i∂2
x − g2

with domain D(Ag) = Hs+2
p (−π, π). By the standard semigroup theory, it generates

a continuous group (Wg(t))t∈R of operators on H := Hs
p(−π, π) and for any given

initial data u0 ∈ Hs(−π, π), the corresponding solution u of (4.2) can be expressed as

u(t) = Wg(t)u0.

Moreover, the semigroup (Wg(t))t∈R+ is exponentially stable in H.
Proposition 4.1. There exist positive constants C > 0 and ν > 0 such that

||Wg(t)u0||s ≤ Ce−νt||u0||s ∀t ≥ 0.(4.3)

Proof. When s = 0, g2u = GG∗u and, thus, the exponential stability of (Wg(t))t∈R+

is a direct consequence of Theorem 2.1 according to [12]. To prove (4.3) when s = 2,
we pick u0 ∈ H2

p (−π, π) and set v := ut. Then v solves the system

{
vt = ivxx − g2(x)v, v(x, 0) = v0(x) := id

2u0
dx2 − g2(x)u0(x),

v(−π, t) = v(π, t), vx(−π, t) = vx(π, t).
(4.4)

By the property (4.3) established when s = 0, we have

||u(t)||0 ≤ Ce−νt||u0||0, ||v(t)||0 ≤ Ce−νt||v0||0.
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Since iuxx = v + g2u, we conclude that

||u(t)||2 ≤ Ce−νt||u0||2 ∀t ≥ 0.

An easy induction yields (4.3) for any s ∈ 2N. The proposition follows by a classical
interpolation argument. The proof is complete.

Now we turn our attention to the stability properties of the nonlinear system (4.1)
which can be rewritten in equivalent its integral form

u(t) = Wg(t)u0 + iλ

∫ t

0

Wg(t− τ)
(
|u|2u

)
(τ)dτ.(4.5)

At this point, we need to establish Lemmas 3.1 and 3.2 with the semigroup W (t)
substituted by the semigroup Wg(t).

Lemma 4.1. Let T > 0, s ≥ 0, and 0 ≤ b ≤ 1 be given. There exists a constant
C > 0 depending only on s and b such that

‖Wg(t)φ‖Xb,s
T
≤ C‖φ‖s

for any φ ∈ Hs
p(−π, π).

Proof. An application of Duhamel formula gives

Wg(t)φ = W (t)φ−
∫ t

0

W (t− τ)
(
g2Wg(τ)φ

)
dτ.(4.6)

It follows that

||Wg(t)φ||Xb,s
T
≤ ||W (t)φ||Xb,s

T
+
∥∥∥∥
∫ t

0

W (t− τ)
(
g2Wg(τ)φ

)
dτ

∥∥∥∥
Xb,s

T

≤ C||φ||s + C
∥∥g2Wg(t)φ

∥∥
Xb′−1,s

T

≤ C||φ||s + C||Wg(t)φ||L2(0,T ;Hs
p(−π,π)) (as b′ − 1 < 0)

≤ C||φ||s,

as desired.
Lemma 4.2. Let T > 0, s ≥ 0, b ∈ (1

2 ,
5
8 ), and b′ ∈ (b, 5

8 ) be given. There exists
a constant C > 0 depending only on s, b, and b′ such that∥∥∥∥

∫ t

0

Wg(t− τ)f(τ)dτ
∥∥∥∥
Xb,s

T

≤ C‖f‖
Xb′−1,s

T

for any f ∈ Xb′−1,s
T .

Proof. It follows from (4.6) that∫ t

0

Wg(t−τ)f(τ)dτ =
∫ t

0

W (t−τ)f(τ)dτ−
∫ t

0

W (t−τ)g2

(∫ τ

0

Wg(τ − s)f(s)ds
)
dτ,

and hence, using Lemma 3.2,∥∥∥∥
∫ t

0

Wg(t− τ)f(τ)dτ
∥∥∥∥
Xb,s

T

≤ C||f ||
Xb′−1,s

T

+ C

∥∥∥∥g2

∫ t

0

Wg(t− s)f(s)ds
∥∥∥∥
Xb′−1,s

T

≤ C||f ||
Xb′−1,s

T

+ CTα||g||2
Xb,s

T

∥∥∥∥
∫ t

0

Wg(t− s)f(s)ds
∥∥∥∥
Xb,s

T
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for some constant α > 0, by virtue of Lemma 3.3. The result follows at once if T is
small enough, say T < T0. For T ≥ T0, the result follows from Lemma 4.1 and an
easy induction argument.

Now we are in position to prove Theorem 1.5
Proof of Theorem 1.5. For given s ≥ 0, there exist some positive constants C, ν

such that

||Wg(t)u0||s ≤ Ce−νt||u0||s ∀t ≥ 0

according to Proposition 4.1. Choose T > 0 such that

Ce−νT <
1
4

and fix a number b ∈ (1
2 ,

5
4 ). We seek a solution u to the integral equation (4.5) as a

fixed point of the map

Γ(u) = Wg(t)u0 + iλ

∫ t

0

Wg(t− τ)
(
|u|2u

)
(τ)dτ

in some ball SM of the space Xb,s
T . This will be done provided that ||u0||s ≤ δ where δ

is a small number to be determined. Furthermore, to ensure the exponential stability,
δ and M will be chosen in such a way that ||u(T )||s ≤ ||u0||s/2. Pick for the moment
any δ > 0 and M > 0, and let u0 ∈ H be such that ||u0||s ≤ δ. By computations
similar to the ones displayed in the proof of Theorem 1.1 with Wg(t) substituted to
W (t), we arrive to

||Γ(u)||Xb,s
T
≤ c||u0||s + cM3 ∀u ∈ SM

and

||Γ(u)− Γ(v)||Xb,s
T
≤ cM2||u− v||Xb,s

T

for some constant c > 0 independent of δ, M , and t. On the other hand, using the
estimate of ||ω(T, u)||s in the proof of Theorem 1.1, we obtain

||Γ(u)(T )||s ≤ ||Wg(T )u0||s +

∥∥∥∥∥
∫ T

0

Wg(T − t)(|u|2u)(t)dt

∥∥∥∥∥
s

≤ 1
4
||u0||s + cM3.

Pick δ = 4cM3 where M > 0 is chosen so that

(
4c2 + c

)
M3 ≤M and cM2 ≤ 1

2
.

Then we have

||Γ(u)||Xb,s
T
≤M ∀u ∈ SM

||Γ(u)− Γ(v)||Xb,s
T
≤ 1

2
||u− v||Xb,s

T
∀u, v ∈ SM .
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Therefore, Γ is a contraction in SM . Furthermore, its unique fixed point u ∈ SM
fulfills

||u(T )||s = ||Γ(u)(T )||s ≤
δ

2
.

Assume now that 0 < ||u0||s < δ. Changing δ into δ′ := ||u0||s and M into
M ′ := (δ′/δ)

1
3M , we infer that ||u(T )||s ≤ ||u0||s/2, and an obvious induction yields

||u(nT )||s ≤ 2−n||u0||s for any n ≥ 0. As Xb,s
T ⊂ C([0, T ];Hs

p(−π, π)) for b > 1/2,
and ||u||Xb,s

T
≤ M = (δ/(4c))

1
3 , we infer by the semigroup property that there exist

some constants C′ > 0, ν′ > 0 such that

||u(t)||s ≤ C′e−ν
′t||u0||s.

The proof is complete.
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ON A CLASS OF OPTIMIZATION PROBLEMS FOR FINITE TIME
HORIZON INVENTORY MODELS∗

LAKDERE BENKHEROUF† AND BRIAN H. GILDING‡

Abstract. The paper proposes a general theory for the treatment of a class of optimization
problems that arise as a consequence of a search for the optimal replenishment schedule for finite
time horizon inventory models. The decision variables in these optimization problems consist of the
number of replenishment periods and the lengths of the periods. When the number of replenishment
periods is fixed, it is shown that the optimization problems have a unique solution under some partial
differential inequalities. Furthermore, the minimal value is convex as a function of the number of
replenishment periods. This leads to a simple procedure for determining the optimal control policy.

Key words. inventory model, finite time horizon, optimal schedule, deteriorating item
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DOI. 10.1137/070683945

1. Introduction. This paper examines the problem of finding the optimal re-
plenishment schedule for a family of generalized inventory models where the plan-
ning horizon is finite. These models include the classical models with stock- and
time-dependent demand item, a variable deterioration rate, as well as shortages
[2, 3, 5, 6, 9, 12]. Related models are treated in [14, 17, 18]. In the papers just cited,
it is shown that for a fixed number of replenishment periods, n say, the first-order
condition for optimality (that is, the solution to the system of nonlinear equations
obtained from setting the first partial derivatives equal to zero) is enough to char-
acterize the optimal replenishment schedule uniquely. Moreover, the search for the
solution of the system of nonlinear equations generated by the first-order condition
can be reduced to a univariate line search method. Proofs of optimality are based on
showing that the Hessian matrix associated with the optimization problem is positive
definite [2, 4, 9, 12, 14]. The convexity of the optimal cost function of the inventory
system with respect to n [2, 14, 17, 18] provides the justification for algorithms to
find the optimal replenishment schedule.

Notwithstanding the progress outlined above, the search for a general class of in-
ventory models for which there is an optimal replenishment schedule remains ongoing.
This paper, we hope, is a step forward toward resolving this search.

To motivate the presentation in this article, we start by considering models in
which no shortages are assumed. Models with shortages will be treated in subsequent
sections. The common assumptions behind existing models neglecting shortages [2,
5, 11, 15] are the following:

1. A single item is held in stock over a known and finite planning horizon 0 ≤
t ≤ H , where t denotes time and H > 0.

2. The level of stock on hand I(t) is depleted by the combined effect of demand
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t1 t2 t3 tn−1 H
t

I(t)

Fig. 1. Typical inventory behavior.

and deterioration.
3. Deteriorated units are neither repaired nor replaced.
4. Replenishment occurs instantaneously (at an infinite rate) when the inventory

level decreases to zero.
5. The cost structure is

(a) a fixed setup cost K,
(b) a holding cost per unit in stock per unit of time c1,
(c) the inventory holding cost is charged only for good units,
(d) a purchasing cost c2.

Figure 1 shows a typical behavior of the inventory during the planning horizon
H , where n denotes the number of replenishment periods and tj denotes the time
elapsed at the end of the jth period. For completeness, we define t0 = 0 so that for
j = 1, 2, . . . , n, the jth replenishment period is the time interval (tj−1, tj), with

0 = t0 < t1 < t2 < · · · < tn−1 < tn = H.(1.1)

The standard model of the dynamics of the inventory level during a replenishment
period is

I ′(t) = −D(t)− θ(t)I(t),(1.2)

in which D is a continuously differentiable monotonic positive function of time cor-
responding to the demand rate and θ is a continuously differentiable monotonic non-
negative function of time denoting the rate of deterioration [3, 6, 9, 10, 11, 15]. Here,
and throughout the remainder of the paper, we use the following notation.
′ : The derivative of a univariate function.
∂x : The partial derivative of a bivariate function with respect to the first variable.
∂y : The partial derivative of a bivariate function with respect to the second variable.

Several products are known to experience variation in their demand. The demand
for certain products may be seasonal, for instance, that for warm clothes or oil which
is high in winter. Also, the age of the inventory may have a negative impact on
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the demand due to loss of quality. Deterioration of the product refers to spoilage,
damage dryness, vaporization, etc. Products like food stuffs, medicine, and blood
are known to perish over time. Moreover, certain products experience a different
rate of deterioration with time, for instance, some vegetables perish faster in summer
than winter. Starting from the assumption that both of the functions D and θ are
positive constants [10], the model (1.2) has evolved over a number of years based on
the observation of inventory systems and its mathematical tractability.

An obvious drawback of (1.2) is that it ignores stock-dependent demand. It is a
common phenomena in supermarkets that large piles of displayed goods attract cus-
tomers. Hence, a retailer may influence the demand by displaying large of quantities
of goods. As a result, there is a need to examine inventory models with time-varying
stock-dependent demand items and time-varying deterioration. For more details, see
[7, 11, 15, 16] and the references therein.

To date, the dynamics of an inventory with stock-dependent demand have been
modelled almost exclusively by the equation

I ′(t) = −G(t)Iβ(t)− θI(t),(1.3)

where G is a continuously differentiable positive function of time, β is a constant
within the range 0 < β < 1, and θ is a nonnegative constant. With G a constant
function and θ = 0, this model was proposed in [1], extended to arbitrary θ in [13],
and enlarged to the above form in [2], where it was studied in depth for 0 ≤ β < 1.
The model is a realistic and logical extension of (1.2), to which it reduces when β = 0.
The parameter β may be interpreted as the elasticity of the demand with respect to
the inventory level. The model itself is amenable to study because of the power-law
dependence of the demand on the level of stock.

A variation on (1.3) with G constant and θ = 0 was proposed in [8]. This model
takes the form

I ′(t) = −G (max{I(t), I0})β ,(1.4)

with I0 a positive constant. The idea behind this model is that the demand is stock-
dependent when the inventory level exceeds a critical level I0. When the inventory
lies below this critical level, the demand is constant.

It is clear though that few inventory systems are accurately described by such
idealized dynamics as those embedded in (1.2)–(1.4). The generalization of (1.2)–
(1.4) that we wish to consider is

I ′(t) = −D(t)F (eΘ(t)I(t)) − θ(t)I(t),(1.5)

in which D(t) is positive and θ(t) is nonnegative for 0 < t < H and

Θ(t) =
∫ t

0

θ(u) du.

With regard to smoothness, the functions D and θ are assumed to be C([0, H ]) ∩
C1(0, H), where C([0, H ]) denotes the class of continuous functions on the closed
interval [0, H ] and C1(0, H) denotes the class of continuously differentiable functions
on the open interval (0, H). Letting

μ(x, y) =
∫ y

x

D(t) eΘ(t) dt,
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it is assumed that F (v) is positive for 0 < v < � and F ∈ C(0, �), for some number �
for which

μ(0, H) ≤
∫ �

0

dv

F (v)
<∞.(1.6)

The standard model (1.2) is clearly a special case of (1.5) with F ≡ 1. Moreover,
even without the restrictions β > 0 and θ is constant, (1.3) is a special case of (1.5)
with D(t) = G(t) e−βΘ(t) and F (v) = vβ . Model (1.4) can be cast in the form (1.5) by
taking D ≡ 1 and F (v) = G(max{v, I0})β. Generalization (1.5) is motivated by the
desire to increase the scope of describing practical inventory systems while retaining
mathematical tractability. A concrete example of (1.5) that has not been treated
before is provided by F (v) = v |ln v|α for some constant α > 1. This leads to

I ′(t) = −D(t) eΘ(t) |ln I(t) + Θ(t)|α I(t)− θ(t)I(t).(1.7)

Equation (1.5) holds for tj−1 ≤ t < tj , with the boundary condition

I(t)→ 0 as t ↑ tj(1.8)

for j = 1, 2, . . . , n. To solve the equation subject to this condition, we change the
dependent variable to

J(t) = eΘ(t)I(t).

With this as the unknown, (1.5) becomes

J ′(t) = −D(t) eΘ(t)F (J(t)).

Subsequently, by separation of variables and imposition of (1.8), we find

∫ J(t)

0

dv

F (v)
= μ(t, tj)

for tj−1 ≤ t < tj . Hence, if we define ψ via

z =
∫ ψ(z)

0

dv

F (v)
for 0 ≤ z ≤ μ(0, H),(1.9)

we have

J(t) = ψ(μ(t, tj)) for tj−1 ≤ t < tj .

This gives

I(t) = κ(t, tj) for tj−1 ≤ t < tj ,(1.10)

where

κ(x, y) = e−Θ(x)ψ(μ(x, y)).(1.11)

For classical model (1.2), we find (1.10), (1.11) with

ψ(z) = z.
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For the case of (1.3), we have (1.10), (1.11) with

ψ(z) = {(1− β)z}1/(1−β)(1.12)

and D(t) = G(t) e−βΘ(t). Model (1.4) leads to

ψ(z) =

⎧⎨
⎩
GIβ0 z for z ≤ I1−β

0 /G,{
βI1−β

0 + (1 − β)Gz
}1/(1−β)

for z > I1−β
0 /G.

In the case of (1.7), we obtain (1.10), (1.11) with

ψ(z) = exp
(
−{(α− 1)z}−1/(α−1)

)
.

Note that if F (0) = 0, the solution of (1.5) satisfying (1.8) is not unique. There
exists a one parameter family of solutions given by

I(t) =
{
κ(t, η) for tj−1 ≤ t < η,
0 for η ≤ t < tj ,

and η ∈ [tj−1, tj]. This is true even in the case of (1.3) with 0 < β < 1. For our
purpose, we shall adopt solution (1.10). This is the only member of the family that
conforms to modeling assumption 4.

When the evolution of the level of stock is as described above, one may adopt two
different functions for the total cost C. The first is the sum of the costs of ordering,
holding, and deterioration (OHD). For a fixed number of replenishment periods n,
this is given by

C = nK +
n∑
j=1

{
c1

∫ tj

tj−1

I(t) dt+ c2

∫ tj

tj−1

θ(t)I(t) dt

}
.(1.13)

Thus, the total cost

C = nK +
n∑
j=1

{∫ tj

tj−1

w(t)κ(t, tj) dt

}
,(1.14)

where

w(t) = c1 + c2θ(t).(1.15)

The alternative cost function is the sum of the costs of ordering, holding, and pur-
chasing (OHP). This is

C = nK +
n∑
j=1

{
c1

∫ tj

tj−1

I(t) dt+ c2I(tj−1)

}
(1.16)

= nK +
n∑
j=1

{∫ tj

tj−1

c1κ(t, tj) dt+ c2κ(tj−1, tj)

}
.

Henceforth, we shall refer to (1.14) and (1.16) as the OHD and OHP cost functions,
respectively. The results of the paper apply to both.
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Finding the optimal replenishment schedule reduces to the problem of finding n
and t0, t1, . . . , tn which minimizes C subject to constraint (1.1). When the dynamics
of the inventory are described by linear equation (1.2), it can be determined that the
OHP cost function differs from the OHD cost function merely by the addition of a fixed
amount c2

∫H
0
D(t) dt. Thus, in the classical case, the OHD and OHP optimization

problems are equivalent. However, when the inventory dynamics are described by
another equation, such as (1.3) with β 	= 0 or (1.5) with F 	≡ 1, the OHD and OHP
optimization problems are intrinsically distinct.

In [2] the optimal replenishment schedule was obtained for the OHP cost function
(1.16) based on model (1.3) with 0 ≤ β < 1. Let us briefly outline the approach. As-
sume that n is known and ignore constraint (1.1) with the exception of the assumption
that tn = H . In this case, the first-order condition for optimality yields∫ tj

tj−1

c1(∂yκ)(t, tj) dt+ c2(∂yκ)(tj−1, tj) = (c1κ− c2∂xκ)(tj , tj+1)(1.17)

for j = 1, 2, . . . , n − 1. Now, if one selects tn−1 < H , then tn−2 can be obtained
uniquely, since the left-hand side of (1.17) is strictly decreasing in tj−1. This iterative
process can then be repeated to find tn−3 and so on, down to t0. Automatically,
t0 < t1 < · · · < tn−1 < tn = H . Using the notation t0 = t0(tn−1) to emphasize the
dependence of t0 on tn−1, the problem of solving (1.17) subject to (1.1) reduces to
that of finding tn−1 such that t0(tn−1) = 0. It was shown that a unique solution based
on the above iterative process can be found when the dynamics of the inventory is
given by (1.3) with θ constant, G′ positive, and G′/G nonincreasing. This solution
was proven to be optimal by an examination of the Hessian matrix of the optimization
problem. The optimal value of the cost function could be shown to be convex in n
following the approach in [17].

The cost function associated with either the OHD model (1.14) or the OHP model
(1.16) may be written as

C = nK + Sn(t0, t1, . . . , tn),(1.18)

where

Sn(t0, t1, . . . , tn) =
n∑
j=1

R(tj−1, tj)(1.19)

and R is a real-valued function with domain

Ω = {(x, y) : 0 ≤ x < y ≤ H}.

For OHD model (1.14), we have

R(x, y) =
∫ y

x

w(t)κ(t, y) dt,(1.20)

with w given by (1.15) and for OHP model (1.16),

R(x, y) =
∫ y

x

c1κ(t, y) dt+ c2κ(x, y).(1.21)

Guided by prior results, the next section contains theoretical material on the
optimality of cost functions pertaining to the models presented above and to further
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models where shortages are allowed. It is shown that a unique optimal solution exists
under some partial differential inequalities. These inequalities are satisfied by the
existing models in the literature and other models not previously treated.

The analysis of this paper is new in nature and avoids demonstrating that the
Hessian matrix of the cost function is positive definite. The latter has been previously
employed to show that the solution obtained from the first-order optimality conditions
is indeed the optimal solution, For all but the simplest of models, it involves lengthy
and arduous computations [2, 4, 9, 12, 14]. The present approach yields the optimality
of the solution as part and parcel of the proof of existence and circumvents messy
calculations. Consequentially, it reveals that certain assumptions that have been
imposed in the past may be weakened or even discarded. Moreover, the subsequent
proof of convexity is cleaner and more straightforward.

Although the optimization problems treated in this paper have been developed
for a particular application, namely, the search for an optimal replenishment schedule
for finite time horizon inventory models, they could also be examined as a purely
mathematical optimization problem.

The next section contains the main optimality result when n is fixed as well as a
detailed description of the hypotheses under which this result is obtained. Section 3
presents conditions on specific inventory models for which the optimality result of
section 2 applies. Section 4 deals with an extension of the optimality result to handle
shortages. The last section contains some general conclusions.

2. The general model and optimality. All the models with or without short-
ages that we shall consider have the form

C = νnK + Sn(t0, t1, . . . , tn),(2.1)

where νn denotes the number of orders made,

Sn(t0, t1, . . . , tn) =
n∑
j=1

Rj(tj−1, tj),(2.2)

and {Rj}nj=1 is a set of functions defined on Ω, satisfying the following generic hy-
pothesis. For clarity, Cp(Ω) denotes the set of real functions defined on the interior of
Ω for which every partial derivative of order less than or equal to p exists and is con-
tinuously extendible to Ω, and Cp(Ω) denotes the subset for which these derivatives
are continuously extendible to Ω, i.e., the closure of Ω.

Hypothesis 1. For every j ≥ 1, the function Rj ∈ C1(Ω) ∩ C2(Ω) is such that

Rj > 0 in Ω,(2.3)

Rj = 0 on Ω \ Ω,(2.4)

∂xRj < 0 < ∂yRj in Ω,(2.5)

and

∂x∂yRj < 0 in Ω.(2.6)

Note that (2.3) is in some sense redundant, since it can be deduced from (2.4)
and (2.5).
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For both of the models described in the previous section, νn = n. The interpre-
tation of νn for other models will be made more precise in section 4. For the OHD
cost function, Rj is given by (1.20) for all j and for the OHP cost function, it is given
by (1.21) for all j. At this stage, the subscript j could be dropped from the notation
of R. However, it will be kept throughout this section as it will be found useful when
dealing with models with shortages in section 4.

We shall initially assume that n and consequently νn is fixed, as in the treatment
of [2], and concentrate on minimizing Sn. To do this, we require Hypothesis 1 and
the following.

Hypothesis 2. There holds

∂yRj + ∂xRj+1 = 0 on Ω \ Ω(2.7)

for all 1 ≤ j ≤ n− 1. Moreover, there is a function f ∈ C(0, H) such that

LxRj+1 ≥ 0 and LyRj ≥ 0 in Ω(2.8)

for all 1 ≤ j ≤ n− 1, where

Lxz = ∂2
xz + ∂x∂yz + f(x)∂xz(2.9)

and

Lyz = ∂x∂yz + ∂2
yz + f(y)∂yz.(2.10)

Remark 1. The second part of Hypothesis 2 can be weakened to the assumption
that there is a sequence of functions {fj}n−1

j=1 ⊂ C(0, H) such that L(j)
x Rj+1 ≥ 0 and

L(j)
y Rj ≥ 0 in Ω for all 1 ≤ j ≤ n − 1, where L(j)

x z = ∂2
xz + ∂x∂yz + fj(x)∂xz and

L(j)
y z = ∂x∂yz + ∂2

yz + fj(y)∂yz.
Under Hypotheses 1 and 2, our central result on optimality is the following.
Theorem 1. The function Sn given by (2.2) has a unique minimum with respect

to t0, t1, . . . , tn satisfying (1.1).
The proof is by induction on the number of replenishment periods n. Moreover,

it establishes the existence of a sequence of functions {τj}n−1
j=0 ⊂ C([0, H ])∩C1(0, H),

with

τj(0) = 0(2.11)

and

0 < τ ′j(η) < 1(2.12)

for 0 < η < H and j ≥ 1, such that, for any 0 < h ≤ H , the minimum of Sn under
the constraint

0 = t0 < t1 < t2 < · · · < tn−1 < tn = h(2.13)

is given by tn = h and

tj = τj(tj+1) for j = n− 1, n− 2, . . . , 0.(2.14)

The induction hypothesis is the following.
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Hypothesis 3. There exist functions {τj}N−1
j=0 ⊂ C([0, H ]) ∩ C1(0, H) such that

τ0(η) = 0 for 0 ≤ η ≤ H,(2.15)

(2.11) and (2.12) hold for 0 < η < H and 1 ≤ j ≤ N − 1, and

(∂yRj) (τj−1(τj(η)), τj(η)) + (∂xRj+1) (τj(η), η) = 0(2.16)

for all 0 < η < H and 1 ≤ j ≤ N − 1, with the following property. For every
0 < h ≤ H and 1 ≤ n ≤ N , the function Sn given by (2.2) has a unique minimum
with respect to t0, t1, . . . , tn satisfying (2.13), which is given by tn = h and (2.14).
Furthermore, if sn(h) denotes the associated minimum value of Sn, then

s′n(h) = (∂yRn) (τn−1(h), h)(2.17)

for all 0 < h < H and 1 ≤ n ≤ N .
Proof of Theorem 1. The induction hypothesis holds for N = 1, since under the

constraint (2.13), S1(t0, t1) = S1(0, h) = R1(0, h).
Let us now assume that the induction hypothesis is true for a certain integerN ≥ 1

and consider the problem of minimizing Sn with respect to t0, t1, . . . , tn subject to
the constraint (2.13) for n = N + 1. By Bellman’s principle of optimality and the
induction hypothesis, this problem is equivalent to that of minimizing σN+1(tN , h)
subject to the constraint 0 < tN < h, where

σN+1(η, h) = sN (η) +RN+1(η, h)(2.18)

and the remaining components of the minimum of Sn are given by tj = τj(tj+1) for
j = N − 1, N − 2, . . . , 0.

Using (2.17) and (2.18), we calculate that

(∂xσN+1) (η, h) = (∂yRN ) (τN−1(η), η) + (∂xRN+1) (η, h),(2.19)

(∂yσN+1) (η, h) = (∂yRN+1) (η, h),(2.20)

(∂x∂yσN+1) (η, h) = (∂x∂yRN+1) (η, h),(2.21)

and (
∂2
xσN+1

)
(η, h) = (∂x∂yRN ) (τN−1(η), η)τ ′N−1(η)

+
(
∂2
yRN

)
(τN−1(η), η) +

(
∂2
xRN+1

)
(η, h).

Employing (2.9) and (2.10), for later use, we rewrite the last expression as(
∂2
xσN+1

)
(η, h) = −f(η) (∂xσN+1) (η, h)(2.22)

+ (LxRN+1) (η, h) + (LyRN ) (τN−1(η), η)
− (∂x∂yRN ) (τN−1(η), η){1 − τ ′N−1(η)}
− (∂x∂yσN+1) (η, h),

where f is the function from Hypothesis 2.
Fix 0 < h ≤ H . From (2.6), (2.7)–(2.12), and (2.19), it follows that

(∂xσN+1) (0, h) = (∂yRN ) (0, 0) + (∂xRN+1) (0, h)
< (∂yRN ) (0, 0) + (∂xRN+1) (0, 0)
= 0
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and

(∂xσN+1) (h, h) = (∂yRN ) (τN−1(h), h) + (∂xRN+1) (h, h)(2.23)
> (∂yRN ) (h, h) + (∂xRN+1) (h, h)
= 0.

Hence, by continuity, there exists an η ∈ (0, h) such that

(∂xσN+1) (η, h) = 0.(2.24)

For any such η, the first component of the right-hand side of (2.22) vanishes, the
second component is nonnegative by (2.8), the third component is positive by (2.6)
and the induction hypotheses (2.12) and (2.15), and the last component is positive
by (2.6) and (2.21). Consequently, for such an η,(

∂2
xσN+1

)
(η, h) > − (∂x∂yσN+1) (η, h) > 0.(2.25)

It follows that there is precisely one η ∈ (0, h) for which (2.24) holds. Moreover, this
corresponds to the minimum of σN+1(η, h) with respect to η ∈ [0, h].

Let τN (h) denote the unique number η ∈ (0, h) from the previous paragraph so
that

(∂xσN+1) (τN (h), h) = 0(2.26)

and

sN+1(h) = σN+1(τN (h), h).(2.27)

By the implicit function theorem applied to (2.26), τN ∈ C1(0, H). Furthermore,
differentiating (2.26),(

∂2
xσN+1

)
(τN (h), h)τ ′N (h) + (∂x∂yσN+1) (τN (h), h) = 0.

Recalling from the previous paragraph that (2.25) holds for η = τN (h), this yields
(2.12) for j = N , and therewith, τN ∈ C([0, H ]).

Combining (2.19) and (2.26) gives (2.16) for j = N . Differentiating (2.27) with
respect to h yields

s′N+1(h) = (∂xσN+1) (τN (h), h) τ ′N (h) + (∂yσN+1) (τN (h), h)

for 0 < h < H . Subsequently, (2.20) and (2.26) give (2.17) for n = N + 1.
This shows that if the induction hypothesis holds for any integer N ≥ 1, it holds

for N + 1 too. Herewith, the proof of the theorem is complete.
Further to Theorem 1, we can state the following.
Theorem 2. Let sn denote the minimum value of Sn with respect to t0, t1, . . . , tn

satisfying constraint (1.1).
(i) Then sn is a strictly decreasing function of n ≥ 1.
(ii) If there exists an integer p ≥ 1 such that Rj+p = Rj for all j ≥ 1, then

sn − sn+p is a strictly decreasing function of n ≥ 1.
(iii) If {∂xRj}∞j=1 or {∂yRj}∞j=1 is equicontinuous in Ω, then

sn →
∫ H

0

(−∂xR1) (t, t) dt as n→∞.(2.28)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVENTORY MODELS 1003

Proof. We return to the preceding induction argument in N and reinstate h in
the notation of sn. Since τN (H) ∈ (0, H) represents the minimum of σN+1(η,H) with
respect to η ∈ [0, H ], together (2.4), (2.18), and (2.27) for h = H imply that

sN+1(H) = σN+1(τN (H), H)
< σN+1(H,H)
= sN (H).

This verifies part (i). The key to part (ii) is the assertion that the additional hypothesis
implies that

τj−p(η) < τj(η) for all 0 < η ≤ H(2.29)

and j ≥ p. For j = p, this assertion is immediate from (2.11), (2.12), and (2.15).
Suppose next that it is true for j = N − 1 ≥ p. Then using (2.19) and (2.6) with
j = N , we have

(∂xσN+1)(η, h) < (∂yRN )(τN−p−1(η), η) + (∂xRN+1)(η, h)
= (∂yRN−p)(τN−p−1(η), η) + (∂xRN−p+1)(η, h)

for any 0 < η < h ≤ H . Hence, by (2.16) for j = N − p, there holds

(∂xσN+1) (τN−p(h), h) < 0.

In light of (2.23) and the fact that τN (h) is the unique number η ∈ (0, h) for which
(2.24) holds, this implies (2.29) for j = N and η = h. Thus, by induction, assertion
(2.29) is true for all j ≥ p. Subsequently, (2.6), (2.17), and (2.29) imply that

s′n(h)− s′n+p(h) = (∂yRn) (τn−1(h), h)− (∂yRn) (τn+p−1(h), h)(2.30)
> 0

for all 0 < h < H and n ≥ 1. Hence, first, using (2.27) for N = n and N = n + p,
second, using the fact that σn+1(τn(H), H) is the minimum value of σn+1(η,H) with
respect to 0 < η < H , third, using (2.18) for N = n and N = n+ p, and fourth, using
(2.30), we deduce that

sn+1(H)− sn+p+1(H) = σn+1(τn(H), H)− σn+p+1(τn+p(H), H)
< σn+1(τn+p(H), H)− σn+p+1(τn+p(H), H)
= sn(τn+p(H)) − sn+p(τn+p(H))
< sn(H)− sn+p(H)

for any n ≥ 1. This verifies part (ii) of the theorem. To obtain the final part of the
theorem in the case that {∂xRj}∞j=1 is equicontinuous in Ω, we note that by (2.2) and
(2.4),

Sn(t0, t1, . . . , tn) =
n∑
j=1

∫ tj

tj−1

(−∂xRj) (t, tj) dt(2.31)

for all t0, t1, . . . , tn satisfying (1.1). Hence, by (2.6),

Sn(t0, t1, . . . , tn) >
n∑
j=1

∫ tj

tj−1

(−∂xRj) (t, t) dt(2.32)
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for all such t0, t1, . . . , tn. This inequality can be simplified by the observation that
(2.4) implies

∂xRj + ∂yRj = 0 on Ω \Ω(2.33)

for every 1 ≤ j ≤ n. Hence, invoking (2.7), it can be established that

∂xRj = ∂xR1 on Ω \ Ω for all 1 ≤ j ≤ n.(2.34)

Substituting (2.34) in (2.32) yields

sn(H) >
∫ H

0

(−∂xR1) (t, t) dt for all n ≥ 1.(2.35)

Simultaneously, by the assumption of equicontinuity, given any ε > 0, there exists a
δ > 0 such that

|(∂xRj) (t, tj)− (∂xRj) (t, t)| < ε for all |tj − t| < δ,

0 ≤ t ≤ tj ≤ H , and j ≥ 1. Subsequently, choosing n so large that H/n < δ, setting
tj = jH/n for 0 ≤ j ≤ n in (2.31), and applying (2.34), we obtain

sn(H) ≤ Sn(0, H/n, 2H/n, . . . ,H)(2.36)

≤
∫ H

0

(−∂xR1) (t, t) dt+ εH

for all such n. In view of the arbitrariness of ε, (2.35) and (2.36) provide the de-
sired conclusion. To arrive at the same conclusion in the case that {∂yRj}∞j=1 is
equicontinuous in Ω, we replace (2.31) by

Sn(t0, t1, . . . , tn) =
n∑
j=1

∫ tj

tj−1

(∂yRj) (tj−1, t) dt

and use the fact that given any ε > 0, there exists a δ > 0 such that

|(∂yRj) (tj−1, t)− (∂yRj) (t, t)| < ε for all |tj−1 − t| < δ,

0 ≤ tj−1 ≤ t ≤ H , and j ≥ 1. Arguing as in the previous case, we obtain (2.28) with
∂yR1 instead of −∂xR1. This is equivalent to (2.28) by (2.33).

Recall that in the models considered so far, which are of type (1.18) and (1.19)
with R given by either (1.20) or (1.21), all the Rj ’s are identical. Therefore, by
part (ii) of the above theorem, sn − sn+1 is strictly decreasing in n ≥ 1. This means
that sn is strictly convex in n. Consequently, the smallest value of n that satisfies the
inequality sn+1 ≥ sn − K gives an optimum of the cost function. Moreover, if this
number n is such that the inequality holds with strictness, it is the unique optimum.
If it is such that the inequality holds with equality, then n + 1 is the one and only
other optimum.

The next theorem and its corollary provide estimates of the difference between
components tj of the optimum. These estimates, in turn, should make the univariate
search for the tj ’s more efficient.
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Hypothesis 4. There exist integers 1 ≤ k < k + p ≤ n such that

p−1∏
j=0

(∂yRk+j) (xj , yj) ≤
p∏
j=1

(−∂xRk+j) (xj , yj)(2.37)

for all 0 ≤ x0 < y0 = x1 < y1 = x2 < · · · < yp−1 = xp < yp ≤ H , with yp − xp =
y0 − x0.

Theorem 3. Let t0, t1, . . . , tn be the minimum of Sn under constraint (1.1).
(a) Suppose that Hypothesis 4 holds. Then

tk+p − tk+p−1 ≤ tk − tk−1.(2.38)

Moreover, if inequality (2.37) is strict, then so too is (2.38).
(b) Suppose that Hypothesis 4 holds with inequality (2.37) reversed. Then

tk+p − tk+p−1 ≥ tk − tk−1.(2.39)

Moreover, if reversed inequality (2.37) is strict, then so too is (2.39).
Proof. By (2.14) and (2.16),

0 = (∂yRj) (tj−1, tj) + (∂xRj+1) (tj , tj+1) for all 1 ≤ j ≤ n− 1.

Hence,

(∂yRk) (tk−1, tk) = P × (−∂xRk+p) (tk+p−1, tk+p),(2.40)

where

P =
p−1∏
j=1

(
−∂xRk+j
∂yRk+j

)
(tk+j−1, tk+j)

for any 1 ≤ k < k + p ≤ n. The proof is by reductio ad absurdum, based on (2.40).
Suppose that (2.38) is false. Then tk+p−1 + tk − tk−1 < tk+p. So, applying (2.6) to
the last term in (2.40), we have

(∂yRk) (tk−1, tk) > P × (−∂xRk+p) (tk+p−1, tk+p−1 + tk − tk−1).(2.41)

This contradicts Hypothesis 4. By the same token, supposing that tk+p−1+tk−tk−1 ≤
tk+p, we obtain (2.41) with a weak inequality. This again contradicts Hypothesis 4, if
(2.37) is strict. In contrast, if (2.39) is false, then tk−1 < tk − tk+p + tk+p−1. Hence,
applying (2.6) to the left-hand side of (2.40), we deduce that

(∂yRk) (tk − tk+p + tk+p−1, tk) < P × (−∂xRk+p) (tk+p−1, tk+p).(2.42)

This contradicts Hypothesis 4 if inequality (2.37) is reversed. Similarly, if tk−1 ≤ tk−
tk+p+tk+p−1, then (2.42) holds with a weak inequality, which contradicts Hypothesis 4
if inequality (2.37) is reversed and strict. To summarize, in all cases, by supposing
the negation of the inequality that we wish to prove, we arrive at a contradiction of
the inequality of type (2.37) that we have presupposed.

Corollary 3.1. Suppose that n = mp+ r for some integers m ≥ 1, p ≥ 1, and
0 ≤ r ≤ p− 1.
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(a) When (2.38) holds for every 1 ≤ k ≤ n− p, then

tj+p − tj ≤
H

m
(2.43)

for (m − 1)p ≤ j ≤ n − p, with strict inequality if r ≥ 1 or (2.38) is strict for some
1 ≤ k ≤ n− p.

(b) When (2.39) holds for every 1 ≤ k ≤ n− p, then (2.43) holds for 0 ≤ j ≤ r,
with strict inequality if r ≥ 1 or (2.39) is strict for some 1 ≤ k ≤ n− p.

Proof. Summing (2.38) from k = j + (i−m)p+ 1 to k = j + (i+ 1−m)p gives

tj+(i+2−m)p − tj+(i+1−m)p ≤ tj+(i+1−m)p − tj+(i−m)p

for any 1 ≤ i ≤ m − 1 and (m − 1)p ≤ j ≤ n − p, with strict inequality if (2.38) is
strict for some k. Consequently,

tj+p − tj ≤
1
m

m∑
i=1

(
tj+(i+1−m)p − tj+(i−m)p

)
=
tj+p − tj−(m−1)p

m
,

with strict inequality if (2.38) is strict for some j − (m − 1)p + 1 ≤ k ≤ j. This
yields (2.43). Moreover, since tj+p < H for j + p ≤ n − 1, and tj−(m−1)p > 0 for
j − (m− 1)p ≥ 1, it yields (2.43) with strictness if j ≤ n− p− 1 or j ≥ (m− 1)p+ 1.
On the other hand, the only situation when the latter is not the case is when j =
n − p = (m − 1)p, in which situation, by what has been noted previously, there is
strictness in (2.43) if (2.38) is strict for some 1 ≤ k ≤ n− p. This gives part (a). The
proof of part (b) is analogous.

3. Specific models. The goal of this section is to check that the models in hand
conform to the general picture in the previous section. The specific aim is, thus, to
verify that respective functions (1.20) and (1.21) satisfy generic Hypothesis 1 and to
identify their prospects for satisfying Hypothesis 2. Theorem 1 will then yield the
optimality result for fixed n. The convexity of the optimal cost function with respect
to n follows immediately hereafter, via Theorem 2 with p = 1 in part (ii).

3.1. Preliminaries. To realize the intended goal, let us first establish some
additional properties of the function κ defined by (1.11). For a start, dropping the
argument (x, y) from derivatives, it can be calculated that

∂xκ = −D(x)F (γ(x, y)) − θ(x)κ(x, y)(3.1)

and

∂yκ = D(y)ρ(x, y)F (γ(x, y)),(3.2)

where

γ(x, y) = eΘ(x)κ(x, y) and ρ(x, y) = eΘ(y)−Θ(x).

For further convenience, we set

Φ(t) =
D′(t)
D(t)

+ θ(t),(3.3)

q(x, y) = eΘ(y)D(y)− eΘ(x)D(x),(3.4)
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and

Ψ(v) =
∫ v

0

dz

F (z)
(3.5)

for 0 ≤ v ≤ �. Noting that Ψ is the inverse of ψ, (1.11) may be reformulated as

Ψ(γ(x, y)) = μ(x, y).(3.6)

With this notation, we have the following.
Lemma 1. If Φ is nonincreasing on (0, H), then

Φ(x)Ψ(γ(x, y)) ≥ q(x, y) ≥ Φ(y)Ψ(γ(x, y))(3.7)

for all 0 < x < y < H.
Proof. There holds

q(x, y) =
∫ y

x

∂t

{
eΘ(t)D(t)

}
dt

=
∫ y

x

{
θ(t) eΘ(t)D(t) + eΘ(t)D′(t)

}
dt

=
∫ y

x

Φ(t) eΘ(t)D(t) dt

for all 0 < x < y < H . So, if Φ is nonincreasing,

q(x, y) ≥
∫ y

x

Φ(y) eΘ(t)D(t) dt = Φ(y)μ(x, y).

This yields the right-hand inequality in (3.7) via (3.6). The proof of the left-hand
inequality is analogous.

Lemma 2. If D = e−Θ, then Φ ≡ 0.
Lemma 3. If F (v) = vβ for some β < 1, then

Ψ(v)F (v)
v

= 1 + Ψ(v)F ′(v) =
1

1− β for v > 0.

The proofs of the last two lemmata are left as an exercise.

3.2. The OHD cost function. In the OHD model, R is given by (1.20), where
w is given by (1.15). As it turns out, the specific form of w is not so important. It
suffices to assume that w ∈ C([0, H ]) ∩ C1(0, H) is positive on (0, H). We establish
the following.

Lemma 4. Let R be given by (1.20) with κ given by (1.11). Suppose that F ∈
C1(0, �) or D = e−Θ. Then R satisfies Hypothesis 1, and ∂xR = ∂yR = 0 on Ω \ Ω.

Proof. Direct calculation reveals that

∂xR = −w(x)κ(x, y)(3.8)

and

∂yR = D(y)Q(x, y),(3.9)
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where

Q(x, y) =
∫ y

x

w(t)ρ(t, y)F (γ(t, y)) dt.(3.10)

The differentiation under the integral sign implicit in the computation of (3.9) can be
justified by changing the variable of integration in (1.20) to

∫ y
t e

Θ(u)D(u) du. Further
calculation gives

∂2
xR = −w′(x)κ(x, y) + w(x){D(x)F (γ(x, y)) + θ(x)κ(x, y)},(3.11)

∂x∂yR = −w(x)D(y)ρ(x, y)F (γ(x, y)),(3.12)

and

∂2
yR = D′(y)Q(x, y) +D(y) (∂yQ) (x, y).

To evaluate the last expression, we rewrite

Q(x, y) =
∫ y−x

0

w(y − u)ρ(y − u, y)F (γ(y − u, y)) du.

When F ∈ C1(0, �), this formally yields

∂yQ = w(x)ρ(x, y)F (γ(x, y))(3.13)

+
∫ y−x

0

w′(y − u)ρ(y − u, y)F (γ(y − u, y)) du

−
∫ y−x

0

w(y − u)ρ(y − u, y)θ(y − u)F (γ(y − u, y)) du

+
∫ y−x

0

w(y − u)ρ(y − u, y)θ(y)F (γ(y − u, y)) du

+
∫ y−x

0

w(y − u)ρ(y − u, y) (FF ′) (γ(y − u, y))q(y − u, y) du

= w(x)ρ(x, y)F (γ(x, y))

+
∫ y

x

[w′(t) + w(t){θ(y) − θ(t)}]ρ(t, y)F (γ(t, y)) dt

+
∫ y

x

w(t)ρ(t, y)q(t, y) (FF ′) (γ(t, y)) dt.

Rigorous justification follows once again by a change of variable similar to that used
for (3.9). As in that case, since otherwise this only complicates the calculations, we
omit the details. When D = e−Θ, it can be determined that γ(y−u, y) = ψ(u). So the
terms in (3.13) involving F ′ do not appear. The lemma is an immediate consequence
of the above analysis.

Lemma 5. Suppose, in addition to the hypotheses of Lemma 4, that Φ is non-
increasing on (0, H). Then if D = e−Θ or F (v) = vβ for some β < 1, there holds
LxR ≥ 0 in Ω, where

f(t) = θ(t)− w′(t)
w(t)
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or

f(t) = θ(t)− w′(t)
w(t)

− Φ(t)
1− β ,

respectively.
Proof. Embroidering on the proof of Lemma 4, using (3.8), (3.11), and (3.12),

and tidying up, it can be deduced that for any operator of the form (2.9), there holds

LxR = w(x)κ(x, y)φ(x, y),

where

φ(x, y) = θ(x) − w′(x)
w(x)

− q(x, y)F (γ(x, y))
γ(x, y)

− f(x).

If Φ is nonincreasing, Lemma 1 implies that

φ(x, y) ≥ θ(x)− w′(x)
w(x)

− Φ(x)
Ψ(v)F (v)

v
− f(x),

where v = γ(x, y). In light of Lemmata 2 and 3, this gives the asserted.
Lemma 6. Suppose, in addition to the hypotheses of Lemma 5, that w′/w − θ is

nonincreasing on (0, H). Then the conclusions of Lemma 5 apply to LyR as well as
LxR.

Proof. When F ∈ C1(0, �), combining (3.9) and (3.12)–(3.13) and eliminating D′

using (3.3), it can be calculated that for any operator of the form (2.10), there holds

LyR = D(y)
∫ y

x

w(t)ρ(t, y)F (γ(t, y))φ(t, y) dt,

where

φ(x, y) = f(y) +
w′(x)
w(x)

− θ(x) + Φ(y) + q(x, y)F ′(γ(x, y)).(3.14)

Now, if w′/w − θ and Φ are nonincreasing,

φ(x, y) ≥ f(y) +
w′(y)
w(y)

− θ(y) + Φ(y) {1 + Ψ(v)F ′(v)} ,

where v = γ(x, y). Recalling Lemmata 2 and 3, the assertion follows. When D = e−Θ,
the proof is simpler, since Φ ≡ 0 by Lemma 2, and the term involving F ′ does not
appear in (3.14).

Lemma 7. Let R be given by (1.20) and (x, y) ∈ Ω.
(i) Suppose that D = e−Θ. Then

(−∂xR) (x, y) = w(x)D(x)ψ(y − x).(3.15)

Furthermore, if wD is nondecreasing on (0, H), then

(∂yR) (x, y) ≤ w(y)D(y)ψ(y − x),(3.16)

with equality if and only if wD is constant on (x, y). On the other hand, if wD
is nonincreasing on (0, H), then (3.16) holds with the inequality sign reversed, and
equality as stated before.
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(ii) Suppose that F (v) = vβ for some 0 ≤ β < 1. Set

A(t) = w(t)
{
D(t) eβΘ(t)

}1/(1−β)

.(3.17)

If there exists a number λ such that DeλΘ, we{(β−λ)/(1−β)}Θ, and (1 − λ)θ are non-
decreasing on (0, H), then

(−∂xR) (x, y) ≥ A(x)ψ
(∫ y−x

0
e(1−λ)θ(x)u du

)
(3.18)

and

(∂yR) (x, y) ≤ A(y)ψ
(∫ y−x

0
e(1−λ)θ(y)u du

)
,(3.19)

with equality in both simultaneously if and only if A1−β+(1−λ)θ is constant on (x, y).
On the other hand, if there exists a number λ such that the aforesaid functions are
nonincreasing on (0, H), then (3.18) and (3.19) hold with the inequality sign reversed,
and equality in both simultaneously as stated before.

Proof. By (1.11) and (3.8),

(−∂xR) (x, y) = w(x) e−Θ(x)ψ(μ(x, y)),(3.20)

while by (1.9), (3.6), (3.9), and (3.10),

(∂yR) (x, y) = D(y)
∫ y

x

w(t)ρ(t, y)ψ′(μ(t, y)) dt.(3.21)

Now, if D = e−Θ, one has μ(x, y) = y − x, and (3.20) reduces to (3.15), while (3.21)
reduces to

(∂yR) (x, y) =
∫ y

x

w(t)D(t)ψ′(y − t) dt.

Hence, if wD is nondecreasing,

(∂yR) (x, y) ≤ w(y)D(y)
∫ y

x

ψ′(y − t) dt.

This gives (3.16). Moreover, since wD ∈ C([0, H ]), it gives (3.16) with equality if and
only if wD is constant on (x, y). Thus, the first and second assertions of part (i) are
proven. The outstanding assertion is proven similarly to the second. For part (ii),
we note that when F (v) = vβ for some 0 ≤ β < 1, the function ψ is given by (1.12).
Hence,

ψ′(z) = {(1− β)z}β/(1−β)(3.22)

for z > 0. Furthermore, if DeλΘ is nondecreasing on (0, H) for some λ, then

D(t) eΘ(t)

∫ y

t

ρ1−λ(t, u) du ≤ μ(t, y)(3.23)

≤ D(y) eΘ(y)ρλ−1(t, y)
∫ y

t

ρ1−λ(t, u) du
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for all x ≤ t < y. Thus,

(−∂xR) (x, y) ≥ A(x)ψ
(∫ y
x
ρ1−λ(x, t) dt

)
,(3.24)

with equality if and only if DeλΘ is constant on (x, y), while if W = we{(β−λ)/(1−β)}Θ

is nondecreasing too,

(∂yR) (x, y) ≤ A(y)
∫ y

x

ρ1−λ(t, y)ψ′ (∫ y
t
ρ1−λ(t, u) du

)
dt,(3.25)

with equality if DeλΘ and W are constant on (x, y) and only if W is constant on
(x, y). To proceed, we use the observation that if (1− λ)θ is nondecreasing, then

ρ1−λ(x, t) ≥ e(1−λ)θ(x)(t−x) for all x < t ≤ y,(3.26)

while

ρ1−λ(t, u) ≤ e(1−λ)θ(y)(u−t) for all x ≤ t < u ≤ y.(3.27)

Substituting (3.26) in (3.24) and simplifying yields (3.18) with equality if and only if
DeλΘ and (1 − λ)θ are constant on (0, H). Whereas, using (3.27) to eliminate both
occurrences of ρ1−λ from (3.25) and simplifying the resulting inequality yields (3.19)
with equality if DeλΘ, W and (1 − λ)θ are constant on (x, y), and only if W and
(1 − λ)θ are constant on (x, y). Noting that A1−β = DeλΘW 1−β , this completes the
proof of the first assertion of part (ii). The proof of the second assertion is entirely
analogous.

Theorems 1 and 2 and the first three of the above lemmata yield the following
central result for the OHD model.

Theorem 4. Consider the model (1.18)–(1.20), under the introductory assump-
tions. Suppose furthermore that D′/D+ θ and w′/w− θ are nonincreasing on (0, H).
Then, for every n ≥ 1, Sn has a unique minimum with respect to t0, . . . , tn satisfying
(1.1) when D = e−Θ or F (v) = vβ for some β < 1. Moreover, if sn denotes the
minimum value of Sn under constraint (1.1), then n �→ sn is strictly decreasing and
strictly convex.

Theorem 4 immediately says the following about the optimum of the total cost.
Corollary 4.1. The following alternatives are mutually exclusive.

(i) If K > s1 − s2, then C has a unique minimum for n = 1.
(ii) If there exists a number N ≥ 2 such that sN−1 − sN > K > sN − sN+1,

then C has a unique minimum for n = N .
(iii) If there exists a number N ≥ 1 such that K = sN − sN+1, then C has

precisely two minima: for n = N and n = N + 1.
Since the numbers sn for n ≥ 1 are independent of K, each of the possibilities in

the above corollary is viable.
Theorem 3 and Lemma 7 supplement Theorem 4 with the following.
Theorem 5. Let t0, t1, . . . , tn be the minimum of Sn under constraint (1.1) given

by Theorem 4 for some n ≥ 2.
(i) Suppose that D = e−Θ. If wD is nondecreasing on (0, H), then

tj+1 − tj ≤ tj − tj−1 for all 1 ≤ j ≤ n− 1.(3.28)

Moreover, the inequality is strict if wD is strictly increasing. On the other hand, if
wD is nonincreasing on (0, H), then

tj+1 − tj ≥ tj − tj−1 for all 1 ≤ j ≤ n− 1.(3.29)

Moreover, the inequality is strict if wD is strictly decreasing.
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(ii) Suppose that F (v) = vβ for some 0 ≤ β < 1. If there exists a number λ
such that DeλΘ, we{(β−λ)/(1−β)}Θ, and (1 − λ)θ are nondecreasing on (0, H), then
(3.28) holds. Moreover, the inequality is strict if Dw1−βeβθ + (1 − λ)θ is strictly
increasing. On the other hand, if there exists a number λ such that the aforesaid
functions are nonincreasing on (0, H), then (3.29) holds. Moreover, the inequality is
strict if Dw1−βeβθ + (1− λ)θ is strictly decreasing.

Corollary 5.1. If D = e−Θ and wD is constant on (0, H), or if F (v) = vβ for
some 0 ≤ β < 1, and there exists a number λ such that DeλΘ, w e{(β−λ)/(1−β)}Θ and
(1− λ)θ, are constant on (0, H), then

tj+1 − tj = tj − tj−1 for all 1 ≤ j ≤ n− 1.(3.30)

Note that, in itself, the assumption that θ is nonnegative is not needed in Theo-
rem 4, its corollary, nor for Theorem 5. The essential assumption is that w is positive
on (0, H).

Recalling the equivalence of the OHD and OHP cost functions when the inven-
tory dynamics are described by classical linear model (1.2), Theorem 4 improves on
previous results on the existence of an optimal replenishment schedule for this model
[2, 5, 9, 12] for both cost functions. It disposes of the diverse assumptions imposed on
the monotonicity of the demand rate D and reduces the various assumptions on the
deterioration rate θ to the single supposition that w′/w− θ is nonincreasing. Regard-
ing nonlinear model (1.3), supposing that β < 1, G satisfies the same introductory
hypotheses as D and the basic hypotheses on θ are unaltered, Theorem 4 establishes
the existence of an optimal replenishment schedule for the OHD cost function when
G′/G + (1 − β)θ and w′/w − θ are nonincreasing on (0, H). Superficially, it would
appear that there have been no comparable previous results. Nevertheless, some can
be distilled from those obtained in [2] for the OHP cost function, because when θ is
constant, the cost of deterioration is a constant multiple c2θ/c1 of the cost of holding,
while the analysis in [2] carries through even if c2 = 0. Theorem 4 improves on these
inferred results by relaxing the presupposition that 0 ≤ β < 1 to β < 1, by dispos-
ing of the assumption that G′ is positive, and by removing the assumption that θ is
constant, besides shedding a few other inessential technical hypotheses. Theorem 5
correspondingly generalizes and sharpens prior results on the successive decrement or
increment of the length of a replenishment period for linear model (1.2) and nonlinear
model (1.3). Over and above this, Theorems 4 and 5 cover a class of models not
previously considered, viz.,

I ′(t) = −e−Θ(t)F
(
eΘ(t)I(t)

)
− θ(t)I(t),(3.31)

in which F ∈ C(0, �), F (v) > 0 for 0 < v < �, and (1.6) with μ(0, H) = H holds
for some � > 0, of which (1.4) is a special case. For this class of models, an optimal
replenishment schedule has been shown to exist under the single supposition that
w′/w−θ is nonincreasing. Successive replenishment periods within this schedule have
been shown to be shorter or longer dependent upon an auxiliary condition concerning
the monotonicity of we−Θ.

3.3. The OHP cost function. The OHP model is (1.18), (1.19), and (1.21)
where κ is given by (1.11) and c1 and c2 are positive constants. Since the first term on
the right-hand side of (1.21) may be viewed as a special case of (1.20) (with w ≡ c1),
to determine when Theorem 1 can be applied to (1.21), it suffices to examine the
influence of the second term.
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We prove the following.
Lemma 8. Let κ be given by (1.11). Suppose that F ∈ C([0, �]) ∩ C1(0, �) is

nondecreasing. Then κ satisfies Hypothesis 1 with weak inequality in (2.6), and ∂yκ =
−∂xκ = D(x)F (0) on Ω \ Ω.

Proof. Differentiating (3.1) and (3.2), one can deduce that

∂2
xκ = {D(x)θ(x) −D′(x)}F (γ(x, y))(3.32)

+ D2(x) eΘ(x) (FF ′) (γ(x, y)) +
{
θ2(x)− θ′(x)

}
κ(x, y),

∂x∂yκ = −D(y)θ(x)ρ(x, y)F (γ(x, y))(3.33)

− D(x)D(y) eΘ(y) (FF ′) (γ(x, y)),

and

∂2
yκ = {D′(y) +D(y)θ(y)}ρ(x, y)F (γ(x, y))(3.34)

+ D2(y) eΘ(y)ρ(x, y) (FF ′) (γ(x, y)).

Together with (3.1) and (3.2), these relations yield the lemma.
Lemma 9. Suppose, in addition to the hypotheses of Lemma 8, that Φ and θ are

nonincreasing on (0, H). Then if D = e−Θ or F (v) = vβ for some 0 ≤ β < 1, there
holds Lxκ ≥ 0 in Ω, where

f(t) = θ(t)(3.35)

or

f(t) = θ(t)− Φ(t)
1− β(3.36)

respectively.
Proof. Substituting (3.1), (3.32), and (3.33) in (2.9) and using (3.3) to eliminate

D′, one finds

Lxκ = D(x)F (γ(x, y))φ1(x, y) + κ(x, y)φ2(x, y)

for any function f , where

φ1(x, y) = θ(x) − Φ(x)− q(x, y)F ′(γ(x, y))− f(x)

and

φ2(x, y) = θ2(x) − θ′(x)− θ(x)q(x, y)F (γ(x, y))
γ(x, y)

− θ(x)f(x).

By Lemma 1, if Φ is nonincreasing on (0, H), then

φ1(x, y) ≥ θ(x) − Φ(x) {1 + Ψ(v)F ′(v)} − f(x),

with v = γ(x, y). Similarly,

φ2(x, y) ≥ θ2(x) − θ′(x) − θ(x)Φ(x)
Ψ(v)F (v)

v
− θ(x)f(x).(3.37)

Hence, by Lemmata 2 and 3, if, furthermore, D = e−Θ and f is given by (3.35),
or F (v) = vβ for some 0 ≤ β < 1, and f is given by (3.36), one has φ1 ≥ 0 in Ω.
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Moreover, in either of these cases, (3.37) reduces to φ2(x, y) ≥ −θ′(x). Thus, Lxκ ≥ 0
when θ is also nonincreasing on (0, H).

Lemma 10. Suppose, in addition to the hypotheses of Lemma 8, that Φ is nonin-
creasing and θ is nondecreasing on (0, H). Then, the conclusions of Lemma 9 apply
with Lyκ instead of Lxκ.

Proof. Substituting (3.2), (3.33), and (3.34) in (2.10), one obtains

Lyκ = D(y)ρ(x, y)F (γ(x, y))φ(x, y),

in which

φ(x, y) = f(y)− θ(x) + Φ(y) + q(x, y)F ′(γ(x, y)).

By Lemma 1, when Φ is nonincreasing and θ is nondecreasing on (0, H),

φ(x, y) ≥ f(y)− θ(y) + Φ(y) {1 + Ψ(v)F ′(v)} ,

with v = γ(x, y). This gives Lyκ ≥ 0 under the conditions stated, via Lemmata 2 and
3.

Lemma 11. Let the assumptions of Lemma 8 hold, and (x, y) ∈ Ω.
(i) Suppose that D = e−Θ. Then

(−∂xκ) (x, y) = D(x){ψ′(y − x) + θ(x)ψ(y − x)}.(3.38)

Furthermore, if θ is nonincreasing on (0, H), then

(∂yκ) (x, y) ≥ D(y){ψ′(y − x) + θ(y)ψ(y − x)}.(3.39)

(ii) Suppose that F (v) = vβ for some 0 ≤ β < 1. Let A(t) be given by (3.17)
with w(t) = 1. If DeβΘ and θ are nondecreasing on (0, H), then

(−∂xκ) (x, y) ≥ A(x) e(1−β)θ(x)(y−x)ψ′
(∫ y−x

0
e(1−β)θ(x)u du

)
(3.40)

and

(∂yκ) (x, y) ≤ A(y) e(1−β)θ(y)(y−x)ψ′
(∫ y−x

0
e(1−β)θ(y)u du

)
.(3.41)

On the other hand, if DeβΘ and θ are nonincreasing on (0, H), then (3.40) and (3.41)
hold with the inequality sign reversed.

Proof. Irrespective of any extraordinary assumptions, by (1.9), (1.11), (3.1), and
(3.6),

(−∂xκ) (x, y) = D(x)ψ′(μ(x, y)) + θ(x) e−Θ(x)ψ(μ(x, y)),(3.42)

while by (1.9), (3.2), and (3.6),

(∂yκ) (x, y) = D(y)ρ(x, y)ψ′(μ(x, y)).(3.43)

Consequently, if D = e−Θ, (3.42) reduces to (3.38). This gives the first assertion
of part (i). To prove the remaining assertion of part (i), we note that when θ is
nonincreasing, (3.43) yields

(∂yκ) (x, y) ≥ D(y) eθ(y)(y−x)ψ′(y − x).
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Consequently, to prove (3.39), it suffices to show that

eθ(y)(y−x)ψ′(y − x) ≥ ψ′(y − x) + θ(y)ψ(y − x).

Setting v = ψ(y − x) and using (1.9) and (3.5), the above inequality is equivalent to

eθ(y)Ψ(v) ≥ 1 + θ(y)v/F (v).(3.44)

However, since eη ≥ 1 + η for any number η, there holds eθ(y)Ψ(v) ≥ 1 + θ(y)Ψ(v) for
all 0 < v ≤ �. In turn, if F is nondecreasing on [0, �], by (3.5) we have Ψ(v) ≥ v/F (v)
for any such v. Putting these two inequalities together confirms (3.44) under the
assumptions of Lemma 8, and therewith, (3.39). To prove part (ii), we note that if
DeβΘ is nondecreasing on (0, H), then (3.23) with λ = β holds for all x ≤ t < y.
Hence, recalling (1.12), (3.22), (3.42), and (3.43),

(−∂xκ) (x, y) ≥ A(x)
{
ψ′ (∫ y

x ρ
1−β(x, t) dt

)
+ θ(x)ψ

(∫ y
x ρ

1−β(x, t) dt
)}

and

(∂yκ) (x, y) ≤ A(y)ρ1−β(x, y)ψ′ (∫ y
x ρ

1−β(x, t) dt
)
.

In addition, if θ is nondecreasing too, then (3.26) and (3.27) with λ = β hold too.
Combining these inequalities yields (3.40) and (3.41). This confirms the first assertion
of part (ii). The proof of the remaining assertion mimics that of the first.

From Theorems 1–3 and the four lemmata above, we obtain the following.
Theorem 6. Consider the model (1.18), (1.19), and (1.21), under the introduc-

tory assumptions. Suppose furthermore that D′/D is nonincreasing on (0, H), θ is
constant, and F ∈ C([0, �]) ∩ C1(0, �) is nondecreasing. Then for every n ≥ 1, Sn
has a unique minimum with respect to t0, . . . , tn satisfying (1.1) when D = e−Θ or
F (v) = vβ for some 0 ≤ β < 1. Moreover, if sn denotes the minimum value of Sn
under constraint (1.1), then n �→ sn is strictly decreasing and strictly convex.

Corollary 6.1. Verbatim, the conclusions of Corollary 4.1 hold.
Theorem 7. Let t0, t1, . . . , tn be the minimum of Sn under constraint (1.1) given

by Theorem 6 for some n ≥ 2.
(i) Suppose that D = e−Θ. Then (3.29) holds. Moreover, the inequality is strict

if and only if θ > 0.
(ii) Suppose that F (v) = vβ for some 0 ≤ β < 1. If DeβΘ is nondecreasing

on (0, H), then (3.28) holds. Moreover, the inequality is strict if DeβΘ is strictly
increasing. On the other hand, if DeβΘ is nonincreasing on (0, H), then (3.29) holds.
Moreover, the inequality is strict if DeβΘ is strictly decreasing.

Corollary 7.1. If D = e−Θ and θ = 0, or if F (v) = vβ for some 0 ≤ β < 1,
and DeβΘ is constant on (0, H), then (3.30) holds.

For model (1.3) with 0 ≤ β < 1 and θ a nonnegative constant, Theorem 6
recovers the existence result found in [2]. For, in this case, F (v) = vβ , and the
supposition that D′/D is nonincreasing is equivalent to the hypothesis that G′/G is
nonincreasing. In fact, the theorem sharpens the previous result by discarding the
explicit assumption that G′ > 0 and removing some inessential implicit assumptions in
[2]. Theorem 7 generalizes the conclusion that ifG′ > 0, then successive replenishment
periods within the optimal schedule are strictly decreasing in a number of ways.
Apart from this, Theorems 6 and 7 provide results on model (3.31), where F ∈
C([0, �]) ∩ C1(0, �), F (v) > 0 and F ′(v) ≥ 0 for 0 < v < �, (1.6), with μ(0, H) = H
holds for some � > 0, and θ is constant. Such a model has not been considered before.
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t

IHtL

t1 t2 t3 t4 tn-1 H

Fig. 2. Typical inventory behavior with shortage for model CC.

t

I(t)

t1 t2 t3 t4 tn-2 tn-1 H

Fig. 3. Typical inventory behavior with shortage for model CS.

Theorem 6 establishes the existence of a unique optimal replenishment schedule. The-
orem 7 states that replenishment periods within this schedule are successively strictly
increasing if θ > 0 and all of the same length if θ = 0.

4. Extension to models with shortages. In this section, we assume that
shortages are allowed. Existing models in the literature fall into one of the cases
depicted in Figures 2–5. The difference between these models is whether or not there
is a start with a period of shortage and whether or not there is an end with a period
of shortage. To be specific, the cases are as follows:

(CC) Start and end with a period of consumption (Figure 2).
(CS) Start with a period of consumption and end with a period of shortage (Fig-

ure 3).
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tn−1 H
t

I(t)

t1 t2 t3 t4

Fig. 4. Typical inventory behavior with shortage for model SC.

t

IHtL

t1 t2 t3 t4 tn–1 H

Fig. 5. Typical inventory behavior with shortage for model SS.

(SC) Start with a period of shortage and end with a period of consumption (Fig-
ure 4).

(SS) Start and end with a period of shortage (Figure 5).
In all of the existing models with shortages [3, 6, 14, 17, 18], the evolution of the

inventory in a period of consumption has been described by (1.2) with θ constant,
while the dynamics in a period of shortage have been given by

I ′(t) = −D(t),(4.1)

where −I(t) denotes the level of shortage at time t.
We extend the description of the depletion of the inventory level during a period of

consumption to (1.5) and in the interests of capturing as wide a range of compatible
practical situations as feasible, we assume that the level of shortage in a shortage
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period is given by the complementary equation

I ′(t) = −Ds(t)Fs

(
−eΘs(t)I(t)

)
− θs(t)I(t),(4.2)

where

Θs(t) =
∫ t

0

θs(u) du.

The assumptions on the various functions in this equation are largely analogous to
those on the functions in (1.5), viz., Ds ∈ C([0, H ]) ∩ C1(0, H) is positive on (0, H),
θs ∈ C([0, H)) ∩ C1(0, H), and Fs ∈ C(0, �s) is positive on (0, �s) for some number
�s > 0 such that

μs(0, H) ≤
∫ �s

0

dv

Fs(v)
<∞,

where

μs(x, y) =
∫ y

x

Ds(t) eΘs(t) dt.

Note that the functions in (4.2) need not be the same as in (1.5). Moreover, it
is not assumed that θs is nonnegative. Thus, one can avoid thinking of the presence
of the last term in the dynamics of (4.2) as a deterioration rate. The whole of the
right-hand side of (4.2) should be interpreted as a single function describing the rate
of change of the shortage level −I in terms of time t and the shortage level itself. In
this light, (4.2) is a broad generalization of (4.1).

Equation (4.2) holds in some time interval tj−1 < t < tj , with the boundary
condition

I(t)→ 0 as t ↓ tj−1.

A solution is given by

I(t) = −κs(tj−1, t),

where

κs(x, y) = e−Θs(y)ψs(μs(x, y))(4.3)

and ψs is defined by analogy to (1.9).
We shall further assume that during a period of shortage, there is a fixed cost

per unit of the item per unit time c3. When the evolution of the shortage level is
as described above, the cost accumulated during the time-interval (tj−1, tj) following
the OHD model is

c3

∫ tj

tj−1

|I(t)| dt =
∫ tj

tj−1

c3κs(tj−1, t) dt.(4.4)

Following the OHP model, a time-interval (tj−1, tj) of shortage leads to a cost of

c2 |I(tj)|+ c3

∫ tj

tj−1

|I(t)| dt = c2κs(tj−1, tj) +
∫ tj

tj−1

c3κs(tj−1, t) dt.(4.5)

For each of the different shortage models in the OHD case, we are subsequently
led to a total cost function of the form (2.1), (2.2) with the following structure.
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(CC) The total number of periods n is odd, νn = (n + 1)/2 and Rj is given by
(1.20) for odd j and by

Rs(x, y) =
∫ y

x

c3κs(x, t) dt(4.6)

for even j.
(CS) The total number of periods n is even, νn = n/2, and Rj is as in the (CC)

case.
(SC) The total number of periods n is even, νn = n/2, and Rj is given by (4.6)

for odd j and by (1.20) for even j.
(SS) The total number of periods n is odd, νn = (n − 1)/2, and Rj is as in the

(SC) case.
In the OHP case, each of the different shortage models gives rise to a total cost

function of the form (2.1), (2.2) with exactly the same structure. However, (1.20) is
replaced by (1.21), and (4.6) is replaced by

Rs(x, y) = c2κs(x, y) +
∫ y

x

c3κs(x, t) dt.(4.7)

The general theory developed in section 2 can subsequently be applied to all of
these models if the respective functions {Rj}nj=1 are known to satisfy Hypotheses 1
and 2. Since we already know how (1.20) and (1.21) conform to these hypotheses, it
remains to find the complementary results for (4.6) and (4.7).

4.1. The OHD cost function. The following lemmata are the respective analo-
gies of Lemmata 4–7.

Lemma 12. Let Rs be given by (4.6) with κs given by (4.3). Suppose that Fs ∈
C1(0, �s) or Ds = e−Θs. Then, Rs satisfies Hypothesis 1, and ∂xRs = ∂yRs = 0 on
Ω \ Ω.

Proof. Without loss of generality, we may assume that c3 = 1. Set

ρs(x, y) = eΘs(x)−Θs(y) and γs(x, y) = eΘs(y)κs(x, y).

For the time being, we drop the subscript s without risk of confusion. We calculate

∂xκ = −D(x)ρ(x, y)F (γ(x, y))

and

∂yκ = D(y)F (γ(x, y))− θ(y)κ(x, y).

Further computation gives

∂xR = −D(x)Q(x, y),

where

Q(x, y) =
∫ y

x

ρ(x, t)F (γ(x, t)) dt,

∂yR = κ(x, y),

∂2
xR = −D′(x)Q(x, y) −D(x) (∂xQ) (x, y),

∂x∂yR = −D(x)ρ(x, y)F (γ(x, y)),
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and

∂2
yR = D(y)F (γ(x, y))− θ(y)κ(x, y).

Rewriting

Q(x, y) =
∫ y−x

0

ρ(x, x+ u)F (γ(x, x + u)) du,

when F ∈ C1(0, �), there holds

∂xQ = −ρ(x, y)F (γ(x, y))

+
∫ y−x

0

ρ(x, x + u){θ(x)− θ(x+ u)}F (γ(x, x+ u)) du

+
∫ y−x

0

ρ(x, x + u) (FF ′) (γ(x, x+ u))q(x, x + u) du,

where q is given by (3.4). Hence,

∂xQ = −ρ(x, y)F (γ(x, y))

+
∫ y

x

{θ(x)− θ(t)}ρ(x, t)F (γ(x, t)) dt

+
∫ y

x

ρ(x, t)q(x, t) (FF ′) (γ(x, t)) dt.

As in the proof of Lemma 4, differentiation under the integral sign is justified under
an appropriate change of variable. When D = e−Θ, it can be determined that γ(x, x+
u) = ψ(u), so the terms involving F ′ do not appear.

Lemma 13. Suppose, in addition to the hypotheses of Lemma 12, that

Φs(t) =
D′

s(t)
Ds(t)

+ θs(t)

is nonincreasing on (0, H). Then, if Ds = e−Θs or Fs(v) = vβs for some βs < 1, there
holds LyRs ≥ 0 in Ω, where

f(t) = θs(t)(4.8)

or

f(t) = θs(t)−
Φs(t)
1− βs

,(4.9)

respectively.
Proof. Continuing from the proof of Lemma 12, it can be deduced that for any

operator of the form (2.10), there holds

LyR = κ(x, y)φ(x, y),

where

φ(x, y) = f(y)− θ(y) + q(x, y)
F (γ(x, y))
γ(x, y))

.
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If Φ is nonincreasing, Lemma 1 implies that

φ(x, y) ≥ f(y)− θ(y) + Φ(y)
Ψ(v)F (v)

v
,

where Ψ is defined by (3.5) and v = γ(x, y). The asserted follows from Lemmata 2
and 3.

Lemma 14. Suppose, in addition to the hypotheses of Lemma 13, that θs is
nondecreasing on (0, H). Then, the conclusions of, Lemma 13 apply to LxRs as well
as LyRs.

Proof. Further to the proof of the previous two lemmata, for any operator of the
form (2.9), there holds

LxR = D(x)
∫ y

x

ρ(x, t)F (γ(x, t))φ(x, t) dt,

where

φ(x, y) = θ(y)− Φ(x) − q(x, y)F ′(γ(x, y))− f(x)

when F ∈ C1(0, �). Now, if θ is nondecreasing and Φ is nonincreasing,

φ(x, y) ≥ θ(x) − Φ(x) {1 + Ψ(v)F ′(v)} − f(x),

where v = γ(x, y). The result follows via Lemmata 2 and 3. When D = e−Θ, there
holds φ ≡ 0, and the terms involving F ′ can be ignored.

Lemma 15. Let Rs be given by (4.6) with c3 = 1 and (x, y) ∈ Ω.
(i) Suppose that Ds = e−Θs . Then,

(∂yRs) (x, y) = Ds(y)ψs(y − x).(4.10)

Furthermore, if Ds is nondecreasing on (0, H), then

(−∂xRs) (x, y) ≥ Ds(x)ψs(y − x),(4.11)

with equality if and only if Ds is constant on (x, y). On the other hand, if Ds is non-
increasing on (0, H), then (4.11) holds with the inequality sign reversed, and equality
as stated before.

(ii) Suppose that Fs(v) = vβs for some 0 ≤ βs < 1. Let

As(t) =
{
Ds(t) eβsΘs(t)

}1/(1−βs)

.(4.12)

If there exists a number λs such that Dse
λsΘs , (βs − λs)Θs, and −(1 − λs)θs are

nondecreasing on (0, H), then

(∂yRs) (x, y) ≤ As(y)ψs

(∫ y−x
0

e−(1−λs)θs(y)u du
)

(4.13)

and

(−∂xRs) (x, y) ≥ As(x)ψs

(∫ y−x
0 e−(1−λs)θs(x)u du

)
,(4.14)

with equality in both simultaneously if and only if A1−βs
s − (1 − λs)θs is constant

on (x, y). On the other hand, if there exists a number λs such that the aforesaid
functions are nonincreasing on (0, H), then (4.13) and (4.14) hold with the inequality
sign reversed, and equality in both simultaneously as stated before.
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Proof. Dropping the subscripts s and imitating the start of the proof of Lemma 7,
we find

(∂yR) (x, y) = e−Θ(y)ψ(μ(x, y))(4.15)

and

(−∂xR) (x, y) = D(x)
∫ y

x

ρ(x, t)ψ′(μ(x, t)) dt.(4.16)

Hence, if D = e−Θ, we have (4.10), and

(−∂xR) (x, y) =
∫ y

x

D(t)ψ′(t− x) dt.

The latter gives (4.11) if D is nondecreasing with equality if and only if D(x) = D(y).
On the other hand, if D is nonincreasing, it gives (4.11) with equality as stated. This
proves part (i). Suppose next that ψ is given by (1.12) for some 0 ≤ β < 1 and DeλΘ

is nondecreasing for some number λ. Then

D(x) eΘ(x)ρλ−1(x, t)
∫ t

x

ρ1−λ(u, t) du ≤ μ(x, t)(4.17)

≤ D(t) eΘ(t)

∫ t

x

ρ1−λ(u, t) du

for all x < t ≤ y. Hence, (4.15) gives

(∂yR) (x, y) ≤ A(y)ψ
(∫ y
x
ρ1−λ(t, y) dt

)
,

while (4.16) implies

(−∂xR) (x, y) ≥ A(x)
∫ y

x

ρ1+β(λ−1)/(1−β)(x, t)ψ′
(∫ t

x
ρ1−λ(x, u) du

)
dt.

Subsequently, if (β−λ)Θ and −(1−λ)θ are nondecreasing, we obtain (4.13) and (4.14).
Moreover, retracing the steps, it can be seen that the former holds with equality if
and only if D eλΘ and −(1 − λ)θ are constant on (x, y), while the latter holds with
equality if DeλΘ, (β−λ)Θ, and −(1−λ)θ are constant on (x, y) and only if (β−λ)Θ
and −(1−λ)θ are constant on (x, y). The proof of the reversed inequalities is entirely
analogous.

Amalgamating Lemmata 4–6 and 12–14 with Theorems 1 and 2 yields the follow-
ing regarding the OHD model with shortages.

Theorem 8. Consider model (2.1), (2.2) where Rj is given alternately by (1.20)
under the introductory assumptions of section 1 and (4.6) under the introductory
assumptions of this section. Suppose, furthermore, that D′/D+θ, w′/w−θ, D′

s/Ds +
θs, and −θs are nonincreasing on (0, H). Then, for every n ≥ 1, Sn has a unique
minimum with respect to t0, . . . , tn satisfying (1.1) when any of the following hold:

(a) D = e−Θ, Ds = e−Θs , and

θs = θ − w′

w
;(4.18)
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(b) D = e−Θ, Fs(v) = vβs for some βs < 1, and

1
1− βs

(
D′

s

Ds
+ βsθs

)
=
w′

w
− θ;(4.19)

(c) F (v) = vβ for some β < 1, Ds = e−Θs , and

θs = − 1
1− β

(
D′

D
+ βθ

)
− w′

w
;

(d) F (v) = vβ for some β < 1, Fs(v) = vβs for some βs < 1, and

1
1− βs

(
D′

s

Ds
+ βsθs

)
=

1
1− β

(
D′

D
+ βθ

)
+
w′

w
.

Moreover, if sn denotes the minimum value of Sn under constraint (1.1), then sn is a
strictly decreasing function of n ≥ 1, and s2i and s2i−1 are strictly convex functions
of i ≥ 1.

With the convention that x|XX denotes the value of the variable x associated with
the shortage model XX and XX stands for any one of the combinations CC, CS, SC,
or SS, we have the following result.

Corollary 8.1. For any i ≥ 1, there holds

ν2i−1|CC = ν2i|CS = ν2i|SC = ν2i+1|SS = i

and

s2i−1|CC , s2i−1|SS > s2i|CS , s2i|SC > s2i+1|CC , s2i+1|SS .

Corollary 8.2. The following alternatives are mutually exclusive for the models
CC and SS.

(i) If K > s1 − s3, then C has a unique minimum which occurs for n = 1.
(ii) If there exists a number N ≥ 2 such that s2N−3 − s2N−1 > K > s2N−1 −

s2N+1, then C has a unique minimum which occurs for n = 2N − 1.
(iii) If there exists a number N ≥ 1 such that K = s2N−1 − s2N+1, then C has

precisely two minima which occur for n = 2N − 1 and n = 2N + 1.
Whereas, the following alternatives are mutually exclusive for the models CS and SC.

(i) If K > s2 − s4, then C has a unique minimum which occurs for n = 2.
(ii) If there exists a number N ≥ 2 such that s2N−2 − s2N > K > s2N − s2N+2,

then C has a unique minimum which occurs for n = 2N .
(iii) If there exists a number N ≥ 1 such that K = s2N − s2N+2, then C has

precisely two minima which occur for n = 2N and n = 2N + 2.
Theorem 9. Let t0, t1, . . . , tn be the minimum of Sn under constraint (1.1) given

by Theorem 8 for some n ≥ 3 under one of the following conditions:
(a) D = e−Θ and Ds = e−Θs;
(b) D = e−Θ and Fs(v) = vβs for some 0 ≤ βs < 1;
(c) F (v) = vβ for some 0 ≤ β < 1 and Ds = e−Θs ;
(d) F (v) = vβ for some 0 ≤ β < 1 and Fs(v) = vβs for some 0 ≤ βs < 1.

Then, in each case, respectively, the length of two consecutive consumption periods and
the length of two consecutive shortage periods decreases when the following functions
are nondecreasing on (0, H):

(a) wD;
(b) Dse

λsΘs , (βs − λs)Θs, and −(1− λs)θs for some number λs;
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(c) DeλΘ, we{(β−λ)/(1−β)}Θ, and (1− λ)θ for some number λ;
(d) DeλΘ, we{(β−λ)/(1−β)}Θ, and (1 − λ)θ for some number λ, and Dse

λsΘs ,
(βs − λs)Θs, and −(1− λs)θs for some number λs.

Moreover, in each case, the length of two consecutive consumption periods and the
length of two consecutive shortage periods is strictly decreasing if one of the following
functions is strictly increasing on (0, H):

(a) wD;
(b) wD or Dse

βsΘs − (1− λs)θs;
(c) Dw1−βeβΘ + (1− λ)θ;
(d) Dw1−βeβΘ + (1− λ)θ or Dse

βsΘs − (1− λs)θs.
On the other hand, in each of the initial cases, the length of two consecutive con-
sumption periods and the length of two consecutive shortage periods increases when
the functions in the subsequent list are nonincreasing on (0, H). Moreover, in each
case, respectively, the length of two consecutive consumption periods and the length
of two consecutive shortage periods is strictly increasing if one of the functions in the
final list is strictly decreasing on (0, H).

Proof. According to Theorem 3, the length of consecutive consumption periods
decreases if

(∂yR) (x− δ, x)
(−∂xR) (y, y + δ)

≤ (−∂xRs) (x, y)
(∂yRs) (x, y)

(4.20)

for all 0 ≤ x−δ < x < y < y+δ ≤ H . Moreover, the length of these periods decreases
strictly if (4.20) is strict in all such circumstances. Likewise, the length of consecutive
shortage periods decreases if

(∂yRs) (x − δ, x)
(−∂xRs) (y, y + δ)

≤ (−∂xR) (x, y)
(∂yR) (x, y)

.(4.21)

Moreover, the length of these periods decreases strictly if (4.21) is strict for all 0 ≤
x− δ < x < y < y + δ ≤ H . Sufficient conditions under which (4.20) and (4.21) hold
can be found by employing Lemmata 7 and 15. For instance, in case (a), conditions
can be found by assuming that wD and Ds are nondecreasing. Substituting (3.15),
(3.16), (4.10), and (4.11) in (4.20) and (4.21) leads to the conditions

w(x)D(x)ψ(δ)
w(y)D(y)ψ(δ)

≤ Ds(x)ψs(y − x)
Ds(y)ψs(y − x)

and

Ds(x)ψs(δ)
Ds(y)ψs(δ)

≤ w(x)D(x)ψ(y − x)
w(y)D(y)ψ(y − x) ,

respectively. Noting that (4.18) implies that Ds/wD is constant on (0, H), this gives
the first assertion related to case (a) in the theorem. Furthermore, it gives (4.20) and
(4.21) with strict inequality if wD is strictly monotonic. In case (b), assuming that
wD is nondecreasing, there exists a number λs such that Dse

λsΘs , (βs − λs)Θs, and
−(1−λs)θs are nondecreasing, substituting (3.15), (3.16), (4.13), and (4.14) in (4.20)
and (4.21) leads to the identification of

w(x)D(x)ψ(δ)
w(y)D(y)ψ(δ)

≤
As(x)ψs

(∫ y−x
0 e−(1−λs)θs(x)u du

)
As(y)ψs

(∫ y−x
0 e−(1−λs)θs(y)u du

)
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and

As(x)ψs

(∫ δ
0
e−(1−λs)θs(x)u du

)
As(y)ψs

(∫ δ
0
e−(1−λs)θs(y)u du

) ≤ w(x)D(x)ψ(y − x)
w(y)D(y)ψ(y − x)

as sufficient conditions for the monotonicity of the length of the consumption and
shortage periods, respectively. Since (4.19) implies that As/wD is constant on (0, H),
this gives the first assertion of the theorem regarding case (b). The further assertion
of strict monotonicity follows from the conditions given by Lemmata 7 and 15 under
which (3.15), (3.16), (4.13), and (4.14) may be strict. The proofs of the assertions
concerning increment of the length of consumption and shortage periods in cases (c)
and (d) are similar. With regard to the remainder of the theorem, we note that,
by Theorem 3, the length of two consecutive consumption periods increases if (4.20)
holds with the inequality reversed for all 0 ≤ x − δ < x < y < y + δ ≤ H . Likewise,
the length of two consecutive consumption periods increases if (4.21) holds with the
inequality reversed. Moreover, the length of such periods is strictly monotonic if
the appropriate inequality is strict. Retracing the proof so far leads to the desired
results.

Corollary 9.1. In each of the respective cases in Theorem 9, if the functions
in the second list are constant on (0, H), then all consumption periods have the same
length and all shortage periods have the same length.

Using Theorem 3 and Lemmata 7 and 15, it is actually possible to identify some
special circumstances in which the length of adjacent periods is monotonic irrespective
of whether they specifically pertain to consumption or shortage periods.

Corollary 9.2. Suppose that Fs = F and c3Ds = wD in case (a) of Theorem 9,
or βs = β, (1 − λs)θs = −(1 − λ)θ, and c3(Dse

βΘs)1/(1−β) = w(DeβΘ)1/(1−β) in
case (d) of Theorem 9. Then, if the respective functions in the second list of Theorem 9
are nondecreasing on (0, H), (3.28) holds. On the other hand, if these functions are
nonincreasing on (0, H), (3.29) holds. Consequently, if these functions are constant
on (0, H), (3.30) applies.

The results previously known for the existence of an optimal replenishment sched-
ule for a finite time horizon inventory model with shortages [3, 4, 6] are readily re-
covered from Theorem 8. Taking Fs ≡ F ≡ 1 in part (d), the theorem establishes the
existence of an optimal schedule when the consumption dynamics are described by
(1.2) and the shortage dynamics by

I ′(t) = −αw(t)D(t) − θs(t)I(t)

for some number α > 0, under the hypotheses on D, θ, and θs assumed throughout
this paper plus the supplementary hypothesis thatD′/D+θ, w′/w−θ, (wD)′/wD+θs,
and −θs are nonincreasing. Note that the monotonicity of the first two functions in
the supplementary hypothesis is precisely the sufficient condition for the existence
of an optimal replenishment schedule for the OHD cost function without shortages
(stated in Theorem 4). Consequently, the monotonicity of the other functions may
be viewed purely as a restriction on θs. In the event that θ is constant, w is constant
too. Subsequently, taking α = 1/w and θs ≡ 0, we obtain the existence of an optimal
schedule for consumption model (1.2) and shortage model (4.1), under the single
hypothesis over and above those assumed throughout that D′/D is nonincreasing.
All previous results [3, 4, 6, 14] have been obtained in these circumstances. Indeed,
they have required the additional assumption that D′ ∈ C([0, H ]) and D′(t) 	= 0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1026 LAKDERE BENKHEROUF AND BRIAN H. GILDING

for 0 ≤ t ≤ H . When D′(t) > 0 for 0 ≤ t ≤ H , the length of two consecutive
consumption periods and the length of two consecutive shortage periods in the optimal
replenishment schedule is strictly decreasing. When D′(t) < 0 for 0 ≤ t ≤ H , these
lengths are strictly increasing. These results can be recovered from Theorem 9 by
letting β = βs = λ = λs = 0 in part (d). In their generalization, Theorems 8 and 9
plainly cover a host of alternatives to the previously considered combination of the
models (1.2) and (4.1), with or without the assumption that θ is constant and the
ensuing hypotheses.

4.2. The OHP cost function. Given that function (4.6) can be put into the
framework developed in section 2, to establish under which conditions the function
(4.7) is amenable to the same treatment, it suffices to examine the influence of the
extra term. This is given by the following four lemmata. These are the analogies of
Lemmata 8–11, respectively.

Lemma 16. Let κs be given by (4.3). Suppose that θs ≤ 0, and Fs ∈ C([0, �s]) ∩
C1(0, �s) is nondecreasing on (0, H). Then, κs satisfies Hypothesis 1 with weak in-
equality in (2.6), and ∂yκs = −∂xκs = Ds(x)Fs(0) on Ω \ Ω.

Proof. Carrying on from the proof of Lemma 12 with the subscript s dropped
from the notation, one can compute

∂2
xκ = −{D′(x) +D(x)θ(x)}ρ(x, y)F (γ(x, y)) +D2(x) eΘ(x)ρ(x, y) (FF ′) (γ(x, y)),

∂x∂yκ = D(x)θ(y)ρ(x, y)F (γ(x, y)) −D(x)D(y) eΘ(x) (FF ′) (γ(x, y)),

and

∂2
yκ = {D′(y)−D(y)θ(y)}F (γ(x, y))

+ D2(y) eΘ(y) (FF ′) (γ(x, y)) +
{
θ2(y)− θ′(y)

}
κ(x, y).

The lemma follows from these expressions and those established for ∂xκ and ∂yκ in
the proof of Lemma 12.

Lemma 17. Suppose, in addition to the hypotheses of Lemma 16, that Φs is
nonincreasing, and θs is nondecreasing on (0, H). Then, if Ds = e−Θs or Fs(v) = vβs

for some 0 ≤ βs < 1, there holds Lxκs ≥ 0 in Ω, where f is given by (4.8) or (4.9),
respectively.

Proof. Yet again ignoring the subscript s and employing the calculations above,
one finds

Lxκ = D(x)ρ(x, y)F (v)φ(x, y)

for any operator of the form (2.9), where

φ(x, y) = θ(y)− Φ(x)− q(x, y)F ′(v)− f(x)

and v = γ(x, y). Recalling Lemma 1, when Φ is nonincreasing and θ is nondecreasing,

φ(x, y) ≥ θ(x) − Φ(x) {1 + Ψ(v)F ′(v)} − f(x).

This implies Lxκ ≥ 0 under the conditions stated, via Lemmata 2 and 3.
Lemma 18. Suppose, in addition to the hypotheses of Lemma 16, that Φs and θs

are nonincreasing on (0, H). Then, the conclusions of the previous lemma apply with
Lyκs in lieu of Lxκs.
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Proof. Substituting the requisite expressions in (2.10), one finds

Lyκ = D(y)F (v)φ1(x, y) + κ(x, y)φ2(x, y),

where

φ1(x, y) = f(y)− θ(y) + Φ(y) + q(x, y)F ′(v),

φ2(x, y) = θ2(y)− θ′(y)− θ(y)q(x, y)F (v)
v
− θ(y)f(y),

and v = γ(x, y). By Lemma 1, if Φ is nonincreasing, then

φ1(x, y) ≥ f(y)− θ(y) + Φ(y) {1 + Ψ(v)F ′(v)} .

Similarly,

φ2(x, y) ≥ θ2(y)− θ′(y)− θ(y)Φ(y)
Ψ(v)F (v)

v
− θ(y)f(y).

Armed with these inequalities, the proof may be completed along the lines of that of
Lemma 10.

Lemma 19. Let the assumptions of Lemma 16 hold, and (x, y) ∈ Ω.
(i) Suppose that Ds = e−Θs . If θs is nonincreasing on (0, H), then

(−∂xκs) (x, y) ≥ Ds(x){ψ′
s(y − x)− θs(x)ψs(y − x)}.(4.22)

Anyhow,

(∂yκs) (x, y) = Ds(y){ψ′
s(y − x) − θs(y)ψs(y − x)}.(4.23)

(ii) Suppose that Fs(v) = vβs for some 0 ≤ βs < 1. Let As(t) be given by (4.12).
If Dse

βsΘs is nondecreasing and θs is nonincreasing on (0, H), then

(−∂xκs) (x, y) ≥ As(x) e−(1−βs)θs(x)(y−x)ψ′
s

(∫ y−x
0

e−(1−βs)θs(x)u du
)

(4.24)

and

(∂yκs) (x, y) ≤ As(y) e−(1−βs)θs(y)(y−x)ψ′
(∫ y−x

0 e−(1−βs)θs(y)u du
)
.(4.25)

On the other hand, if Dse
βsΘs is nonincreasing and θs is nondecreasing on (0, H),

then (4.24) and (4.25) hold with the inequality sign reversed.
Proof. Forgetting about the subscript s, analogously to in the proof of Lemma 11,

it can be verified that

(−∂xκ) (x, y) = D(x)ρ(x, y)ψ′(μ(x, y))(4.26)

and

(∂yκ) (x, y) = D(y)ψ′(μ(x, y))− θ(y) e−Θ(y)ψ(μ(x, y)).(4.27)

When D = e−Θ and θ is nonincreasing, (4.26) implies

(−∂xκ) (x, y) ≥ D(x) e−θ(x)(y−x)ψ′(y − x).
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Consequently, to verify (4.22), it suffices to show that

e−θ(x)(y−x)ψ′(y − x) ≥ ψ′(y − x)− θ(x)ψ(y − x).(4.28)

However, if F is nondecreasing on [0, �], then F (v)Ψ(v) ≥ v for all 0 < v ≤ �, by (3.5).
Hence, because eη ≥ 1 + η for any number η, there holds

F (v) e−θ(x)Ψ(v) ≥ F (v){1− θ(x)Ψ(v)} ≥ F (v)− θ(x)v.

Substituting v = ψ(y − x) in the above inequality and recalling (1.9) and (3.5) gives
(4.28), and therewith, (4.22). When D = e−Θ, (4.27) reduces to (4.23). This proves
part (i). To prove part (ii), we note that if DeβΘ is nondecreasing on (0, H), then
(4.17) with λ = β holds for all x ≤ t < y. Hence,

(−∂xκ) (x, y) ≥ A(x)ρ1−β(x, y)ψ′ (∫ y
x
ρ1−β(t, y) dt

)
and

(∂yκ) (x, y) ≤ A(y)
{
ψ′ (∫ y

x
ρ1−β(t, y) dt

)
− θ(y)ψ

(∫ y
x
ρ1−β(t, y) dt

)}
.

If θ is nonincreasing, these inequalities yield (4.24) and (4.25). This confirms the first
assertion of part (ii). Confirmation of the second is a replica of the first.

Collating the above lemmata with those in section 3 and the previous subsec-
tion and applying Theorems 1–3 leads to the following results for the OHP model
incorporating shortages.

Theorem 10. Consider model (2.1), (2.2), where Rj is given alternately by
(1.21) under the introductory assumptions of section 1 and (4.7) under the introduc-
tory assumptions of this section. Suppose, furthermore, that D′/D and D′

s/Ds are
nonincreasing, θ ≥ 0 and θs ≤ 0 are constant on (0, H), F ∈ C([0, �]) ∩ C1(0, �) is
nondecreasing, Fs ∈ C([0, �s]) ∩ C1(0, �s) is nondecreasing, and DF (0) ≡ DsFs(0) on
[0, H ]. Then, for every n ≥ 1, Sn has a unique minimum with respect to t0, . . . , tn
satisfying (1.1) when any of the alternatives (a), (b), (c), or (d) of Theorem 8 hold
with w ≡ c1. Moreover, if sn denotes the minimum value of Sn under the constraint
(1.1), then sn is a strictly decreasing function of n ≥ 1, and s2i and s2i−1 are strictly
convex functions of i ≥ 1.

Corollary 10.1. Verbatim, the conclusions of Corollaries 8.1 and 8.2 hold.
Theorem 11. The conclusions of Theorem 9, Corollary 9.1, and Corollary 9.2

hold under the restriction that w ≡ c1, λ = β, and λs = βs.
No prior results for the OHP model with shortages are known.

5. Conclusion. In this paper, we have examined a class of optimization prob-
lems that arise as a result of a search for the optimal replenishment schedule for
finite time horizon inventory models. The decision variables consist of a single inte-
ger variable and an ordered bounded set of nonnegative real numbers, whereby the
cardinality of this set is equal to the value of the integer variable. It has been shown
that if the objective function possesses certain generic properties and satisfies some
partial differential inequalities—Hypotheses 1 and 2, respectively—then a solution to
the optimization problem exists and is unique. The hypotheses are satisfied by ex-
isting models in the literature and a range of new models. Special properties of the
optimal solution have also been presented.

The tool used for tackling the finite time horizon inventory model is new in nature
and can easily be adapted to deal with models with partial backlogging. This is
because the cost function C retains the separable structure (2.1), (2.2) with functions
Rj that satisfy Hypothesis 1.
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The inclusion of inflation in the model, as proposed in [18], requires a certain
adaptation. In place of (1.13), the OHD cost function for the model without shortages
becomes

C =
n∑
j=1

{
Ke−ritj−1 +

∫ tj

tj−1

c1(t)I(t) dt+ c2e
−retj−1

∫ tj

tj−1

θ(t)I(t) dt

}
,(5.1)

where ri denotes a net discount rate accounting for internal inflation, re denotes a net
discount rate accounting for external inflation

c1(t) = c1,ie
−rit + c1,ee

−ret,

with c1,i and c1,e holding costs corresponding to each type of inflation, and the re-
maining notation is as in section 1. The alternative form

C =
n∑
j=1

{
Ke−ritj−1 +

∫ tj

tj−1

c1(t)I(t) dt+
∫ tj

tj−1

c2e
−retθ(t)I(t) dt

}
,(5.2)

where the deterioration cost at any time is related to the value of the stock at that
time, may also be adopted. The equivalent form of (1.16) for the OHP model with
inflation and without shortages is

C =
n∑
j=1

{
Ke−ritj−1 +

∫ tj

tj−1

c1(t)I(t) dt+ c2e
−retj−1I(tj−1)

}
.(5.3)

If ri = 0, then the cost functions given by (5.1)–(5.3) are amenable to the analysis
developed in section 2.

For the models with shortage, the adaptation to account for inflation is to replace
(4.4) in the OHD model by ∫ tj

tj−1

c3(t) |I(t)| dt,

where

c3(t) = c3,ie
−rit + c3,ee

−ret,

and c3,i and c3,e are shortage costs associated with internal inflation and external
inflation, respectively. In the OHP model with inflation, (4.5) is generalized to

c2e
−retj |I(tj)|+

∫ tj

tj−1

c3(t) |I(t)| dt.

Again, if ri = 0, then the theory of section 2 applies, and results comparable to those
in the previous section are obtainable.
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Abstract. Input-to-state stability (ISS) of a class of differential inclusions is proved. Every
system in the class is of Lur’e type: a feedback interconnection of a linear system and a set-valued
nonlinearity. Applications of the ISS results, in the context of feedback interconnections with a
hysteresis operator or a quantization operator in the feedback path, are developed.
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hysteresis, nonlinear systems, quantization
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1. Introduction. Classical absolute stability theory, with origins in [18], is con-
cerned with the analysis of systems of Lur’e type, that is, feedback interconnections
of the form shown in Figure 1.1, consisting of a linear system L in the forward path
and a static sector-bounded nonlinearity f in the (negative) feedback path. The
methodology seeks to conclude stability of the overall system through the interplay
or reciprocation of inherent frequency-domain properties of the linear component L
and sector data for the nonlinearity f . Accounts of the classical theory can be found
in, e.g., [7, 10, 13, 19, 21, 23]. The present paper adopts a similar standpoint but
differs from the classical framework in three fundamental aspects: (i) in contrast with
the literature, wherein the focus is on global asymptotic stability and L2 or L∞ sta-
bility, input-to-state stability (ISS) issues are addressed here; (ii) nonlinearities of
considerably greater generality are permitted in the feedback path; (iii) the sector
conditions of the classical theory are significantly weakened. With reference to (i),
conditions on the linear and nonlinear components are identified under which ISS of
the interconnection is guaranteed. With reference to (ii), a framework is developed
of sufficient generality to encompass not only static nonlinearities but also causal
operators (and hysteresis, in particular) and quantization operators in the feedback
path. With reference to (iii), through the concept of a generalized sector condition,
the investigation is extended to include nonlinearities which satisfy a sector condition
only in the complement of a compact set: a theory is developed pertaining to ISS with
bias. We proceed to outline these features more precisely.

With reference to Figure 1.2, the focus of the paper is a study of absolute stability,
ISS, and boundedness properties of a feedback interconnection of a finite-dimensional,
linear,m-input, m-output system (A,B,C) and a set-valued nonlinearity Φ. Through-
out, we assume that Δ is a set-valued map in which input or disturbance signals are
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L

−f

Fig. 1.1. Classical feedback interconnection.

Δ (A,B,C)

Φ

y
+

−

Fig. 1.2. Interconnection of a linear system (A, B, C) and a set-valued nonlinearity Φ.

embedded. We seek an analytical framework of sufficient generality to encompass
inter alia feedback systems with causal operators (and, in particular, hysteresis op-
erators) in the feedback loop. To illustrate this, let F be a causal operator from
dom(F ) ⊂ L1

loc(R+,R
m) to L1

loc(R+,R
m), where R+ := [0,∞) and consider the feed-

back system (structurally of Lur’e type), with input d ∈ L∞
loc(R+,R

m), given by the
functional differential equation

(1.1) ẋ(t) = Ax(t) +B
(
d(t) − (F (Cx))(t)

)
.

By causality of F , we mean that, for all y, z ∈ dom(F ) and all α > 0,

y|[0,α] = z|[0,α] =⇒ F (y)|[0,α] = F (z)|[0,α].

To associate (1.1) with the structure of Figure 1.2, assume that F can be embedded
in a set-valued map Φ in the sense that

y ∈ dom(F ) =⇒ (F (y))(t) ∈ Φ(y(t)) for a.e. t ∈ R+.

If the input d is such that d(t) ∈ Δ(t) for almost all t, then any solution of (1.1)
is a fortiori a solution of the feedback interconnection in Figure 1.2. In this sense,
properties of solutions of the feedback interconnection are inherited by solutions of
(1.1). Under particular regularity assumptions on Δ and Φ, generalized sector condi-
tions on Φ, and positive-real conditions related to the linear component (A,B,C), we
establish ISS (in the sense of [20] but extended to differential inclusions) and bound-
edness properties of solutions of the system in Figure 1.2. The approach is partially
based on that of Arcak & Teel [1]. In particular, some of the arguments adopted
in the proof of Lemma 5.1 of the present paper are generalizations, to a differential
inclusions setting, of arguments in [1]. The paper is structured as follows. In section
2, we make precise the nature of the maps Φ and Δ and state an existence theorem
which underpins the stability analysis of the differential inclusion formulation implicit
in Figure 1.2. The main results, Theorems 3.4 and 3.5 (and Corollaries 3.6 and 3.7),
are assembled in section 3. For clarity of presentation, the proof of Theorem 3.4 (re-
spectively, Theorem 3.5) is presented separately in section 4 (respectively, section 5).
In section 6, the results in Theorem 3.4/Corollary 3.6 are applied in the context of
single-input, single-output feedback interconnections with a hysteresis operator F in
the feedback loop. New absolute stability and boundedness results are obtained for
Lur’e systems with Preisach hysteresis (see, e.g., [3, 9, 12, 16, 17] for earlier stability
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results for hysteretic feedback systems). In the final section, quantized feedback sys-
tems are considered: these constitute an area of growing importance (see, e.g., [4, 8] in
a linear systems context). Specifically, in section 7, nonlinear feedback systems with
uniform output quantization (parameterized by γ ≥ 0) are investigated. Through
an application of Theorem 3.5/Corollary 3.7, we establish robustness with respect to
quantization in the following sense: if, in the absence of quantization (γ = 0), the
feedback system is ISS, then, in the presence of quantization (γ > 0), the feedback
system is ISS with bias and is such that the unbiased ISS property of the unquantized
system is “approached” as γ ↓ 0.

Notation and terminology. The open right-half complex plane is denoted by
C+. For nonempty S ⊂ R

m, we define |S| := sup{‖s‖ | s ∈ S}. If H is a proper
real-rational matrix of format m×m, then we say that H is positive real if

H(s) +H∗(s) ≥ 0 , ∀ s ∈ C+, s not a pole of H ,

where H∗(s) := (H(s))∗. Moreover, if H ∈ H∞ := H∞(C+,C
m×m) (and so H does

not have any poles in C+), then

‖H‖H∞ := sups∈C+
‖H(s)‖ ,

where ‖H(s)‖ is the matrix norm induced by the 2-norm on C
m. Let K denote the

set of all continuous and strictly increasing functions f : R+ → R+, with f(0) = 0.
We say that a function f is in K∞ if f ∈ K and f(s) → ∞ as s → ∞. Finally, KL
denotes the class of all continuous functions f : R

2
+ → R+ such that, for each r ∈ R+,

the function s �→ f(r, s) is in K and, for each s ∈ R+, the function r �→ f(r, s) is
nonincreasing with f(r, s)→ 0 as r →∞.

2. Set-valued nonlinearities and differential inclusions. A set-valued map
y �→ Φ(y) ⊂ R

m, with nonempty values and defined on R
m, is said to be upper

semicontinuous at y ∈ R
m if, for every open set U containing Φ(y), there exists an

open neighborhood Y of y such that Φ(Y ) := ∪z∈Y Φ(z) ⊂ U ; the map Φ is said to
be upper semicontinuous if it is upper semicontinuous at every y ∈ R

m. The set of
upper semicontinuous compact–convex-valued maps

Φ : R
m → {S ⊂ R

m | S nonempty, compact, and convex}

is denoted by U . Let Δ : R+ → {S ⊂ R
m |S = ∅} be a set-valued map. The map Δ

is said to be measurable if the preimage Δ−1(U) := {t ∈ R+ |Δ(t) ∩ U = ∅} of every
open set U ⊂ R

m is Lebesgue measurable; Δ is said to be locally essentially bounded
if Δ is measurable and the function t �→ |Δ(t)| is in L∞

loc(R+). The set of all locally
essentially bounded set-valued maps R+ → {S ⊂ R

m |S = ∅} is denoted by B. For
Δ ∈ B, I ⊂ R+ an interval, and 1 ≤ p ≤ ∞, the Lp-norm of the restriction of the
function t �→ |Δ(t)| to the interval I is denoted by ‖Δ‖Lp(I). For later use, we record
a technicality.

Lemma 2.1. Assume that Φ ∈ U , Φ(0) = {0}, and there exists ϕ ∈ K∞, with

ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y) ∀ y ∈ R
m.

Then there exists ψ ∈ K∞ such that

‖v‖ ≤ ψ(‖y‖) ∀ v ∈ Φ(y) ∀ y ∈ R
m.

Proof. By upper semicontinuity of Φ and compactness of its values, for every
compact set K ⊂ R

m, the set Φ(K) is compact (see, for example, [2, Proposition 3,
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p. 42]), and so the function s �→ ψ0(s) := max{‖v‖ | v ∈ Φ(y), ‖y‖ ≤ s} is well defined
and nondecreasing on R+, with ψ0(0) = 0. Clearly, ϕ(s) ≤ ψ0(s) ∀ s ∈ R+, and so
ψ0(s)→∞ as s→∞. Let ψ ∈ K∞ be such that ψ(s) ≥ ψ0(s) ∀ s ∈ R+, for example,
the function ψ ∈ K∞ given by

ψ(0) := 0, ψ(s) :=
1
s

∫ 2s

s

ψ0(σ)dσ ∀ s > 0

suffices.
The feedback system shown in Figure 1.2 corresponds to the initial-value problem

(2.1) ẋ(t)−Ax(t) ∈ B (Δ(t)− Φ(Cx(t))) , x(0) = x0 ∈ R
n, Δ ∈ B,

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and Φ ∈ U . By a solution of (2.1), we mean

an absolutely continuous function x : [0, ω) → R
n, 0 < ω ≤ ∞, such that x(0) = x0

and the differential inclusion in (2.1) is satisfied almost everywhere on [0, ω); a solution
is maximal if it has no proper right extension that is also a solution; a solution is global
if it exists on [0,∞). Before developing a stability theory for systems of the form (2.1),
we briefly digress to record an existence result.

Lemma 2.2. Let Φ ∈ U . For each x0 ∈ R
n and each Δ ∈ B, initial-value problem

(2.1) has a solution. Moreover, every solution can be extended to a maximal solution
x : [0, ω)→ R

n, and if x is bounded, then x is global.
Proof. Let x0 ∈ R

n and Δ ∈ B be arbitrary. By [6, Corollary 5.2], initial-
value problem (2.1) has a solution, and every solution can be extended to a solution
x : [0, ω)→ R

n with the property that the graph of x is unbounded. Evidently, x is
maximal, and if x is bounded, then ω =∞.

3. ISS: The main results. In the context of differential inclusion (2.1), the
transfer-function matrix of the linear system given by (A,B,C) is denoted by G, i.e.,
G(s) = C(sI −A)−1B.

We assemble four hypotheses which will be variously invoked in the theory devel-
oped below.
(H1) There exist numbers a < b and δ > 0 such that

(3.1) 〈ay − v, by − v〉 ≤ 0 ∀ v ∈ Φ(y) ∀ y ∈ R
m,

G(I + aG)−1 ∈ H∞, and (I + bG)(I + aG)−1 − δI is positive real.
(H2) Φ(0) = {0} and there exist numbers a > 0, δ ∈ [0, 1), and θ ≥ 0 such that

a‖y‖2 ≤ 〈y, v〉 ∀ v ∈ Φ(y) ∀ y ∈ R
m,(3.2)

‖v − aδy‖ ≤ 〈y, v − aδy〉 ∀ v ∈ Φ(y) ∀ y ∈ R
m, with ‖y‖ ≥ θ,(3.3)

and G(I + δaG)−1 is positive real.
(H3) There exist ϕ ∈ K∞ and numbers b > 0 and δ ∈ [0, 1) such that

(3.4) max
{
ϕ(‖y‖)‖y‖, ‖v‖2/b

}
≤ 〈y, v〉 ∀ v ∈ Φ(y) ∀ y ∈ R

m,

and (δ/b)I +G is positive real.
(H4) Φ(0) = {0} and there exist ϕ ∈ K∞ and a number θ ≥ 0 such that

ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y) ∀ y ∈ R
m,(3.5)

‖v‖ ≤ 〈y, v〉 ∀ v ∈ Φ(y) ∀ y ∈ R
m, with ‖y‖ ≥ θ,(3.6)

and G is positive real.
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Remark 3.1. (a) (H1) is a set-valued version of the familiar multivariable sector
condition. A routine calculation shows that (3.1) holds if and only if∥∥∥∥v − a+ b

2
y

∥∥∥∥ ≤ b− a
2
‖y‖ ∀ v ∈ Φ(y) ∀ y ∈ R

m.

(b) If m = 1 (the single-input, single-output case), then the combined frequency-
domain assumptions in (H1), namely, the condition G(I+aG)−1 ∈ H∞ together with
the positive realness of (I + bG)(I + aG)−1 − δI, admit a graphical characterization
in terms of the Nyquist diagram of G (see, e.g., [13, pp. 268]).
(c) Conditions (3.2) and (3.5) can be viewed as the limits of (3.1) and (3.4), respec-
tively, as b→∞.
(d) A sufficient condition for (3.4) to hold is the “nonlinear” sector condition

(3.7)
〈
ϕ(y)‖y‖−1y − v , by − v

〉
≤ 0 ∀ v ∈ Φ(y) ∀ y ∈ R

m,

which is (3.1) with the term ay replaced by ϕ(y)‖y‖−1y (which should be interpreted
as taking the value 0 for y = 0). It is easy to construct counterexamples which show
that (3.7) is not necessary for (3.4) to hold.
(e) If m = 1 and (3.2) holds, then (3.3) is trivially satisfied for any θ ≥ 1 and any
δ ∈ [0, 1). Similarly, if m = 1 and (3.5) holds, then (3.6) is satisfied for every θ ≥ 1.
(f) If (3.4) holds for some ϕ ∈ K∞ and for some b > 0, then Φ(0) = {0}, and
furthermore, (3.6) is satisfied for any θ > 0 satisfying ϕ(θ) ≥ b.

Definition 3.2. System (2.1) is said to be input-to-state stable with bias c ≥ 0
if every maximal solution of (2.1) is global and there exist β1 ∈ KL and β2 ∈ K∞
such that, for all x0 ∈ R

n and all Δ ∈ B, every global solution x satisfies

(3.8) ‖x(t)‖ ≤ max
{
β1(t, ‖x0‖), β2(‖Δ‖L∞[0,t] + c)

}
∀ t ∈ R+.

System (2.1) is input-to-state stable if it is input-to-state stable with bias 0.
System (2.1) has the converging-input-converging-state property if, for all x0 ∈ R

n

and all Δ ∈ B with ‖Δ‖L∞[t,∞) → 0 as t → ∞, every maximal solution x of (2.1) is
global and satisfies x(t)→ 0 as t→∞. The following lemma shows in particular that
if system (2.1) is input-to-state stable, then it has the converging-input-converging-
state property.

Lemma 3.3. Assume that system (2.1) is input-to-state stable with bias c ≥ 0,
and let β1 and β2 be as in Definition 3.2. Let x0 ∈ R

n and Δ ∈ B. If Δ is essentially
bounded (‖Δ‖L∞[0,∞) <∞), then every global solution x of (2.1) satisfies

lim sup
t→∞

‖x(t)‖ ≤ lim sup
t→∞

β2(‖Δ‖L∞[t,∞) + c).

Proof. Let x0 ∈ R
n, and let Δ ∈ B be essentially bounded. Let x be a global

solution of (2.1), let τ ≥ 0 be arbitrary, and set xτ (t) := x(t + τ) and Δτ (t) :=
Δ(t+ τ) ∀ t ≥ 0. Then, Δτ ∈ B and xτ satisfies the initial-value problem

ẋτ (t)−Axτ (t) ∈ B(Δτ (t)− Φ(Cxτ (t))), xτ (0) = x(τ).

By ISS with bias c,

‖x(t+ τ)‖ = ‖xτ (t)‖ ≤ max
{
β1(t, ‖x(τ)‖), β2(‖Δτ‖L∞[0,t] + c)

}
= max

{
β1(t, ‖x(τ)‖), β2(‖Δ‖L∞[τ,t+τ ] + c)

}
∀ t ∈ R+.
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Therefore, lim supt→∞ ‖x(t)‖ ≤ β2

(
‖Δ‖L∞[τ,∞) + c

)
∀ τ ≥ 0, from which the claim

follows.
We now state the two main results on ISS. The proofs can be found in sections 4

and 5.
Theorem 3.4. Let linear system (A,B,C) be stabilizable and detectable. Assume

that (H1) holds. Then, every maximal solution of (2.1) is global and there exist
positive constants c1, c2, and ε such that, for all x0 ∈ R

n and Δ ∈ B, every global
solution x satisfies

‖x(t)‖ ≤ c1e−εt‖x0‖+ c2‖Δ‖L∞[0,t] ∀ t ∈ R+.

In particular, system (2.1) is input-to-state stable.
Theorem 3.5. Let linear system (A,B,C) be minimal. Assume that at least one

of hypotheses (H2), (H3), or (H4) holds. Then system (2.1) is input-to-state stable.
In [1] it is has been proved, for single-valued Φ and Δ, that if (H4) holds, then (2.1)

is input-to-state stable. Therefore, Theorem 3.5 can be considered as a generalization
of the main result in [1].

In the following two corollaries (to Theorem 3.4 and Theorem 3.5, respectively),
we will consider not only nonlinearities satisfying at least one of the conditions (3.1),
(3.2), (3.4), and (3.5) for all arguments y ∈ R

m, but also nonlinearities Φ ∈ U with
the property that there exist a set-valued map Φ̃ ∈ U satisfying at least one of the
conditions (3.1), (3.2), (3.4), and (3.5) and a compact set K ⊂ R

m such that

(3.9) y ∈ R
m\K =⇒ Φ(y) ⊂ Φ̃(y).

For example, single-input, single-output hysteretic elements can be subsumed by this
set-valued formulation provided that the “characteristic diagram” of the hysteresis is
contained in the graph of some Φ ∈ U ; see section 6 for details.

Corollary 3.6. Let linear system (A,B,C) be stabilizable and detectable. Let
Φ ∈ U be such that there exist a set-valued map Φ̃ ∈ U and a compact set K ⊂ R

m

such that (3.9) holds. Assume that (H1) holds with Φ replaced by Φ̃. Then, every
maximal solution of (2.1) is global and there exist positive constants c1, c2, and ε
such that, for all x0 ∈ R

n and Δ ∈ B, every global solution x satisfies

‖x(t)‖ ≤ c1e−εt‖x0‖+ c2(‖Δ‖L∞[0,t] + E) ∀ t ∈ R+,

where

(3.10) E := supy∈K supv∈Φ(y) inf ṽ∈Φ̃(y)‖v − ṽ‖.

Proof. First, we remark that, by upper semicontinuity of Φ and Φ̃ ∈ U , together
with compactness of their values and compactness of K, E is finite. Let x0 ∈ R

n and
Δ ∈ B. By Lemma 2.2, (2.1) has a solution, and every solution can be maximally
extended. Let x : [0, ω) → R

n be a maximal solution of (2.1) and write y := Cx.
Define z ∈ L1

loc([0, ω),Rn) by z := ẋ − Ax. Since z(t) ∈ B
(
Δ(t) − Φ(Cx(t))

)
for

almost every t ∈ [0, ω), there exist functions d, v : [0, ω)→ R
m such that

(d(t), v(t)) ∈ Δ(t) × Φ(y(t)) ∀ t ∈ [0, ω), z(t) = B
(
d(t) − v(t)

)
for a.e. t ∈ [0, ω).

For each t ∈ [0, ω), let ṽ(t) ∈ Φ̃(y(t)) be the unique point of the closed convex set
Φ̃(y(t)) closest to v(t) ∈ Φ(y(t)). Then

y(t) ∈ K =⇒ ‖v(t)− ṽ(t)‖ ≤ E, y(t) ∈ R
m\K =⇒ ‖v(t)− ṽ(t)‖ = 0.
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Define Δ̃ ∈ B by Δ̃(t) := Δ(t) + BE (where BE denotes the ball of radius E > 0
centered at 0 in R

m) and d̃ : [0, ω)→ R
m by d̃(t) := d(t) − v(t) + ṽ(t). Then

z(t) = B(d̃(t)− ṽ(t)), d̃(t) ∈ Δ̃, ṽ(t) ∈ Φ̃(y(t)) for a.e. t ∈ [0, ω),

and so the solution x of (2.1) is also a solution of

(3.11) ẋ(t)−Ax(t) ∈ B
(
Δ̃(t)− Φ̃(Cx(t))

)
, x(0) = x0.

An application of Theorem 3.4 to (3.11) yields the claim.
Corollary 3.7. Let linear system (A,B,C) be minimal, and let Φ ∈ U be such

that there exist a set-valued map Φ̃ ∈ U and a compact set K ⊂ R
m such that (3.9)

holds. Assume that at least one of the hypotheses (H2), (H3), or (H4) holds with
Φ replaced by Φ̃. Then system (2.1) is input-to-state stable with bias E, where the
constant E is given by (3.10).

Proof. The proof is identical to that of Corollary 3.6 with one exception: instead
of invoking Theorem 3.4 at the end of the proof, an application of Theorem 3.5 to
(3.11) completes the argument here.

Remark 3.8. If the hypotheses of Corollary 3.6 (respectively, Corollary 3.7) hold,
then there exist positive constants c1, c2, ε (respectively, functions β1 ∈ KL and β2 ∈
K∞) such that (3.8) holds, with c = E given by (3.10). We emphasize that c1, c2, ε
(respectively, β1 and β2) are determined by data associated with only (A,B,C) and
Φ̃. In particular, they do not depend on Φ. This observation is of importance in the
analysis of quantized feedback systems in section 7.

4. Proof of Theorem 3.4. The following lemma will play an essential role in
the proof of Theorem 3.4

Lemma 4.1. Let a < b and set κ := (a+b)/2 and λ := (b−a)/2. If G(I+aG)−1 ∈
H∞ and there exists δ > 0 such that (I + bG)(I + aG)−1 − δI is positive real, then
G(I + κG)−1 ∈ H∞ and ‖G(I + κG)−1‖H∞ < 1/λ.

Proof. Setting η := ‖G(I + aG)−1‖H∞ , we have that

(I + aG∗(s))−1G∗(s)G(I + aG(s))−1 ≤ η2I ∀ s ∈ C+.

By hypothesis,

(I + bG(s))(I + aG(s))−1 + (I + aG∗(s))−1(I + bG∗(s)) ≥ 2δI ∀s ∈ C+.

Setting ε := δ/η2, we obtain that

2ε(I + aG∗(s))−1G∗(s)G(s)(I + aG(s))−1

≤ (I + bG(s))(I + aG(s))−1 + (I + aG∗(s))−1(I + bG∗(s)) ∀s ∈ C+.

Therefore,

2εG∗(s)G(s) ≤ 2I + (a+ b)G∗(s) + (a+ b)G(s) + 2abG∗(s)G(s) ∀s ∈ Γ,

where Γ := {s ∈ C+ | s not a pole of G}. Consequently,

−(ab− ε)G∗(s)G(s) ≤ I + κG∗(s) + κG(s) ∀s ∈ Γ.

Setting ρ :=
√

1 + ε/λ2, it follows that

λ2ρ2G∗(s)G(s) ≤ I + κG∗(s) + κG(s) + κ2G∗(s)G(s)
= (I + κG∗(s))(I + κG(s)) ∀s ∈ Γ,
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which, in turn, implies that

ρ2(I + κG∗(s))−1G∗(s)G(s)(I + κG(s))−1 ≤ λ−2I ∀s ∈ Γ0,

where Γ0 := {s ∈ Γ | det(sI + κG(s)) = 0}. We may now infer that G(I + κG)−1 ∈
H∞, and since ρ > 1, ‖G(I + κG)−1‖H∞ < 1/λ.

Proof of Theorem 3.4. Let x be a maximal solution of (2.1) defined on the maximal
interval of existence [0, ω), where 0 < ω ≤ ∞. We first show that ω = ∞. Seeking a
contradiction, suppose that ω <∞. A routine application of the generalized Filippov
selection theorem (see [22], p. 72) shows that there exists a measurable function
w : [0, ω)→ R

m such that w(t) ∈ Δ(t)− Φ(Cx(t)) for a.e. t ∈ [0, ω) and

ẋ(t) = Ax(t) +Bw(t) a.e. t ∈ [0, ω).

Setting κ := (a+ b)/2 and Aκ := A− κBC, we have

(4.1) x(t) = eAκtx0 +
∫ t

0

eAκ(t−τ)B(w(τ) + κCx(τ))dτ ∀ t ∈ [0, ω).

Since w(t) ∈ Δ(t)−Φ(Cx(t)) for a.e. t ∈ [0, ω), there exist functions d, v : [0, ω)→ R
m

(not necessarily measurable) such that w(t) = d(t) − v(t), d(t) ∈ Δ(t) and v(t) ∈
Φ(Cx(t)) for a.e. t ∈ [0, ω). Setting λ := (b − a)/2 and invoking the sector condition
(3.1) combined with part (a) of Remark 3.1, we may infer that

(4.2) ‖w(τ) + κCx(τ)‖ = ‖d(τ)− (v(τ) − κCx(τ))‖
≤ ‖d(τ)‖ + ‖(v(τ) − κCx(τ))‖ ≤ |Δ(τ)| + λ‖Cx(τ)‖ for a.e. τ ∈ [0, ω).

Therefore,

‖x(t)‖ ≤ ‖eAκtx0‖+ ‖B‖
∫ t

0

‖eAκ(t−τ)‖|Δ(τ)|dτ

+ λ‖B‖‖C‖
∫ t

0

‖eAκ(t−τ)‖‖x(τ)‖dτ ∀ t ∈ [0, ω).

Since (by supposition) ω is finite, we conclude that, for some constant c > 0,

‖x(t)‖ ≤ c
(

1 +
∫ t

0

‖x(τ)‖dτ
)
∀ t ∈ [0, ω).

By Gronwall’s lemma, it follows that the maximal solution x is bounded on [0, ω),
contradicting (via Lemma 2.2) the supposition that ω <∞. Consequently, ω =∞.

Defining Gκ(s) := G(I + κG(s))−1 = C(sI − Aκ)−1B, it follows from (H1), via
Lemma 4.1, that Gκ ∈ H∞ and ‖Gκ‖H∞ < 1/λ. Moreover, by stabilizability and
detectability, Aκ is Hurwitz. Let ε > 0 be sufficiently small so that Aκ+εI is Hurwitz
and

(4.3) γ := sup
Re s≥−ε

‖Gκ(s)‖ < 1/λ.

Set y := Cx and, for all t ∈ R+, define yε(t) := eεty(t) and wε(t) := eεtw(t). It follows
from (4.1) that

yε(t) = Ce(Aκ+εI)tx0 +
∫ t

0

Ce(Aκ+εI)(t−τ)B(wε(τ) + κyε(τ))dτ ∀ t ∈ R+.
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Setting k0 :=
(∫∞

0 ‖Ce(Aκ+εI)τ‖2dτ
)1/2

<∞ , we obtain that

(4.4) ‖yε‖L2[0,t] ≤ k0‖x0‖+ γ‖wε + κyε‖L2[0,t] ∀ t ∈ R+.

By (4.2),

(4.5) ‖wε(τ) + κyε(τ))‖ ≤ |Δε(τ)|+ λ‖yε(τ))‖ for a.e. τ ∈ R+,

where Δε(τ) := eετΔ(τ) ∀ τ ∈ R+. From (4.3), we see that γλ < 1: setting k1 :=
1/(1− γλ) and invoking (4.4) and (4.5), we have

(4.6) ‖yε‖L2[0,t] ≤ k1

(
k0‖x0‖+ γ‖Δε‖L2[0,t]

)
∀ t ∈ R+.

By (4.1),

eεtx(t) = e(Aκ+εI)tx0 +
∫ t

0

e(Aκ+εI)(t−τ)B(wε(τ) + κyε(τ))dτ ∀ t ∈ R+,

which together with (4.5) yields

‖x(t)‖eεt ≤ k2‖x0‖+ ‖B‖
∫ t

0

‖e(Aκ+εI)(t−τ)‖(|Δε(τ)| + λ‖yε(τ)‖)dτ ∀ t ∈ R+,

where k2 := supt≥0 ‖e(Aκ+εI)t‖. Invoking Hölder’s inequality to estimate the integral
on the right-hand side of the above inequality, we conclude that there exists a constant
k3 > 0 such that

‖x(t)‖eεt ≤ k2‖x0‖+ k3(‖Δε‖L2[0,t] + λ‖yε‖L2[0,t]) ∀ t ∈ R+.

Combining this with (4.6), we conclude that

‖x(t)‖eεt ≤ (k2 + λk0k1k3)‖x0‖+ k3(1 + λγk1)‖Δε‖L2[0,t] ∀ t ∈ R+.

Noting that ‖Δε‖L2[0,t] ≤ (eεt/
√

2ε)‖Δ‖L∞[0,t] ∀ t ∈ R+, setting c1 := k2 + λk0k1k3

and c2 := k3(1 + λγk1)/
√

2ε, we conclude that

‖x(t)‖ ≤ c1e−εt‖x0‖+ c2‖Δ‖L∞[0,t] ∀ t ∈ R+.

This completes the proof.
Remark 4.2. Theorem 3.4 can be considered as a refinement of the classical circle

criterion (see, for example, [7, 13, 21]). In particular, it shows that, under the standard
assumptions of the circle criterion, ISS is guaranteed. The exponential weighting
technique used in the proof of Theorem 3.4 is well known and has been used to prove
stability results of input-output type (see [7, section V.3] and the references therein).
The application of this technique in an ISS context seems to be new. In particular,
whilst the standard textbook version of the circle criterion for state-space systems
is usually proved using Lyapunov techniques combined with the positive-real lemma
(see, for example, [13, Theorem 7.1] or [21, p. 227]), the above proof of Theorem 3.4
provides an alternative, more elementary approach. Moreover, the methodology can
be extended to an infinite-dimensional setting; see [11].
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5. Proof of Theorem 3.5. In this section, we provide a proof of Theorem
3.5. In contrast to the proof of Theorem 3.4, we adopt a Lyapunov argument. In
particular, we prove Theorem 3.5 by establishing the existence of a Lyapunov function
with special properties (a so-called ISS Lyapunov function) if any one of hypotheses
(H2), (H3), or (H4) hold. This we do in two preliminary lemmas.

Lemma 5.1. Let linear system (A,B,C) be minimal. Assume that either (H3) or
(H4) holds. Then there exist α1, α2, α3, α4 ∈ K∞, and a continuously differentiable
function V : R

n → R+ such that

(5.1)

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀ x ∈ R
n,

max
v∈Φ(Cx)

〈∇V (x), Ax +B(d− v)〉 ≤ −α3(‖x‖) + α4(‖d‖)

∀ (x, d) ∈ R
n × R

m.

⎫⎪⎬
⎪⎭

Proof. By Lemma 2.1, there exists ψ ∈ K∞ such that

(5.2) ‖v‖ ≤ ψ(‖y‖) ∀ y ∈ R
m ∀ v ∈ Φ(y).

(If (H3) holds, then we may take ψ : s �→ bs in (5.2).) Combining (5.2) with either
(H3) or (H4) yields

(5.3) ϕ(‖y‖)‖y‖ ≤ 〈y, v〉 ≤ ψ(‖y‖)‖y‖ ∀ y ∈ R
m ∀ v ∈ Φ(y).

If (H3) holds, then (δ/b)I +G is positive real for some δ ∈ [0, 1); if (H4) holds, then
G is positive real. Introducing the following notational convenience

λ :=
{

1/b if (H3) holds,
0 otherwise,

both possibilities are captured by the statement that δλI+G is positive real for some
δ ∈ [0, 1). This implies, via the positive-real lemma, the existence of a real matrix L
and a symmetric, positive-definite real matrix P such that

(5.4) PA+ATP = −LTL, PB = CT −
√
κLT , κ := 2δλ.

We also record that

(5.5) λ‖v‖2 ≤ 〈y, v〉 ∀ v ∈ Φ(y) ∀ y ∈ R
m.

Now, define V0 : R
n → R+, x �→ 〈x, Px〉. Then, invoking (5.4),

〈∇V0(x), Ax +B(d− v)〉 = 2〈Px,Ax〉+ 2〈BTPx, (d− v)〉
≤ −‖Lx‖2 + 2〈Cx, (d − v)〉 − 2

√
κ〈Lx, (d − v)〉

= −‖Lx+
√
κ(d− v)‖2 + κ‖d− v‖2 + 2〈Cx, (d− v)〉
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ(Cx) ,

from which, together with (5.5), we may infer

〈∇V0(x), Ax +B(d − v)〉 ≤ κ‖d‖2 + 2κ‖v‖‖d‖+ κ‖v‖2 + 2‖y‖‖d‖ − 2〈y, v〉
≤ 2(1 + 2δ)‖y‖‖d‖+ κ‖d‖2 − 2(1− δ)〈y, v〉

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx.(5.6)
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Observe that, for all y ∈ R
m and all (d, v) ∈ R

m × Φ(y),

2(1 + 2δ)‖d‖ ≤ (1− δ)ϕ(‖y‖) =⇒
2(1 + 2δ)‖d‖‖y‖ ≤ (1 − δ)ϕ(‖y‖)‖y‖ ≤ (1− δ)〈y, v〉,

2(1 + 2δ)‖d‖ > (1− δ)ϕ(‖y‖) =⇒
2(1 + 2δ)‖d‖‖y‖ < 2(1 + 2δ)‖d‖ϕ−1(2(1 + 2δ)‖d‖/(1− δ))

and so, defining γ ∈ K∞ by γ(s) := 2(1 + 2δ)s ϕ−1 (2(1 + 2δ)s/(1− δ)), we have

(5.7) 2(1 + 2δ)‖d‖‖y‖ ≤ (1 − δ)〈y, v〉+ γ(‖d‖) ∀ y ∈ R
m ∀ (d, v) ∈ R

m × Φ(y).

The conjunction of (5.6) and (5.7) gives

(5.8) 〈∇V0(x), Ax +B(d− v)〉 ≤ −(1− δ)〈y, v〉 + γ(‖d‖) + κ‖d‖2

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx.

Let H ∈ R
n×m be such that A−HC is Hurwitz. Let Q = QT > 0 be such that

Q(A−HC) + (A−HC)TQ = −3I

and define W : R
n → R+ by W (x) := 〈x,Qx〉.

Writing k0 := max
{
2‖QB‖ , 2‖QH‖ , ‖QB‖2

}
, we have

〈∇W (x), Ax +B(d− v)〉 = 2〈Qx, (A−HC)x+Hy +B(d− v)〉
= −3‖x‖2 + 2〈HTQx, y〉+ 2〈BTQx, d− v〉
≤ −2‖x‖2 + k0‖x‖

(
‖y‖+ ‖v‖

)
+ k0‖d‖2

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx.(5.9)

Since either (H3) or (H4) holds and invoking part (f) of Remark 3.1 in the former
case, we may infer the existence of θ ≥ 1/2 such that

(5.10) y ∈ R
m, ‖y‖ ≥ θ =⇒ 〈y, v〉 ≥ ‖v‖ ∀ v ∈ Φ(y).

Define f0 ∈ K∞ by f0(s) := s + ψ(s), the continuous, nondecreasing function f1 :
(0, θ]→ (0,∞) by

f1(s) := min
t∈[s,θ]

tϕ(t)
(f0(t))2

,

and f2 : R+ → R+ by

f2(s) :=

⎧⎨
⎩

0, s = 0,
min{s, f1(s)}, s ∈ (0, θ],
f1(θ) + (s− θ), s > θ.

Observe that

f1(θ) =
θϕ(θ)

(θ + ψ(θ))2
<

θϕ(θ)
2θψ(θ)

≤ θϕ(θ)
ψ(θ)

≤ θ ,

where we have used that θ ≥ 1/2. It follows that f2(θ) = f1(θ), and therefore, f2
is continuous. Clearly, f2 is unbounded, and moreover, it is readily verified that f2
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is nondecreasing. Write f3 := f2 ◦ f−1
0 (continuous, nondecreasing, and unbounded,

with f3(0) = 0) and observe (for later use) that

(5.11) ‖y‖ < θ =⇒ f3(‖y‖+ ψ(‖y‖))(‖y‖+ ψ(‖y‖))2 = (f3 ◦ f0)(‖y‖)(f0(‖y‖))2

= f2(‖y‖)(f0(‖y‖))2 ≤ f1(‖y‖)(f0(‖y‖))2 ≤ ‖y‖ϕ(‖y‖).

Next, we introduce functions η ∈ K∞ and σ (continuous, nondecreasing, and un-
bounded, with σ(0) = 0) given by

η : s �→ 1
k0

√
s

‖Q‖ , σ := f3 ◦ η.

Let s∗ > 0 be the unique point with the property η(s∗)σ(s∗) = 1 and define the
continuous function ρ : R+ → R+ by

ρ(s) :=
{
σ(s), 0 ≤ s ≤ s∗,
1/η(s), s > s∗ .

Finally, define R ∈ K∞ by

R(s) :=
∫ s

0

ρ(τ) dτ,

and V1 : R
n → R+, x �→ R(W (x)). Note that

(5.12)

(a) ρ(s) ≤ σ(s) ≤ σ(s∗) =: k1 ∀ s ∈ R+ ,

(b) ρ(W (x))‖x‖ ≤ k0

√
‖Q‖‖Q−1‖ =: k2 ∀ x ∈ R

n,

(c) ρ(W (x))‖x‖2 ≥ ‖x‖min
{
‖x‖f3

(
‖x‖/k2)

)
, k0

}
∀ x ∈ R

n.

⎫⎪⎬
⎪⎭

Invoking (5.9) and (5.12)(a), we have

(5.13)
〈∇V1(x), Ax+B(d−v)〉 ≤ −2ρ(W (x))‖x‖2 +ρ(W (x))k0‖x‖

(
‖y‖+‖v‖

)
+k0k1‖d‖2

∀ x ∈ R
n ∀ (d, v) ∈ R

m × Φ(Cx).

We proceed to obtain a convenient estimate of the term ρ(W (x))k0‖x‖
(
‖y‖+ ‖v‖

)
.

Write k3 := 1
2 min{1, ϕ(θ)}. By (5.3) and (5.10), we have

‖y‖ ≥ θ =⇒ 2〈y, v〉 ≥ ‖v‖+ ‖y‖ϕ(‖y‖) ≥ ‖v‖+ ‖y‖ϕ(θ) ≥ 2k3(‖v‖+ ‖y‖)
∀ v ∈ Φ(y),

which, in conjunction with (5.12)(b), gives

(5.14) x ∈ R
n, y = Cx, ‖y‖ ≥ θ =⇒

ρ(W (x))k0‖x‖
(
‖y‖+ ‖v‖

)
≤ k0k2

k3
〈y, v〉 ∀ v ∈ Φ(y).

Invoking (5.2), (5.3), and (5.11), we have

‖y‖ < θ =⇒ f3(‖y‖+ ‖v‖)(‖y‖+ ‖v‖)2

≤ f3(‖y‖+ ψ(‖y‖))(‖y‖+ ψ(‖y‖))2 ≤ ‖y‖ϕ(‖y‖) ≤ 〈y, v〉 ∀ v ∈ Φ(y)
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from which, together with the observation that

x ∈ R
n, y = Cx, v ∈ Φ(y), k0(‖y‖+ ‖v‖) ≥ ‖x‖ =⇒

ρ(W (x)) ≤ σ(‖Q‖‖x‖2)) ≤ σ(k2
0‖Q‖(‖y‖+ ‖v‖)2) = f3(‖y‖+ ‖v‖),

we may infer

(5.15) x ∈ R
n, y = Cx, v ∈ Φ(y), k0(‖y‖+ ‖v‖) ≥ ‖x‖, ‖y‖ < θ =⇒

ρ(W (x))k0‖x‖
(
‖y‖+ ‖v‖

)
≤ ρ(W (x))‖x‖2 +

k2
0

4
ρ(W (x))(‖y‖ + ‖v‖)2

≤ ρ(W (x))‖x‖2 +
k2
0

4
〈y, v〉 .

Clearly,

(5.16) x ∈ R
n, y = Cx, v ∈ Φ(y), k0(‖y‖+ ‖v‖) ≤ ‖x‖, ‖y‖ < θ =⇒

ρ(W (x))k0‖x‖
(
‖y‖+ ‖v‖

)
≤ ρ(W (x))‖x‖2.

Combining (5.15) and (5.16), we have

(5.17) x ∈ R
n, y = Cx, ‖y‖ < θ =⇒

ρ(W (x))k0‖x‖
(
‖y‖+ ‖v‖

)
≤ ρ(W (x))‖x‖2 +

k2
0

4
〈y, v〉 ∀ v ∈ Φ(y).

Writing k4 := max
{
k0k2/k3 , k

2
0/4
}
, we conclude from (5.13), (5.14), (5.17) that

(5.18) 〈∇V1(x), Ax +B(d − v)〉 ≤ −ρ(W (x))‖x‖2 + k4〈y, v〉+ k0k1‖d‖2

∀ x ∈ R
n ∀ (d, v) ∈ R

m × Φ(Cx).

Now define V := k4V0 + (1− δ)V1. Then, combining (5.8) and (5.18), we arrive at

(5.19) 〈∇V (x), Ax +B(d− v)〉
≤ −(1− δ)ρ(W (x))‖x‖2 +

(
(1− δ)k0k1 + κk4

)
‖d‖2 + k4γ(‖d‖)

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx.

Finally, defining α1, α2, α3, α4 ∈ K∞ by

α1(s) := k4‖P−1‖−1s2, α2 := k4‖P‖s2 + (1 − δ)R(‖Q‖s2),

α3(s) := (1− δ)smin{sf3(s/k2) , k0}, α4(s) :=
(
(1 − δ)k0k1 + κk4

)
s2 + k4γ(s),

and invoking (5.12)(c), we conclude that (5.1) holds. This completes the proof.
Lemma 5.2. Let linear system (A,B,C) be minimal. Assume that (H2) holds.

Then the assertions of Lemma 5.1 are valid.
Proof. Let a > 0, δ ∈ [0, 1), and θ ≥ 0 be as in hypothesis (H2). Without loss

of generality, we may assume θ ≥ 1/2. Note that linear system (A1, B, C), with
A1 := A − δaBC, is a minimal realization of G(I + δaG)−1. Therefore, hypothesis
(H2) implies, via the positive-real lemma, the existence of a real matrix L and a
symmetric, positive-definite real matrix P such that

(5.20) PA1 +AT1 P = −LTL, PB = CT .
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Invoking Lemma 2.1, there exists ψ ∈ K∞ such that (5.3) holds with ϕ(s) = as. Now
define ϕ1, ψ1 ∈ K∞, and y �→ Φ1(y) ⊂ R

m by

ϕ1(s) := ϕ(s)− δas = (1− δ)as, ψ1(s) := ψ(s)− δas ∀ s ∈ R+,

Φ1(y) := {v − δay | v ∈ Φ(y)} ∀ y ∈ R
m.

In view of (5.3), we have

(5.21) (1− δ)a‖y‖2 = ϕ1(‖y‖)‖y‖ ≤ 〈y, v〉 ≤ ψ1(‖y‖)‖y‖ ∀ y ∈ R
m ∀ v ∈ Φ1(y).

Moreover, by hypothesis (H2),

(5.22) y ∈ R
m, ‖y‖ ≥ θ =⇒ 〈y, v〉 ≥ ‖v‖ ∀ v ∈ Φ1(y).

Recalling that A1 := A− δaBC, we have

(5.23)
{
Ax−Bv | v ∈ Φ(Cx)

}
=
{
A1x−Bv | v ∈ Φ1(Cx)

}
∀ x ∈ R

n.

Now, define V0 : R
n → R+, x �→ 〈x, Px〉. Then, invoking (5.20),

(5.24) 〈∇V0(x), A1x+B(d− v)〉 = 2〈Px,A1x〉+ 2〈BTPx, (d− v)〉
≤ −‖Lx‖2 + 2〈Cx, (d− v)〉 ≤ 2‖y‖‖d‖− 2〈y, v〉

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ1(y), y = Cx.

Observe that, for all y ∈ R
m and all (d, v) ∈ R

m × Φ1(y),

2‖d‖ ≤ ϕ1(‖y‖) =⇒ 2‖d‖‖y‖ ≤ ϕ1(‖y‖)‖y‖ ≤ 〈y, v〉,

2‖d‖ > ϕ1(‖y‖) =⇒ 2‖d‖‖y‖ < 2‖d‖ϕ−1
1 (2‖d‖)

and so, defining γ ∈ K∞ by γ(s) := 2s ϕ−1
1 (2s), it follows from (5.24) that

(5.25) 〈∇V0(x), A1x+B(d− v)〉 ≤ −〈y, v〉+ γ(‖d‖)
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ1(y), y = Cx.

The conjunction of (5.23) and (5.25) yields

(5.26) 〈∇V0(x), Ax +B(d − v)〉 ≤ −〈y, v〉+ δa‖y‖2 + γ(‖d‖)
∀ x ∈ R

n, ∀ (d, v) ∈ R
m × Φ(y), y = Cx.

Let H ∈ R
n×m be such that A1 −HC is Hurwitz. Let Q = QT > 0 be such that

Q(A1 −HC) + (A1 −HC)TQ = −3I

and define W : R
n → R+ by W (x) := 〈x,Qx〉. The same construction as in the proof

of Lemma 5.1 (with A1 replacing A and Φ1 replacing Φ therein) yields a function f3
(continuous, nondecreasing, and unbounded, with f3(0) = 0), a continuous function
ρ : R+ → R+, with primitive R ∈ K∞, and positive constants c0, c1, c2, c3 such that,
on writing V1 : R

n → R+, x �→ R(W (x)), the following counterparts of (5.12)(c) and
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(5.18) hold:

(5.27) ρ(W (x))‖x‖2 ≥ ‖x‖min
{
c0, ‖x‖f3(c1‖x‖)

}
∀ x ∈ R

n,

〈∇V1(x), A1x+ B(d− v)〉 ≤ −ρ(W (x))‖x‖2 + c2〈y, v〉+ c3‖d‖2

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ1(y), y = Cx.

In view of (5.23), the latter yields

(5.28) 〈∇V1(x), Ax +B(d − v)〉 ≤ −ρ(W (x))‖x‖2 + c2〈y, v〉 − c2δa‖y‖2 + c3‖d‖2

∀ x ∈ R
n, ∀ (d, v) ∈ R

m × Φ(y), y = Cx.

Now define V := c2V0 + V1. Then, combining (5.26) and (5.28), we have

(5.29) 〈∇V (x), Ax +B(d− v)〉 ≤ −ρ(W (x))‖x‖2 + c2γ(‖d‖) + c3‖d‖2

∀ x ∈ R
n ∀ (d, v) ∈ R

m × Φ(Cx).

Finally, defining α1, α2, α3, α4 ∈ K∞ by

α1(s) := c2‖P−1‖−1s2, α2 := c2‖P‖s2 +R(‖Q‖s2),

α3(s) := smin{c0, sf3(c1s)}, α4(s) := c2γ(s) + c3s
2

and invoking (5.27), we may conclude that (5.1) holds. This completes the
proof.

We are now in a position to prove Theorem 3.5. The argument developed below
is not new and can be found (usually in form of sketch proofs) in the literature (see
[20] and the references therein). For completeness, we provide a detailed proof.

Proof of Theorem 3.5. If either (H3) or (H4) holds (respectively, if (H2) holds),
then Lemma 5.1 (respectively, Lemma 5.2) ensures the existence of α1, α2, α3, α4 ∈
K∞ and continuously differentiable V such that α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀ x ∈ R

n

and

(5.30) 〈∇V (x), Ax +B(d− v)〉 ≤ −α3(‖x‖) + α4(‖d‖)
∀ x ∈ R

n ∀ (d, v) ∈ R
m × Φ(Cx).

Let x0 ∈ R
n and Δ ∈ B. By Lemma 2.2, (2.1) has a solution, and every solution

can be maximally extended. Let x : [0, ω)→ R
n be a maximal solution of (2.1). By

(5.30), we have

(5.31) (V ◦ x)′(t) ≤ α4(|Δ(t)|) for a.e. t ∈ [0, ω).

Seeking a contradiction, suppose that ω < ∞. Then, by local essential boundedness
of Δ and continuity of α4, there exists c0 > 0 such that α4(|Δ(t)|) ≤ c0 ∀ t ∈ [0, ω).
Now, by the final assertion of Lemma 2.2, x is unbounded, which contradicts the fact
that, by (5.31), α1(‖x(t)‖) ≤ V (x(t)) ≤ V (x0) + c0ω ∀ t ∈ [0, ω). Therefore, every
maximal solution of (2.1) is global.

Write α5 := α3 ◦ α−1
2 ∈ K∞ and define α6 : R+ → R+ by

α6(s) :=
2
s

∫ s

s/2

α5(t)dt ∀ s > 0, α6(0) := lim
s↓0

α6(s) = 0.
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Since α5 ∈ K∞, we have α5(s/2) ≤ α6(s) ≤ α5(s) ∀ s ∈ R+, and moreover, α6

is differentiable on (0,∞), with derivative α′
6(s) ≥ 0 ∀ s ∈ (0,∞). Now define

α7 : R+ → R+ by α7(s) := min{1, s}α6(s). Clearly, α7 is locally Lipschitz, α7(0) = 0,
and 0 < α7(s) ≤ α5(s) ∀ s > 0. Define the locally Lipschitz function

Z : R→ R, ζ �→ Z(ζ) :=

{
−α7(ζ)/2, ζ ≥ 0,

α7(−ζ)/2, ζ < 0,

and consider the scalar system

ż(t) = Z(z(t)).

Since Z(0) = 0 and ζZ(ζ) = −|ζ|α7(|ζ|)/2 < 0 ∀ ζ = 0, it follows that 0 is a
globally asymptotically stable equilibrium of this system which, together with the
local Lipschitz property of Z, ensures the existence of a continuous global semiflow
β : R+×R→ R (and so, for each z0 ∈ R, z : R+ → R, t �→ β(t, z0), is the unique global
solution of the initial-value problem ż = Z(z), z(0) = z0; moreover, β(t, z0) → 0 as
t→∞). Let β0 := β|R+×R+ be the restriction of β to R+ ×R+. Evidently, β0 ∈ KL.
Now define β1 ∈ KL by

β1(t, s) := α−1
1 (β0(t, α2(s)))

and define β2 ∈ K∞ by

β2(s) :=
(
α−1

1 ◦ α2 ◦ α−1
3

)
(2α4(s)).

Let x0 and Δ ∈ B be arbitrary, and let x be a global solution of (2.1). Let t ∈ R+ be
arbitrary. By (5.30), we have

(5.32) (V ◦ x)′(τ) ≤ −α3(‖x(τ)‖) + α4(|Δ(τ)|) ≤ −α3(‖x(τ)‖) + α4(‖Δ‖L∞[0,t])
for a.e. τ ∈ [0, t].

Clearly,

V (x(t)) ≤
(
α2 ◦ α−1

3

)
(2α4(‖Δ‖L∞[0,t])) =⇒ ‖x(t)‖ ≤ β2(‖Δ‖L∞[0,t]).

Moreover,

V (x(t)) >
(
α2 ◦ α−1

3

)
(2α4(‖Δ‖L∞[0,t])) =⇒ α3(‖x(t)‖) > 2α4(‖Δ‖L∞[0,t]),

which, together with (5.32), yields

V (x(t)) >
(
α2 ◦ α−1

3

)
(2α4(‖Δ‖L∞[0,t]))

=⇒ (V ◦ x)′(τ) < − 1
2α3(‖x(τ)‖) ≤ − 1

2α5(V (x(τ))) ≤ − 1
2α7(V (x(τ)))

= Z(V (x(τ))) for a.e. τ ∈ [0, t],

and so

V (x(t)) >
(
α2 ◦ α−1

3

)
(2α4(‖Δ‖L∞[0,t])

=⇒ V (x(t)) ≤ β0(t, V (x0)) =⇒ ‖x(t)‖ ≤ β1(t, ‖x0‖).

Therefore, ‖x(t)‖ ≤ max
{
β1(t, ‖x0‖) , β2(‖Δ‖L∞[0,t])

}
∀ t ∈ R+.
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Fig. 6.1. Interconnection of linear system (A, B, C) and hysteresis operator F .

6. Hysteretic feedback systems. We return to the feedback interconnection
of Figure 1.2, but now in a single-input (t �→ d(t) ∈ R), single-output (t �→ y(t) ∈ R)
setting and with a hysteresis operator F in the feedback path, as shown in Figure
6.1. We deem an operator F : C(R+) → C(R+) to be a hysteresis operator if it is
both causal and rate independent. By rate independence, we mean that F (y ◦ ζ) =
(Fy) ◦ ζ for every y ∈ C(R+) and every time transformation ζ : R+ → R+ (that is, a
continuous, nondecreasing, and surjective map). Conditions on F which ensure well-
posedness of the feedback interconnection (existence and uniqueness of solutions of the
associated initial-value problem) are expounded in, for example, [16] and [17]. Whilst,
in principle, the ensuing analysis is applicable in the context of any causal operator
F that can be embedded in a set-valued map Φ ∈ U , for clarity of presentation, we
focus on the class of Preisach operators.

Preisach and Prandtl hysteresis. The Preisach operator described in this
section encompasses both backlash and Prandtl operators. It can model complex
hysteresis effects: For example, nested loops in input-output characteristics. A basic
building block for these operators is the backlash operator. A discussion of the backlash
operator (also called play operator) can be found in a number of references; see, for ex-
ample, [5], [14], and [15]. Let σ ∈ R+ and introduce the function bσ : R

2 → R given by

bσ(v1, v2) := max
{
v1 − σ , min{v1 + σ, v2}

}
=

⎧⎪⎨
⎪⎩
v1 − σ, if v2 < v1 − σ,
v2, if v2 ∈ [v1 − σ, v1 + σ],
v1 + σ, if v2 > v1 + σ.

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined
on R+. For all σ ∈ R+ and ζ ∈ R, define the operator Bσ, ζ : Cpm(R+)→ C(R+) by

Bσ, ζ(y)(t) =
{
bσ(y(0), ζ) for t = 0 ,
bσ(y(t), (Bσ, ζ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < . . . , limn→∞ tn = ∞, and u is monotone on each interval
[ti, ti+1]. We remark that ζ plays the role of an “initial state.” It is not difficult to
show that the definition is independent of the choice of the partition (ti). Figure 6.2
illustrates how Bσ, ζ acts. It is well known that Bσ, ζ extends to a Lipschitz continuous
hysteresis operator on C(R+) (with Lipschitz constant L = 1), the so-called backlash
operator, which we shall denote by the same symbol Bσ, ζ .

Let ξ : R+ → R be a compactly supported and globally Lipschitz function with
Lipschitz constant 1. Let μ be a regular signed Borel measure on R+. Denoting
Lebesgue measure on R by μL, let w : R × R+ → R be a locally (μL ⊗ μ)-integrable
function, and let w0 ∈ R. The operator Pξ : C(R+)→ C(R+) defined by

(6.1) (Pξ(y))(t) =
∫ ∞

0

∫ (Bσ, ξ(σ)(y))(t)

0

w(s, σ)μL(ds)μ(dσ) + w0

∀u ∈ C(R+) ∀ t ∈ R+
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y

Bσ,ζ(y)

−σ
σ

Fig. 6.2. Backlash hysteresis.

Fig. 6.3. Example of Prandtl hysteresis.

is called a Preisach operator: This definition is equivalent to that adopted in [5,
section 2.4]. It is well known that Pξ is a hysteresis operator (this follows from the
fact that Bσ, ξ(σ) is a hysteresis operator for every σ ≥ 0). Under the assumption
that the measure μ is finite and w is essentially bounded, the operator Pξ is Lipschitz
continuous with Lipschitz constant L = |μ|(R+)‖w‖∞ (see [15]) in the sense that

sup
t∈R+

|Pξ(y1)(t) − Pξ(y2)(t)| ≤ L sup
t∈R+

|y1(t)− y2(t)| ∀ y1, y2 ∈ C(R+).

This property ensures the well-posedness of the feedback interconnection.
Setting w(·, ·) = 1 and w0 = 0 in (6.1), we obtain the Prandtl operator Pξ :

C(R+)→ C(R+) defined by

(6.2) Pξ(y)(t) =
∫ ∞

0

(Bσ, ξ(σ)(y))(t)μ(dσ) ∀u ∈ C(R+) ∀ t ∈ R+.

For ξ ≡ 0 and μ given by μ(E) =
∫
E χ[0,5](σ)dσ (where χ[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 6.3.
The next proposition identifies conditions under which Preisach operator (6.1)

satisfies a generalized sector bound. For simplicity, we assume that the measure μ
and the function w are nonnegative (an important case in applications), although the
proposition can be extended to signed measures μ and sign-indefinite functions w.
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Proposition 6.1. Let Pξ be the Preisach operator defined in (6.1). Assume
that the measure μ is nonnegative, a1 := μ(R+) < ∞, a2 :=

∫∞
0 σμ(dσ) < ∞,

b1 := ess inf(s,σ)∈R×R+w(s, σ) ≥ 0, b2 := ess sup(s,σ)∈R×R+
w(s, σ) <∞, and set

(6.3) aP := a1b1, bP := a1b2 , cP := a2b2 + |w0|.

Then, for all y ∈ C(R+) and all t ∈ R+,

(6.4) y(t) ≥ 0 =⇒ aPy(t)− cP ≤ (Pξ(y))(t) ≤ bPy(t) + cP ,

(6.5) y(t) ≤ 0 =⇒ bPy(t)− cP ≤ (Pξ(y))(t) ≤ aPy(t) + cP ,

and furthermore, for every η > 0,

(6.6) |y(t)| ≥ cP/η =⇒ (aP − η)y2(t) ≤ (Pξ(y))(t)y(t) ≤ (bP + η)y2(t).

Proof. Let y ∈ C(R+) and t ∈ R+ be arbitrary. Note initially that, by the
definition of the backlash operator,(

Bσ,ξ(σ)(y)
)
(t) ∈ [y(t)− σ, y(t) + σ] ∀ σ ∈ R+.

Case 1. Assume y(t) ≥ 0. Writing E1 := [0, y(t)] and E2 := (y(t),∞), we have

(
Pξy

)
(t) ≥

(∫
E1

+
∫
E2

)∫ y(t)−σ

0

w(s, σ)μL(ds)μ(dσ) − |w0|

≥ b1
∫
E1

(y(t)− σ)μ(dσ) + b2

∫
E2

(y(t)− σ)μ(dσ) − |w0|

=
(
b1μ(E1) + b2μ(E2)

)
y(t)− b1

∫
E1

σ μ(dσ)− b2
∫
E2

σ μ(dσ)− |w0|

≥ a1b1y(t)− a2b2 − |w0| = aPy(t)− cP .

Moreover,

(
Pξy

)
(t) ≤

∫ ∞

0

∫ y(t)+σ

0

w(s, σ)μL(ds)μ(dσ) + |w0|

≤ b2
∫ ∞

0

(y(t) + σ)μ(dσ) + |w0| ≤ a1b2y(t) + a2b2 + |w0| = bPy(t) + cP .

This establishes (6.4).
Case 2. Now assume y(t) ≤ 0. The argument used in Case 1 applies mutatis

mutandis to conclude (6.5).
Finally, inequality (6.6) is a straightforward consequence of (6.4) and(6.5).
For example, the Prandtl operator in Figure 6.3 satisfies the hypotheses of Propo-

sition 6.1.
Let Pξ be a Preisach operator satisfying the hypotheses of Proposition 6.1. Let

aP , bP , and cP be given by (6.3) and define Φ, Φ̃ ∈ U by

Φ(y) :=

{
{v ∈ R | aPy − cP ≤ v ≤ bPy + cP}, y ≥ 0,

{v ∈ R | bPy − cP ≤ v ≤ aPy + cP}, y < 0.

Φ̃(y) := {v ∈ R | (aP − η)y2 ≤ vy ≤ (bP + η)y2},
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where η > 0. In view of (6.4) and (6.5),

y ∈ C(R+) =⇒ (Pξ(y))(t) ∈ Φ(y(t)) ∀ t ∈ R+.

Moreover, writing K := [−cP/η , cP/η], we have

Φ(y) ⊂ Φ̃(y) ∀ y ∈ R\K and E := supy∈K supv∈Φ(y) inf ṽ∈Φ̃(y)|v − ṽ| = cP .

Let linear system (A,B,C) (with transfer function G) be stabilizable and detectable.
Write a := aP − η, b := bP + η, and assume that G/(1 + aG) ∈ H∞, and for some
δ ∈ (0, 1), (1 + bG)/(1 + aG) − δ is positive real. Then hypothesis (H1) holds with
m = 1 and Φ̃ replacing Φ.

Example. As a concrete example, consider a mechanical system with damping
coefficient γ > 0 and a hysteretic restoring force in the form of backlash, with real
parameters σ > 0 and ζ:

(6.7) ÿ(t) + γẏ(t) + Bσ,ζ(y)(t) = d(t).

Setting w(·, ·) := 1, w0 = 0, μ := δσ (the Dirac measure with support {σ}), and
ξ(·) := ζ in (6.1), we see that Bσ,ζ = Pξ. In this case and in the notation of Proposition
6.1, we have a1 = b1 = b2 = aP = bP = 1 and a2 = cP = σ. Choosing η ∈ (0, 1), we
have 0 < a < b, where, as before, a = aP − η and b = bP + η and by Proposition 6.1,

|y(t)| ≥ σ/η =⇒ ay2(t) ≤
(
Bσ,ξ(y)

)
(t)y(t) ≤ by2(t).

The transfer function G is given by G(s) = 1/(s2 + γs), G/(1 + aG) is given by
1/(s2 + γs + a), and (1 + bG)/(1 + aG) − δ is given by (1 − δ) + 2η/(s2 + γs + a).
Clearly, G/(1+aG) ∈ H∞ and a straightforward calculation reveals that, for all η > 0
sufficiently small, (1 + bG)/(1 + aG)− δ is positive real.

Returning to the general setting, we are now in a position to invoke Corollary
3.6 to conclude properties of solutions of the single-input, single-output functional
differential equation

(6.8) ẋ(t) = Ax(t) +B
[
d(t) − (Pξ(Cx))(t)

]
, x(0) = x0.

We reiterate that, for each x0 ∈ R
n and d ∈ L∞

loc(R+), (6.8) has a unique global
solution. An application of Corollary 3.6 (with Δ(t) = {d(t)} for all t ∈ R+) yields
the existence of constants ε, c1, c2 > 0 such that, for every global solution x,

(6.9) ‖x(t)‖ ≤ c1e−εt‖x0‖+ c2
(
‖d‖L∞[0,t] + cP

)
∀ t ∈ R+,

showing, in particular, that (6.8) is input-to-state stable with bias cP . Furthermore,
by Lemma 3.3,

(6.10) lim
t→∞ d(t) = 0 =⇒ lim sup

t→∞
‖x(t)‖ ≤ c2cP .

We emphasize that the convergence d(t) → 0 as t → ∞ does, in general, not imply
convergence of x(t) as t→ ∞. To see this, consider again mechanical example (6.7).
Then, for every γ > 0, there exist constants ε, c1, c2 > 0 such that (6.9) and (6.10)
hold (with x(t) = (y(t), ẏ(t)) and cP = σ). However, we know from [17, Example 4.8]
that if d = 0 and γ ∈ (1, 2), then for all initial conditions, lim supt→∞ y(t) = σ and
lim inft→∞ y(t) = −σ (equivalently, y has ω-limit set [−σ, σ]), showing, in particular,
that x(t) = (y(t), ẏ(t)) does not converge as t→∞.
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Fig. 7.1. Uniform quantizer.

7. Quantized feedback systems. Let (A,B,C) be a minimal realization of a
linear, single-input, single-output system with transfer function G. Let f : R→ R be
a continuous static nonlinearity with the following property:

(Q1) There exist ϕ ∈ K∞ and a number b > 0 such that

ϕ(|y|)|y| ≤ f(y)y ≤ by2 ∀ y ∈ R.

Furthermore, we impose the following assumption:
(Q2) There exists κ ∈ [0 , 1/b) such that κ+G is positive real.
From (Q1) and (Q2), it follows that (H3) holds with Φ(y) = {f(y)} and δ = κb ∈

[0, 1). Consequently, by Theorem 3.5, the system

(7.1) ẋ(t) = Ax(t) +B(d(t) − f(Cx(t))), x(0) = x0 ∈ R
n, d ∈ L∞

loc(R+)

is input-to-state stable. Now consider (7.1) subject to quantization of the output
y = Cx, that is, the system

(7.2) ẋ(t) = Ax(t) +B
(
d(t) − (f ◦ qγ)(Cx(t))

)
, x(0) = x0 ∈ R

n, d ∈ L∞
loc(R+),

where qγ : R → R, parameterized by γ > 0, is a uniform quantizer (see Figure 7.1)
given by

qγ(y) = 2(m+ 1)γ ∀ y ∈
(
(2m+ 1)γ, (2m+ 3)γ

]
∀ m ∈ Z.

We interpret the differential equation (with discontinuous right-hand side) in (7.1)
in a set-valued sense by embedding the quantizer qγ in the set-valued map Qγ ∈ U
defined by

Qγ(y) :=
{
{qγ(y)}, y ∈

(
(2m+ 1)γ , (2m+ 3)γ

)
, m ∈ Z,

[2mγ , 2(m+ 1)γ], y = (2m+ 1)γ, m ∈ Z,

and subsuming (7.2) in the differential inclusion

(7.3) ẋ(t)−Ax(t) ∈ B
(
Δ(t)− Φγ(Cx(t))

)
, x(0) = x0 ∈ R

n, Δ ∈ B,

where Δ : t �→ {d(t)} and Φγ ∈ U is given by

Φγ(y) := f(Qγ(y)) = {f(ξ) | ξ ∈ Qγ(y)}.
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Choose ε ∈ (0, 1) sufficiently small so that (1 + ε)κ < 1/b. Write b̃ := (1 + ε)b and
define ϕ̃ ∈ K∞ by ϕ̃(s) := ϕ((1 − ε)s) ∀ s ∈ R+.

Lemma 7.1. There exists M ∈ N such that, for every γ > 0,

y ∈ R, |y| ≥ γM, v ∈ Φγ(y) =⇒ ϕ̃(|y|)|y| ≤ yv ≤ b̃y2.

Proof. Observe that, for all m ∈ N,

2m+ 2
2m+ 3

≤ w

y
≤ 2m+ 4

2m+ 1
∀ w ∈ Qγ(y) ∀ y ∈

(
(2m+ 1)γ, (2m+ 3)γ

]
.

Therefore, there exists M ∈ N such that

(1 − ε)y2 ≤ wy ≤ (1 + ε)y2 ∀ w ∈ Qγ(y) ∀ y ≥ γM.

Since Qγ has odd symmetry (Qγ(y) = −Qγ(−y)), it immediately follows that

(7.4) (1− ε)y2 ≤ wy ≤ (1 + ε)y2 ∀ w ∈ Qγ(y) ∀ |y| ≥ γM.

Let y be such that |y| ≥ γM , and let v ∈ Φγ(y). Then v = f(w) for some w ∈ Qγ(y).
Invoking (Q1) and (7.4), it follows that

(7.5) ϕ(|w|)|y| = ϕ(|w|)|w| y
w
≤ f(w)w

y

w
= f(w)y = vy ≤ bwy ≤ (1 + ε)by2 = b̃y2.

Since ϕ(|w|) = ϕ(|w||y|/|y|) = ϕ(wy/|y|) and invoking (7.4) and (7.5), we have

ϕ̃(|y|)|y| = ϕ((1 − ε)|y|)|y| ≤ ϕ(|w|)|y| ≤ vy ≤ b̃y2.

This completes the proof.
Let M ∈ N be as in Lemma 7.1 and define Φ̃ ∈ U by

(7.6) Φ̃(y) :=
{

[ϕ̃(|y|) , b̃|y|], y ≥ 0,
[− b̃|y| , −ϕ̃(|y|)], y < 0.

Clearly,

y ∈ R, v ∈ Φ̃(y) =⇒ max
{
ϕ̃(|y|)|y|, v2/b̃

}
≤ yv,

and, by Lemma 7.1, we also have Φγ(y) ⊂ Φ̃(y) ∀ y ∈ R \ [−γM, γM ]. Moreover, by
(Q2) (and recalling that κb̃ < 1), (δ/b̃) +G is positive real for every δ ∈ [κb̃ , 1). We
are now in a position to invoke Corollary 3.7 (with K = [−γM, γM ]) to conclude the
existence of β1 ∈ KL and β2 ∈ K∞, which do not depend on γ > 0 (recall Remark
3.8) such that, for all γ > 0, all x0 ∈ R

n, and all d ∈ L∞
loc(R+), every global solution

of (7.3), with Δ : t �→ {d(t)} satisfies

‖x(t)‖ ≤ max
{
β1(t, ‖x0‖) , β2(‖d‖L∞[0,t] + Eγ)

}
∀ t ∈ R+,
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where Eγ := sup|y|≤γM supv∈Φγ(y) inf ṽ∈Φ̃γ(y)|v − ṽ|. Noting that Eγ → 0 as γ ↓ 0 (if
f is locally Lipschitz, then Eγ = O(γ) as γ ↓ 0), we may conclude robustness with
respect to quantization in the sense that the quantized feedback system is such that
the unbiased ISS property of unquantized system (7.1) is approached as γ ↓ 0.

8. Conclusion. Feedback interconnections consisting of a linear system in the
forward path and a nonlinearity in the feedback path have been considered. Adopt-
ing a differential inclusions framework, nonlinearities of considerable generality are
encompassed, including inter alia both hysteresis operators and quantization oper-
ators. Conditions on the linear and nonlinear components have been identified (in
Theorems 3.4 and 3.5) under which ISS (and a fortiori global asymptotic stability of
the zero state) of the feedback interconnection is assured. The results of this paper are
in the spirit of absolute stability theory: in particular, when specialized appropriately,
classical absolute stability results pertaining to the circle criterion are recovered. In
Corollaries 3.6 and 3.7, hypotheses are imposed on the nonlinearities (namely, gen-
eralized sector conditions) considerably weaker than those posited in Theorems 3.4
and 3.5, under which ISS with bias (and a fortiori asymptotic stability of a compact
neighborhood of the zero state) may be concluded. Applications of the results to
systems with hysteresis and to systems with output quantization have been detailed.
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closure of all time shifts of a given almost periodic function. Then relations between heteroclinic
orbits of an uncontrolled and unperturbed system and controllability for small control ranges and
small perturbations are studied using Melnikov’s method. Finally, a system with two-well potential
is studied in detail.
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1. Introduction. This paper analyzes controllability properties of control sys-
tems which are subject to almost periodic excitations. More precisely, we consider

(1.1) ẋ(t) = f (x(t), z(t), u(t)) , u ∈ U ,

in an open set M ⊂ R
d with admissible controls in U = {u ∈ L∞(R,Rm), u(t) ∈ U

for all t ∈ R} and control range U ⊂ R
m. We assume that z is an almost periodic

function with values in a compact subset Z ⊂ R
k. In particular, this includes periodic

excitations and excitations with several incommensurable periods.
Instead of analyzing the behavior of system (1.1) for a single almost periodic

excitation, we allow time shifts of z and, more generally, all excitations in the set Z
of continuous functions which can uniformly be approximated by shifts of z (again,
all elements of Z are almost periodic). Observe that the trajectories of (1.1) are
determined by the initial states x = x(0) ∈M, the excitation z ∈ Z, and the control
function u : R→ R

m.
There are various ways to look at this system:

(i) as a control system in M with states x ∈M ;
(ii) as a control system in M ×Z with extended states (x, z) ∈M ×Z;
(iii) as a dynamical system in M ×Z × U with states (x, z, u) ∈M ×Z × U .
Observe that the control system in (i) is nonautonomous; the evolution of the

states x is determined only if, in addition to the control function u ∈ U , also the
phase of the almost periodic function z is known. Hence, here we have to distinguish
between an analysis for fixed excitation z ∈ Z and the projections to M . In (ii), we
can sometimes, if the almost periodic function is a solution of a differential equation
on a compact manifold Z (e.g., if Z is a k-torus), replace Z by Z. Here, however,
exact controllability properties in the extended state space M × Z can only hold in
the very special case of a periodic function z. Furthermore, the dimension of the state
space of the control system is increased by k, which makes a global numerical analysis
much more difficult. The formulation (iii) results in a continuous dynamical system
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(a control flow) provided that the system is control affine and the control range U is
compact and convex. The analysis of this dynamical system (including time shifts on
Z and on U) may yield structural insights and, in particular, sheds light on subsets
of complete controllability, i.e., control sets. In the present paper, we will analyze
system (1.1) employing all three points of view above.

Note that, for T -periodically excited control systems, controllability properties
in the extended state space (where also the phase in R/TZ is part of the state) can
essentially be characterized by a Poincaré section, i.e., the intersection with a fiber
over a fixed phase (compare Gayer [10]). The almost periodic case considered here
is more complicated and makes it necessary to use the fact that the time shift on
Z generates a minimal flow. This will allow us to show that, in an appropriately
generalized sense, control sets and chain control sets are to a large extent determined
by their intersection with a single fiber over a phase z ∈ Z.

Using methods from ergodic theory, controllability properties of nonautonomous
linear control systems have also been discussed by Johnson and Nerurkar [13]. Many
further results in this direction have been obtained, in particular, in connection with
associated Riccati equations. For a different line of research, see San Martin and
Patrao [19], who study control sets and chain control sets for semidynamical systems
on fiber bundles (related to the third interpretation above of system (1.1)).

The main topic of this paper are the relations between hetero- or homoclinic or-
bits of an uncontrolled and unperturbed system and controllability for small control
ranges. Here Melnikov’s method plays an important role, as observed, from a numer-
ical point of view, in Colonius et al. [5] where this method is used to analyze two
models for ship dynamics (without periodic excitation). In the present paper, a char-
acterization for systems with general almost periodic excitations will be given. Apart
from [5], to the best of our knowledge, Melnikov’s method has not been used in the lit-
erature to prove controllability results. Hence, our results are also new in the periodic
case. Melnikov’s method for differential equations with almost periodic excitations
was, in particular, developed by Palmer [18], Scheurle [21], and Meyer and Sell [17].
Our paper is closer to the spirit of the latter reference, since we consider the hull of
an almost periodic excitation. We would like to point out that we do not really need
the strength of Melnikov’s result here; existence of a chaotic set is not in our center
of interest. Instead, intersections of stable and unstable manifolds are relevant here.
Note that basic references for almost periodic differential equations include Fink [9]
and Levitan and Zhikov [15]; a nice discussion of almost periodic and quasi-periodic
functions can also be found in section II.1 of [17], together with further references.

Furthermore, we apply our results to a second order system modeling ship dy-
namics and capsizing under wave excitations. This system involving an M -potential
has been proposed by Kreuzer and Sichermann [14] for roll motion in following seas.
These models have a rich history; see, among others, Falzarano, Shaw, and Troesch
[8]; Thompson [26]; Hsieh, Troesch, and Shaw [12]; Soliman and Thompson [23]; and
Colonius, Gayer, and Kliemann [3]. In particular, Gayer [10] analyzed the so-called es-
cape equation with periodic excitation interpreting the time-dependent perturbations
as controls and gave a detailed analysis of the behavior under increasing perturbation
ranges. His analysis has to be complemented by the global controllability behavior
due to motions close to homoclinic orbits (compare also [5]).

The paper is organized as follows: After preliminaries in section 2, we analyze
chain control sets in section 3. Section 4 introduces control sets and presents relations
to chain control sets and to almost periodic solutions of the uncontrolled system.
Section 5 presents relevant results on almost periodic perturbations of hyperbolic
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equilibria and Melnikov’s method. These results are essentially known in the literature
(see Palmer [18], Scheurle [21], and also Meyer and Sell [17]). However, for the reader’s
convenience, we have included some arguments from the proofs. This is used in
section 6 to study the relation between heteroclinic orbits of an unperturbed system
and controllability for small control ranges. Finally, in section 7 we discuss a second
order system with M -potential modeling ship roll motion.

2. Preliminaries. Consider the control system (1.1)

ẋ(t) = f (x(t), z(t), u(t)) , u ∈ U ,

in an open set M ⊂ R
d with admissible controls in U , and assume that z is an almost

periodic function. That is, we assume (compare, e.g., Scheurle [21, Definition 2.6])
that z : R → R

k is continuous and that for every ε > 0 there exists an l = l(ε) > 0
such that in any interval of length l there is a so-called translation number τ such
that

‖z(t+ τ) − z(t)‖ < ε for all t ∈ R.

Define θ as the time shift (θtz)(s) := z(t + s), s, t ∈ R. Let Z be the closure in the
space Cb(R,Rk) of bounded continuous functions of the shifts of an almost periodic
function. Then Z is a minimal set; i.e., every trajectory is dense in Z. Observe that
for z ∈ Z it holds that z(t) = (θtz)(0). Assuming global existence and uniqueness,
we denote by ϕ(t, t0, x, z, u) the solution of the initial value problem

(2.1) ẋ(t) = f (x(t), z(t), u(t)) , x(t0) = x;

if t0 = 0, we often omit this argument. The solution map of the coupled system is
denoted by

ψ(t, x, z, u) = (ϕ(t, x, z, u), θtz) .

We assume that the set of admissible controls is given by

U = {u ∈ L∞(R,Rm), u(t) ∈ U for almost all t},

where U ⊂ R
m. If we denote also the time shift on U by θt, we obtain the cocycle

property

ϕ(t+ s, x, z, u) = ϕ (s, ϕ(t, x, z, u), θtz, θtu) , t, s ∈ R.

Finally, the maps

Φt : M ×Z × U →M ×Z × U , Φt(x, z, u) = (ψ(t, x, z, u), θtu) , t ∈ R,

define a continuous flow, the control flow, provided that U ⊂ R
m is convex and

compact and

f(x, z, u) = f0(x, z) +
m∑
i=1

uifi(x, z)

with C1-functions fi : R
d×R

k → R
d; here U ⊂ L∞(R,Rm) is endowed with the weak

star (weak∗) topology. This follows by a minor extension of Proposition 4.1.1 in [4].
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The weak∗ topology on U is compact and metrizable. Throughout this paper, we
endow U with a corresponding metric and assume that the conditions above guaran-
teeing continuity of the control flow are satisfied. Note that the space Z of almost
periodic excitations is considered in the norm topology of Cb(R,Rk). The shifts on
each of these spaces are continuous.

For convenience, we also assume that 0 ∈ U , and we call the corresponding
differential equation with u ≡ 0 the uncontrolled system. For periodic and for quasi-
periodic excitations we may be able to replace Z by a finite dimensional state space
Z.

Example 2.1. For a smooth periodic excitation let ζ : S
1 → S

1 =: Z be the
solution map ζtz0 = ω(t+ z0), t ∈ R, of ż = ω, z(0) = z0; here ω > 0 is the frequency
and (2.1) may be written as

ẋ(t) = f (x(t), ζt(z0), u(t)) , x(0) = x0.

For a quasi-periodic excitation, let ζ : S
k → S

k =: Z be the solution map ζtz0 =
(ω1(t+ z0,1), . . . , ωk(t+ z0,k)), t ∈ R, of

ż1 = ω1, ż2 = ω2, . . . , żk = ωk,

with initial condition z(0) = (z0,1, . . . , z0,k). Here ω1, . . . , ωk > 0 are the frequencies
and we assume that they are rationally independent; i.e., if qi ∈ Q with q1ω1 + · · ·+
qkωk = 0, then qi = 0 for all i. Again, (2.1) may be written as above.

3. Chain control sets. In this section, we define and characterize chain control
sets relative to a subset of the state space working in the general almost periodic case.

It will be convenient to write for a subset A ⊂ M × Z the section with a fiber
over z ∈ Z as

Az := A ∩ (M × {z}).

Hence, A =
⋃
z∈Z Az . Where convenient, we identify Az and {x ∈M, (x, z) ∈ Az}.

A controlled (ε, T )-chain along z ∈ Z is given by T0, . . . , Tn−1 ≥ T, controls
u0, . . . , un−1 ∈ U , and points x0, . . . , xn ∈M with

d
(
ϕ(Tj , xj , θT0+···+Tj−1z, uj), xj+1

)
< ε for all j = 0, . . . , n− 1.

Definition 3.1. A chain control set relative to a closed set Q ⊂ M × Z is a
nonvoid maximal set E ⊂M ×Z such that

(i) for all (x, z), (y, w) ∈ E and all ε, T > 0 there exists a controlled (ε, T )-chain
in Q along z from x to (y, w), i.e., x0 = x, xn = y, and d(θT0+···+Tn−1z, w) < ε, and

(3.1) ψ(t, xj , θT0+···+Tj−1z, uj) ∈ Q for all t ∈ [0, Tj] and for all j;

(ii) for all (x, z) ∈ E there is u ∈ U with ψ(t, x, z, u) ∈ E for all t ∈ R.
The condition in (3.1) can be written as

ϕ(t, xj , θT0+···+Tj−1z, uj) ∈ Qθtzj .

Note that the three components x, z, and u are treated in different ways: Jumps
are allowed in x, approximate reachability is required for z, and no condition on the
controls is imposed. Observe that also Meyer and Sell [17] do not allow jumps in the
almost periodic base flow. It is easy to show that chain control sets are closed.
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Next, we discuss the behavior for fixed “phases” z ∈ Z by looking at the fibers
of a chain control set.

Lemma 3.2. Suppose that E is a chain control set relative to Q. Then the fibers
Ez := E ∩Qz, z ∈ Z, satisfy the following properties:

(i) For every z ∈ Z, all x, y ∈ Ez, and all ε, T > 0 there exists a controlled
(ε, T )-chain in Q from x along z to (y, z).

(ii) For every z ∈ Z and every x ∈ Ez there exists a control u ∈ U such that

ϕ(t, x, z, u) ∈ Eθtz for all t ∈ R.

(iii) If xn ∈ Ezn with (xn, zn)→ (x, z) ∈M ×Z, then x ∈ Ez.
Proof. Condition (iii) follows from closedness of E; (i) and (ii) are obvious.
Remark 3.3. In condition (ii) of Lemma 3.2 one does not have that a trajectory

exists which after an appropriate time comes back to Ez (as for periodic excitations,
where one comes back into the same fiber after the period). In the general, almost
periodic case, the trajectory will never come back to the same fiber. Instead, the
weaker property formulated in (ii) holds together with condition (iii), which locally
connects different fibers and is an upper semicontinuity property of z 	→ Ez.

Next, we discuss if the properties formulated in Lemma 3.2 characterize chain
control sets.

Lemma 3.4. Suppose Q is compact and that Ez ⊂ Qz, z ∈ Z, is a family of sets
satisfying conditions (i), (ii), and (iii) in Lemma 3.2. Assume that

E :=
⋃
z∈Z

Ez ⊂ intQ.

Then E satisfies properties (i) and (ii) of chain control sets in Definition 3.1.
Proof. Let (x, z), (y, w) ∈ E and ε, T > 0. Then Z = ω(z) := {z′ ∈ Z, θtkz → z′

for a sequence tk → ∞} and there is a control u ∈ U such that ψ(t, x, z, u) ∈ E for
all t ∈ R. In particular, this proves property (ii) of chain control sets. Furthermore,
there are Sk > T such that for zk := θSk

z one has d(zk, w) < 1/k and clearly yk :=
ϕ(Sk, x, z, u) ∈ Ezk

. By compactness of Q, we may assume that (yk, zk) converges to
some (y0, w) ∈ Q. By property (iii), it follows that y0 ∈ Ew. By property (i), there is
a controlled (ε/2, T )-chain in Q from y0 along w to (y, w) satisfying x0 = y0, xn = y,
and d(θT0+···+Tn−1w,w) < ε/2, and

ψ(t, xj , θT0+···+Tj−1w, uj) ∈ Q for all t ∈ [0, Tj] and for all j.

Introducing, if necessary, trivial jumps, we may assume that Tj ∈ [T, 2T ] for all
j. By uniform continuity, there is δ > 0 such that for all x ∈ Q and all u ∈ U

(3.2) d(z, z′) < δ implies d (ϕ(t, x, z, u), ϕ(t, x, z′, u)) < ε/2, t ∈ [0, 2T ].

Choose k large enough such that

d(zk, w) = d(θSk
z, w) := sup

t∈R

‖z(Sk + t)− w(t)‖ < δ and d(ϕ(Sk, x, z, u), y0) < ε.

Hence, for all j

d
(
ϕ(Tj , xj , θˆSk+T0+···+Tj−1z, uj), xj+1

)
≤ d

(
ϕ(Tj , xj , θSk+T0+···+Tj−1z, uj), ϕ(Tj , xj , θT0+···+Tj−1w, uj)

)
+ d

(
ϕ(Tj , xj , θT0+···+Tj−1w, uj), xj+1

)
< ε/2 + ε/2 = ε.
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This shows that there is a controlled (ε, T )-chain from x along z to (y, w). Since by
assumption E ⊂ intQ and by (3.2) this (ε, T )-chain is ε-close to an (ε, T )-chain in
Q, we may choose ε > 0 small enough such that this is a chain in Q. This proves
property (i) of chain control sets.

The following result clarifies the relations between chain control sets and their
fibers.

Proposition 3.5. Consider system (1.1) in a closed subset Q ⊂M ×Z.
(i) Suppose that Q is compact, and let Ez ⊂ Qz, z ∈ Z, be a maximal family

of sets satisfying conditions (i)–(iii) in Lemma 3.2. If E :=
⋃
z∈ZE

z ⊂ intQ, then E
is a chain control set.

(ii) Let E be a chain control set. Then the fibers Ez, z ∈ Z, are contained in a
maximal family Ẽz ⊂ Qz, z ∈ Z, of sets satisfying conditions (i)–(iii) in Lemma 3.2.
If Ẽ :=

⋃
z∈Z Ẽ

z ⊂ intQ, then E = Ẽ.
Proof. It remains only to discuss the maximality properties.

(i) The union E satisfies properties (i) and (ii) of chain control sets, since for
ε < infe∈E d(e, ∂Q) the controlled (ε, T )-chains are in Q. Hence, E is contained in
the union Ẽ of all sets containing E and satisfying these properties. Then Ẽ is a
chain control set and its fibers Ẽz contain the sets Ez and satisfy properties (i)–(iii)
in Lemma 3.2. By maximality, it follows that E = Ẽ.

(ii) Let E be a chain control set. Then the fibers Ez satisfy properties (i)–(iii) in
Lemma 3.2. Clearly, the family Ez , z ∈ Z, is contained in a maximal family Ẽz , z ∈ Z,
with these properties. If Ẽ ⊂ intQ, the first assertion shows that Ẽ is a chain control
set and, hence, E = Ẽ.

It is of great interest to see if the behavior in a single fiber determines chain
control sets. In the periodic case, one can reconstruct chain control sets from their
intersection with a fiber. More precisely, the following is a minor modification of
Gayer [10], Taubert [25, Satz 2.2.5].

Proposition 3.6. Assume that in system (1.1) the set Z consists of the shifts
of a T -periodic function, and write Z := R/TZ. Let Q ⊂ M × Z be closed, and pick
z0 ∈ Z. Suppose that Ez0 ⊂ Qz0 is a maximal set such that

(i) for all x, y ∈ Ez0 and all ε > 0 there are (xj , zj) ∈ Q × Z and controls
uj ∈ U with (x0, z0) = (x, z0), (xn, zn) = (y, z0) such that for all j = 0, . . . , n− 1

d (ψ(T, (xj , zj , uj)), (xj+1, zj+1)) < ε and ψ(t, xj , zj, uj) ∈ Q for t ∈ [0, T ],

(ii) for all x ∈ Ez0 there is u ∈ U with ϕ(T, x, z0, u), ϕ(−T, x, z0, u) ∈ Ez0 .
Then the set

E :=
{

(x, z) ∈M × Z, there are x0 ∈ Ez0 , u ∈ U , t ∈ [0, T ) with
(x, z) = ψ(t, x0, z0, u) and ϕ(T, x0, z0, u) ∈ Ez0

}

is a chain control set relative to Q.
Conversely, for a chain control set E ⊂ Q×Z, every fiber Ez0 , z0 ∈ Z, is maximal

with properties (i) and (ii).
In order to derive an analogous result in the almost periodic case, we have to

modify property (ii) in Proposition 3.6, since it cannot be satisfied.
Theorem 3.7. Consider system (1.1), and assume that Q ⊂M ×Z is compact.

For some z0 ∈ Z let Ez0 ⊂ Q × {z0} be a nonvoid maximal set such that for all
x0, y0 ∈ Ez0 and all ε, T > 0 there exists a controlled (ε, T )-chain in Q from x0 along
z0 to (y0, z0).
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Then the set

E := cl

⎧⎪⎪⎨
⎪⎪⎩(x, z) ∈M × Z,

for all ε, T > 0 there are x0, y0 ∈ Ez0 and controlled
(ε, T )-chains in Q from x0 along z0 to (y0, z0) such
that (x, z) = ψ(t, xj , θT0+···+Tj−1z0, uj) for some j

and t ∈ [0, Tj]

⎫⎪⎪⎬
⎪⎪⎭

is a chain control set relative to Q.
Proof. Consider the fibers Ez , z ∈ Z, of E. By closedness of E, it is clear that

xn ∈ Ezn with (xn, zn) → (x, z) ∈ M × Z implies x ∈ Ez. Since Ez0 is nonvoid
and E is contained in the compact set Q, hence, also compact, every fiber Ez of E is
nonvoid.

Let (x, z), (y, w) ∈ E and ε, T > 0. Then there exists a controlled (ε, T )-chain in
Q from x along z to (y, w). This follows for elements on controlled chains from Ez0 to
Ez0 by concatenating appropriate chains and using continuity (in order to guarantee
Tj ≥ T ). Again, by continuity, this also follows for elements in the closure of the set
of these points. It remains to show that for every z ∈ Z and every x ∈ Ez there exists
a control u ∈ U such that

ϕ(t, x, z, u) ∈ Eθtz for all t ∈ R.

For (x, z) ∈ E and k ∈ N choose controlled (1/k, T )-chains ζk from x along z to (x, z)
with controls ukj ∈ U . Then a subsequence of uk0 converges to some control v0 ∈ U
and, by continuity,

ϕ
(
T, x, z, uk0

)
→ ϕ(T, x, z, v0) for k →∞.

Then one finds that ϕ(T, x, z, v0) ∈ EθT z, since E is closed. Iterating this procedure,
one constructs a control u+ ∈ U with ϕ(t, x, u+) ∈ E for all t ≥ 0. For negative times,
consider the last members of the chains ζk. We may assume that the corresponding
controls uknk

converge to a control v ∈ U and, by definition,

ψ
(
Tnk

, xnk
, θTk

0 +···+Tk
nk

z, uknk

)
→ (x, z) for k →∞.

By continuity, we may assume that T knk
∈ [T, 2T ] and, hence, that T knk

→ S ≥ T .
Then θTk

nk
uknk
→ θSv and continuity implies

ψ
(
Tnk
− T, xnk

, θTk
0 +···+Tk

nk

z, uknk

)
= ψ

(
−T, ψ

(
Tnk

, xnk
, θTk

0 +···+Tk
nk
z, uknk

)
, θTk

nk
uknk

)
→ ψ(−T, x, z, θSv) for k →∞.

With u− := θSv one finds that ϕ(−T, x, z, v1) ∈ EθT z, since E is closed. Iterating
this procedure, one constructs a control u− ∈ U with ϕ(t, x, z, u−) ∈ E for all t ≤ 0.
Combining u+ and u− the desired control u is found.

Remark 3.8. Theorem 3.7 shows that, up to closure, one can find chain control
sets by looking at a single fiber, i.e., a single almost periodic excitation. This signif-
icantly simplifies numerical computations, since only one almost periodic excitation
z(t), t ≥ 0, has to be considered. Then the resulting sets must be considered for those
times T where z and θT z are close. In the quasi-periodic case (cf. Example 2.1), one
has to look for (large) times t where all ωit are close to zero modulo 2π.
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In addition to chain control sets E, also their projection to M defined as

πME := {x ∈M, (x, z) ∈ E for some z ∈ Z}

is of interest. Obviously, for all (x1, x2) ∈ πME there are z1, z2 ∈ Z such that
(x1, z1), (x2, z2) ∈ E, and, hence, there are controlled (ε, T )-chains from x1 along z1
to (x2, z2).

4. Controllability and chain controllability. The main aim in this section
is to analyze when an almost periodic solution of the uncontrolled system is contained
in the interior of a subset of complete controllability. For this purpose, we ask when
a reachable point is contained in the interior of the reachable set and discuss chain
controllability. This leads us to control sets and their relation to chain control sets.

Again, consider control system (1.1). For a closed subset Q ⊂ M × Z, a point
x ∈ Q, and z ∈ Z we define the positive and negative orbits along z relative to Q as

O+(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈ [0, t] for some t ≥ 0, u ∈ U},
O−(x; z,Q) := {ϕ(t, x, z, u), with ψ(s, x, z, u) ∈ Q, s ∈ [t, 0] for some t ≤ 0, u ∈ U}.

Observe that ϕ(t, x, z, u) ∈ Qθtz. Analogously, O+
t (x; z,Q),O−

t (x; z,Q), etc. are de-
fined, if we restrict the times accordingly. If Q = M ×Z, we omit the argument Q.

In addition to chain control sets it is also of interest to discuss control sets, i.e.,
maximal subsets of approximate controllability.

Definition 4.1. For a closed subset Q ⊂M ×Z a subset D ⊂ Q is a control set
relative to Q if it is maximal with the following properties :

(i) For all (x, z), (y, w) ∈ D there are Tn ≥ 0, un ∈ U with ψ(Tn, x, z, un) →
(y, w) and ψ(t, x, z, un) ∈ Q for t ∈ [0, Tn].

(ii) For every z ∈ Z and every x ∈ Dz there exists a control u ∈ U such that

ψ(t, x, z, u) ∈ D for all t ≥ 0.

In condition (i), it is clear that Tn →∞, unless the excitation is periodic. Condi-
tion (ii) immediately implies that the projection of the control set is dense in Z; the
inclusion may be rewritten as ϕ(t, x, z, u) ∈ Dz(t+·) for all t ≥ 0.

For periodic excitations, one can characterize control sets by looking at the dis-
crete time system defined by the Poincaré map (Gayer [10]). We will show that also,
in the almost periodic case, it is possible to characterize control sets fiberwise.

Lemma 4.2. Suppose that D ⊂ Q is a control set. Then the fibers Dz := D∩Qz,
z ∈ Z, satisfy the following properties:

(i) For every z ∈ Z and all x, y ∈ Dz there are Tn → ∞ and un ∈ U with
ψ(Tn, x, z, un)→ (y, z) and ψ(t, x, z, un) ∈ Q for all t ∈ [0, Tn].

(ii) For every z ∈ Z and every x ∈ Dz there exists a control u ∈ U such that

ϕ(t, x, z, u) ∈ Dθtz for all t ≥ 0.

Proof. The proof obviously follows from properties (i) and (ii) of control
sets.

The following lemma shows that the properties in Lemma 4.2 characterize control
sets.

Lemma 4.3. Suppose Q ⊂M ×Z is closed and that Dz ⊂ Qz, z ∈ Z, is a family
of sets satisfying conditions (i) and (ii) in Lemma 4.2 and, additionally,

(iii) for every (x, z) ∈ Dz and all Tn > 0 with θTnz → w ∈ Z there are y ∈ M
and un ∈ U such that ψ(Tn, x, z, un) → (y, w) ∈ Dw and ψ(t, x, z, un) ∈ Q for all
t ∈ [0, Tn].
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Then D :=
⋃
z∈Z D

z satisfies properties (i) and (ii) of control sets in Defini-
tion 4.1.

Proof. Property (ii) of control sets is clearly satisfied due to property (ii) of the
fibers. In order to prove property (i), let (x, z), (y, w) ∈ D. Since ω(z) = Z there are
Sk → ∞ with θSk

z → w. By property (iii) we may assume that, for some controls
uk ∈ U and some (y0, w) ∈ D,

(4.1) ψ(Sk, x, z, uk)→ (y0, w) in Q.

By property (i) of the fibers there are Tn →∞ and vn ∈ U with

(4.2) ψ(Tn, y0, w, vn)→ (y, w) in Q.

Let ε > 0, and denote here and in the following the open ε-ball around x by Bε(x).
For every n ∈ N there is an ηn > 0 such that

(4.3) ψ (Tn,Bηn(y0, w), vn) ⊂ Bε/2 (ψ(Tn, y0, w, vn))

due to continuous dependence on initial conditions. Convergence in (4.2) implies that
ψ(Tn, y0, w, vn) ∈ Bε/2(y, w) for sufficiently large n. Together, this yields

ψ (Tn,Bηn(y0, w), vn) ⊂ Bε(y, w)

for n large enough.
By convergence in (4.1), there is a sequence (kn)n∈N ⊂ N such that

ψ(Skn , x, z, ukn) ∈ Bηn(y0, w).

Let T̃n := Skn + Tn and

ũn(t) :=

{
un(t) if t < Skn ,
vn(t− Skn) otherwise.

Then inclusion (4.3) implies ψ(T̃n, x, z, ũn) ∈ Bε(y, w) for all n ∈ N. Since ε > 0 is
arbitrary, this implies ψ(T̃n, x, z, ũn)→ (y, w). Furthermore, ψ(t, x, z, ũn) ∈ Q for all
t ∈ [0, T̃n], n ∈ N, by construction.

The following result clarifies the relations between control sets and their fibers.
Theorem 4.4. Consider system (1.1) in a closed subset Q ⊂M ×Z.

(i) Let Dz ⊂ Qz, z ∈ Z, be a maximal family of sets satisfying conditions (i)
and (ii) in Lemma 4.2 and condition (iii) in Lemma 4.3. Then D :=

⋃
z∈Z D

z is a
control set.

(ii) Let D be a control set. Then the fibers Dz form a maximal family of sets
satisfying conditions (i) and (ii) in Lemma 4.2.

Proof. By Lemmas 4.2 and 4.3 only maximality has to be shown.
(i) By Lemma 4.3, the set D :=

⋃
z∈Z D

z satisfies the two defining properties
of control sets and is, thus, contained in a control set D̃. The fibers D̃z, z ∈ Z, satisfy
conditions (i) and (ii) in Lemma 4.2. So, by maximality, D̃z = Dz for every z ∈ Z,
which implies D = D̃.

(ii) By Lemma 4.2 the fibers Dz satisfy conditions (i) and (ii) and are, thus,
contained in a maximal family Dz , z ∈ Z, of sets satisfying these properties. By
Lemma 4.3 the set D̃ :=

⋃
z∈Z D

z is a control set. Clearly D ⊂ D̃. Maximality
implies D = D̃, and so Dz = Dz for all z.
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We note the following simple property of control sets.
Proposition 4.5. Let D1 and D2 be control sets relative to Q, and assume that

there are z ∈ Z, times T2 > T1 > 0, a point x ∈ Dz
1 , and a control u ∈ U such that

ϕ(T1, x, z, u) ∈ D2,z(T1+·) and ϕ(T1 + T2, x, z, u) ∈ D1,z(T1+T2+·),
and ψ(t, x1, z, u) ∈ Q for all t ∈ [0, T1 + T2].

Then D1 = D2.
Proof. The proof follows by maximality of D1, since D1∪{ψ(t, x, z, u), t ∈ [0, T1+

T2]} satisfies properties (i) and (ii) of control sets.
Our next aim is to prove that under an inner-pair condition every almost periodic

solution of the uncontrolled equation is contained in the interior of a control set. For a
periodic excitation as considered in Example 2.1, the state space Z = S

1 is (trivially)
completely controllable. However, already for a quasi-periodic excitation with two
noncommensurable (i.e., rationally independent) frequencies ω1, ω2, this is no longer
true. Hence, it does not make sense to consider exact controllability properties in
the z-component. This is different in the x-component as shown by the following
proposition.

Proposition 4.6. Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost periodic solution of
the uncontrolled system, and define A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that there
are ε, T > 0 such that for every (x, z) ∈ A

Bε (ϕ(T, x, z, 0)) ⊂ O+
T (x; z,Q).

Then for all (x, z), (y, w) ∈ A there is τ > 0 such that Bε/2(y) ⊂ O+
τ (x; z,Q), and for

every y0 ∈ Bε/2(y) there are τn ≥ 0 and un ∈ U with ϕ(τn, x, z, un) = y0 in Q and
θτnz → w.

Proof. Let (x, z), (y, w) ∈ A. Note that, by uniform continuity, there is δ > 0
such that

d ((x1, z1), (x2, z2)) < δ implies d (ψ(T, x1, z1, 0), ψ(T, x2, z2, 0)) < ε/2.

By almost periodicity, one has ω(x, z) = A, and, hence, there are Sn → ∞ such
that ψ(Sn, x, z, 0) → ψ(−T, y, w, 0) in A ⊂ Q. Choose n large enough such that for
S0 := Sn

(4.4) d(ψ(−T, y, w, 0), ψ(S0, x, z, 0)) < δ.

This implies

d((y, w), ψ(S0 + T, x, z, 0)) = d(ψ(T, ψ(−T, y, w, 0), 0), ψ(T, ψ(S0, x, z, 0), 0)) < ε/2,

and we conclude for ε > 0, small enough,

Bε/2(y) ⊂ Bε (ϕ(S0 + T, x, z, 0)) = Bε (ϕ (T, ϕ(S0, x, z, 0), θT z))

⊂ intO+
T (ϕ(S0, x, z, 0); θT z,Q) ⊂ intO+

S0+T (x; z,Q).

This yields the first assertion with τ = S0 + T , and the second assertion follows with
τn := Sn + T if we consider δn → 0 in (4.4).

This proposition allows us to show that almost periodic solutions of the uncon-
trolled system are contained in the interior of control sets. In other words, around an
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almost periodic solution we have complete controllability along the almost periodic
excitations.

Theorem 4.7. Let ψ(t, x0, z0, 0) ∈ Q, t ∈ R, be an almost periodic solution of
the uncontrolled system, and let A := cl{ψ(t, x0, z0, 0), t ∈ R}. Assume that there are
ε, T > 0 such that for every (x, z) ∈ A

(4.5) Bε(ϕ(T, x, z, 0)) ⊂ O+
T (x; z,Q) and Bε(ϕ(−T, x, z, 0)) ⊂ O−

T (x; z,Q).

Then there exists a control set D such that for every (x, z) ∈ A one has x ∈ intDz .
Proof. It is clear that the set A satisfies properties (i) and (ii) of Definition 4.1.

Hence, it is contained in a maximal set with these properties, i.e., a control set D. The
assertion follows if we can show that for all (x, z) ∈ A the neighborhoods Bε/2(x) also
satisfy these properties. Let (x, z), (y, w) ∈ A. For property (i) it suffices to show that
for x0 ∈ Bε/2(x), y0 ∈ Bε/2(y) there are Tn ≥ 0 and un ∈ U with ψ(Tn, y0, w, un)→
(x0, z) in Q. Since ψ(T, x, z, 0) ∈ A, condition (4.5) implies

Bε/2(x) ⊂ O−
T (ψ(T, x, z, 0)) .

Hence, for every (x0, z) ∈ Bε/2(x)×{z} there is a control u0 ∈ U with ψ(T, x, z, 0) =
ψ(T, x0, z, u0). Similarly, ψ(−T, y, w, 0) ∈ A implies

Bε/2(y) ⊂ O+
T (ψ(−T, y, w, 0)) ,

and, hence, there is a control v0 ∈ U with (y0, w) = ψ(T, ψ(−T, y, w, 0), v0).
Since ψ(T, x, z, 0), ψ(−T, y, w, 0) ∈ A there are Sn ≥ 0 and vn ∈ U with

ψ (Sn, ψ(T, x, z, 0), vn)→ ψ(−T, y, w, 0) in Q.

By continuity, this implies

ψ (T, ψ (Sn, ψ(T, x, z, 0), vn) , v0)→ ψ (T, ψ(−T, y, w, 0), v0) = (y0, w).

Define the concatenated controls

un(t) :=

⎧⎨
⎩
u0(t) for t ∈ [0, T ],
vn(t− T ) for t ∈ (T, T + Sn],
v0(t− T − Sn) for t ∈ (T + Sn, 2T + Sn].

Then, with Tn := 2T + Sn,

ψ(Tn, x0, z, un) = ψ(2T + Sn, x0, z, un)
= ψ (T, ψ (Sn, ψ(T, x0, z, u0), vn) , v0)
= ψ (T, ψ (Sn, ψ(T, x, z, 0), vn) , v0)
→ (y0, w).

This proves property (i). Then property (ii) is obvious.
Remark 4.8. Condition (4.5) is analogous to the inner-pair condition (but slightly

stronger) for autonomous control systems; see [4, Definition 4.1.5].
Assumption (4.5) in Theorem 4.7 can be guaranteed for a large class of systems,

as shown by Gayer [10]: Consider the following nth order systems on R
m:

(4.6)

⎛
⎜⎜⎝

x
(n)
1
...

x
(n)
m

⎞
⎟⎟⎠+

⎛
⎜⎝

f1
(
t, x, . . . , x(n−1)

)
...

fm
(
t, x, . . . , x(n−1)

)
⎞
⎟⎠ =

⎛
⎜⎝

b1
(
t, x, . . . , x(n−1)

)
u1(t)

...
bm
(
t, x, . . . , x(n−1)

)
um(t)

⎞
⎟⎠ .
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Here x = (xi) ∈ Cn−1(R,Rm), its nth derivative exists but is not necessarily con-
tinuous, and x(k) denotes its kth derivative. Assume fi : R × R

nm → R and
bi : R× R

nm → R are C1, and consider controls

u = (ui) ∈ Uρ := {u : R→ R
m, u(t) ∈ Uρ for all t}.

We assume that the control ranges Uρ are compact and convex and that mapping
ρ 	→ Uρ is strictly increasing, i.e., Uρ1 ⊂ intUρ2 for 0 ≤ ρ1 ≤ ρ2. As before, assume
that for all initial values and all controls the solutions are unique and exist for all
times.

We consider the associated first order systems. So for initial values y0, . . . , yn−1 ∈
R
m at time t0 = 0 and a control u ∈ Uρ, denote by λ(t, y0, . . . , yn−1, u) the corre-

sponding solution of (4.6). We set y0 := (y0, . . . , yn−1) ∈ R
nm and define the set

reachable from y0 at time T > 0 by

O+,ρ
T (y0) :=

{
(z0, . . . , zn−1) ∈ R

nm, there is u ∈ U
with zi = λ(i)(t, y0) for 0 ≤ i ≤ n− 1

}
.

Proposition 4.9. Consider system (4.6), and assume that there is some α > 0
such that |bi(t, y)| ≥ α for all i ∈ {1, . . . ,m} and all (t, y) ∈ R×R

nm. Let 0 ≤ ρ1 ≤ ρ2,
and consider a compact subset B ⊂ R

nm. Then for every T > 0 there is ε > 0 such
that for all (y0, u) ∈ B × Uρ1

B
((
λ
(
T, y0, u

)
, . . . , λ(n−1)

(
T, y0, u

))
; ε
)
⊂ O+,ρ2

T

(
y0
)
.

Proof. The proof follows from [10, Theorem 3] and its proof. Here arbitrary
time dependence of the right-hand side is allowed and the theorem is formulated a bit
differently (in terms of inner pairs for varying control range), but the proof shows the
stronger result formulated above.

In particular, under the assumptions of Proposition 4.9, one obtains for ρ1 =
0 that condition (4.5) is satisfied (applying the theorem also to the time reversed
system).

Next, we generalize Theorem 4.7 in order to show a relation between chain con-
trollability and controllability. We begin with the following lemma.

Lemma 4.10. Let 0 ≤ ρ1 ≤ ρ2, and consider a compact subset Q ⊂ M ×Z. Let
Eρ1 be a chain control set relative to Q for system (1.1) with controls in Uρ1 . Assume
that there are ε, T > 0 such that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

(4.7) Bε(ϕ(T, x, z, u)) ⊂ O+,ρ2
T (x; z,Q).

Then for all (x, z), (y, w) ∈ Eρ1 there is τ > 0 such that Bε/2(y) ⊂ O+,ρ2
τ (x; z,Q),

and for every y0 ∈ Bε/2(y) there are τn ≥ 0 and un ∈ Uρ2 with ϕ(τn, x, z, un) = y0 in
Q and θτnun → w.

Proof. Let (x, z), (y, w) ∈ Eρ1 . By uniform continuity, there is δ with 0 < δ < ε/2
such that for all u

d ((x1, z1), (x2, z2)) < δ implies d (ψ(T, x1, z1, u), ψ(T, x2, z2, u)) < ε/2.

There is u0 ∈ Uρ1 such that ψ(−T, y, w, u0) ∈ Eρ1 . By chain controllability, there
exists a controlled (δ, T )-chain in Q along z from x to ψ(−T, y, w, u0), i.e., x0 = x,
xn = ϕ(−T, y, w, u0), and

d(θT0+···+Tn−1z, θ−Tw) < δ, d
(
ϕ(Tj , xj , θT0+···+Tj−1z, vj), xj+1

)
< δ for all j,

ψ
(
t, xj , θT0+···+Tj−1z, vj

)
∈ Q for all t ∈ [0, Tj] and for all j.
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For every j, one finds by induction

xj+1 ∈ Bδ

(
ϕ
(
Tj , xj , θT0+···+Tj−1z, vj

))
= Bδ

(
ϕ
(
T, ϕ

(
Tj − T, xj , θT0+···+Tj−1z, vj

)
, θT0+···+Tj−1+Tj−T z, θTj−T vj

))
⊂ O+,ρ2

T

(
ϕ
(
Tj − T, xj , θT0+···+Tj−1z, vj

)
; θT0+···+Tj−1+Tj−T z,Q

)
⊂ O+,ρ2

T0+···+Tj
(x0; z,Q).

Hence, there is a control v ∈ Uρ2 with

(4.8) xn = ϕ(T0 + · · ·+ Tn−1, x, z, v) and d(θT0+···+Tn−1z, θ−Tw) < δ.

By choice of δ we find

d
(
ψ
(
T, xn, θT0+···+Tn−1z, θ−Tu0

)
, (y, w)

)
= d

(
ψ
(
T, xn, θT0+···+Tn−1z, θ−Tu0

)
, ψ (T, ψ(−T, y, w, u0), θ−Tu0)

)
< ε/2.

We conclude for ε > 0, small enough,

Bε/2(y) ⊂ Bε

(
ϕ
(
T, xn, θT0+···+Tn−1z, θ−Tu0

))
= Bε

(
ϕ
(
T, ϕ (T0 + · · ·+ Tn−1, x, z, v) , θT0+···+Tn−1z, θ−Tu0

))
⊂ O+,ρ2

T0+···+Tn−1+T (x; z,Q).

This yields the first assertion with τ = T0 + · · · + Tn−1 + T . The second assertion
follows with τn = T0 + · · ·+ Tn−1 + T if we consider δn → 0 in (4.8).

This lemma allows us to show that chain control sets are contained in the interior
of control sets for larger control ranges.

Theorem 4.11. Let 0 ≤ ρ1 ≤ ρ2, and consider a compact subset Q ⊂ M × Z.
Let Eρ1 be a chain control set relative to Q for system (1.1) with controls in Uρ1 .
Assume that there are ε, T > 0 such that for every (x, z) ∈ Eρ1 and u ∈ Uρ1

(4.9) Bε (ϕ(T, x, z, u)) ⊂ O+,ρ2
T (x; z,Q) and Bε (ϕ(−T, x, z, u)) ⊂ O−,ρ2

T (x; z,Q).

Then there exists a control set Dρ2 such that for every (x, z) ∈ Eρ1 one has x ∈
intDρ2

z .
Proof. The assertion follows if we can show that for all (x, z) ∈ Eρ1 the neigh-

borhoods Bε/2(x) satisfy conditions (i) and (ii) in Definition 4.1 for controls in Uρ2 .
Then Eρ1 is contained in a maximal set with these properties, i.e., a control set Dρ2 .
Let (x, z), (y, w) ∈ Eρ1 . For property (i) it suffices to show that for x0 ∈ Bε/2(x), y0 ∈
Bε/2(y) there are Tn ≥ 0 and un ∈ Uρ2 with ψ(Tn, y0, w, un) → (x0, z) in Q. There
is a control v0 ∈ Uρ1 with ψ(T, x, z, v0) ∈ Eρ1 , and, hence, condition (4.5) implies

Bε/2(x) ⊂ O−,ρ2
T (ψ(T, x, z, v0)) .

Hence, for every x0 ∈ B(x, ε/2) there is a control u0 ∈ Uρ2 with ψ(T, x, z, v0) =
ψ(T, x0, z, u0). Similarly, there is a control v1 ∈ Uρ1 with ψ(−T, y, w, v1) ∈ Eρ1 and

Bε/2(y) ⊂ O+,ρ2
T (ψ(−T, y, w, v1)) ,

and, hence, there is a control u1 ∈ Uρ2 with (y0, w) = ψ(T, ψ(−T, y, w, v1), u1).
Since ψ(T, x, z, v0), ψ(−T, y, w, v1) ∈ Eρ1 , Lemma 4.10 implies that there are

τn ≥ 0 and vn ∈ Uρ2 with ψ(τn, ψ(T, x, z, v0), vn)→ ψ(−T, y, w, v1) in Q.
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Together, one obtains

ψ (T, ψ (τn, ψ(T, x, z, v0), vn) , u1)→ ψ (T, ψ(−T, y, w, v1), u1) = (y0, w).

Define the concatenated control un ∈ Uρ2 by

un(t) :=

⎧⎨
⎩
u0(t) for t ∈ [0, T ],
vn(t− T ) for t ∈ (T, T + τn],
u1(t− T − τn) for t ∈ [T + τn, 2T + τn].

Then, with Tn := 2T + τn,

ψ(Tn, x0, z, un) = ψ(2T + τn, x0, z, un)
= ψ (T, ψ (τn, ψ(T, x0, z, un), θTun) , θT+τnun)
= ψ (T, ψ (τn, ψ(T, x0, z, u0), vn) , u1)
→ (y0, w).

This proves property (i) of control sets. Now property (ii) is obvious.
Remark 4.12. Using this theorem we can, as in [4, Theorem 4.7.5], show that for

all up to at most countably many ρ-values the closures of control sets and the chain
control sets coincide. The proof is based on Scherbina’s lemma [20] for continuity of
monotonically increasing set valued functions. Hence, by Theorem 3.7 one may also
determine the fibers of control sets via the fibers of the chain control sets. For this
purpose, one has to consider “long” times, since these fibers are determined only on
long time intervals; cf. Remark 3.8. At first sight, this is different if the excitation is
periodic; here only the Poincaré map and, hence, the period length are needed; see
Proposition 3.6. Nevertheless, also in this case approximate controllability is relevant
(the entrance boundary of a control set is reached from the interior only for time
tending to infinity), and, hence, also these objects are determined only on long time
intervals.

5. Almost periodic solutions and heteroclinic orbits. In this section, we
recall results on almost periodic perturbations of hyperbolic equilibria and Melnikov’s
method. Since in the literature they are not precisely stated in the form needed here,
we recall the relevant concepts and some arguments for the proofs.

It is well-known that, under small periodic perturbations, a hyperbolic fixed point
of an autonomous differential equation becomes a periodic solution; see, e.g., [1, Theo-
rem 25.2] for details on this result, which is known as the Poincaré continuation. This
result can be generalized to almost periodic perturbations, in which case the existence
of an almost periodic solution can be shown. Consider the differential equation

(5.1) ẋ = g(x) + μh(t, x, μ)

for g : R
d → R

d and h : R × R
d × R → R

d. The parameter μ ∈ R is interpreted as
a small perturbation. Setting μ = 0 in system (5.1) leads to the equation ẋ = g(x),
which will be referred to as the unperturbed system. Throughout, we assume that (5.1)
satisfies the following conditions: The function g is C1, h is continuous, hx exists, and
there are a bounded and open subset V ⊂ R

d containing x0 and a constant μ̄ > 0 such
that h and hx are almost periodic in t, uniformly with respect to (x, μ) ∈ clV ×[−μ̄, μ̄],
and solutions of (5.1) exist for all starting points in V , all μ ∈ [−μ̄, μ̄], and all times.

As noted in Scheurle [21, Remark 2.7], almost periodicity of hx uniformly with
respect to (x, μ) is equivalent with hx being uniformly continuous on R×clV ×[−μ̄, μ̄].
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Next, recall the notion of exponential dichotomies, which generalize the idea of
hyperbolicity to nonautonomous systems; cf. Coppel [6].

Definition 5.1. Consider the system

(5.2) ẋ = A(t)x

for a piecewise continuous matrix function A : J → R
d×d defined on an interval

J ⊂ R, and let X(t) be a fundamental matrix function for (5.2). System (5.2) has
an exponential dichotomy on J if there is a projection P : R

d → R
d and constants

K ≥ 1, α > 0 such that∥∥X(t)PX−1(s)
∥∥ ≤ Ke−α(t−s) for s ≤ t,∥∥X(t)(I − P )X−1(s)
∥∥ ≤ Ke−α(s−t) for s ≥ t.

Then the following perturbation result [21, Lemma 2.4] holds.
Lemma 5.2. Let g(t, x) and h(t, x) be functions which are defined and continuous

on R× V with values in R
d, where V is an open subset of R

d. Furthermore, assume
that the partial derivatives gx and hx exist, gx is uniformly continuous, and hx is
continuous in R × V . Finally, assume that the equation ẋ = g(t, x) has a solution
x = x0(t) defined and contained in V for all t ∈ R and strictly bounded away from the
boundary of V such that the variational equation ẋ = gx(t, x0(t))x has an exponential
dichotomy on R with constants K and α. Then there exist a positive constant η0 and
a function η1(η) depending only on g, K, and α such that if 0 < η ≤ η0,

sup
(t,x)∈R×V

‖h(t, x)‖ < η1(η) and sup
(t,x)∈R×V

‖hx(t, x)‖ < K α/2,

then the equation ẋ = g(t, x) + h(t, x) has a unique solution x(t) satisfying
‖x(t)− x0(t)‖ ≤ η, t ∈ R.

A slight modification of Bohr’s proof for the boundedness of almost periodic
functions in [2] shows uniform boundedness of uniformly almost periodic functions.

Lemma 5.3. Let Λ be a compact topological space, M a normed vector space with
norm ‖ · ‖, and f : R × Λ → M continuous and almost periodic in t uniformly with
respect to x ∈ Λ. Then

sup (t,x)∈R×Λ‖f(t, x)‖ <∞.

Proof. Since f is uniformly almost periodic, there is an interval length L such
that for every interval J ⊂ R of length L there exists a translation number τ(J) ∈ J
satisfying ‖f(t + τ(J), x) − f(t, x)‖ < 1 for all (t, x) ∈ R × Λ. Here L and τ are
independent of x due to uniformity.

Since f is continuous and Λ compact, c := sup(t,x)∈[0,L]×Λ ‖f(t, x)‖ < ∞. For
every t ∈ R any translation number τt in the interval J = [−t,−t + L] satisfies
t+ τt ∈ [0, L]. Therefore, for every t ∈ R and x ∈ Λ

‖f(t, x)‖ ≤ ‖f(t+ τt)‖+ ‖f(t)− f(t+ τt)‖ ≤ c+ 1.

The previous lemmas imply the following result (this is essentially Lemma 2.8 in
[21]).

Proposition 5.4. Suppose that the unperturbed system corresponding to (5.1)
has a hyperbolic fixed point x0; i.e., g(x0) = 0 and the real parts of the eigenvalues of
gx(x0) are different from 0. For all (small) η > 0 there is μ0 = μ0(η) > 0 such that for
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|μ| ≤ μ0 there exists a unique solution ζμ(t) of system (5.1) satisfying ‖ζμ(t)−x0‖ ≤ η
for all t ∈ R. This solution is almost periodic.

Proof. First, we show that system (5.1) satisfies the assumptions of Lemma 5.2.
The functions g and h are continuous, the derivatives gx and hx exist, and gx is
uniformly continuous on the compact set clV . As x0 is a hyperbolic equilibrium
of the unperturbed equation, the corresponding linearized equation ẋ = gx(x0)x
trivially has an exponential dichotomy on R. Finally, sup(t,x)∈R×V ‖μh(t, x, μ)‖ and
sup(t,x)∈R×V ‖μhx(t, x, μ)‖ can be made arbitrarily small by choosing μ small enough,
since h and hx are uniformly almost periodic and, thus, uniformly bounded, due to
Lemma 5.3.

This means that for sufficiently small perturbations μ there is a unique solution
ζμ which stays near the original fixed point x0 for all times. For sufficiently small μ
the equation

ẋ = [gx (ζμ(t)) + μhx (t, ζμ(t), μ)]x

has an exponential dichotomy on R. This follows from roughness of exponential
dichotomies with respect to small perturbations; see [21, Proposition 2.2] or [6, p. 34].
Finally, it remains to show almost periodicity of the perturbed solution ζμ. For this
purpose, consider the shifted system

(5.3) ẋ = g(x) + μh(t+ τ, x, μ)

for τ ∈ R. Lemma 5.2 applied to (5.3) shows that for small η and |μ| ≤ μ0(η) there
is a unique solution ζμτ (t) which satisfies ‖ζμτ (t) − x0‖ ≤ η for all t ∈ R. Obviously,
ζμτ (t) = ζμ(t+ τ) for all t, τ ∈ R.

Now we apply Lemma 5.2 to (5.3) again, setting g(t, x) = g(x) + μh(t, x, μ),
h(t, x) = μ[h(t + τ, x, μ) − h(t, x, μ)], and x0(t) = ζμ(t). For sufficiently small μ and
η > 0, there is an ε = ε(μ, η) > 0 such that ‖ζμ(t)− ζμτ (t)‖ ≤ η, provided that

|μ| sup
(t,x)∈R×V

‖h(t+ τ, x, μ)− h(t, x, μ)‖ < ε

and

|μ| sup
(t,x)∈R×V

‖hx(t, x, μ)− hx(t+ τ, x, μ)‖ < ε.

Hence, uniform almost periodicity of h and hx implies almost periodicity of
ζμ(t).

If we suppose that in our setting there exist two hyperbolic fixed points x± ∈ R
d

of the unperturbed system, Proposition 5.4 implies the existence of almost periodic
solutions ζμ± near x± for sufficiently small μ. If there is a heteroclinic orbit ζ from x−
to x+, the question arises how the system behaves near ζ for small perturbations μ.

For time-periodic perturbations Melnikov’s method gives a handy criterion for the
existence of transversal heteroclinic points. Palmer has developed a generalization of
Melnikov’s method in [18] which, in our setting, yields the following theorem.

Theorem 5.5. Consider the system ẋ = g(x) + μh(t, x, μ), and let the following
assumptions be satisfied:

(i) There are a bounded and open subset V ⊂ R
d and a constant μ̄ > 0 such

that g : V → R
d is C2 and h : R × V × [−μ̄, μ̄] → R

d is continuous. The partial
derivatives ht, hx, hμ, hxx, hxμ, hμx, and hμμ exist and are bounded, continuous in
t for each fixed x, μ, and continuous in x, μ uniformly with respect to t, x, and μ.
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(ii) The functions h and hx are almost periodic in t, uniformly with respect to
(x, μ) ∈ clV × [−μ̄, μ̄].

(iii) The unperturbed equation ẋ = g(x) has hyperbolic fixed points x± ∈ V with
stable and unstable manifolds of the same dimensions.

(iv) There is a heteroclinic orbit ζ from x− to x+ contained in V .
(v) The function

Δ(t0) :=
∫ ∞

−∞
ϕ(t) · h (t+ t0, ζ(t), 0) dt

has a simple zero at some t0 ∈ R, where ϕ(t) is the unique (up to a scalar multiple)
bounded solution of the adjoint system ẋ = gx(ζ(t))T x and “·” denotes the inner
product in R

d.
Then there exists δ0 > 0 such that for sufficiently small μ the perturbed sys-

tem (5.1) has a unique solution x(t, μ) satisfying ‖x(t, μ) − ζ(t − t0)‖ ≤ δ0 for all
t ∈ R. Furthermore,

sup
t∈R

‖x(t, μ)− ζ(t− t0)‖ = O(μ) for μ→ 0

holds, and

ẋ = [gx (x(t, μ)) + μhx (t, x(t, μ), μ)]x

has an exponential dichotomy on R.
Finally, it holds that

(5.4) lim
t→±∞ ‖x(t, μ)− ζμ±(t)‖ = 0

for sufficiently small μ, where ζμ± are the almost periodic solutions near x±.
Proof. The proof follows from [18, Corollary 4.3] and the remark on pp. 251–

252 in [18] combined with the ideas of the proof of [18, Corollary 4.4] using the fact
that ẋ = gx(ζ(t))x has an exponential dichotomy on both half-lines and that the
dimensions of the stable and unstable subspaces sum up to d.

More precisely, [18, Corollary 4.4] shows (5.4) for the periodic case. But, in fact,
periodicity is needed only there to prove periodicity of ζμ±. So (5.4) holds for the
almost periodic case, too; cf. [21, Remark 2.9]. In detail, there is a δ > 0 independent
of μ such that if

(5.5) ‖x(t, μ)− ζμ±(t)‖ ≤ δ

for sufficiently large |t| (positive for “+”, negative for “−”), then (5.4) holds; cf. [11,
Theorem 3.1]. For sufficiently small μ and large |t|∥∥x(t, μ)− ζμ±(t)

∥∥ ≤ ‖x(t, μ)− ζ(t− t0)‖ + ‖ζ(t− t0)− x±‖+
∥∥x± − ζμ±(t)

∥∥ ≤ δ,
and, hence, (5.5) holds.

The fact that the variational system ẋ = gx(ζ(t))x has an exponential dichotomy
and that the dimensions sum up to d follows from standard perturbation theory and
from the assumption that the stable and unstable manifolds of x− and x+ have the
same dimensions.

Remark 5.6. This theorem is also applicable to homoclinic orbits by letting
x− = x+.

Remark 5.7. If in the two-dimensional case g is Hamiltonian, Δ(t0) coincides
with the Melnikov function up to a scalar multiple, Marsden [16].
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6. Heteroclinic orbits and controllability. In this section, we show that ex-
istence of a heteroclinic solution of the unperturbed uncontrolled equation implies
a controllability condition for perturbed systems with small control influence. Con-
versely, if the controllability condition holds for small control influence, existence of
a heteroclinic solution of the unperturbed equation follows. These results are used to
relate heteroclinic cycles to the existence of control sets.

Consider the following family of control systems depending on a parameter μ:

(6.1) ẋ = g(x) + μh(x, z(t), μ, u(t)), u ∈ U ,

with continuous functions g and h and control range U ⊂ R
m containing the origin;

the functions z are in the hull Z of a single almost periodic function. We refer to
ẋ = g(x) and ẋ = g(x) + μh(t, x, μ, 0) as the unperturbed uncontrolled system and
the perturbed uncontrolled system, respectively. For fixed μ this is a special case of
the control system (1.1); we use the notation introduced in sections 2, 3, and 4 with a
superfix μ to indicate dependence on this parameter. In particular, solutions (whose
existence we always assume) are denoted by ϕμ(t, x0, z, u), t ∈ R, x0 ∈ R

d, z ∈ Z,
and u ∈ U .

Proposition 6.1. Assume that system (6.1) with control u = 0 satisfies the
assumptions (i)–(v) of Theorem 5.5. Let ζμ± be the almost periodic solutions near
the hyperbolic equilibria x± of the unperturbed uncontrolled system, and let x(t, μ) :=
ϕμ(t, xμ, z0, 0) be the solution near the heteroclinic orbit ζ from x− to x+ for some
xμ ∈ R

d, z0 ∈ Z. Let μ be a parameter value such that the conclusions of Theorem 5.5
hold, and assume that there are ε = ε(μ), T = T (μ) > 0 such that for every (x, z) ∈
Q := clV ×Z

(6.2) Bε(ϕμ(T, x, z, 0)) ⊂ Oμ,+T (x; z,Q) and Bε(ϕμ(−T, x, z, 0)) ⊂ Oμ,−T (x; z,Q).

Then there are a control function uμ ∈ U and times tμ− < tμ+ such that the correspond-
ing solution ϕμ(t, xμ, z0, uμ) of (6.1) satisfies

ϕμ(t, xμ, z0, uμ) =

{
ζμ−(t) if t ≤ tμ−,
ζμ+(t) if t ≥ tμ+.

Proof. Pick μ as stated, and denote the constants from condition (6.2) by ε, T > 0.
The solution x(t, μ) for the uncontrolled system satisfies (5.4). In particular, there
are times tμ− < 0 < tμ+, arbitrarily large, such that∥∥x(tμ−, μ)− ζμ−(tμ−)

∥∥ < ε and
∥∥x(tμ+, μ)− ζμ+(tμ+)

∥∥ < ε.

Together with (6.2) and the cocycle property, this means

ζμ−
(
tμ−
)
∈ Bε

(
ϕμ
(
tμ−, x

μ, z0, 0
))

= Bε

(
ϕμ
(
−T, ϕμ

(
tμ− + T, xμ, z0, 0

)
, z0
(
tμ− + T + ·

)
, 0
))

⊂ Oμ,−T
(
ϕμ
(
tμ− + T, xμ, z0, 0

)
; z0
(
tμ− + T + ·

)
, Q
)

and, analogously,

ζμ+
(
tμ+
)
∈ Bε

(
ϕμ
(
tμ+, x

μ, z0, 0
))

= Bε

(
ϕμ
(
T, ϕμ

(
tμ+ − T, xμ, z0, 0

)
, z0
(
tμ+ − T + ·

)
, 0
))

⊂ Oμ,+T

(
ϕμ
(
tμ+ − T, xμ, z0, 0

)
; z0
(
tμ+ − T + ·

)
, Q
)
.
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This ensures the existence of control functions uμ± ∈ U satisfying

ζμ−
(
tμ−
)

= ϕ
(
−T, ϕμ

(
tμ− + T, xμ, z0, 0

)
, z0
(
tμ− + T + ·

)
, uμ−

)
,

ζμ+
(
tμ+
)

= ϕ
(
T, ϕμ

(
tμ+ − T, xμ, z0, 0

)
, z0
(
tμ+ − T + ·

)
, uμ+

)
.

Setting

uμ(t) :=

⎧⎪⎨
⎪⎩
u−
(
t− tμ− − T

)
if t ∈

[
tμ−, t

μ
− + T

]
,

u+

(
t− tμ+ + T

)
if t ∈

[
tμ+ − T, t

μ
+

]
,

0 otherwise

completes the proof.
The previous proposition shows that existence of a heteroclinic orbit for the un-

perturbed uncontrolled equation implies the existence of a control steering the system
with almost periodic excitation from the almost periodic solution near one equilibrium
to the almost periodic solution near the other equilibrium. The following result con-
siders a converse situation where the unperturbed equation has equilibria x+ and x−
and we want to conclude from existence of controlled trajectories of the perturbed sys-
tem from points near x− to x+ that a heteroclinic orbit of the unperturbed equation
exists.

Proposition 6.2. Suppose that g and h(x, z(t), μ, 0) satisfy assumptions (i) and
(ii) of Theorem 5.5 for all z ∈ Z; i.e., these assumptions hold for system (6.1) with
u = 0. Moreover, assume that the chain recurrent set of the unperturbed uncontrolled
system ẋ = g(x) relative to clV is equal to {x+, x−}.

Suppose furthermore that the control range U is bounded and there are μn → 0,
almost periodic excitations zn ∈ Z, control functions un ∈ U , times tn− < tn+, and
points xn ∈ clV such that the solution ϕn(t) := ϕμn(t, xn, zn, un), t ∈ R, of (6.1) is
contained in clV and satisfies ϕn(tn−)→ x− and there is δ > 0 with ‖ϕn(t)−x−‖ ≥ δ
for all t ≥ tn+ and all n.

Then the unperturbed uncontrolled system has a heteroclinic orbit from x− to x+.
Proof. For every n ∈ N let Tn ≥ tn− be the largest time satisfying ϕn(Tn) ∈

clBr(x−), where r > 0 is chosen such that Br(x−) ⊂ clV . We may assume the
limit ξ0 := limn→∞ ϕn(Tn) ∈ clBr(x−) exists. It suffices to prove that ξ0 lies on a
heteroclinic orbit in clV from x− to x+.

By compactness of Z, we may assume that zn(Tn + ·) converges to some z0 ∈ Z.
In order to show that the orbit through ξ0 lies in clV, fix t ∈ R and ε > 0. By
assumption,

ϕn(Tn) = ϕμn(Tn, xn, zn, un)→ ξ0,

and μnh(x, z, μn, u) converges to zero, uniformly in (x, z, u) by continuity of h and
boundedness of U . Then continuous dependence on the right-hand side and the initial
value implies

ϕμn(Tn + t, xn, zn, un)

= ϕμn(t, ϕμn(Tn, xn, zn, un), zn(Tn + ·), un(Tn + ·))→ ϕ0
(
t, ξ0, z

0, 0
)
.

Hence, the orbit through ξ0 is contained in clV . Since the α- and ω-limit sets of x0

are connected and in the chain recurrent set, they consist either of x− or x+. Since
ϕμn(Tn + t, xn, zn, un) ∈ clBr(x−) for t ≤ 0, it follows that the α-limit set of ξ0 is
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given by x−. Similarly, ϕμn(Tn+ t, xn, zn, un) ∈ clBr(x−) for t > 0 by maximality of
Tn. Thus, the ω-limit set is given by x+.

Next, we discuss consequences of these results for control sets of systems with
almost periodic excitations. Roughly, the results above imply that the existence
of a heteroclinic cycle of the unperturbed uncontrolled system is equivalent to the
existence of a control set containing all almost periodic solutions near the equilibria
for the systems with almost periodic excitation and small control ranges.

Recall that a heteroclinic cycle of the unperturbed equation is given by a finite
set x0, x1, . . . , xn = x0 of equilibria together with heteroclinic solutions ζi from xi
to xi+1 for i = 0, . . . , n − 1. Existence of heteroclinic cycles can be expected in the
presence of symmetries.

Theorem 6.3. Let x0, x1, . . . , xn = x0 be pairwise different hyperbolic equilibria
of the unperturbed uncontrolled system ẋ = g(x), and consider control system (6.1)
with a bounded control range U containing the origin. For |μ| = 0, small, and z ∈ Z
denote the almost periodic solutions near xi for excitation z by ζμi (z). Assume that
system (6.1) with u = 0 satisfies assumptions (i) and (ii) of Theorem 5.5 for all z ∈ Z
on an open set V containing all equilibria xi.

(i) Assume that for all i there are open subsets Vi ⊂ R
d containing the equilibria

x− = xi and x+ = xi+1 such that assumptions (iii)–(v) of Theorem 5.5 are satisfied
for (6.1) with u = 0, and let xi(t, μ, z) = ϕμ(t, xμi , z, 0) be the solution near the
heteroclinic orbit ζi(z) from xi to xi+1 . Assume that for all sufficiently small |μ| = 0
there are εi, Ti > 0 such that for every (x, z) ∈ Qi := clVi ×Z
(6.3)

Bεi(ϕ
μ(Ti, x, z, 0)) ⊂ Oμ,+Ti

(x; z,Qi) and Bεi(ϕ
μ(−Ti, x, z, 0)) ⊂ Oμ,−Ti

(x; z,Qi).

Then for all |μ| = 0, small, there exists a control set Dμ such that for all z ∈ Z and
all i the almost periodic solutions satisfy ζμi (t) ∈ Dμ

z(t+·) and the heteroclinic solutions
satisfy xi(t, μ, z) ∈ Dμ,z(t+·).

(ii) Conversely, suppose for all i there are open subsets Vi containing xi and
xi+1 such that the chain recurrent set of the unperturbed uncontrolled system ẋ =
g(x) relative to clVi is equal to {xi, xi+1}. Furthermore, suppose that for a sequence
0 = μn → 0 there are control sets Dμn containing the almost periodic solutions ζμn

i

near xi for almost periodic excitations zn ∈ Z. Then the unperturbed system has a
heteroclinic cycle through the xi.

Proof.
(i) For all i, Theorem 4.7 implies that there are control sets Dμ

i such that the
almost periodic solutions ζμi (z) are contained in the interior of Dμ

i,z. It remains to
show that all Dμ

i coincide. Fix z ∈ Z, and consider the almost periodic solutions ζi(z)
near xi (we suppress dependence on μ in our notation). By Proposition 6.1, there are
y1 ∈ R

d, a control function u1 ∈ U , and times t1 < t2 such that the corresponding
solution ϕ(t, y1, z, u1) of (6.1) satisfies

ϕ(t, y1, z, u1) =

{
ζ1(t) if t ≤ t1,
ζ2(t) if t ≥ t2.

There are y2 ∈ R
d, a control function u2 ∈ U , and times τ2 > t2 and t3 > τ2 such that

the corresponding solution ϕ(·, y2, z, u1) of (6.1) satisfies

ϕ(t, y2, z, u2) =

{
ζ2(t) if t ≤ τ2,
ζ3(t) if t ≥ t3.
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Proceeding in this way and using xn = x0, one finds times T2 > T1 > 0, a point
x ∈ Dz

1 , and a control u ∈ U such that

ϕ(T1, x, z, u) ∈ D2,z(T1+·) and ϕ(T1 + T2, x, z, u) ∈ D1,z(T1+T2+·),
and ψ(t, x1, z, u) ∈ Q for all t ∈ [0, T1 + T2].

Then Proposition 4.5 shows D1 = D2, and, repeating this argument, one concludes
that all control sets Di coincide.

(ii) The assumptions allow us to apply Proposition 6.2. Hence, for all i, the
unperturbed uncontrolled system has a heteroclinic orbit from xi to xi+1.

7. An oscillator with M-potential. In this section, we will apply our results
to a second order system with M -potential, which models ship roll motion.

Consider the system

(7.1) ẍ+ μβ1ẋ+ μβ3ẋ
3 + x− αx3 = μz(t) + μu(t)

with positive parameters α, β1, and β3, a small perturbation parameter μ ∈ R,
almost periodic excitations z : R → R, and control functions u : R → [−ρ, ρ] for
a control radius ρ > 0. This model, proposed in Kreuzer and Sichermann [14], has
been studied in Colonius et al. [5] without time-dependent excitation z. Note that in
this application the terms u(·) are interpreted as time-dependent perturbations (not as
controls) where only the range [−ρ, ρ] is known. Here the control sets give information
on the global stability behavior: An invariant control set around the origin indicates
stability. If (for large perturbation amplitudes) it has merged with a variant control
set and itself becomes variant, stability is lost. Hence, it is of interest to compute all
control sets.

System (7.1) is a special case of system (4.6). Hence, Proposition 4.9 shows that
assumption (4.9) in Theorem 4.11 is satisfied for all ρ2 > ρ1 ≥ 0. Thus, every compact
chain control set Eρ1 is contained in the interior of a control set Dρ2 , and, hence, for
all up to countably many ρ > 0, Remark 4.12 shows that the compact chain control
sets coincide with the closures of control sets.

Writing (7.1) as a first order system yields the two-dimensional perturbed Hamil-
tonian system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + μ

(
−β1x2 − β3x

3
2 + z(t) + u(t)

)
.

(7.2)

Denote by ϕμ(t, x, z, u) the solution of this system, and let

ψμ(t, x, z, u) := (ϕμ(t, x, z, u), θtz) .

In the unperturbed and uncontrolled case μ = 0 system (7.2) has a fixed point in the
origin and two hyperbolic fixed points at (±1/

√
α, 0). The hyperbolic fixed points are

connected by two heteroclinic orbits given by xh±(t) := ±(x1(t), x2(t)), where

x1(t) :=
1√
α

tanh
t√
2
, x2(t) :=

1√
2α

sech2 t√
2
, t ∈ R;

cf. Simiu [22, p. 131]. In the perturbed uncontrolled case u ≡ 0 denote by Δ± the
Melnikov functions of system (7.2) with respect to xh± and denote by ζμ± the almost
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periodic solutions near (±1/
√
α, 0), which exist for sufficiently small μ (see Proposi-

tion 5.4). Let z0 ∈ Z be the corresponding excitation and ξμ±(t) := (ζμ±(t), θtz0).
Proposition 7.1. Assume that the almost periodic excitation z is continuously

differentiable with bounded derivative. If the functions Δ± have simple zeros and μ is
small enough, then system (7.2) has a control set D containing ξμ±(R). Then D will
be called a heteroclinic control set.

Proof. The proof essentially follows from Proposition 6.1. To be precise, sys-
tem (7.2) satisfies assumptions (i)–(v) of Theorem 5.5 for u = 0: Assumption (i) is
satisfied for every bounded open set V ⊂ R

d and every μ̄ > 0. Property (ii) is clearly
satisfied, because z does not depend on x and μ. Assumptions (iii) and (iv) are true
for a suitable bounded and open set V ⊂ R

d. Property (v) holds by assumption.
Furthermore, property (6.2) is satisfied, as can be shown by Proposition 4.9. So

for sufficiently small μ Proposition 6.1 implies the existence of points xμ± ∈ R
2, control

functions uμ± ∈ U , and times sμ± < tμ± such that

ϕμ(t, xμ−, z0, u
μ
−) =

{
ζμ+(t) if t ≤ sμ−,
ζμ−(t) if t ≥ tμ−

and

ϕμ(t, xμ+, z0, u
μ
+) =

{
ζμ−(t) if t ≤ sμ+,
ζμ+(t) if t ≥ tμ+.

The set D̃ := ψμ(R, xμ−, z0, u
μ
−)∪ψμ(R, xμ+, z0, u

μ
+)∪ξμ−(R)∪ξμ+(R) satisfies properties

(i) and (ii) of control sets and is, thus, contained in a control set D. This implies
ξμ±(R) ⊂ D̃ ⊂ D.

First, we study the periodic case and choose z(t) := F cosωt for positive param-
eters F and ω, which leads to the system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + μ

(
−β1x2 − β3x

3
2 + F cosωt+ u(t)

)
.

(7.3)

The excitation z is C1 and its derivative is bounded, so Proposition 7.1 is applicable.
The Melnikov functions Δ± of system (7.3) can easily be computed using the residue
theorem:

Δ±(t0) = −2
√

2β1

3α
− 8
√

2β3

35α2
±
√

2πωF√
α sinh πω√

2

· cosωt0.

The Melnikov functions Δ± have simple zeros if and only if F exceeds a certain critical
amplitude Fc, i.e., if F > Fc := A−1B for

A :=
√

2πω√
α sinh πω√

2

and B :=
2
√

2β1

3α
+

8
√

2β3

35α2
.

Corollary 7.2. If F > Fc, system (7.3) has a heteroclinic control set for
sufficiently small μ.

Proof. The proof follows from Proposition 7.1.
As the excitation is T -periodic for T := 2π/ω, it is possible to compute fibers of

control sets by looking at the discrete control system given by the time-T map. For the
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Fig. 7.1. Fiber of control sets for the periodically excited system (7.3). Computed in phase 0
for α = 0.674, β1 = 0.231, β3 = 0.375, ω = 2.5, ρ = 1.0, F = 6, and μ = 0.1.

following computations we restrict our view to the parameter values α = 0.674, β1 =
0.231, and β3 = 0.375 (see [14] for a discussion of these parameters and this choice) and
choose ω = 2.5 and ρ = 1.0. Then Fc ≈ 5.62880, so let F := 6 > Fc. Figure 7.1 shows
the fiber in phase 0 for μ = 0.1. The control sets were approximated with the graph
algorithm (see Dellnitz and Junge [7] and Szolnoki [24]) using the implementation in
Global Analysis of Invariant Objects (GAIO).1 For a spatial discretization into boxes,
this algorithm computes strongly connected components of an associated graph whose
nodes are given by the boxes and whose edges indicate reachability. The union of the
resulting boxes is an approximation to a chain control set; as noted above, for system
(7.1) the chain control sets typically coincide with the closures of control sets. Note
that this figure shows the fiber of two control sets: an invariant control set around
the origin (black) and the heteroclinic control set (red). Compare this to Figure 7.2,
where the stable and unstable manifolds for these parameter values are shown, again
for μ = 0.1 and in phase 0.

Next, we examine quasi-periodic excitations of the form z(t) := F cosω1t +
F sinω2t for positive parameters F, ω1, and ω2, which leads to the system

ẋ1 = x2,

ẋ2 = −x1 + αx3
1 + μ

(
−β1x2 − β3x

3
2 + F cosω1t+ F sinω2t+ u(t)

)
.

(7.4)

The excitation z again is C1, and its derivative is bounded. The Melnikov functions
Δ± of system (7.4) are

Δ±(t0) = −2
√

2β1

3α
− 8
√

2β3

35α2
±
√

2πF√
α

(
ω1 cosω1t0
sinh πω1√

2

+
ω2 sinω2t0
sinh πω2√

2

)
.

1http://www-math.uni-paderborn.de/˜agdellnitz/gaio/
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Fig. 7.2. Stable and unstable manifolds for the uncontrolled periodically excited system (7.3).
Computed in phase 0 for α = 0.674, β1 = 0.231, β3 = 0.375, ω = 2.5, F = 6, and μ = 0.1.

The Melnikov function Δ± has a simple zero if F > Fc := A−1(S1 + S2)−1B for

A :=
√

2π√
α
, Si :=

ωi
sinh πωi√

2

, i = 1, 2, and B :=
2
√

2β1

3α
+

8
√

2β3

35α2
.

Corollary 7.3. If F > Fc, system (7.4) has a heteroclinic control set for
sufficiently small μ.

Proof. The proof follows from Proposition 7.1.
Remark 7.4. The main interest in this result comes from the relations between

the deterministic system and a related stochastic system, where u(t) is replaced by a
stochastic perturbation. Then the invariant control sets correspond to the supports
of invariant measures (see, e.g., Colonius, Gayer and Kliemann [3]). For small pertur-
bation amplitudes, system (7.1) has an invariant control set around the origin and,
hence, small random perturbations will not lead to capsizing (i.e., there are no un-
bounded solutions x(t) starting near the origin). For large perturbation amplitudes,
there is no invariant control set and capsizing will occur with probability 1. Hence,
it is of interest to analyze how invariance is lost. The results above indicate that this
happens when the invariant control set around the origin unites with the heteroclinic
control set. This shows that the picture is more complicated than indicated in [10]
(where, as a simplified model, the escape equation with a single hyperbolic equilibrium
was discussed).
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Abstract. Let G = B � V be an affine group given by a semidirect product of connected Lie
group B and vector space V , where B has a transitive representation on V . We study semigroups
of G with nonempty interior. As an application, we obtain a characterization of controllability of
bilinear systems in the case of Sl(2, R) � R2.
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1. Introduction. In the early 1980s, Bonnard, Jurdjevic, Kupka, and Sallet (see
[1], [6], and [7]) studied affine controllability (transitivity) in connection with linear
controllability (transitivity). They considered an affine control system of the form

ẋ = Ax+ a+
m∑

i=1

ui(t)(Bix+ bi), x ∈ R
n,

where A,B1, . . . , Bm are n × n matrices, a, b1, . . . , bm are vectors in R
n, and u(t) =

(u1(t), . . . , um(t)) is a control function with values in some control constraint set
Ω ⊂ R

n. Hence, the study of such systems was made via analysis of a family of vector
fields in the semidirect product of a Lie subgroup (generated by the exponential of
A,B1, . . . , Bm) and R

n. Now we make a short summary about one of the main results
of [1], [6], and [7]. First, we recall some concepts. If F is a family of complete vector
fields on a manifold M and S is a semigroup generated by ∪X∈F{exptX : t ≥ 0},
then F is said to be transitive or controllable if Sx = M for each x ∈ M , where Sx
is the orbit of S through x. A vector field X(x) = Ax + a, where A is an n × n
matrix and a is a vector in R

n, is called an affine field. An arbitrary family F of
affine fields in R

n is called an affine family. If X(x) = Ax + a is an affine field, −→X
denotes the corresponding linear field x �→ Ax for all x ∈ V . Any affine family F
defines the corresponding linear family −→F = {−→X ;X ∈ F}. In this context, it was
proved that if the affine family has no fixed point (that is, for each x ∈ V , there exists
X ∈ F such that X(x) �= 0), then the affine controllability depends only on its linear
controllability. More precisely, in [7], the authors proved the following.

Theorem 1.1. If F is an affine family on vector space V such that the corre-
sponding linear family −→F is transitive on V � {0} and if F has no fixed points in V ,
then F is transitive on V .

In order to write the above theorem in the context of semigroups of Lie groups, it
is necessary to introduce some notations and definitions. Let V be an n-dimensional
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real vector space. Denote by EndV the set of all linear endomorphism on V and by
Gl(V ) the set of all automorphisms on V . Consider a subgroup H of Gl(V ), with
transitive action on V � {0} (i.e., Hx = V � {0} for all x ∈ V � {0}) and take the
group G = H �V given by the semidirect product of H and V . Recall that the affine
group operation is defined by (g, v) · (h,w) = (gh, v + gw) for all (g, v), (h,w) ∈ G.
Let π : G → H be the canonical projection of the affine group on Lie group H . The
action of G on V , given by (g, v) · w = gw + v, with (g, v) ∈ G and w ∈ V , is called
affine action. The natural action of π(G) = H on V is called linear action. Given
a semigroup S ⊂ G, the affine action of S on V is said transitive on V (or simply
transitive) if Sx = V for all x ∈ V and the linear action of semigroup T ⊂ H is called
transitive on V � {0} (or simply transitive) if Tx = V � {0} for all x ∈ V � {0}.
Moreover, v ∈ V is called fixed point under S if Sv = {v}. We can now restate the
previous theorem.

Theorem 1.2. Consider affine group G = H � V . Let S ⊂ G be a connected
semigroup with nonempty interior. Suppose that the linear action of π(S) is transitive
on V � {0} and that S has no fixed point. Then the affine action of S on V is
transitive.

In the introduction of [7], the authors mentioned an example of an affine system
F , which has no fixed point in R

n and whose linear part �F is transitive on R
n

� {0}
but for which the set of accessibility of the corresponding right invariant system is a
proper semigroup of Sl(n,R) � R

n. However, a careful analysis in this example shows
that the corresponding semigroup is not a subsemigroup of Sl(n,R) � R

n. One of
the purposes of the present paper is to show that it is not possible to obtain such an
example in Sl(n,R) � R

n. In this context, our main result is as follows.
Theorem 1.3. Let G = B � V be an affine group, where B is a semisimple Lie

group that acts transitively on V � {0}. Let S ⊂ G be a connected semigroup with
nonempty interior. Suppose that the linear action of π(S) is transitive on V � {0}.
Then the affine action of S on V is transitive.

Note that, as a consequence of this theorem, the semigroup S has no fixed point.
Then it follows that the algebraic condition of the vector fields to generate the Lie
algebra (rank condition) substitutes the geometric condition of fixed points. Due to
the relation between the rank condition and the condition intS �= ∅, it is natural to
consider the last one in the context of our work.

This paper is organized as follows. In the next two sections, we prove that if
semigroup π(S) is linear transitive on V , then the hypothesis that S has no fixed
point is not necessary. Contrary to [1], [6], and [7], we use another way, that is,
the main tools used in our proof are contained in the theory of semigroups in a
semisimple Lie group (in particular, the following Theorem 3.1) and in the general
theory of semigroups (in particular, the purity lemma). In the last section, as an
application of the above result, we study affine control systems of the type

ẋ = Ax + a+ uBx+ ub,(1.1)

where A,B ∈ sl(2,R), a, b ∈ R
2, and u ∈ R. Briefly, consider affine group G =

Sl(2,R) � R
2 and take the subsemigroup S of G generated by exp(t(A, a)) and

exp(γ(B, b)), where t, γ ∈ R, and t ≥ 0. Denote A1 = −2tr(AB)I + 2AB − BA,
A2 = 4 det(B)I + B2, B1 = 4 det(A)I + A2, and B2 = 2tr(AB)I − 2BA + AB. We
prove that if det([A,B]) �= 0, then the Lie algebra generated by (A, a) and (B, b)
coincides with the Lie algebra of G = Sl(2,R) � R

2 if and only if A1a − B1b �= 0 or
A2a+B2b �= 0. With this result and Theorem 5.3 in Braga Barros et al. [4], we con-
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clude the following result: given a transitive system as in (1.1), with det([A,B]) < 0
and A1a−B1b �= 0 or A2a+B2b �= 0, then the above system is controllable.

2. The case where π(S) is a transitive group. Let H be a connected Lie
group. In this section, we consider G = H � V an affine group given by the semidi-
rect product of H and finite-dimensional vector space V , where H has a transitive
representation on V .

Take π : G → H the canonical projection. Note that, given a semigroup S ⊂ G
with nonempty interior, we have that π(S) is a subsemigroup of H with nonempty
interior. In this section, we consider the case where π(S) is a group, that is, π(S) = H .
Hence, we have the main result of this section.

Theorem 2.1. Let G = H�V be an affine group. Denote by S ⊂ G a connected
semigroup with nonempty interior. Supposing that π(S) = H is transitive on V �{0},
we have S = G. In particular, the affine action of S on V is transitive.

Some of the following assertions are known (see, e.g., [1] and [6]), but we make a
brief mention of them in the context of semigroups.

Consider the normal abelian subgroup of G

N = {(1, v) such that v ∈ V }.

As N is normal, it is not difficult to show that SN is a semigroup of G.
Now with the above hypothesis, we suppose, on the contrary, that S �= G, that

is, S is a proper semigroup with nonempty interior. In this case, S is contained in
a maximal semigroup with nonempty interior in G, and hence, there is no loss of
generality in assuming that S is a maximal proper semigroup of G. We note that the
set

T = {(1, v) such that (1, v) ∈ intS}

is a nonempty abelian semigroup. In fact, as intS �= ∅, there exists (g, v) ∈ intS. Then
g ∈ π(S), and as we are assuming that π(S) is a group, it follows that g−1 ∈ π(S).
Hence, there exists w ∈ V such that (g−1, w) ∈ S. As intS is an ideal, we have
(g, v)(g−1, w) = (1, gw + v) ∈ intS, and therefore, T is nonempty.

One important fact here is that for each (1, v) ∈ T and g ∈ B, there exists an
integer n ∈ N such that (1, ngv) ∈ T . In particular, there exists an integer n ∈ N

such that (1, n(−v)) ∈ T . In fact, for each g ∈ H = π(S), there exist v1, v2 ∈ V
such that (g, v1), (g−1, v2) ∈ S. Then (g−1, v2)(g, v1) = (1, g−1v1 + v2) ∈ S. As
(1, v) ∈ intS, there exists n ∈ N such that (1, v − n−1(g−1v1 + v2)) ∈ intS. Then
(1, v − n−1(g−1v1 + v2))n = (1, nv − (g−1v1 + v2)) ∈ intS. Hence,

(g, v1)
(
1, nv −

(
g−1v1 + v2

)) (
g−1, v2

)
= (1, ngv) ∈ intS.

Therefore, (1, ngv) ∈ T . To verify the particular case, note that using the transitivity
of π(S) on V � {0}, it follows that there exists (g, w) ∈ S such that gv = −v. Hence,
(1, n(−v)) ∈ T .

Now we need the following lemma to conclude the proof of Theorem 2.1.
Lemma 2.2. If (1, w) ∈ S, then (1,R+w) ⊂ S.
Proof. Take (1, w) ∈ S. Knowing that

(1, w) =
(

1,
1
n
w

)n

∈ N = {(1, v) such that v ∈ V },
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it follows that (1, 1
nw)n = (1, w) ∈ S for all integers n > 1. As we are supposing

that S is a maximal semigroup and as N is a normal abelian subgroup of G, we have,
by the purity lemma (see, e.g., Lemma v.5.10 in Hilgert–Hofmann–Lawson [5]), that
(1, 1

nw) ∈ S. Then (1, 1
nw)m = (1, m

n w) ∈ S for m
n > 0. Hence, as S is connected, it

follows that (1,R+w) ⊂ S.
Having disposed of the previous results, we can now return to (1, u) ∈ intS.

If (1,−u) ∈ S, then (1, 0) ∈ intS, which contradicts the fact that S is a proper
semigroup. Then (1, u) ∈ intS, but (1,−u) �∈ S. Note that, by the above comments,
there exists an integer n ∈ N such that (1, n(−u)) ∈ intS, and, by Lemma 2.2, it
follows that (1,R+n(−u)) ⊂ S. Then(

1,
1
n
n(−u)

)
= (1,−u) ∈ S.

As (1, u) ∈ intS, then (1, u)(1,−u) = (1, 0) ∈ intS. Therefore, S = G, contradicting
our assumption that S �= G. This completes the proof of Theorem 2.1.

3. The case where H is a semisimple Lie group. In this section, we consider
the case where H = B is a connected, semisimple, and noncompact Lie group with
finite center. Suppose that B has a transitive representation on V . We recall that the
classification of these transitive Lie groups can be found in Boothby [2] and Kramer [8].

The next theorem is fundamental in this paper, and it is a summary of some
concepts and results of the theory of semigroups in a semisimple Lie group. Let B
be a connected, semisimple, and noncompact Lie group with finite center. Take V
a finite-dimensional vector space V , where B has a transitive representation on V .
Take S ⊂ B a semigroup with nonempty interior. With these hypotheses, we have
what follows.

Theorem 3.1. The semigroup S of B is transitive on V � {0} if and only if
S = B.

Proof. Proposition 5.6 of San Martin [9] shows that S is controllable in the n-
dimensional space V if and only if S is controllable on the projective space P

n−1,
here controllability is equivalent to transitivity (see Proposition 4.4 in [9]). The cited
proposition refers to subgroups of the linear groups which are transitive on finite-
dimensional vector space V and hence, on the projective space. Then, for every
transitive group B, we have diffeomorphism B/P 
 P

l, to a correspondent l given
by the transitive representation of B on V , where P ⊂ B is the isotropy subgroup of
the canonical element of P

l. Then the conditions of Theorem 1.2 of San Martin and
Tonelli [10] are satisfied. Therefore, if S is transitive on B/P 
 P

l or equivalently, on
the l-dimensional vector space V , we have S = B.

Consider again G = B � V an affine group given by a semidirect product of B
and a finite-dimensional vector space V and π : G→ B the canonical projection. In
this context, we have the following theorem.

Theorem 3.2. Let G = B � V be an affine group. Denote by S ⊂ G a con-
nected semigroup with nonempty interior. Supposing that the linear action of π(S) is
transitive on V � {0}, we have that the affine action of S on V is transitive.

Proof. Since π(S) is a nonempty semigroup of group B and as the linear ac-
tion of π(S) on V � {0} is transitive, we have by Theorem 3.1 that π(S) = B is a
transitive group. Therefore, by Theorem 2.1, the affine action of S on V is trans-
itive.

4. Controllability of affine bilinear systems in Sl(2, R)� R
2. The purpose

of this section is to present a detailed analysis of the controllability of affine bilinear
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systems

ẋ = Ax + a+ uBx+ ub,(4.1)

with unrestricted control u ∈ R, where A,B ∈ sl(2,R) and a, b ∈ R
2. More precisely,

consider affine group G = Sl(2,R) � R
2 and its Lie algebra sl(2,R) � R

2. Note that
for simplicity, we use the same product symbol for the group and algebra. Let S be
the subsemigroup of G generated by exp(t(A, a)) and exp(γ(B, b)), where t, γ ∈ R

and t ≥ 0. We find conditions on (A, a) and (B, b) such that intS �= ∅ and Sx = R
2

for all x ∈ R
2, i.e., conditions for the controllability of the above system.

To find these conditions, we use the following fact proved in [4]: π(S) is transitive
on R

2
� {0} if and only if det[A,B] < 0. In particular, in this situation, we have that

{A,B, [A,B]} is a basis for sl(2,R). Moreover, it is well known that S has nonempty
interior if and only if the Lie subalgebra of sl(2,R) � R

2, generated by (A, a), (B, b),
coincides with sl(2,R) � R

2. Recall that the Lie subalgebra generated by (A, a),
(B, b) is the smallest subalgebra of sl(2,R) � R

2 containing the set {(A, a)(B, b)}.
With these facts and using an algorithm of transitivity (see Boothby and Wilson [3]),
we give conditions on (A, a) and (B, b) for the controllability of the above system.

Let g be a five-dimensional Lie algebra and take two linearly independent elements
X,Y ∈ g. By this algorithm of transitivity, in order to know if a Lie subalgebra
generated by X,Y ∈ g is g, it is sufficient to analyze just the following sets:

β1 = {X,Y, [X,Y ], [X, [X,Y ]], [Y, [X,Y ]]},
β2 = {X,Y, [X,Y ], [X, [X,Y ]], [X, [X, [X,Y ]]]},
β3 = {X,Y, [X,Y ], [X, [X,Y ]], [Y, [X, [X,Y ]]]},
β4 = {X,Y, [X,Y ], [X, [X,Y ]], [[X,Y ], [X, [X,Y ]]]},
β5 = {X,Y, [X,Y ], [Y, [X,Y ]], [X, [Y, [X,Y ]]]},
β6 = {X,Y, [X,Y ], [Y, [X,Y ]], [Y, [Y, [X,Y ]]]},
β7 = {X,Y, [X,Y ], [Y, [X,Y ]], [[X,Y ], [Y, [X,Y ]]]}.

In fact, let g1 be the vector subspace of g spanned just by X and Y and take its basis
{X,Y }. We argue by induction. For k > 1, define gk as the subspace of g spanned
by gk−1 together with the collection of all the elements of the form [Z,W ], where
Z,W ∈ gk−1. It follows that gk is spanned by a set containing a basis β of gk−1 and
the brackets of elements of β. Hence, we can select a basis of gk formed by X , Y ,
and its successive brackets. The process finishes when gk = gk−1 or dim gk = 5. Note
that, in this case, are necessary at most four steps to find a basis to the Lie subalgebra
spanned by {X,Y }. Moreover, this basis is one of those listed above.

Now we take X = (A, a), Y = (B, b) ∈ sl(2,R) � R
2. Recall that the bracket

[(A, a), (B, b)] is given by

[(A, a), (B, b)] = ([A,B], Ab−Ba).

Now we show that is enough to consider just the sets β2, β3, β5, and β6 in order to
verify if the Lie algebra generated by X and Y coincides with sl(2,R) � R

2. More
precisely, we prove that if at least one of the vectors A1a−B1b or A2a−B2b, described
below, is not null, then at least one of these sets is a basis of sl(2,R) � R

2.
We begin by describing the successive brackets in terms of A and B.
Lemma 4.1. Suppose that det[A,B] �= 0. Then:
1. [A, [A,B]] = −2tr(AB)A − 4 det(A)B.
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2. [B, [A,B]] = 4 det(B)A+ 2tr(AB)B.
The proof of this lemma can be verified by a direct computation. Hence, using the

bilinearity property and Jacobi’s identity, we can express the other brackets in terms of
A,B and [A,B]. For instance, [A, [A, [A,B]]] = −4 det(A)[A,B] and [B, [A, [A,B]]] =
2tr(AB)[A,B]. For simplicity, we will use the following notation:

A1 = −2tr(AB)I + 2AB −BA,
A2 = 4 det(B)I +B2,

B1 = 4 det(A)I +A2,

B2 = 2tr(AB)I − 2BA+AB,

where I stands for the identity matrix 2× 2.
Now we establish necessary conditions for β2, β3, β5, or β6 to be a basis for

sl(2,R) � R
2.

Lemma 4.2. Assume that det[A,B] �= 0. Then
1. {(A, a), (B, b), ([A,B], Ab−Ba), ([A, [A,B]], A(Ab−Ba)−[A,B]a)} is linearly

independent if and only if

A1a−B1b �= 0.

2. {(A, a), (B, b), ([A,B], Ab−Ba), ([B, [A,B]], B(Ab−Ba)−[A,B]b)} is linearly
independent if and only if

A2a+B2b �= 0.

Proof. By Corollary 5.2 in [4], we have that {A,B, [A,B]} is a linearly independent
set. Hence,

{(A, a), (B, b), ([A,B], (Ab −Ba))}

is also a linearly independent set. Thus,

{(A, a), (B, b), ([A,B], Ab −Ba), ([A, [A,B]], A(Ab −Ba)− [A,B]a)}

is linearly dependent if and only if the last element is a linear combination of the
others, that is, if there exist α, β, γ ∈ R such that

αA+ βB + γ[A,B] = [A, [A,B]]

and

αa+ βb+ γ(Ab −Ba) = A(Ab −Ba)− [A,B]a.

By Lemma 4.1, the first of these equalities is equivalent to α = −2tr(AB), β =
−4 det(A), and γ = 0. Therefore,

{(A, a), (B, b), ([A,B], Ab −Ba), ([A, [A,B]], A(Ab −Ba)− [A,B]a)}

is linearly dependent if and only if

−2tr(AB)a− 4 det(A)b = A(Ab −Ba)− [A,B]a = A2b− 2ABa+BAa.

This concludes the proof of item (1). The proof of (2) is analogous.
In the next lemma, we assume A1a − B1b �= 0 and show that β2 and β3 are not

basis for sl(2,R) � R
2 if and only if A1a − B1b is an eigenvector of A and B. This

result will be important in the proof of Proposition 4.5.
Lemma 4.3. Suppose that det([A,B]) �= 0 and A1a−B1b �= 0. Then
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1. {(A, a), (B, b), ([A,B], Ab−Ba), ([A, [A,B]], A(Ab −Ba)− [A,B]a),
([A, [A, [A,B]]], A(A(Ab −Ba)− [A,B]a)− [A, [A,B]]a)}

is linearly independent if and only if

A(A1a−B1b) �= δ(A1a−B1b) for all δ ∈ R.

2. {(A, a), (B, b), ([A,B], Ab−Ba), ([A, [A,B]], A(Ab −Ba)− [A,B]a),
([B, [A, [A,B]]], B(A(Ab −Ba)− [A,B]a)− [A, [A,B]]b)}

is linearly independent if and only if

B(A1a−B1b) �= δ(A1a−B1b) for all δ ∈ R.
Proof. By hypothesis,

{(A, a), (B, b), ([A,B], Ab −Ba), ([A, [A,B]], A(Ab −Ba)− [A,B]a)}

is linearly independent. Thus, the set in item (1) is linearly dependent if and only if
there exists α, β, γ, δ ∈ R such that

αA + βB + γ[A,B] + δ[A, [A,B]] = [A, [A, [A,B]]]

and

αa+ βb+ γ(Ab −Ba) + δ(A(Ab −Ba)− [A,B]a)

= A(A(Ab −Ba)− [A,B]a)− [A, [A,B]]a.

By Lemma 4.1, the first of these equalities is equivalent to α = 2δtr(AB), β =
4δ det(A), and γ = −4 det(A). Replacing these values in the second equation and
using, again, Lemma 4.1, we have

2δtr(AB)a + 4δ det(A)b − 4 det(A)(Ab −Ba) + δ(A2b− 2ABa+BAa)

= A(A2b− 2ABa+BAa) + (2tr(AB)A + 4 det(A)B)a.

Hence, the proof of item (1) is concluded by simplifying the expressions. The second
item is proved in an analogous way.

Similarly, we have the following result.
Lemma 4.4. Suppose that det([A,B]) �= 0 and A2a+B2b �= 0. Then
1. {(A, a), (B, b), ([A,B], Ab−Ba), ([B, [A,B]], B(Ab −Ba)− [A,B]b),

([A, [B, [A,B]]], A(B(Ab −Ba)− [A,B]b)− [B, [A,B]]a)}
is linearly independent if and only if

A(A2a+B2b) �= δ(A2a+B2) for all δ ∈ R.

2. {(A, a), (B, b), ([A,B], Ab−Ba), ([B, [A,B]], B(Ab −Ba)− [A,B]b),
([B, [B, [A,B]]], B(B(Ab −Ba)− [A,B]B)− [B, [A,B]]b)}

is linearly independent if and only if

B(A2a+B2b) �= δ(A2a+B2b) for all δ ∈ R.

In the next proposition, we will need of the following general fact about Lie
algebras: Let X and Y be elements of a finite-dimensional Lie algebra g and suppose
that {X,Y, [X,Y ]} is a linearly independent set. If {X,Y, [X,Y ], [X, [X,Y ]]} and
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{X,Y, [X,Y ], [Y, [X,Y ]]} are both linearly dependent, then the Lie algebra generated
by X and Y has dimension three. In fact, let X1 and X2 be elements of vector
space V generated by X , Y , and [X,Y ] and write X1 = a1X + b1Y + c1[X,Y ],
X2 = a2X + b2Y + c2[X,Y ]. Then

[X1, X2] = [a1X + b1Y + c1[X,Y ], a2X + b2Y + c2[X,Y ]]
= a1b2[X,Y ] + a1c2[X, [X,Y ]]− b1a2[X,Y ] + b1c2[Y, [X,Y ]]
− c1a2[X, [X,Y ]]− c1b2[Y, [X,Y ]].

Now the hypothesis implies that [X, [X,Y ]] and [Y, [X,Y ]] are both linear combination
of X , Y and [X,Y ]. Hence, [X1, X2] ∈ V , concluding the proof.

With these results, we obtain the following proposition.
Proposition 4.5. Suppose that det([A,B]) �= 0. Then the Lie algebra generated

by (A, a) and (B, b) coincides with sl(2,R) � R
2 if and only if A1a − B1b �= 0 or

A2a+B2b �= 0.
Proof. Suppose that A1a−B1b �= 0. Note that if at least one of the items of Lem-

ma 4.3 is satisfied, then the Lie algebra generated by (A, a) and (B, b) coincides with
sl(2,R) � R

2 . If we suppose the contrary, then A and B have a common eigenvector.
Thus, there is a basis for R

2 such that A and B are triangular superior matrices with
respect to this basis. Then det([A,B]) = 0, which contradicts the hypothesis. Analo-
gously, if A2a + B2b �= {0}, then at least one of the items of Lemma 4.4 is satisfied.
Therefore, if A1a−B1b �= 0 or A2a+B2b �= 0, then the Lie algebra generated by (A, a)
and (B, b) is sl(2,R)�R. To the converse, consider A1a−B1b = 0 and A2a+B2b = 0,
then, by Lemma 4.2, sets {(A, a), (B, b), ([A,B], Ab−Ba), ([A, [A,B]], A(Ab −Ba)−
[A,B]a)} and {(A, a), (B, b), ([A,B], Ab − Ba), ([B, [A,B]], B(Ab − Ba) − [A,B]b)}
are both linearly dependent. Thus, by the commentary that precedes this proposi-
tion, we conclude that the Lie algebra generated by (A, a) and (B, b) has dimension
three.

With this proposition, Theorem 5.3 in [4] and Theorem 3.2 we get the following.
Theorem 4.6. Consider the above assumptions. If det([A,B]) < 0 and A1a −

B1b �= 0 or A2a+B2b �= 0, then system 4.1 is controllable.
Now consider system 4.1 with a special matrix B. Using the above theorem, we

give conditions (on A, B, a, and b) for the controllability of the system.
Example. If det(B) > 0, then B = ( 0 d

−d 0 ) with respect to some basis of R
2.

Suppose that A = ( r s
t −r ) in this basis. Thus, if a = (x, y) and b = (z, w), then

det([A,B)] = −d2
(
2st+ s2 + t2 + 4r2

)
,

A1a−B1b = 3
(
−tdx+ rdy +

(
r2 + st

)
z, rdx− sdy +

(
r2 + st

)
w
)

and

A2a+ B2b = 3
(
d2x− sdz + rdw, d2y + rdz + tdw

)
.

The third equality implies that A2a+B2b = 0 if and only if

x =
sz − rw

d
and y = −rz + tw

d
.

But, replacing these values in the second equality, we obtain A1a−B1b = 0. Therefore,
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using the above theorem, it follows that if

det([A,B]) = −d2
(
2st+ s2 + t2 + 4r2

)
< 0 and

A2a+B2b �= 0
(
⇔ x �= sz − rw

d
or y �= −rz + tw

d

)
,

then system 4.1 is controllable. As a specific instance, take A = ( 1 0
0 −1 ) and

B = ( 0 1
−1 0 ). Since det([A,B]) = −4, we have that if x �= −w or y �= −z, then

system 4.1 is controllable.
In the case of det(B) < 0 and det(B) = 0, we obtain similar conditions.

Acknowledgments. We are grateful to anonymous referees whose careful and
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Abstract. We consider evolution problems, such as diffusion convection equations or the lin-
earized Navier–Stokes system, or a weak coupling of them, which we would like to “predict” on a time
interval (T0, T0 + T ) but for which, on one hand, the initial value of the state variable is unknown.
On the other hand “measurements” of the solutions are known on a time interval (0, T0) and, for ex-
ample, on a subdomain in the space variable. The classical approach in variational data assimilation
is to look for the initial value at time 0, and this is known to be an ill-posed problem which has to be
regularized. Here we propose to look for the value of the state variable at time T0 (the end time of the
“measurements”) and we prove on some basic examples that this is a well-posed problem. We give a
result of exact reconstruction of the value at T0 which is based on global Carleman inequalities, and
we give an approximation algorithm which uses classical optimal control auxiliary problems. Using
the same mathematical arguments, we also show why Tychonov regularization for variational data
assimilation works in practical situations corresponding to realistic applications.

Key words. data assimilation, Carleman estimates, evolution equations
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1. Introduction. Data assimilation problems are of great importance for prac-
tical purposes, in particular for meteorological prediction, ocean models, and environ-
mental sciences. They lead to very heavy computations, and to give an idea of this
importance (for example, in meteorological prediction), we mention that the compu-
tation time dedicated to data assimilation corresponds to more than one half of the
total computation time. An example of these problems can be roughly, but simply,
described as follows (cf. also an interesting description in [1]). The phenomenon under
consideration (for example, meteorological prediction) is modeled by a (very complex,
in general) system of evolution equations which can be written in the form

(1.1)
∂Y

∂t
+AY +NY = F,

where Y is the vector representing the state variables that we want to “predict,” A
is a partial differential (elliptic) operator in space variables which can be assumed to
be linear, N is a nonlinear operator which is in general of lower order, and F is the
(known) vector of exterior forces which act on the system. Our goal is to compute a
(good) approximation of Y during a period of time of length T (prediction). Of course
many people have been working on these questions in practice and have developed
various efficient (even rather complex) methods of discretization for system (1.1), but
they are confronted by the following problem: they do not know the “initial data”
for Y at a given time before T0 in order to compute the solution of the prediction
model from T0 on. However, they know “measurements” of Y in some spatial regions
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during a time interval (0, T0). The data assimilation problem is then to determine an
approximation of initial data at a time before T0 from the known “measurements.”
A great number of both theoretical and practical works, as well as computations,
have been devoted to these questions. For articles related to the problem under
consideration here we can refer to [15], [16], [2], and the references therein.

In the classical approach the problem is considered as follows. In order to fix
ideas we shall say that T0 is today, 0 is yesterday, and T0 + T is tomorrow. We know
“measurements” of Y on a time interval (0, T0) (from yesterday to today). We look for
the initial value Y (0) (value of the state variable yesterday) in order to “compute” Y
on the time interval (0, T0 +T ) (from yesterday to tomorrow). This problem is known
to be ill-posed, and one of the methods generally used to solve it is what is called
variational data assimilation (see [1], [15], [16], [2]). This method uses optimal control
techniques for minimizing a suitable cost function (usually a least square method) on
a linearized problem together with a regularization method (for example, Tychonov
regularization) and an optimality system making use of the adjoint state.

First, we present a new approach which is based on controllability techniques and
which is nonclassical in the following sense. We know the “measurements” of Y on
(0, T0). What is really important for prediction purposes is to be able to “compute”
Y on the time interval (T0, T0 + T ) (from today until tomorrow). We will then
look for an approximation of Y (T0) (and no approximations of Y (0)). Our interest
in this approach is that we will prove, on significant examples of linear problems
(unfortunately, not on a realistic model of meteorology which would be, by far, too
complex) that this problem is well-posed, and we can give a good estimate of its
sensitivity to errors in the measurements. We will also give an exact method of
reconstruction of Y (T0) and an approximate method which turns out to be simpler
in practice, in particular for numerical computations, and for which we will prove
convergence towards the exact solution.

The underlying mathematical techniques are those used for exact controllability
to trajectories and are based on global Carleman inequalities.

In the next section we give two basic examples of equations, diffusion convection
equations and linearized Navier–Stokes equations, which can be rigorously treated.
The case of weakly coupled systems, such as linearized Boussinesq equations, can
also be rigorously proved, but we do not present this case here in order to clarify
the presentation. It is then straightforward to derive a general principle which can be
applied to a large class of evolution systems. This can be done formally or nonformally,
depending on the possibility of proving a global Carleman estimate for the system
under consideration.

Second, we study Tychonov regularization in a way which is different from the
classical works on the subject (see, for example, [10] or [4]), and we try to explain why
it works in practical situations for variational data assimilation methods without ab-
stract assumptions on the data. In fact we show that, due to Carleman estimates, the
minimization problem (without regularization), which is ill-posed in the variational
data assimilation context (where the control variable is the initial condition Y (0)),
is well-posed in a class of trajectories of the problem which may not have an initial
value. Then, assuming a hypothesis on the regularity of the minimizer, which can be
viewed as natural in realistic models (the minimizer is here a trajectory and not an
initial value), we show that the solution of the problem with Tychonov regularization
converges to this minimizer. Using an additional hypothesis which is similar to (yet
different than) the one used, for example, in [10], [5], or [4], we give a convergence
rate for the previous convergence.
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2. Nonstandard approach on two basic examples.

2.1. Diffusion convection equations. Let Ω be a bounded open subset of R
N

of class C2 with boundary Γ, and consider the following diffusion convection equation:

∂y

∂t
−

N∑
i,j=1

∂

∂xi

(
aij

∂y

∂xj

)
+

N∑
i=1

bi
∂y

∂xi
+

N∑
j=1

∂

∂xj
(cjy) = f in Ω× (0, T0),(2.1)

y = 0 on Γ× (0, T0).(2.2)

Notice that we do not impose any initial condition on y and that we do not know the
initial value y(0). We assume that, for example,
(2.3)
f ∈ L2(0, T0;L2(Ω)), aij ∈W 1,∞(Ω× (0, T0)), aij = aji, bi, cj ∈ L∞(Ω× (0, T0)),

and the coefficients aij satisfy an ellipticity condition

(2.4) ∃γ > 0 ∀(x, t) ∈ Ω× [0, T0], ∀ξ ∈ R
N ,

N∑
i,j=1

aij(x, t)ξiξj ≥ γ|ξ|2.

Let ω be a nonempty open subset of Ω, and let χω denote the characteristic function
of ω. We suppose that we know a “measurement” of the solution

(2.5) y.χω = h

with

(2.6) h ∈ L2(0, T0;L2(ω)).

Remark 2.1. It will be very important to make precise the class of functions in
which y satisfying (2.1) and (2.2) is taken. This will be a key point in what follows.

Remark 2.2. Here, for simplicity, we suppose that we know a “measurement” of
the solution y in the interior of Ω. Without many changes, one could consider the
case where “measurements” of the flux ∂y

∂νA
are known on a nonempty part Γ0 of the

boundary Γ, where ν = (ν1, . . . , νN ) is the outward unit normal on Γ, and

∂y

∂νA
=

N∑
i,j=1

aij
∂y

∂xj
νi.

Let us first briefly recall what is usually done in variational data assimilation (see,
for example, [1], [15], [16]).

For y0 ∈ L2(Ω) (which will be the control variable) we consider the solution of
(2.1), (2.2) satisfying in addition

(2.7) y(0) = y0 in Ω.

It is then well known that problem (2.1), (2.2), (2.7) has a unique solution y = y[y0]
with

y ∈ C([0, T0];L2(Ω)) ∩ L2(0, T0;H1
0 (Ω)).
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In what follows, we will always consider this regularity when speaking of solutions of
problem (2.1), (2.2), (2.7). This will no longer be the case when we drop the initial
condition (2.7).

Let us now consider the cost functional

(2.8) J(y0) =
1
2

∫ T0

0

∫
ω

|y[y0]− h|2dxdt.

(We could have taken a different functional expressing the error between the obser-
vation on y[y0] and the measurement h.)

We would like to solve the following minimization problem:

Find ȳ0 ∈ L2(Ω) such that
J(ȳ0) = min

y0∈L2(Ω)
J(y0).(2.9)

It is well known that this problem is ill-posed as, if we take a minimizing sequence
yn0 for J , we cannot obtain any estimate on this sequence (in any known functional
space).

Therefore it is usual to add a Tychonov regularization to our functional; namely,
we consider for α > 0 the new functional

(2.10) Jα(y0) =
1
2

∫ T0

0

∫
ω

|y[y0]− h|2dxdt +
α

2
|y0|2L2(Ω),

and we now want to solve the following optimal control problem:

Find yα ∈ L2(Ω) such that
Jα(yα) = min

y0∈L2(Ω)
Jα(y0).(2.11)

It is then standard, using classical optimal control methods (see [17]), to show that
this problem has a unique solution. But of course the functional has been changed,
and it is not clear what the solution yα represents. The main questions are then what
happens when α→ 0 and what is the sensitivity to perturbations in the measurements
h. We will give a partial answer to these questions later on.

We now come to a nonstandard approach to the data assimilation problem using
controllability techniques.

In order to state our result we need to introduce the adjoint (backward) problem,
where we allow a control on the region in which the measurement is given.

For ϕ0 ∈ L2(Ω) and v ∈ L2(0, T0;L2(ω)) we denote by ϕ the solution of

−∂ϕ
∂t
−

N∑
i,j=1

∂

∂xj

(
aji

∂ϕ

∂xi

)
−

N∑
i=1

∂

∂xi
(biϕ)−

N∑
j=1

cj
∂ϕ

∂xj
= v.χω in Ω× (0, T0),(2.12)

ϕ = 0 on Γ× (0, T0),(2.13)
ϕ(T0) = ϕ0.(2.14)

We know that this problem has a unique solution, and we know that

ϕ ∈ C([0, T0];L2(Ω)) ∩ L2(0, T0;H1
0 (Ω)).

It is by now well known (cf., for example, [8]) that we have null controllability for this
problem, which means that for every ϕ0 ∈ L2(Ω), there exists v ∈ L2(0, T0;L2(ω))
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such that ϕ(0) = 0. We have to make things more precise for our purposes. This
requires some technicalities, which can be skipped by readers who are only interested
in the formal method.

Let us call y0 the solution of problem (2.1), (2.2), (2.7) with y0 = 0. Then if we
call y the solution of (2.1), (2.2), (2.7) with general initial condition y0 ∈ L2(Ω), we
have y = y0 + z, where z is a solution of (2.1), (2.2), (2.7) with f = 0. Let us denote

(2.15) V0 = {z, z solution of (2.1), (2.2), (2.7) with f = 0, y0 ∈ L2(Ω)}

and

(2.16) V = y0 + V0.

Then V0 is a vector space, and of course V is an affine space. We can now derive
a global Carleman estimate for elements of V , but this requires the introduction of
some weights.

Let ω0 be a nonempty open set such that ω0 ⊂ ω (for example, ω0 can be a small
open ball). Then we know from [8] (see also [20] for a detailed proof) that there exists
ψ ∈ C2(Ω) such that

ψ(x) > 0 ∀x ∈ Ω,
ψ(x) = 0 ∀x ∈ Γ,

|∇ψ(x)| 
= 0 ∀x ∈ Ω− ω0.

We now use the function ψ to build new weights. Let us define the following for
λ > 0 and for an integer k ≥ 1 (here we need only k = 1, but for further extensions
it happens that we sometimes need to take k > 1, which does not cause any change
in what follows):

ξk(x, t) =
eλ(m|ψ|L∞(Ω)+ψ(x))

tk(T0 − t)k
,(2.17)

ηk(x, t) =
e(

k+1
k )λm|ψ|L∞(Ω) − eλ(m|ψ|L∞(Ω)+ψ(x))

tk(T0 − t)k
,(2.18)

where m > k.
We can notice that ηk tends rapidly to +∞ when t→ T0 or t→ 0 but that ηk is

uniformly bounded in Ω× [δ, T0 − δ] if 0 < δ < T0
2 .

We will also need in section 3 the weights η̃k and ξ̃k defined by

(2.19) η̃k(t) = ηk(t) if t ∈
[
0,
T0

2

]
, η̃k(t) = ηk

(
T0

2

)
if t ∈

[
T0

2
, T0

]
,

(2.20) ξ̃k(t) = ξk(t) if t ∈
[
0,
T0

2

]
, ξ̃k(t) = ξk

(
T0

2

)
if t ∈

[
T0

2
, T0

]
.

Notice that for every δ > 0, η̃k and ξ̃k are bounded on [δ, T0].
Our final weight will depend on a second positive parameter s and will be of the

form e−sη1(x,t). We can see that, for fixed s, this function tends very rapidly to 0
when t→ T0 or t→ 0.
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Then, following [8] or [20], where the complete proofs can be found, and the
method of [14] when c = (cj) 
= 0, we can state a global Carleman estimate for y ∈ V .

Proposition 2.3. There exist parameters s0 > 0 and λ0 > 0 and there exists a
constant C > 0 depending only on Ω, ω0, ψ, and T0, on γ defined in (2.4), and on
the coefficients ai,j such that for every s > s0, for every λ > λ0, and for every y ∈ V,
we have

sλ2

∫ T0

0

∫
Ω

ξ1e
−2sη1 |∇y|2dxdt + s3λ4

∫ T0

0

∫
Ω

ξ31e
−2sη1 |y|2dxdt(2.21)

≤ C
(∫ T0

0

∫
Ω

e−2sη1 |f |2dxdt+ s3λ4

∫ T0

0

∫
ω

ξ31e
−2sη1 |y|2dxdt

)
.

This inequality will turn out to be fundamental. From now on we fix s > s0 and
λ > λ0. As a first consequence of this proposition we have the following result.

Proposition 2.4. The bilinear form defined by

∀z, z̃ ∈ V0, (z, z̃)V 0 =
∫ T0

0

∫
ω

z.z̃dxdt

is a scalar product on V0.
Remark 2.5. We could have taken a weight ξ31e

−2sη1 in the expression of the
above scalar product, as we can notice that

∃M > 0 such that ξ31e
−2sη1 ≤M.

However, this would not lead to real improvements in what follows and would make
the presentation more complicated.

The proof of Proposition 2.4 requires only the following unique continuation prop-
erty for z ∈ V0:

∀z ∈ V0, z = 0 in ω × (0, T0) ⇒ z = 0 in Ω× (0, T0).

This is an extension (in terms of regularity) of the well-known result by Mizohata [19]
and is, for example, a consequence of inequality (2.21). If z ∈ V0, this corresponds
to the case f = 0, and (2.21) says that if z = 0 in ω × (0, T0), then the left-hand side
must be zero, which ensures that z = 0 in the whole domain Ω× (0, T0). This shows
Proposition 2.4.

Definition 2.6. We denote by V 0 the (abstract) completion of V0 with respect
to the norm |.|V 0 associated with the above defined scalar product (., .)V 0 and denote
by V the translated space

(2.22) V = y0 + V 0.

We then have immediately from the completion argument the following corollary.
Corollary 2.7. The space V 0 is a Hilbert space for the scalar product (., .)V 0,

and V is the associated complete metric space. For every y ∈ V, inequality (2.21) still
holds true.

Remark 2.8. (1) The spaces V 0 and V can appear to be very abstract but, in fact,
because of inequality (2.21), we know that V is contained in the weighted Sobolev
space of L2 functions with the weight ξ31e

−2sη1 with gradients in L2 with the weight
ξ1e

−2sη1 such that (2.1) and (2.2) (which now make perfect sense) hold true. Elements
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of V are therefore solutions of (2.1) and (2.2) and are also called trajectories of the
problem.

(2) As the weight degenerates near t = 0, functions of V may not have any value
at t = 0 in any sense (we will refer to the value at t = 0 as the initial value, as these
functions are solutions of an evolution problem) and this is crucial to observe.

(3) The weights ξ1e−2sη1 and ξ31e
−2sη1 are uniformly bounded from below by a

positive constant in Ω× [δ, T0 − δ] if δ > 0. Therefore, if y ∈ V , then

∀δ > 0, y ∈ L2(δ, T ;H1
0 (Ω)).

If now θ ∈ C∞[0, T0] with

0 ≤ θ ≤ 1, θ(t) = 0 if t ∈
[
0,
δ

2

]
, θ(t) = 1 if t ∈ [δ, T0],

considering the equation satisfied by z = θ.y, multiplying this equation by z, and
using classical energy estimates for the diffusion convection operator (see also the
proof of Theorem 2.9 below), we see that

y ∈ C([δ, T0];L2(Ω)) ∩ L2(δ, T0;H1
0 (Ω)),

and there exists a constant C(δ) > 0 such that, for every y ∈ V 0,

(2.23) |y|2C([δ,T0];L2(Ω)) + ||y||2L2(δ,T0;H1
0 (Ω)) ≤ C(δ)|y|2V 0 = C(δ)

∫ T0

0

∫
ω

|y|2dxdt.

In particular, for y ∈ V , the value y(T0) makes perfect sense in L2(Ω).
We can now state a first result giving stability and exact reconstruction of y(T0)

with respect to the “measurement” h = y/ω×(0,T0).
Theorem 2.9. If Ω is a bounded open subset of R

N of class C2, if the coefficients
ai,j , bi, and cj and the functions f and h satisfy the previous hypotheses (2.3), (2.4),
and (2.6) for any nonempty ω ⊂ Ω, for any T0 > 0, and for any ϕ0 ∈ L2(Ω), there
exists v = v(ϕ0) ∈ L2(0, T0;L2(ω)) such that the solution ϕ of (2.12), (2.13), (2.14)
verifies

(2.24) ϕ(0) = 0.

Taking v(ϕ0) of minimal norm among admissible controls, the mapping ϕ0 → v(ϕ0)
is continuous and

(2.25) ∃C > 0 ∀ϕ0 ∈ L2(Ω), |v(ϕ0)|L2(0,T0;L2(ω)) ≤ C|ϕ0|L2(Ω).

We then have, if y ∈ V (which means that h = y/ω×(0,T0) ∈ L2(0, T0;L2(ω))),

(2.26) ∀ϕ0 ∈ L2(Ω),
∫

Ω

y(T0)ϕ0dx =
∫ T0

0

∫
Ω

fϕdxdt−
∫ T0

0

∫
ω

hv(ϕ0)dxdt.

Moreover, there exists a constant C > 0 depending only on Ω, ω, and T0 and the co-
efficients aij , bi, and cj such that

(2.27) |y(T0)|2L2(Ω) ≤ C
(∫ T0

0

∫
ω

|h|2dxdt+
∫ T0

0

∫
Ω

|f |2dxdt
)
.
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Remark 2.10. Inequality (2.27) is of course independent of the unknown value
y(0) which in fact may not exist. It depends only on the right-hand side f and the
“measurement” h = y/ω×(0,T0). It is a stability inequality.

Equality (2.26) enables us to calculate the component of y(T0) on ϕ0 for any
ϕ0 ∈ L2(Ω) knowing the “measurement” h = y/ω×(0,T0), the right-hand side f , and
the “control” v(ϕ0), which has to be computed. Taking successively for ϕ0 elements
of a Hilbert basis of L2(Ω), we can therefore reconstruct exactly y(T0). Of course,
when dealing with numerical approximations, we would take ϕ0 in a finite dimensional
basis to obtain approximations of y(T0). The method has been used and numerical
computations have been performed for a large-scale ocean model in [9], giving very
promising results. Of course the use of reduced basis will be of major importance in
using this method for numerical experiments. Initial work in this direction has been
done in [11] and it gives very positive results.

The method allows us also to measure the sensitivity of the reconstruction of
y(T0) with respect to perturbations in h, as will be seen in Corollary 2.11 below, and
this is a very important feature in practice.

Of course, in real applications, the measurements are not provided in an open
set but on a finite number of points, but this case seems to be impossible to treat
mathematically.

Proof of Theorem 2.9. We already know that Carleman estimate (2.21) holds true
for every y ∈ V . Let us now take a cut-off function θ ∈ C∞[0, T0], such that

0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T0],

θ(t) = 0 ∀t ∈
[
0,
T0

4

]
,

θ(t) = 1 ∀t ∈
[
3T0

4
, T0

]
,

and define ỹ(x, t) = θ(t).y(x, t).
Then from (2.1), (2.2) we see that ỹ satisfies the following problem:

∂ỹ

∂t
−

N∑
i,j=1

∂

∂xi

(
aij

∂ỹ

∂xj

)
+

N∑
i=1

bi
∂ỹ

∂xi
+

N∑
j=1

∂

∂xj
(cj ỹ) = θf + y.θ′ in Ω× (0, T0),

ỹ = 0 on Γ× (0, T0),
ỹ(x, 0) = 0 in Ω.

Using now classical energy estimates (multiplying the equation by ỹ) we obtain, as
θ′ = 0 on [0, T0

4 ] ∪ [ 3T0
4 , T0] (C may denote different constants),

|ỹ(T0)|2L2(Ω) ≤ C
(∫ T0

0

∫
Ω

|f |2dxdt+
∫ 3

T0
4

T0
4

∫
Ω

|y|2dxdt
)
.

But, now ỹ(T0) = y(T0), and from (2.21), due to the fact that on [T0
4 ,

3T0
4 ] the weight

ξ31e
−2sη1 is bounded from below, we have

|y(T0)|2L2(Ω) ≤ C
(∫ T0

0

∫
Ω

|f |2dxdt+
∫ T0

0

∫
ω

|y|2dxdt
)
,

which is exactly the stability inequality (2.27).
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But when f = 0 this can also be viewed as an observability inequality for (2.1)
with f = 0, (2.2), and (2.7), which corresponds to the adjoint problem of the backward
control problem (in the ϕ variable) (2.12), (2.13), (2.14). It is now well known (see [8]
or [20], for example) that this observability inequality implies existence of a control
v = v(ϕ0) such that the solution ϕ of (2.12), (2.13), (2.14) verifies

ϕ(0) = 0 in Ω.

The same observability inequality gives the continuity of the mapping ϕ0 ∈ L2(Ω)→
v(ϕ0) ∈ L2(0, T0;L2(ω)) when v(ϕ0) is taken to be the control of minimal norm among
admissible controls. This proves inequality (2.25).

It remains to show equality (2.26). If y ∈ V , then multiplying (2.1) by ϕ and
taking into account that ϕ(0) = 0 we immediately obtain (2.26). Now if y ∈ V ,
taking a Cauchy sequence (yn) with yn ∈ V and yn → y in V , we see immediately
from (2.27) that (yn(T0)) is a Cauchy sequence in L2(Ω) and yn(T0) → y(T0) in
L2(Ω). Therefore we can pass to the limit in (2.26), which therefore remains true for
y ∈ V . This finishes the proof of Theorem 2.9.

The previous recovery method also gives an estimate of the sensitivity to error
measurements. We have the following result.

Corollary 2.11. We write y(T0) for the recovery obtained by the previous
method from an exact measurement h and write ŷ(T0) for the recovery obtained using
a measurement ĥ. Then there exists a constant C > 0, independent of h and ĥ, such
that

(2.28) |y(T0)− ŷ(T0)|L2(Ω) ≤ C|h− ĥ|L2(0,T0;L2(ω)).

Proof of Corollary 2.11. First of all we recall that the problem giving v(ϕ0) does
not depend on the measurement. Then from (2.26) we immediately obtain

∀ϕ0 ∈ L2(Ω),
∫

Ω

(y(T0)− ŷ(T0))ϕ0dx =
∫ T0

0

∫
ω

(h− ĥ)v(ϕ0)dxdt.

Therefore, taking the supremum over all ϕ0 ∈ L2(Ω) with |ϕ0|L2(Ω) = 1, we obtain

|y(T0)− ŷ(T0)|L2(Ω) ≤ |h− ĥ|L2(0,T0;L2(ω)) sup
|ϕ0|L2(Ω)=1

|v(ϕ0)|L2(0,T0;L2(ω)).

Because of (2.25), we immediately obtain (2.28) and the proof is complete.
The previous result gives an “exact” method for reconstructing y(T0) but it relies

on the resolution of null controllability problems. Hereafter we give an approximation
method which makes use of more classical optimal control problems (other approxi-
mations could also be developed) and we prove convergence of these approximations.

Let us consider the following optimal control problem for fixed ϕ0 ∈ L2(Ω). Let
ϕ be a solution of (2.12), (2.13), (2.14), and for β > 0 let us define

(2.29) Kβ(v) =
1
2β

∫
Ω

|ϕ(0)|2dx+
1
2

∫ T0

0

∫
ω

|v|2dxdt.

We look for vβ ∈ L2(0, T0;L2(ω)) such that

(2.30) Kβ(vβ) = min
v∈L2(0,T0;L2(ω))

Kβ(v).
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We obtain the following result.
Theorem 2.12. (1) For every β > 0 there exists a unique solution vβ ∈

L2(0, T0;L2(ω)) to problem (2.30), and vβ is characterized by the optimality system

−∂ϕβ
∂t
−

N∑
i,j=1

∂

∂xj

(
aji

∂ϕβ
∂xi

)
−

N∑
i=1

∂

∂xi
(biϕβ)−

N∑
j=1

cj
∂ϕβ
∂xj

= vβχω in Ω× (0, T0),

ϕβ = 0 on Γ× (0, T0),
ϕβ(T0) = ϕ0 in Ω,

∂pβ
∂t
−

N∑
i,j=1

∂

∂xi

(
aij

∂pβ
∂xj

)
+

N∑
i=1

bi
∂pβ
∂xi

+
N∑
j=1

∂

∂xj
(cjpβ) = 0 in Ω× (0, T0),

pβ = 0 on Γ× (0, T0),

pβ(0) =
1
β
ϕβ(0) in Ω,

pβ + vβ = 0, in ω × (0, T0).

(2) When β tends to zero, we have

vβ → v̄ in L2(0, T0;L2(ω)), ϕβ → ϕ̄ in C([0, T0];L2(Ω)) ∩ L2(0, T0;H1
0 (Ω)),

where v̄ and ϕ̄ satisfy

−∂ϕ̄
∂t
−

N∑
i,j=1

∂

∂xj

(
aji

∂ϕ̄

∂xi

)
−

N∑
i=1

∂

∂xi
(biϕ̄)−

N∑
j=1

cj
∂ϕ̄

∂xj
= v̄χω in Ω× (0, T0),(2.31)

ϕ̄ = 0 on Γ× (0, T0),(2.32)
ϕ̄(T0) = ϕ0 in Ω,(2.33)

and

(2.34) ϕ̄(0) = 0 in Ω.

Moreover, v̄ = v(ϕ0) is the element of minimal norm in L2(0, T0;L2(ω)) such that
(2.31), (2.32), (2.33), and (2.34) occur.

Finally, when β → 0, we have

(2.35)
∫ T0

0

∫
Ω

fϕβdxdt−
∫ T0

0

∫
ω

h.vβdxdt→
∫

Ω

y(T0)ϕ0dx.

Proof. For β > 0, (2.30) is a classical optimal control problem which is known to
have a unique solution vβ (see, for example, [17]) and the characterization given in
(1) is standard.

We also know from Theorem 2.9 that there exists v such that (2.31), (2.32), (2.33),
and (2.34) are satisfied. It is clear that the set of such elements v is a nonempty closed
convex set in L2(0, T0;L2(ω)) so that there exists a unique v̄ ∈ L2(0, T0;L2(ω)), which
minimizes the norm in this set, and we have v̄ = v(ϕ0), where v(ϕ0) is as given by
Theorem 2.9. The corresponding solution of (2.31), (2.32), (2.33) will be denoted
by ϕ̄.

Now v̄ is admissible in (2.30) and, as ϕ̄(0) = 0, we have for every β > 0,

Kβ(vβ) ≤ Kβ(v̄) =
1
2

∫ T0

0

∫
ω

|v̄|2dxdt.
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This shows that when β → 0, we have∫ T0

0

∫
ω

|vβ |2dxdt ≤
∫ T0

0

∫
ω

|v̄|2dxdt,

1
β

∫
Ω

|ϕβ(0)|2dx ≤
∫ T0

0

∫
ω

|v̄|2dxdt.

Consequently we can extract a subsequence, still denoted by (vβ), such that

vβ ⇀ ṽ in L2(0, T0;L2(ω)).

From standard results on diffusion convection equations (on continuity of the solution
with respect to the right-hand side, the initial data ϕ0 being fixed) and compactness
embeddings, we then have

ϕβ → ϕ̃ in C([0, T0];L2(Ω)),

where ϕ̃ denotes the solution of (2.31), (2.32), (2.33), and (2.34) corresponding to ṽ.
Therefore ϕβ(0)→ ϕ̃(0) in L2(Ω) and we must have

ϕ̃(0) = 0.

Because of the definition of v̄ we then have∫ T0

0

∫
ω

|v̄|2dxdt ≤
∫ T0

0

∫
ω

|ṽ|2dxdt.

But on the other hand, because of the weak convergence of vβ to ṽ, we have∫ T0

0

∫
ω

|ṽ|2dxdt ≤
∫ T0

0

∫
ω

|v̄|2dxdt

so that the convergence of vβ to ṽ is strong and ṽ minimizes the norm among the
elements v such that (2.31), (2.32), (2.33), and (2.34) are satisfied. By uniqueness of
this minimum, we must have ṽ = v̄. Now, in view of the previous results, (2.35) is
clear and the proof of Theorem 2.12 is complete.

Without any further assumption, it seems impossible to obtain a rate of conver-
gence in the previous approximation. Nevertheless, we will obtain a rate of convergence
under a regularity assumption on the “adjoint state” associated to the null controlla-
bility problem solved in Theorem 2.9. We first have to introduce this adjoint state.

We recall that

(p, q) ∈ V 0 → (p, q)V 0 =
∫ T0

0

∫
ω

pqdxdt

is the scalar product on V 0. On the other hand, the mapping

q →
∫

Ω

ϕ0q(T0)dx

is a linear continuous form on V 0. Therefore, from the Riesz theorem, there exists a
unique p ∈ V 0 such that

(2.36) ∀q ∈ V 0,

∫ T0

0

∫
ω

pqdxdt =
∫

Ω

ϕ0q(T0)dx.
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We now use the results of Theorem 2.12. The adjoint state pβ corresponding to
the approximate optimal control problem is an element of V 0. Moreover, because
pβ = −vβ and vβ converges strongly to v̄ in L2(0, T0;L2(ω)), we see that pβ converges
strongly to p̄ in V 0 with

p̄ = v̄ in ω × (0, T0).

Now let us multiply by q, where q ∈ V0, the equation satisfied by ϕβ . Integrating by
parts and using the properties of q, we obtain

∫ T0

0

∫
ω

vβqdxdt = −
∫

Ω

ϕβ(T0)q(T0)dx+
∫

Ω

ϕβ(0)q(0)dx.

Therefore ∫ T0

0

∫
ω

pβqdxdt =
∫

Ω

ϕ0q(T0)dx −
∫

Ω

ϕβ(0)q(0)dx.

We can now pass to the limit when β → 0 using the convergence of ϕβ(0) to 0 and
obtain

∀q ∈ V0,

∫ T0

0

∫
ω

p̄qdxdt =
∫

Ω

ϕ0q(T0)dx.

As V0 is dense in V 0, this is also valid for every q ∈ V 0, which says that p̄ is a solution
of (2.36). By uniqueness of this solution we have p̄ = p.

Notice that because of the definition of V 0, the (uniquely defined) function p̄ may
not have any value at t = 0 a priori, but satisfies the following system:

∂p̄

∂t
−

N∑
i,j=1

∂

∂xi

(
aij

∂p̄

∂xj

)
+

N∑
i=1

bi
∂p̄

∂xi
+

N∑
j=1

∂

∂xj
(cj p̄) = 0 in Ω× (0, T0),(2.37)

p̄ = 0 on Γ× (0, T0),(2.38)
p̄+ v̄ = 0 in ω × (0, T0).(2.39)

We are now ready to give a result concerning the convergence rates of the approxi-
mation under a regularity assumption on the adjoint state p̄.

Theorem 2.13. We use the notation of Theorem 2.12. Let us assume that the
function p̄, solution of (2.36), satisfies

(2.40) p̄ ∈ C([0, T0];L2(Ω)).

Then we have

|ϕβ(0)|L2(Ω) ≤ 2β|p̄(0)|L2(Ω),(2.41)

|vβ − v̄|L2(0,T0;L2(ω)) ≤ 2β
1
2 |p̄(0)|L2(Ω),(2.42) ∣∣∣∣

∫
Ω

y(T0)ϕ0dx−
∫ T0

0

∫
Ω

fϕβdxdt+
∫ T0

0

∫
ω

h.vβdxdt

∣∣∣∣ ≤ Cβ 1
2 |p̄(0)|L2(Ω),(2.43)

where C is independent of β and of ϕ0.
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Proof. We can write

1
2

∫ T0

0

∫
ω

|vβ − v̄|2dxdt+
1
2β

∫
Ω

|ϕβ(0)|2dx

=
1
2

∫ T0

0

∫
ω

|vβ |2dxdt+
1
2β

∫
Ω

|ϕβ(0)|2dx+
1
2

∫ T0

0

∫
ω

|v̄|2dxdt −
∫ T0

0

∫
ω

vβ v̄dxdt

= Kβ(vβ) +
1
2

∫ T0

0

∫
ω

|v̄|2dxdt−
∫ T0

0

∫
ω

vβ v̄dxdt

≤ Kβ(v̄) +
1
2

∫ T0

0

∫
ω

|v̄|2dxdt −
∫ T0

0

∫
ω

vβ v̄dxdt

=
∫ T0

0

∫
ω

|v̄|2dxdt−
∫ T0

0

∫
ω

vβ v̄dxdt =
∫ T0

0

∫
ω

(v̄ − vβ)v̄dxdt.

The function φ = (ϕ̄− ϕβ) satisfies the following system:

−∂φ
∂t
−

N∑
i,j=1

∂

∂xj

(
aji

∂φ

∂xi

)
−

N∑
i=1

∂

∂xi
(biφ)−

N∑
j=1

cj
∂φ

∂xj
= (v̄ − vβ)χω in Ω× (0, T0),

φ = 0 on Γ× (0, T0),
φ(T0) = 0 in Ω,
φ(0) = −ϕβ(0) in Ω.

Multiplying this equation by p̄, using (2.39), and integrating by parts, we obtain∫ T0

0

∫
ω

(v̄ − vβ)v̄dxdt =
∫

Ω

ϕβ(0)p̄(0)dx.

Therefore we have

1
2

∫ T0

0

∫
ω

|vβ − v̄|2dxdt+
1
2β

∫
Ω

|ϕβ(0)|2dx ≤ |ϕβ(0)|L2(Ω)|p̄(0)|L2(Ω).

This gives immediately (2.41) and (2.42). The estimate on (ϕ̄ − ϕβ) is of the same
order as the one on (v̄−vβ), and this implies (2.43) which finishes the proof of Theorem
2.13.

Remark 2.14. For each ϕ0, in order to find an approximation of
∫
Ω
y(T0)ϕ0dx,

we have to solve a classical optimal control problem for the adjoint system. We have
to notice that for different elements ϕ0 the optimal control problems to be solved are
essentially the same and differ only in the initial data in (2.31). This is particularly
important for numerical approximation because all the linear systems corresponding
to different elements ϕ0 have the same matrices.

2.2. Linearized Navier–Stokes equations. We consider here in dimension
N = 3 the Navier–Stokes equations linearized around a velocity ȳ such that

(2.44) ȳ ∈ L∞(0, T0;W 1,∞(Ω)),
∂ȳ

∂t
∈ L2(0, T0;W 1,σ(Ω)), σ >

6
5
, div (ȳ) = 0,

namely,

∂y

∂t
− μΔy + (ȳ.∇)y + (y.∇)ȳ +∇p = f in Ω× (0, T0),(2.45)

div y = 0 in Ω× (0, T0),(2.46)
y = 0 on Γ× (0, T0),(2.47)

where f ∈ L2(0, T0; (L2(Ω))3) and μ > 0.
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Here again we either do not impose any initial condition on y or do not know
y(0). We suppose that we know a measurement of the solution on a subdomain

(2.48) y/ω×(0,T0) = h,

where ω is a nonempty open set contained in Ω, and h ∈ L2(0, T0; (L2(ω))3).
Remark 2.15. (1) We could also consider the case where normal stresses

(σ.ν)i = −pνi + μ

3∑
j=1

Dij(y)νj , i = 1, . . . , 3,

with Dij(y) = 1
2 ( ∂yi

∂xj
+ ∂yj

∂xi
) are known on Γ0 × (0, T0), where Γ0 is a nonempty

relatively open set of the boundary Γ.
(2) We have taken here the case of measurements on y only, but we could also have

local measurements on the pressure p. This would correspond to a simpler situation.
On the other hand, the case of measurements only on the pressure turns out to be
impossible to treat.

In the case of classical variational data assimilation we take the initial value as a
control variable

(2.49) y(0) = y0 in Ω,

where

(2.50) y0 ∈ H = {z ∈ (L2(Ω))3, div z = 0, z.ν = 0 on Γ}.

We know (cf. [18] or [22]) that for every y0 ∈ H , there exists a unique solution
y = y[y0] of (2.45), (2.46), (2.47), (2.49) with

y[y0] ∈ C([0, T0];H) ∩ L2(0, T0; (H1
0 (Ω))3).

We then want to find y0 such that the error between the actual measure h and the
value of the solution y = y[y0] of (2.45), (2.46), (2.47), (2.49) on the subdomain
ω × (0, T0) achieves its minimum. If we define

(2.51) J(y0) =
1
2

∫ T0

0

∫
ω

|y[y0]− h|2dxdt,

we consider the following optimal control problem:

Find ȳ0 ∈ H such that
J(ȳ0) = min

y0∈H
J(y0).(2.52)

Again this problem is ill-posed and we must add a Tychonov regularization term by
considering for α > 0,

(2.53) Jα(y0) =
1
2

∫ T0

0

∫
ω

|y[y0]− h|2dxdt +
α

2
|y0|2H .

We now solve the following regularized optimal control problem:

Find yα ∈ H such that
Jα(yα) = min

y0∈H
Jα(y0).(2.54)
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This problem is classical and has a unique solution yα ∈ H , and the questions are
again to give a meaning to this solution, to understand what happens when α → 0,
and to estimate the sensitivity to errors in the measurements h.

Following the same ideas as in the previous section, we will present a nonstandard
approach using controllability techniques.

Let us define

W = {y, y solution of (2.45), (2.46), (2.47), (2.49), y0 ∈ H}.

If we call y0 the element of W such that y0 = 0, we have

W = y0 +W0,

where W0 is a vector space.
We want to give a Carleman estimate for elements of W . We use here the results

of [12], [13], and [7] concerning Navier–Stokes equations, and the Carleman estimate
in this case is much more difficult to obtain than for diffusion convection equations.
We take the same principal weight ψ as in the previous section, but this time we need
to take functions ξ4 and η4 defined in (2.17) and (2.18). Moreover, we must define

(2.55)

ξ̂4(t) = max
x∈Ω

ξ4(x, t),

η̂4(t) = min
x∈Ω

η4(x, t),

η∗4(t) = max
x∈Ω

η4(x, t),

θ̂(t) = sλe−sη̂4 ξ̂4, θ(t) = s15/4e−2sη̂4+sη∗4 ξ̂
15/4
4 .

We then have the following.
Proposition 2.16. There exist s1 > 0 and λ1 > 0, and there exists a constant C

depending on Ω, ω, ψ, μ, T0, and ȳ (in the spaces corresponding to hypothesis (2.44))
such that for every s > s1, for every λ > λ1, and for every y ∈ W, we have

(2.56)

s3λ4

∫ T0

0

∫
Ω

e−2sη4ξ34 |y|2 dx dt+ sλ2

∫ T0

0

∫
Ω

e−2sη4ξ4|∇y|2 dx dt

≤ C
(
s15/2λ20

∫ T0

0

∫
Ω

e−4sη̂4+2sη∗ ξ̂
15/2
4 |f |2 dx dt

+ s16λ40

∫ T0

0

∫
ω

e−8sη̂4+6sη∗ ξ̂164 |y|2 dx dt
)
.

From now on, we fix s > s1 and λ > λ1 and repeat the arguments of Proposition
2.4. Using (2.56) we can show the following unique continuation property:

∀z ∈ W0, z = 0 on ω × (0, T0) ⇒ z = 0 in Ω× (0, T0).

Therefore the bilinear form defined by

∀z, z̃ ∈ W0, (z, z̃)W 0 =
∫ T0

0

∫
ω

z.z̃dxdt

is a scalar product on W0 and we can set the following definition.
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Definition 2.17. We denote by W 0 the (abstract) completion ofW0 with respect
to the norm |.|W 0 associated with the above defined scalar product (., .)W 0 and denote
by W the translated space

(2.57) W = y0 +W 0.

Then W 0 is a Hilbert space for the scalar product (., .)W 0 , and for every y ∈ W ,
inequality (2.56) still holds true.

Remark 2.18. Because of inequality (2.56) and classical energy estimates for
the linearized Navier–Stokes operator, we can easily show that for every δ > 0, any
element y of W satisfies y ∈ C([δ, T0];H) ∩ L2(δ, T0; (H1

0 (Ω))3). In particular, the
value y(T0) makes perfect sense in H . But, a priori, the function y may have no value
at t = 0 (initial value) in any sense.

We now consider the backward adjoint controlled problem for a distributed control
v ∈ L2(0, T0; (L2(ω))3),

−∂ϕ
∂t
− μΔϕ− (ȳ.∇)ϕ+ (∇ȳ)ϕ+∇π = v.χω in Ω× (0, T0),(2.58)

divϕ = 0 in Ω× (0, T0),(2.59)
ϕ = 0 on Γ× (0, T0),(2.60)
ϕ(T0) = ϕ0,(2.61)

where ϕ0 ∈ H and H is defined in (2.50).
Using the same arguments as in Theorem 2.9 we obtain the following result of

stability and reconstruction of y(T0).
Theorem 2.19. Under the previous hypotheses, for every ω ⊂ Ω, for every

T0 > 0, and for every ϕ0 ∈ H, there exists v = v(ϕ0) ∈ L2(0, T0; (L2(ω))3) such that
the solution ϕ of (2.58), (2.59), (2.60), (2.61) satisfies

(2.62) ϕ(0) = 0.

We will choose v(ϕ0) of minimal norm among the controls such that (2.62) is satisfied,
and then the mapping ϕ0 → v(ϕ0) is continuous, which says that

(2.63) ∃C > 0 ∀ϕ0 ∈ H, |v(ϕ0)|L2(0,T0;(L2(ω))3) ≤ C|ϕ0|H .

We then have, if y = h on ω × (0, T0),

(2.64) ∀ϕ0 ∈ H, (y(T0), ϕ0)H =
∫ T0

0

∫
Ω

f.ϕdxdt−
∫ T0

0

∫
ω

h.v(ϕ0)dxdt.

Moreover, there exists a constant C > 0 depending only on Ω, ω, T0, μ, and ȳ (in the
spaces corresponding to hypothesis (2.44)) such that

(2.65) |y(T0)|2H ≤ C
(∫ T0

0

∫
Ω

|f |2dxdt+
∫ T0

0

∫
ω

|h|2dxdt
)
.

We also obtain, in the same way as in Corollary 2.11, a result measuring the
sensitivity of the recovered state with respect to errors in the measurements.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEW APPROACH TO DATA ASSIMILATION PROBLEMS 1105

Corollary 2.20. We write y(T0) for the recovery obtained by the previous
method from a measurement h and write ŷ(T0) for the recovery obtained using a
measurement ĥ. Then there exists a constant C > 0, independent of h and ĥ, such that

(2.66) |y(T0)− ŷ(T0)|H ≤ C|h− ĥ|L2(0,T0;(L2(ω))3).

Here also we can consider an optimal control problem which will provide an approxi-
mation for (y(T0), ϕ0)H . For v ∈ L2(0, T0; (L2(ω))3) let ϕ be solution of (2.58), (2.59),
(2.60), (2.61), and for β > 0 let us define a cost function Kβ(v) by

(2.67) Kβ(v) =
1
2β
|ϕ(0)|2H +

1
2

∫ T0

0

∫
ω

|v|2dxdt.

We look for vβ ∈ L2(0, T0; (L2(ω))3) such that

(2.68) Jβ(vβ) = min
v∈L2(0,T0;(L2(ω))3)

Jβ(v).

For fixed β > 0 this last problem is a classical optimal control problem. We then
obtain, following the same argument as for Theorem 2.12, the following theorem.

Theorem 2.21. (1) For every β > 0, there exists a unique solution vβ to (2.68),
and vβ is characterized by the following optimality system:

−∂ϕβ
∂t
− μΔϕβ − (ȳ.∇)ϕβ + (∇ȳ)ϕβ +∇π = vβ .χω in Ω× (0, T0),

divϕβ = 0 in Ω× (0, T0),
ϕβ = 0 on Γ× (0, T0),
ϕβ(T0) = ϕ0,

∂rβ
∂t
− μΔrβ + (ȳ.∇)rβ + (rβ .∇)ȳ +∇ρ = 0 in Ω× (0, T0),

div rβ = 0 in Ω× (0, T0),
rβ = 0 on Γ× (0, T0),

rβ(0) =
1
β
ϕβ(0),

rβ + vβ = 0 in ω × (0, T0).

(2) When β tends to zero,

vβ → v̄ in L2(0, T0; (L2(ω))3), ϕβ → ϕ̄ in C([0, T0];H),

where ϕ̄ and v̄ satisfy (2.58)–(2.61) and (2.62). Moreover, v̄ is the element with
minimal norm such that (2.58)–(2.61) and (2.62) are satisfied. In addition, when,
β → 0, we have

(2.69)
∫ T0

0

∫
Ω

f.ϕβdxdt −
∫ T0

0

∫
ω

y.vβdxdt→ (y(T0), ϕ0)H .

We can obtain an adjoint state corresponding to the null controllability problem
solved in Theorem 2.19. The mapping q → (ϕ0, q(T0))H is a continuous linear form
on W 0. Therefore, from the Riesz theorem, there exists a unique function r̄ ∈ W 0

such that

(2.70) ∀q ∈ W 0, (r̄, q)W 0 = (ϕ0, q(T0))H .
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It is easy to show, as in the case of diffusion convection equations, that rβ converges
to r̄ in W 0 and that r̄ + v̄ = 0 on ω × (0, T0). We only know a priori that r̄ is an
element of W 0 so that it may not have any initial value at t = 0. But under an
additional regularity assumption on r̄ we can obtain an estimate on the convergence
rate of the previous approximation procedure.

Theorem 2.22. We use the notation of Theorem 2.21. Let us assume that the
function r̄, solution of (2.70), satisfies

(2.71) r̄ ∈ C([0, T0];H).

Then we have

|ϕβ(0)|H ≤ 2β|r̄(0)|H ,(2.72)

|vβ − v̄|L2(0,T0;(L2(ω))3) ≤ 2β
1
2 |r̄(0)|H ,(2.73) ∣∣∣∣∣(y(T0), ϕ0)H −

∫ T0

0

∫
Ω

f.ϕβdxdt+
∫ T0

0

∫
ω

h.vβdxdt

∣∣∣∣∣ ≤ Cβ 1
2 |r̄(0)|H ,(2.74)

where C is independent of β and of ϕ0.
The proof uses exactly the same arguments as those used for the proof of Theorem

2.13.

3. New results on Tychonov regularization. We are going to give an ex-
istence result for a nonclassical optimal control problem, and this will enable us to
explain the reason for which in practical situations, with natural hypotheses, Ty-
chonov regularization works in the sense that the corresponding solution converges
when the regularization parameter α tends to zero.

Let us for the moment go back to the case of diffusion convection equations (we
keep the same notation), as the other cases can be treated exactly in the same way.

We recall that a function y in V is a solution of (2.1) and (2.2). But y may not
have a value at t = 0 (which will be referred to as an initial value) in any sense. Let
us define for y ∈ V

(3.1) J̃(y) =
∫ T0

0

∫
ω

|y − h|2dxdt.

Of course we notice that if y has an initial value y0, then J̃(y) = J(y0), but it is no
longer the case in general. It is essential to understand that we consider the same
functional value but defined on a different argument. Notice also that J̃ is perfectly
defined for y ∈ V , as we know that for y ∈ V , we have

∫ T0

0

∫
ω |y|2dxdt < +∞. It is

now immediate to obtain the following result.
Theorem 3.1. There exists a unique element ỹ ∈ V , which is a solution of the

following minimization problem:

Find ỹ ∈ V such that
J̃(ỹ) = min

y∈V
J̃(y).(3.2)

Moreover if h, h0 ∈ L2(0, T0;L2(ω)) and the corresponding solutions are called ỹ and
ỹ0, then we have

(3.3) |ỹ − ỹ0|2V 0 ≤
∫ T0

0

∫
ω

|h− h0|2dxdt,
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which implies that for every δ > 0, there exists a constant C(δ) > 0 such that

|ỹ − ỹ0|2C([δ,T0];L2(Ω)) + ||ỹ − ỹ0||2L2(δ,T0;H1
0 (Ω)) ≤ C(δ)

∫ T0

0

∫
ω

|h− h0|2dxdt.

Proof. The proof of existence and of the stability inequality is elementary, as V
is a Hilbert space for the norm

y →
(∫ T0

0

∫
ω

|y|2dxdt
) 1

2

.

Uniqueness also follows immediately from the unique continuation property, which is
valid on V 0. The last estimate comes from (2.23).

Of course the previous result is immediate once we know all the technicalities
which are included in the Carleman estimates.

Remark 3.2. Therefore, a problem which was ill-posed if we minimize with re-
spect to the initial value has become well-posed when minimizing with respect to the
trajectory in V . We also have an estimate of the sensitivity to errors in the measure-
ments h. This estimate is given in the V -norm, but thanks to (2.21) and (2.23) it is
also valid in the weighted Sobolev spaces which occur in Carleman estimates and in
classical Sobolev spaces away from t = 0.

Now let us make a regularity hypothesis on the minimizer ỹ, namely, that it has
an initial value in the sense that

(3.4) ỹ ∈ C([0, T0];L2(Ω)), ỹ(0) = ỹ0 in Ω.

This regularity hypothesis is quite natural in practical (realistic) situations, even if
this depends strongly on the (real) measurements which we are dealing with and which
are not usually the true value of a solution on the subdomain ω × (0, T0).

Then we have the following convergence theorem.
Theorem 3.3. Let us suppose that (3.4) is true. Then we have

J(ỹ0) = J̃(ỹ),

and ỹ0 is solution to the optimal control problem (2.9).
We also have the following estimate:

(3.5)
∫ T0

0

∫
ω

|ỹ − yα|2dxdt ≤ α|ỹ0|L2(Ω).

Moreover, when α → 0, the solution yα of the Tychonov regularized optimal control
problem converges strongly in L2(Ω) to ỹ0.

Proof. Let us call yα the solution of (2.1), (2.2), and (2.7) with yα(0) = yα. We
have

Jα(yα) ≤ Jα(ỹ0)

and

J̃(ỹ) ≤ J̃(yα).
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Therefore

1
2

∫ T0

0

∫
ω

|yα − h|2dxdt+
α

2
|yα|2L2(Ω) ≤

1
2

∫ T0

0

∫
ω

|ỹ − h|2dxdt+
α

2
|ỹ0|2L2(Ω)

≤ 1
2

∫ T0

0

∫
ω

|yα − h|2dxdt+
α

2
|ỹ0|2L2(Ω).

As a consequence we have

∀α > 0, |yα|2L2(Ω) ≤ |ỹ0|2L2(Ω).

After extraction of a subsequence (still denoted by yα), we can suppose that

yα ⇀ ŷ0 in L2(Ω) weakly,

and if ŷ denotes the solution of (2.1), (2.2), and (2.7) with ŷ(0) = ŷ0, we have

yα → ŷ in L2(0, T0;L2(Ω))

and also in various topologies.
Now we have

α

2
|yα|2L2(Ω) → 0 when α→ 0

so that necessarily, when α→ 0,

1
2

∫ T0

0

∫
ω

|yα − h|2dxdt→ 1
2

∫ T0

0

∫
ω

|ỹ − h|2dxdt.

Therefore we must have

1
2

∫ T0

0

∫
ω

|ŷ − h|2dxdt =
1
2

∫ T0

0

∫
ω

|ỹ − h|2dxdt.

From uniqueness in problem (3.2), we see that necessarily we have

ŷ = ỹ in Ω× (0, T0),

so that

ŷ0 = ỹ0.

We now know that

yα ⇀ ỹ0 in L2(Ω) weakly

and

|yα|2L2(Ω) ≤ |ỹ0|2L2(Ω).

This implies strong convergence in L2(Ω) of yα towards ỹ0.
As ỹ is the minimizer of J̃ , we see from the Euler–Lagrange equation associated

to this minimization problem that

(3.6) ∀z ∈ V,
∫ T0

0

∫
ω

(ỹ − h).(ỹ − z)dxdt = 0.
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Now a simple calculation gives

∫ T0

0

∫
ω

|ỹ − yα|2dxdt+ α|ỹ0 − yα|2L2(Ω)

=
∫ T0

0

∫
ω

|yα − h|2dxdt+ α|yα|2L2(Ω) +
∫ T0

0

∫
ω

|ỹ − h|2dxdt

+α|ỹ0|2L2(Ω) − 2
∫ T0

0

∫
ω

(ỹ − h).(yα − h)dxdt− 2α(ỹ0, yα)L2(Ω)

≤ 2
∫ T0

0

∫
ω

|ỹ − h|2dxdt− 2
∫ T0

0

∫
ω

(ỹ − h).(yα − h)dxdt

+ 2α|ỹ0|2L2(Ω) − 2α(ỹ0, yα)L2(Ω)

≤ 2
∫ T0

0

∫
ω

(ỹ − h).(ỹ − yα)dxdt+ 2α(ỹ0, ỹ0 − yα)L2(Ω).

But as yα ∈ V , because of (3.6) we obtain

(3.7)
∫ T0

0

∫
ω

|ỹ − yα|2dxdt + α|ỹ0 − yα|2L2(Ω) ≤ 2α(ỹ0, ỹ0 − yα)L2(Ω).

This gives immediately (3.5), and the proof of Theorem 3.3 is now complete.
Remark 3.4. (1) Our situation is quite different from the one which is considered

classically, for example, in [10], [5], or [4]. These authors make an a priori assumption,
which is usually written in an abstract form, which essentially assumes that there
exists a solution to the minimization problem for the functional J . Here, we prove
the existence and uniqueness of a minimizer for J̃ (without an additional hypothesis)
and, afterwards, we make a regularity assumption on this minimizer.

(2) We obtain a rate of convergence in the V -distance but, without additional
hypotheses, this does not give any rate of convergence for the initial values (ỹ0− yα).

(3) In the same way, the last theorem does not say anything about the behavior
of solutions yα with very small α when we have perturbations in the measurements
h. Even if the hypothesis (3.4) seems “natural” in practical situations, it is really
unnatural to assume that this initial value, that we assume to exist, would be contin-
uous with respect to h. This is exactly what is missing in the information given by
Carleman estimates.

In order to give an estimate for the rate of convergence for the initial values in
the Tychonov regularization method, we will follow a method similar to the one used
in [10], [5], and [4], but with a different hypothesis. We will make an assumption on
ỹ0, which will be made precise below, but which, roughly speaking, says that ỹ0 is on
a controlled trajectory of the adjoint operator with control acting everywhere in the
domain, except in the neighborhood of t = 0 where it can act only on ω.

Theorem 3.5. Let us assume, in addition to (3.4), that there exist q0 ∈ L2(Ω),
w ∈ L2(0, T0;L2(ω)), and g such that

esη̃1

ξ̃
3
2
1

g ∈ L2(0, T0;L2(Ω))

(this will be the case if, for example, g ∈ L2(0, T0;L2(Ω)) and g = 0 in a neighborhood
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of t = 0) such that the solution q of the equation

−∂q
∂t
−

N∑
i,j=1

∂

∂xj

(
aji

∂q

∂xi

)
−

N∑
i=1

∂

∂xi
(biq)−

N∑
j=1

cj
∂q

∂xj
= g + w.χω(3.8)

in Ω× (0, T0),
q = 0 on Γ× (0, T0),(3.9)
q(T0) = q0 in Ω(3.10)

satisfies

(3.11) q(0) = ỹ0.

Then there exists a constant C > 0 depending on g, w, and q0 such that∫ T0

0

∫
ω

|ỹ − yα|2dxdt ≤ Cα2,(3.12)

|ỹ0 − yα|2L2(Ω) ≤ Cα.(3.13)

Remark 3.6. Due to the null controllability property for the adjoint operator
with control acting only on ω, it can be shown that the hypothesis made in Theorem
3.5 is equivalent to the same hypothesis with g = 0 and q0 = 0.

Proof. From (3.7) we know that∫ T0

0

∫
ω

|ỹ − yα|2dxdt + α|ỹ0 − yα|2L2(Ω) ≤ 2α(ỹ0, ỹ0 − yα)L2(Ω).

Let us multiply (3.8) by (ỹ−yα) and integrate by parts. We obtain, using the equation
satisfied by (ỹ − yα),

(ỹ0, ỹ0 − yα)L2(Ω) = (q0, ỹ(T0)− yα(T0))L2(Ω) +
∫ T0

0

∫
Ω

g(ỹ − yα)dxdt

+
∫ T0

0

∫
ω

w(ỹ − yα)dxdt ≤ |q0|L2(Ω)|ỹ(T0)− yα(T0)|L2(Ω)

+

(∫ T0

0

∫
Ω

e2sη̃1

ξ̃31
|g|2dxdt

) 1
2
(∫ T0

0

∫
Ω

ξ̃31e
−2sη̃1 |ỹ − yα|2dxdt

) 1
2

+

(∫ T0

0

∫
ω

|w|2dxdt
) 1

2
(∫ T0

0

∫
ω

|ỹ − yα|2dxdt
) 1

2

.

But from the Carleman estimate (2.21) and the energy estimate (2.23) applied to
ỹ − yα, we know that

|ỹ(T0)− yα(T0)|2L2(Ω) +
∫ T0

0

∫
Ω

ξ̃31e
−2sη̃1 |ỹ − yα|2dxdt ≤ C

∫ T0

0

∫
ω

|ỹ − yα|2dxdt.

Therefore we obtain, with a different constant C depending on g, w, and q0,∫ T0

0

∫
ω

|ỹ − yα|2dxdt+ α|ỹ0 − yα|2L2(Ω) ≤ Cα
(∫ T0

0

∫
ω

|ỹ − yα|2dxdt
) 1

2

,

and this gives immediately the result of Theorem 3.5.
Of course we obtain completely similar results for the case of linearized Navier–

Stokes equations without any additional difficulty.
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A STUDY OF THE ASYMPTOTIC HOLONOMIC EFFICIENCY
PROBLEM∗

JIANGHAI HU† AND SLOBODAN SIMIC‡

Abstract. In this paper we study an asymptotic version of the holonomic efficiency problem
which originated in the study of swimming microorganisms. Given a horizontal distribution on a
vector bundle, the holonomy of a loop in the base space is the displacement along the fiber direction
of the end points of its horizontal lift. The holonomic efficiency problem is to find the most efficient
loop in the base space in terms of gaining holonomy, where the cost of the base loop is measured by
a subriemannian metric, and the holonomy gained is compared using a test function. We introduce
the notions of rank and asymptotic holonomy and characterize them through the series expansions of
holonomy as a function of the loop scale. In the rank two case we prove that for convex test functions
the most efficient base loops are simple circles, and we solve these loops for linear and norm test
functions. In the higher rank case the analytical solutions are outlined for some special instances of
the problem. An example of a turning linked-mass system is worked out in detail to illustrate the
results.

Key words. nonholonomic systems, optimal control, holonomy, subriemannian geometry

AMS subject classifications. 53C17, 49K15, 93B18, 70F25, 70G45
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1. Introduction. The isoholonomic problem has applications in a variety of
fields, for example, the falling cat problem [12] in mechanics, the swimming microor-
ganism at low Reynolds number problem [21] in biology, and the Berry phase prob-
lem [17] in quantum mechanics. Generally speaking, for a loop c in the base space
M of a principal bundle π : Q → M with a horizontal distribution H, its holonomy
is the vertical displacement of the end points of its horizontal lift in Q. The holo-
nomic efficiency of c can then be defined as the ratio of a certain functional of the
holonomy and some quantity such as the length or energy that characterizes the cost
for traversing c. The isoholonomic problem tries to find the loop c with the highest
holonomic efficiency.

In the context of microswimming, various notions of holonomic efficiency have
been proposed. To name a few, we mention that in [14] the efficiency of a swimming
stroke is defined as the ratio of the square of the average speed achieved by the stroke
to the average power output required (this notion of efficiency is scaled by a character-
istic thrust to obtain the dimensionless Froude’s efficiency studied in [7]), while in [4]
the efficiency is the ratio of the product of average speed and a characteristic thrust to
the average power. Another notion of efficiency is proposed in [22] that is invariant to
temporal and spatial rescaling. See [13] for more discussions on the various notions of
efficiency in the microswimming problem, and see [17, 18, 5] for applications in other
areas. The isoholonomic problem can be formulated as a special class of optimal
control problems, whose solution has been studied, for example, in [3, 6, 20, 8].
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Fig. 1.1. A linked-mass system with five nodes and four segments.

There are several limitations in these previous works that motivate the research
in this paper. First of all, although all of them deal with the asymptotic case, a
rigorous formulation of the asymptotic holonomic efficiency problem has not yet been
adequately addressed. Second, the problems studied so far focus on the nondegenerate
(rank two) case only, while the degenerate (higher rank) case has been largely ignored.
Third, the various notions of efficiency proposed in the literature, with the exception
of [17], are defined through linear functionals (test functions) of the holonomy, whereas
in some cases general test functions could be more desirable.

In this paper we propose a general framework for studying the asymptotic holo-
nomic efficiency problem. The concepts of rank and asymptotic holonomy are defined,
and, using the notion of test functions, we propose the following two optimization
problems, which are dual to each other, for studying the most efficient way to gain
asymptotic holonomy: the generalized isoholonomic and isoperimetric problems. Both
the rank two case and the higher rank case are considered. In the rank two case, we
extend the well-known result that optimal solutions are circles from the linear test
function case to the general convex test function case, and we propose procedures
for finding these circles for norm test functions. For the higher rank case, we focus
on a special family of distributions with arbitrary rank and find the optimal solution
through optimal control theory.

For simplicity, our problems are formulated on the trivial vector bundle π :
R
n+k → R

n. However, due to their asymptotic nature, our results can be easily
extended to the case of more general state spaces such as principal bundles.

1.1. Motivating example. We start by introducing a motivating example, first
reported in [11], of a snake-like linked-mass system moving on a plane. A relevant
but more complicated model is the molecule model studied in [10].

The system consists of n + 2 unit point masses (nodes) subsequently connected
by n + 1 rigid links (segments) of unit length and zero mass. Figure 1.1 shows an
example with n = 3. Given a fixed coordinate system with the origin O, denote
by q1(t), . . . , qn+2(t) ∈ R

2 the locations of the n + 2 nodes at time t ≥ 0. Assume
without loss of generality that

∑n+2
i=1 qi(0) = 0; i.e., the system is initially centered at

the origin O. Suppose that the system is not subject to external forces. Then its total
linear momentum and total angular momentum (using the origin O as the center of
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rotation) are conserved:

n+2∑
i=1

q̇i ≡ 0,(1.1)

n+2∑
i=1

qi × q̇i ≡ 0.(1.2)

Note that the zero-mass links do not contribute to the above computation.
Condition (1.1) then implies that

∑n+2
i=1 qi ≡ 0. So the configuration of the system

is uniquely determined by the angles θ1, . . . , θn+1, where θi is the angle that qi+1− qi
makes with the positive x-axis, i = 1, . . . , n + 1. Each θi takes values in R modulo
2π, namely, the 1-torus T = R/2πZ, so (θ1, . . . , θn+1) takes values in the (n+1)-torus
T
n+1, which is the configuration space of the system.

Remark 1. There is a natural bundle structure on T
n+1. T acts on T

n+1 by

(1.3) Rθ(θ1, . . . , θn+1) = (θ1 + θ, . . . , θn+1 + θ), θ ∈ T, (θ1, . . . , θn+1) ∈ T
n+1.

The effect of Rθ on any configuration is a counterclockwise rotation of θ. Each orbit
of this action consists of configurations with the same shape but different orientations,
and configurations in different orbits have different shapes. Thus the shape space of
the linked-mass system can be defined as the set of all R-orbits in T

n+1, i.e., T
n+1/T,

which topologically is an n-torus. The quotient map π : T
n+1 → T

n+1/T defines T
n+1

as a T-bundle over T
n+1/T, whose fibers are exactly the R-orbits.

For given θ1, . . . , θn+1, the corresponding q1, . . . , qn+2 satisfying
∑n+2
i=1 qi = 0 are

q1 = − 1
n+ 2

n+1∑
j=1

(n+ 2− j)(cos θj , sin θj)T ,(1.4)

qi = q1 +
i−1∑
j=1

(cos θj , sin θj)T , i = 2, . . . , n+ 2.(1.5)

Equations (1.4) and (1.5) together define an embedding of the configuration space
T
n+1 into R

2n+4. Thus T
n+1 inherits isometrically via this embedding a rieman-

nian metric 〈·, ·〉 from the standard metric on R
2n+4. From the computation in the

appendix, 〈·, ·〉 can be determined as

(1.6) gij �
〈
∂

∂θi
,
∂

∂θj

〉
= Δij cos(θi − θj), 1 ≤ i, j ≤ n+ 1,

where Δij are constants defined by

Δij =

{ i(n+2−j)
n+2 if i < j,

(n+2−i)j
n+2 if i ≥ j.

Suppose that the trajectory of the linked-mass system over a time interval I = [0, 1]
is given by a curve γ in T

n+1. Unless otherwise stated, we assume that all curves in
this paper are defined on I. Define

L(γ) =
∫ 1

0

‖γ̇‖ dt, E(γ) =
∫ 1

0

‖γ̇‖2 dt
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as the length and the energy of γ, respectively, where ‖·‖ is the norm corresponding to
〈·, ·〉. From the definition of 〈·, ·〉, we have L(γ) =

∫ 1

0 (
∑n+2
i=1 ‖q̇i‖2)1/2 dt and E(γ) =∫ 1

0

∑n+2
i=1 ‖q̇i‖2 dt, where q1, . . . , qn+2 are the positions of the nodes corresponding to γ.

A physical explanation of the expression of E(γ) is that, since the links in the system
have zero mass, their rotations and translations do not contribute to the total energy;
hence the energy of the path (maneuver) γ is the time integral of (twice) the total
instantaneous kinetic energy of the nodes only, which is derived in the appendix in
the alternative coordinates (θ1, . . . , θn+1).

With this metric on T
n+1, we now study the geometric implication of the con-

straint (1.2). It can be verified that a curve γ = (θ1, . . . , θn+1) in T
n+1 satisfies the

constraint (1.2) if and only if

(1.7)
n+1∑
i,j=1

Δij cos(θi − θj)θ̇j = 0,

or equivalently, if and only if Θ(γ̇) = 0, where Θ is a one-form on T
n+1 defined by

(1.8) Θ =
n+1∑
i,j=1

Δij cos(θi − θj)dθj .

In other words, γ must be a horizontal curve for the codimension one distribution
H � kerΘ on T

n+1. The restriction of 〈·, ·〉 to H defines a subriemannian metric
〈·, ·〉H. In this metric the subriemannian length of a horizontal curve γ is the same as
its riemannian length L(γ).

We observe that the horizontal distributionH defined above from (1.7) is naturally
induced by the metric 〈·, ·〉 given in (1.6). In fact, at each point θ = (θ1, . . . , θn+1) ∈
T
n+1, the codimension one horizontal space Hθ = kerΘθ can be easily verified as the

orthogonal complement of the bundle direction of π : T
n+1 → T

n, namely, (1, . . . , 1),
under the metric 〈·, ·〉:

Hθ = {v ∈ TθTn+1 
 R
n+1 | 〈v, (1, . . . , 1)〉 = 0}.

This fact has been observed in the general setting of rotation and vibration motions
of molecules in [10]. The connections resulting from such horizontal distributions are
called the natural mechanical connections [16].

1.2. Objective and overview of the paper. We are interested in finding the
most efficient way for the linked-mass system to turn. More precisely, among all the
maneuvers γ that guide the system from a starting configuration (θ01 , . . . , θ

0
n+1) at

time 0 to a desired configuration (θ01 + θ, . . . , θ0n+1 + θ) at time 1 that has the same
shape but a different orientation, subject to the constraint (1.2) of zero total angular
momentum, we want to find the one (or ones) with minimal energy (or minimal length
L(γ), which are equivalent up to reparameterizations). In light of the above discussion,
the solutions to this problem are the shortest horizontal curves in T

n+1 connecting
(θ01 , . . . , θ0n+1) to (θ01 + θ, . . . , θ0n+1 + θ), which are necessarily distance-minimizing
subriemannian geodesics in 〈·, ·〉H.

Remark 2. In definitions (1.6) and (1.8) the terms involving θi’s are of the form
θi − θj , which remain unchanged under the action R. Thus both H and 〈·, ·〉H are
invariant along the fibers of π : T

n+1 → T
n+1/T, and together they specify a sub-

riemannian geometry invariant with respect to π (see section 2). In this perspective,
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the problem under study is to determine the shortest horizontal curve connecting two
points (θ1, . . . , θn+1) and Rθ(θ1, . . . , θn+1) in the same fiber.

Unfortunately, solutions to the above formulated problem are usually impossible
to obtain analytically due to its global nature (the starting and ending configurations
could be far away from each other). In this paper, we shall instead study an asymptotic
(local) version of the problem; i.e., what is the most efficient way for the linked-mass
system to turn if it can only exert an increasingly small amount of energy? The exact
formulation of the asymptotic problem will be given in section 2 in the more general
context of codimension k distribution on R

n+k. In particular, we define the notions
of rank and asymptotic holonomy, and, using test functions, propose an optimization
problem that generalizes the efficiency problems studied in the literature. In section 3,
we focus on the rank two case and prove that, for convex test functions, at least one
of the solutions to the optimization problem is given by a simple circle contained in
a two-dimensional plane. Although such solutions are well known in the literature
when the test function is linear, our results hold for arbitrary convex test functions.
Detailed procedures are also outlined for finding the solution when the test function
is a norm. The higher rank case, on the other hand, is much more complicated. In
section 4, we solve the problem for a special family of distributions with rank higher
than two, and in section 5 we use the result to obtain the asymptotically most efficient
maneuver for the linked-mass system in section 1. Section 6 extends the results to
principal bundles.

2. Problem formulation. We now formulate the problem in the general setting
of codimension k distributions on the Euclidean space R

n+k for some n, k ≥ 1. The
projection π : (x1, . . . , xn+k) ∈ R

n+k �→ (x1, . . . , xn) ∈ R
n defines R

n+k as a trivial
vector bundle over R

n, whose fiber over each m ∈ R
n is given by π−1(m) 
 R

k. We
shall first review some relevant concepts in subriemannian geometry. A comprehensive
introduction on this topic can be found in [18].

2.1. Codimension k distributions and subriemannian metrics on R
n+k.

Let Θ = (Θ1, . . . ,Θk) be an R
k-valued one-form on R

n+k with components

(2.1) Θj = dxn+j −
n∑
i=1

αjidxi, 1 ≤ j ≤ k,

for some C∞ functions αji : R
n+k → R. Then H = kerΘ is a codimension k dis-

tribution on R
n+k. The horizontal space Hq at each q ∈ R

n+k is the kernel of Θq

in TqR
n+k, which can be thought of as an n-dimensional subspace of R

n+k, i.e.,
Hq = {(v1, . . . , vn+k) ∈ R

n+k : vn+j −
∑n
i=1 α

j
i (q)vi = 0, 1 ≤ j ≤ k}. Θ is called the

connection form of H.
A horizontal curve γ in R

n+k is an absolute continuous curve in R
n+k, whose

tangent vector γ̇(t) belongs to Hγ(t) wherever it exists. Write γ = (γ1, . . . , γn+k) in
coordinates. Then γ is horizontal if and only if γ̇n+j =

∑n
i=1 α

j
i γ̇i, 1 ≤ j ≤ k, a.e.

Fix a pair (m, q), where m ∈ R
n, q ∈ R

n+k, and π(q) = m. The horizontal lift (based
at q) of a curve c in R

n starting from m is defined as the unique horizontal curve γ in
R
n+k starting from q and satisfying π(γ) = c. If c = (c1, . . . , cn) in coordinates, then

γ = (γ1, . . . , γn+k) is obtained by solving the following differential equations:

γ1 = c1, . . . , γn = cn, γ̇n+j =
n∑
i=1

αji (γ)ċi, 1 ≤ j ≤ k.(2.2)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STUDY OF ASYMPTOTIC HOLONOMIC EFFICIENCY PROBLEM 1117

If, in particular, c is a close loop, then γ starts and ends in the same fiber π−1(m);
i.e., γ(1)−γ(0) is of the form (0, . . . , 0, h) for some h ∈ R

k. We called h the holonomy
of the loop c, which in general depends on the base point q ∈ π−1(m) of γ.

A subriemannian metric 〈·, ·〉H on H is a smooth assignment of inner products
to the horizontal spaces Hq. The length of a horizontal curve γ is measured as
L(γ) =

∫ 1

0
‖γ̇‖H dt =

∫ 1

0
〈γ̇, γ̇〉1/2H dt under this metric. The subriemannian distance

between two points in R
n+k is the infimum of the length of all horizontal curves

connecting them. Thus H and 〈·, ·〉H specify a subriemannian geometry on R
n+k.

2.2. Invariant distributions and subriemannian metrics. The distribution
H is called π-invariant, or simply invariant, with the bundle structure π : R

n+k → R
n

if its horizontal spaces are invariant along fibers. In terms of (2.1), this is equivalent
to

(2.3) αji (x1, . . . , xn+k) = αji (x1, . . . , xn), 1 ≤ i ≤ n, 1 ≤ j ≤ k.

So we can think of αji as functions on R
n and define an R

k-valued one-form on R
n as

(2.4) α =

⎡
⎢⎣
α1

...
αk

⎤
⎥⎦ �
⎡
⎢⎣
∑n
i=1 α

1
i dxi

...∑n
i=1 α

k
i dxi

⎤
⎥⎦ .

The holonomy of a loop c in R
n is then independent of the starting point of its

horizontal lift γ, and thus can be simply denoted by h(c). Indeed, by (2.2) and an
application of the Stokes’ theorem,

(2.5) h(c) =

⎡
⎢⎣
∫ 1

0 γ̇n+1 dt
...∫ 1

0
γ̇n+k dt

⎤
⎥⎦ =
∫
c

α =
∫
S

dα =
∫
S

β,

where S is a two-dimensional submanifold immersed in R
n whose boundary ∂S is

exactly c, and β is the R
k-valued two-form defined by

(2.6) β � dα =
∑

1≤i,j≤n
βij dxi ∧ dxj ,

where βij , 1 ≤ i, j ≤ n, are R
k-valued functions on R

n with βij = −βji. In (2.5), h(c)
is written as an integral of β over an arbitrary surface encircled by c.

For an invariant distributionH, a subriemannian metric 〈·, ·〉H is called π-invariant
(or invariant) with the bundle structure π : R

n+1 → R
n if it is also invariant along

fibers. Invariant subriemannian metrics 〈·, ·〉H on H have a one-to-one correspondence
with riemannian metrics 〈·, ·〉Rn on the base space R

n according to the following rela-
tion:

(2.7) 〈hq(u), hq(v)〉H = 〈u, v〉Rn , ∀u, v ∈ TmR
n, m ∈ R

n, q ∈ π−1(m).

Here hq : TmR
n → Hq is the horizontal lift operator defined as the inverse map of the

linear isomorphism dπq : Hq → TmR
n. We call 〈·, ·〉H satisfying (2.7) the horizontal

lift of 〈·, ·〉Rn .
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2.3. Asymptotic holonomy. Let H = kerΘ be a codimension k distribution
on R

n+k with the connection form Θ given in (2.1), and let 〈·, ·〉H be a subriemannian
metric on H. In the rest of this paper, we shall assume that both H and 〈·, ·〉H
are invariant with the bundle structure π : R

n+k → R
n. Thus we can define the

forms α and β as in (2.4) and (2.6), and 〈·, ·〉H is the horizontal lift of a metric
〈·, ·〉Rn on the base space R

n. It should be pointed out, however, that the concepts of
asymptotic rank and efficiency and some of their properties described below can be
easily generalized to the noninvariant case.

Fix a point m ∈ R
n and a loop c �≡ 0 in R

n based at m. For each ε > 0, denote by
cε = m+ ε(c−m) the loop based at m obtained by scaling c by a factor of ε towards
m, and let γε be the horizontal lift of cε in R

n+k based at q ∈ π−1(m) ⊂ R
n+k. We

can define the following two quantities for cε: (1) its length L(cε) > 0 is the length
of cε in R

n as measured by the metric 〈·, ·〉Rn , which by (2.7) is also the length of the
horizontal curve γε as measured by 〈·, ·〉H; (2) its holonomy h(cε) ∈ R

k is the vertical
displacement between the two end points of γε.

It is easy to see that L(cε) is of the same order of ε as ε→ 0.
Lemma 1. L(cε) = aε + o(ε), where a �= 0 depends on 〈·, ·〉Rn only through its

restriction at m.
The continuity of 〈·, ·〉Rn is needed to show the above claim. As for h(cε), we have

the following.
Lemma 2. h(cε) = εr(m)ĥ(c) + o(εr(m)) for some constant ĥ(c) ∈ R

k and an
integer

(2.8)
r(m) = min{l : at least one lth order partial derivative of β at m is nonzero}+ 2.

Moreover, ĥ(c) �= 0 for at least one loop c based at m.
Remark 3. The lth order partial derivatives of β at m are terms of the form

∂lβ(m)

∂x
l1
1 ···∂xln

n

for some integers l1, . . . , ln with l1 + · · ·+ ln = l. Taking values in the set

of R
k-valued skew-symmetric 2-tensors on R

n, each of these terms is zero if and only
if all of its k components are zero.

Proof. Let S be a two-dimensional submanifold of R
n encircled by c. For each

ε > 0, denote Sε = m+ ε(S −m). Then ∂Sε = cε and Sε → m as ε→ 0. Expanding
β =

∑
1≤i,j≤n βijdxi ∧ dxj at m = (m1, . . . ,mn) in Taylor expansions and noticing

the definition of r(m) in (2.8), we have, for x ∈ Sε,

β(x) =
∑

l1+···+ln=r(m)−2

∑
1≤i,j≤n

∂r(m)−2βij(m)
∂xl11 · · ·∂xlnn

(x1 −m1)l1 · · · (xn −mn)ln

l1! · · · ln!
dxi ∧ dxj

+ o(εr(m)−2).

So the dominating term of h(cε) =
∫
Sε
β as ε→ 0 is

∑
l1+···+ln=r(m)−2

∑
1≤i,j≤n

1
l1! · · · ln!

∂r(m)−2βij(m)
∂xl11 · · · ∂xlnn

∫
Sε

(x1−m1)l1 · · · (xn−mn)ln dxi∧dxj ,

which is exactly of the form εr(m)ĥ(c), where ĥ(c) is given by

(2.9) ∑
l1+···+ln=r(m)−2

∑
1≤i,j≤n

1
l1! · · · ln!

∂r(m)−2βij(m)
∂xl11 · · · ∂x

ln
n

∫
S

(x1−m1)l1 · · · (xn−mn)ln dxi∧dxj .
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It is easy to see that ĥ(c) �= 0 for suitably chosen c and S.
Definition 1. r(m) defined in (2.8) is called the rank of H at m ∈M , and

(2.10) η(c) � ĥ(c)
Lr(m)(c)

∈ R
k

is called the asymptotic holonomy of the loop c based at m, with ĥ(c) defined in (2.9).
Despite its definition process, the rank r(m) does not depend on the loop c.

Indeed, by (2.8), r(m) does not even depend on the subriemannian metric 〈·, ·〉H
and is solely determined by the distribution H on the fibers over a neighborhood of
m. Thus r(m) is an intrinsic quantity of H. On the other hand, the asymptotic
holonomy η(c) does depend on c, and by Lemma 1 it is also affected by 〈·, ·〉Rn (hence
by 〈·, ·〉H) through its restriction at m. Let A ∈ R

n×n be the positive definite matrix
corresponding to the restriction of 〈·, ·〉Rn at m, i.e.,

(2.11) 〈u, v〉Rn = uTAv

for all u, v ∈ TmR
n. Then to compute η(c) one can assume for convenience and with-

out loss of generality that 〈·, ·〉Rn is given by A uniformly on R
n; i.e., (2.11) holds for

u, v ∈ TxR
n for arbitrary x ∈ R

n. Finally, the distribution H affects η(c) through
ĥ(c). By (2.9), in terms of computing η(c), the form β =

∑
1≤i,j≤n βij dxi ∧ dxj

can be replaced by the first nonvanishing term of its Taylor expansions:
∑

1≤i,j≤n∑
l1+···+ln=r(m)−2

1
l1!···ln!

∂r(m)−2βij(m)

∂x
l1
1 ···∂xln

n

dxi ∧ dxj ; i.e., we can assume that the compo-

nents of βij(x) are homogeneous polynomials of degree r(m) − 2 in x with constant
coefficients.

A direct consequence of Lemma 2 and Definition 1 is that, for any loop c based
at m with η(c) �= 0, we have h(cε) ∼ η(c)[εL(c)]r(m) as ε→ 0. Here a(ε) ∼ b(ε) means
that limε→0 a(ε)/b(ε) = 1 for functions a and b of ε > 0 satisfying b(ε) �= 0 for ε �= 0.

Since ĥ(·) and Lr(m)(·) are both homogeneous of degree r(m) in the scale ε of cε
and are both invariant to reparameterizations of c, η(c) has the following properties.

Lemma 3 (invariance of asymptotic holonomy). The asymptotic holonomy η(c)
of a loop c based at m is invariant to both scalings and reparameterizations of c, i.e.,

• η(c) = η(cε) for any ε > 0;
• η(c ◦ ρ) = η(c) for any orientation-preserving diffeomorphism ρ : I → I.

As a result, η(c) is a function of only the shape of the curve traversed by c, not of
its size or the speed at which it is traversed. Indeed, η(c) also remains unchanged if c
is defined on a time interval [0, T ] rather than [0, 1]. As argued in [22], these invariance
properties are essential for a meaningful definition of the notion of holonomic efficiency.
On the other hand, η(c) changes sign if c is traversed in the reverse direction.

2.4. Optimization problem. In this section we define an optimization prob-
lem, generalizing the one proposed in section 1.

Definition 2. A test function F is a continuous map from R
k to R such that

F(0) = 0 and F is linear along rays starting from the origin: F(μx) = μF(x) for all
x ∈ R

k, μ ≥ 0.
The two important classes of F considered in this paper are (i) linear functions

F(x) = λTx for some λ ∈ R
k, and (ii) F(x) = ‖x‖ for some norm ‖ · ‖ on R

k.
Problem 1. Find the loop c in M based at m ∈M maximizing F [η(c)].
Problem 1 originates as follows. Let V : R

k → R be a function with V (0) = 0
such that V [h(c)] can be interpreted as the performance measure of the loop c. Then
Problem 1 is the asymptotic version of the problem of finding the best performing
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loops c. Indeed, define the best performing c in the asymptotic sense as the ones for
which V [h(cε)] ∼ μ[L(cε)]r as ε → 0 for the largest possible μ ∈ R and the smallest
possible integer r. Since h(cε) ∼ η(c)[L(cε)]r(m) by the discussion in section 2.3, we
have V [h(cε)] ∼ F [η(c)][L(cε)]r(m) as ε→ 0, where F : R

k → R is defined as

(2.12) F(h) � lim
ε→0+

1
ε
V (εh), h ∈ R

k.

Hence, in the expression V [h(cε)] ∼ μ[L(cε)]r, the smallest possible r is r(m) and the
largest possible μ is max{F [η(c)] : c}, both of which are achieved by solutions c to
Problem 1, provided that the optimal F [η(c)] �= 0. Since normally V is differentiable
along rays emitting from the origin, F in (2.12) is well defined and satisfies the
conditions in Definition 2. In particular, F is linear if V is differentiable at 0, and
F = V if V is a norm on R

k.
In Problem 1 we assume that F [η(c)] > 0 for at least one c to exclude the trivial

solution c ≡ 0. This assumption is always satisfied for the examples in this paper.
Since F [η(c)] = F [ĥ(c)]/Lr(m)(c), and both F [ĥ(·)] and Lr(m)(·) are homogeneous

of degree r(m) in the scale ε of cε, solving Problem 1 is equivalent to solving any of
the following variational problems:

Find c that minimize L(c) subject to F [ĥ(c)] = 1;(2.13)

find c that maximize F [ĥ(c)] subject to L(c) = 1;(2.14)

find c that minimize E(c) subject to F [ĥ(c)] = 1;(2.15)

find c that maximize F [ĥ(c)] subject to E(c) = 1.(2.16)

Here E(c) �
∫ 1

0
‖ċ‖2

Rn dt is the energy of c. Problems (2.14) and (2.16) are dual to
problems (2.13) and (2.15), respectively. That problems (2.13) and (2.15), and hence
problems (2.14) and (2.16), are equivalent is because of the inequality E(c) ≥ L2(c)
with equality if and only if c has constant speed; thus solutions to the latter are
necessarily solutions to the former parameterized with constant speed. In this paper,
to avoid the ambiguity of parameterizations, we will study problems (2.15) and (2.16).

By the discussion immediately after Definition 1, to solve these problems we can
assume the following without loss of generality.

Assumption 1. Assume that
1. m = 0 is the origin of R

n;
2. 〈·, ·〉Rn is given by a positive definite A ∈ R

n×n on R
n. In fact, after a change

of orthonormal coordinates, we can assume that A = In; i.e., 〈·, ·〉Rn is the
standard metric on R

n;
3. β =

∑
1≤i,j≤n βijdxi ∧ dxj �= 0, where βij = −βji, and the components of

βij(x) ∈ R
k are homogeneous polynomials of degree r(0) − 2 in x ∈ R

n with
constant coefficients.

Thus L(c) and E(c) are the standard arc length and energy, respectively, of the
loop c based at 0, and ĥ(c) in (2.9) coincides with h(c). Problems (2.15) and (2.16)
can then be reformulated, respectively, as the following.

Problem 2 (generalized isoholonomic problem). Find c with F [h(c)] = 1 mini-
mizing E(c).

Problem 3 (generalized isoperimetric problem). Find c with E(c) = 1 maximiz-
ing F [h(c)].

For an even more general formulation of the isoholonomic problem, see [17].
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Solutions to the above two problems are the same up to a scaling. To derive their
equations, note that the solutions to Problem 2 also solve the following problem for
some proper h0 ∈ R

k:

(2.17) Find c with a fixed h(c) = h0 that minimize E(c).

It is shown in [18] that the solutions to problem (2.17) satisfy

(2.18) c̈ = −iċ(λTβ)

for some constant λ ∈ R
k. Here λTβ is an R-valued two-form, and iċ(λTβ) � λTβ(ċ, ·)

is a one-form on R
n that we identify as a vector in R

n via the canonical metric. Write
β =
∑

1≤i,j≤n βij dxi ∧ dxj in coordinates. Then (2.18) is equivalent to

(2.19) c̈ = Zċ,

where Z is the skew-symmetric matrix

(2.20) Z =

⎡
⎢⎣

2λTβ11 · · · 2λTβ1n

...
...

...
2λTβn1 · · · 2λTβnn

⎤
⎥⎦ ,

whose components are homogeneous polynomials of degree r(0)−2 in x with constant
coefficients. Indeed, (2.19) describes the motions of a particle of unit mass and unit
charge moving in a magnetic field given by Z on R

n when n = 2, 3 (see [2, 17]).
Equation (2.19) can also be derived from the Pontryagin maximum principle [19] by
formulating problem (2.17) as an optimal control problem.

Equation (2.19) does not solve Problem 2 completely, as λ is unknown and we are
interested only in those solutions that start and end in the origin. Thus we still need
to determine λ and the appropriate initial condition ċ(0) such that c(0) = c(1) = 0,
which is often a nontrivial task.

3. Rank two case. We first study the solution of Problem 2 in the simplest case,
namely, the rank two case. In this case, when the test function is linear, it is a well-
known fact that the optimal loops are simple circles, and straightforward procedures
exist to find these optimal circles (see section 3.1). Indeed, when n = 2, the rank two
isoholonomic problem degenerates into the classical isoperimetric problem. See the
discussion in [18, Chap. 1]. Our contribution in this section lies in the generalization
of this result to the case of convex test functions (see Theorem 1). In addition, for
a class of convex but not linear test functions, in section 3.2 we propose iterative
procedures to solve for the optimal circles, which is a much more difficult problem
than in the linear test function case.

Suppose that r(0) = 2. Then β =
∑

1≤i,j≤n βij dxi ∧ dxj �= 0 for constants
βij = −βji. Z defined in (2.20) is a constant matrix. Being skew-symmetric, Z
admits a decomposition of the form

Z = Q · diag
([

0 −σ1

σ1 0

]
, . . . ,

[
0 −σl
σl 0

]
, 0, . . . , 0

)
·QT ,

where Q ∈ R
n×n is orthonormal, and σ1 ≥ · · · ≥ σl > 0 for some integer l with 2l =

rank(Z). After an orthonormal coordinate transformation y = QTx, (2.19) becomes⎧⎪⎨
⎪⎩
[
ÿ2p−1

ÿ2p

]
=

[
0 −σp
σp 0

][
ẏ2p−1

ẏ2p

]
, p = 1, . . . , l,

ÿp = 0, p = 2l+ 1, . . . , n.
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Solutions to this equation that start and end at the origin are necessarily of the form

c(t) = [a1(1− cos(2n1πt)),−a1 sin(2n1πt), . . . , al(1 − cos(2nlπt)),
− al sin(2nlπt), 0, . . . , 0]T(3.1)

for some a1, . . . , al ∈ R and some n1, . . . , nl ∈ N with σ1 = 2n1π, . . . , σl = 2nlπ. Note
that we can assume without loss of generality that np, p = 1, . . . , l, are all distinct.
Otherwise, for example, if n1 = n2, then a suitable change of orthonormal coordinates
within the 4-subspace spanned by the y1, . . . , y4 axes can transform c into the form

[a(1− cos(2n1πt)),−a sin(2n1πt), 0, 0, a3(1 − cos(2n3πt)),−a3 sin(2n3πt), . . .]T

with a =
√
a2
1 + a2

2. This step can be repeated until all np are eventually distinct,
resulting in a curve of the form

(3.2) c is given in (3.1) for some 1 ≤ l ≤ [n/2] and distinct n1, . . . , nl �= 0.

Curves of the form (3.2) in some orthonormal coordinates of R
n are called mixed

circles. If, in particular, l = 1 and n1 = 1 in (3.2), the resulting curves are called
simple circles, which are planar circles in R

n traversed exactly once.
It is seen from the above that the solutions to Problem 2 are mixed circles. In

the case of convex F , the solution can be further simplified.
Theorem 1. Suppose that F : R

k → R is convex. Then there is at least one
simple circle solution to Problem 2 (respectively, Problem 3).

The result of Theorem 1 is well known in the literature for the case when F is a
linear function. To prove it in the general convex F case, we first introduce an inter-
mediate result, which is reformulated from the arguments in [18, Sec. 12.3.5]. Consider
a mixed circle c of the form (3.2) in some orthonormal coordinates (y1, . . . , yn). For
each p = 1, . . . , l, denote by c(p) the orthogonal projection of c onto the plane spanned
by the y2p−1 and y2p axes, which is a planar circle traversed np times.

Lemma 4. h(c) = h(c(1)) + · · ·+ h(c(l)).
Proof. Write β =

∑
1≤i,j≤n β̂ij dyi ∧ dyj in the new coordinates, with constants

β̂ij = −β̂ji. Define α �
∑n

i,j=1 β̂ijyidyj . Then dα = β, and, by (2.5), h(c) =
∫
c
α =∑n

i,j=1 β̂ij
∫
c
yi dyj . Note that because of the special form of c in (3.1) and (3.2),

unless {i, j} = {2p − 1, 2p} for some p = 1, . . . , l, we must have
∫
c yi dyj = 0, since

the integral of the product of two periodic sine or cosine functions with different
frequencies is zero. As a result,

h(c) =
l∑

p=1

∫
c

β̂2p−1,2p(y2p−1dy2p − y2pdy2p−1) =
l∑

p=1

∫
c(p)

α =
l∑

p=1

h(c(p)),

which proves the desired conclusion.
Now define three subsets of R

k:

B0 = {h(c) : c is a loop with E(c) ≤ 1},
B1 = {h(c) : c is a mixed circle with E(c) ≤ 1},
B2 = {h(c) : c is a simple circle with E(c) ≤ 1}.

B0 is the set of holonomy achievable by loops with energy no larger than 1 and is the
intersection of the unit subriemannian ball centered at 0 with the fiber R

k through 0.
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Obviously, B0 is star-shaped (h ∈ B0 implies μh ∈ B0 for μ ∈ [0, 1]) and symmetric
(h ∈ B0 implies −h ∈ B0).

Since our previous analysis shows that every holonomy achievable by a loop c can
be achieved by a mixed circle with no more energy, we have B0 = B1. Obviously,
B2 ⊂ B1. But Lemma 4 implies the following.

Lemma 5. Co(B1) =Co(B2); i.e., B1 and B2 span the same convex hull.
Proof. Since B1 and B2 are closed sets, it suffices to show that for any λ ∈ R

k,
sup(λTB1) = sup(λTB2). Suppose that sup(λTB1) is achieved at h(c) ∈ B1 for a mixed
circle c of the form (3.2) in some orthonormal coordinates with a1, . . . , al �= 0 and
E(c) ≤ 1. Note that λTh(c) ≥ 0 since 0 ∈ B1. By Lemma 4, h(c) = h(c(1)) + · · · +
h(c(l)), and

λTh(c)
E(c)

=
λTh(c(1)) + · · ·+ λTh(c(l))
E(c(1)) + · · ·+ E(c(l))

≤ max
1≤p≤l

λTh(c(p))
E(c(p))

.

Suppose that the maximum in the above equation is achieved at p. Then the simple
circle ĉ(p)(t) = 1

2π (0, . . . , 0, 1− cos(2πt), sin(2πt), 0, . . . , 0) traversing the (scaled) im-
age of c(p) exactly once has unit energy and holonomy h(ĉ(p)) = nph(c(p))/E(c(p)).
From the above inequality, we have

λTh(ĉ(p)) = npλ
Th(c(p))/E(c(p)) ≥ λTh(c(p))/E(c(p)) ≥ λTh(c)/E(c) ≥ λTh(c) ≥ 0.

Since h(ĉ(p)) ∈ B2 ⊂ B1, sup(λTB2) = sup(λTB1). Therefore, Co(B1) =Co(B2).
Example 1 (Brockett [6]). Consider the total space R

n⊕ son 
 R
n(n+1)/2, whose

elements are (x,A) with x ∈ R
n and A ∈ R

n×n skew-symmetric matrices. Let H be
the codimension n(n−1)

2 distribution invariant with π : R
n ⊕ son → R

n given by the
son-valued one-form α = (x · dxT − dx ·xT )/2. Thus β = dx∧ dxT . It is easy to verify
that B1 consists of all matrices of the form

Q · diag
([

0 n1πa
2
1

−n1πa
2
1 0

]
, . . . ,

[
0 nlπa

2
l

−nlπa2
l 0

]
, 0, . . . , 0

)
·QT

for some Q ∈ On, 1 ≤ l ≤ [n2 ], a1, . . . , al ∈ R, and some distinct n1, . . . , nl ∈
N such that 4n1π

2a2
1 + · · ·+ 4nlπ2a2

l ≤ 1. On the other hand, B2 is

B2 =
{
Q · diag

([
0 πa2

1

−πa2
1 0

]
, 0, . . . , 0

)
·QT : Q ∈ On, 4π2a2

1 ≤ 1
}
.

Note that B1 �= B2 since matrices in B2 have rank at most two while the rank of
matrices in B1 can be any even number between zero and n. In other words, certain
holonomy in son can be achieved by mixed circles but not simple circles.

This example is universal for the problem studied in this section: Any other
distribution invariant with π : R

n+k → R
n specified by a form β with nontrivial

constant coefficients is induced fromH in this example by a linear transformation R
n⊕

son → R
n+k that leaves R

n invariant and properly transforms son to R
k. Therefore,

as an alternative it suffices to prove Lemma 5 for B1 and B2 in this particular example
only, since convexity is preserved by linear transformations.

Theorem 1 then follows easily from Lemma 5. In fact, Problem 3 is equivalent to
finding max{F(h) : h ∈ B0} = max{F(h) : h ∈ B1}. By Lemma 5 and the convexity
of F , max{F(h) : h ∈ B1} = max{F(h) : h ∈ B2}. So there is at least a simple circle
solution to Problem 3. Since solutions to Problem 2 are scaled versions of solutions
to Problem 3, this proves Theorem 1.
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Remark 4. For the above reasoning to hold, we only need F to be quasi convex
instead of convex (a function f : S → R defined on a convex subset of R

n is called
quasi convex if each of its sublevel sets of the form {x : f(x) < a} is convex for a ∈ R).
However, these two properties are equivalent due to the linearity of F along rays.

Now consider Problem 3. By Theorem 1, there is a solution of the form

(3.3) c(t) =
1
2π

[(1− cos(2πt))u+ sin(2πt)v]

for a pair of orthonormal vectors u and v in R
n. For c given by (3.3), direct compu-

tation shows that h(c) = 1
4πβ(u, v); thus

(3.4) F [h(c)] =
F [β(u, v)]

4π
.

So to solve Problem 3 it suffices to find the pair (u, v) that maximizes F [β(u, v)].
In the following, we will outline the procedures to determine the simple circle

solutions in the cases when F is linear and when F is a norm.

3.1. Solution circles when F is linear. In this section, we briefly outline
the procedure for finding the solution circles when F is a linear function. Such a
procedure is well known in the literature and we include it here for completeness.
Suppose that F(h) = ρTh is linear for some constant ρ ∈ R

k. Then

F [β(u, v)] = ρTβ(u, v) = uTZ0v,

where Z0 is the skew-symmetric matrix defined by

Z0 =

⎡
⎢⎣

2ρTβ11 · · · 2ρTβ1n

...
...

...
2ρTβn1 · · · 2ρTβnn

⎤
⎥⎦ .

Denote by σ1(Z0) the largest singular value of Z0. Then it is a well-known fact in
linear algebra that the orthonormal u and v that maximize uTZ0v must be the left
and right singular vectors of Z0 corresponding to the singular value σ1(Z0), i.e.,

(3.5) Z0u = σ1(Z0)v, Z0v = −σ1(Z0)u.

Together, u and v span a two-dimensional subspace of R
n invariant under Z0. A

solution to Problem 3 is then given by (3.3). A solution to Problem 2 is a scaled
version of (3.3). These solutions are well known for the microorganism swimming
problem, for example, in [22] where R

k = R
3 is the space of translations of the micro-

organism and ρ is aligned with the positive z-axis.
Note that (u, v) satisfying (3.5) is in general not unique for two reasons: Z0 could

have multiple singular values equal to σ1(Z0); and even if this is not the case, a
rotation of u and v within the plane they span will yield a new orthonormal pair
satisfying (3.5). As a result, any simple circle of unit energy through the origin and
contained in an invariant plane of Z0 corresponding to σ1(Z0) will solve Problem 3.

3.2. Solution circles when F is a norm. Suppose that F = ‖ · ‖ is a norm
on R

k. Finding the optimal circle is considerably more difficult in this case. In this
section, we will propose a novel procedure, Algorithm 1, to determine the orthonormal
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pair (u, v) that maximizes F [β(u, v)] = ‖β(u, v)‖. A solution to Problem 3 is then
given by a simple circle contained in the plane spanned by u and v.

First of all, for each p = 1, . . . , k, define Zp as the skew-symmetric matrix

Zp �

⎡
⎢⎣

2βp11 · · · 2βp1n
...

...
...

2βpn1 · · · 2βpnn

⎤
⎥⎦ ,

where βpij is the pth component of βij ∈ R
k, 1 ≤ i, j ≤ n. Let σ1(Zp) be the largest

singular value of Zp, and let (up, vp) be a pair of left and right singular vectors of Zp

corresponding to σ1(Zp).
The solution is simple when ‖ · ‖ is the L1- or L∞-norm. So we will simply point

out the results. If F is the L∞-norm, the pair (u, v) that maximizes ‖β(u, v)‖ is
the pair (up, vp) for a p with the largest σ1(Zp). If F is the L1-norm, then define
A � {±Z1 ± Z2 ± · · · ± Zk}, and choose a Z ∈ A with the largest σ1(Z). The pair
(u, v) that maximizes ‖β(u, v)‖ is then given by a pair of left and right singular vectors
of Z corresponding to σ1(Z).

In the rest of this section we focus on the more interesting case where ‖ · ‖ is the
L2-norm. In this case, since β is antisymmetric, the pair (u, v) maximizing ‖β(u, v)‖
subject to ‖u‖ = ‖v‖ = 1 will automatically be orthogonal. So we might as well drop
the orthogonality constraint. Write

‖β(u, v)‖2 =
k∑
p=1

(uTZpv)2 = uT

(
k∑
p=1

ZpvvT (Zp)T

)
u = vT

(
k∑
p=1

(Zp)TuuTZp

)
v.

Therefore, to maximize ‖β(u, v)‖ under the constraint that ‖u‖ = ‖v‖ = 1, we need
the following conditions:

(i) u is an eigenvector of
∑k

p=1 Z
pvvT (Zp)T for its largest eigenvalue;

(ii) v is an eigenvector of
∑k
p=1(Z

p)TuuTZp for its largest eigenvalue.
These two conditions hint at the following iterative algorithm.

Algorithm 1. Choose some initial u and v in R
n such that ‖u‖ = ‖v‖ = 1.

1. Let u be a unit eigenvector of
∑k
p=1 Z

pvvT (Zp)T for its largest eigenvalue.

2. Let v be a unit eigenvector of
∑k
p=1(Z

p)TuuTZp for its largest eigenvalue.
3. Repeat steps 1 and 2 until some convergence criteria is satisfied, for example,

when the changes in u, v in consecutive steps are below a given threshold.
The value of ‖β(u, v)‖ increases with each iteration, and, barring the occurrence

of cycles, u and v will converge to a pair satisfying conditions (i) and (ii). However, as
these are only necessary conditions, the convergence property to the global solutions
is still an issue to be resolved.

Remark 5. Bounds on max{‖β(u, v)‖ : ‖u‖ = ‖v‖ = 1} can be obtained as
follows. For each p = 1, . . . , k, let the column vectors of Zp from left to right
be stacked from top to bottom into a single column vector zp ∈ R

n2
. In addi-

tion, for u = (u1, . . . , un) and v = (v1, . . . , vn) in R
n, denote by u ⊗ v the vector

(u1v1, . . . , u1vn, . . . , unv1, . . . , unvn) ∈ R
n2

. Then zT
p (u⊗ v) = uTZpv, and

β(u, v) =

⎡
⎢⎣
uTZ1v

...
uTZkv

⎤
⎥⎦ =

⎡
⎢⎣
zT
1 (u⊗ v)

...
zT

k (u⊗ v)

⎤
⎥⎦ = Z(u⊗ v),
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where Z ∈ R
k×n2

is defined by Z =
[
z1 · · · zk

]T . Since u ⊗ v is a unit vector in
R
n2

for unit u, v, we have

(3.6) ‖β(u, v)‖ = ‖Z(u⊗ v)‖ ≤ σ1(Z).

In general, {u ⊗ v : ‖u‖ = ‖v‖ = 1} is a proper subset of the unit sphere in R
n2

.
So the bound (3.6) is not strict. By rearranging Zp in different ways, we can obtain
other bounds similar to (3.6). See [9] for more on the singular value decomposition of
multilinear tensors.

In the case when the base space has dimension three, i.e., when n = 3, the solution
is especially simple. In fact, for each p = 1, . . . , k, since Zp ∈ R

3×3 is skew-symmetric,
we can find zp ∈ R

3 such that Zpv = v × zp for all v ∈ R
3. Here × denotes the cross

product of vectors in R
3. Therefore,

β(u, v) =

⎡
⎢⎣
uTZ1v

...
uTZkv

⎤
⎥⎦ =

⎡
⎢⎣
uT (v × z1)

...
uT (v × zk)

⎤
⎥⎦ =

⎡
⎢⎣
zT
1 (u × v)

...
zT

k (u × v)

⎤
⎥⎦ = Z(u × v),(3.7)

where Z ∈ R
k×3 is defined by Z �

[
z1 · · · zk

]T . Note that the set of u× v for unit
u and v is exactly the unit ball in R

3. Therefore,

‖β(u, v)‖ = ‖Z(u× v)‖ ≤ σ1(Z),

with exact equality achieved by any orthonormal pair u and v with u× v = w, where
w ∈ R

3 is a unit right singular vector of Z corresponding to σ1(Z).

4. Higher rank case. Solving Problems 2 and 3 in the higher rank case is much
more difficult than in the rank two case, as analytic characterization of solutions is in
general not available. In this section, however, we shall study a special class of higher
rank problems for which analytical characterization is possible. The result will then
be applied in section 5 to the linked-mass system in section 1.1.

Consider the following codimension one distribution H on R
3 with base space R

2.
The forms α and β specifying H as in (2.4) and (2.6) are, respectively,

(4.1) α = xr1dx2, β = rxr−1
1 dx1 ∧ dx2,

for some integer r ≥ 2. When r = 2, this distribution is called the Martinet distribu-
tion and has been well studied in the subriemmanian geometry and optimal control
literature (see, e.g., [1, 15]). By Lemma 2, the rank of H at the origin is r + 1. Sup-
pose that the metric 〈·, ·〉H is obtained by lifting the standard metric on R

2, and that
F : R→ R is the identity map. So Assumption 1 in section 2.4 is satisfied.

For a loop c in R
2 based at 0 enclosing a surface S, h(c) =

∫
c x

r
1dx2 =

∫
S rx

r−1
1 dx1∧

dx2. Problem 2 then reduces to the following:

(4.2) Find c with
∫
c

xr1dx2 = 1 that minimize E(c).

Lemma 6. There is a solution c to problem (4.2) such that
1. c is contained exclusively in the closed right half plane;
2. c has no self-crossing and encloses a convex region S;
3. S is symmetric with respect to the x1-axis.
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To prove each claim one shows that for a loop c not satisfying the condition, a
better loop can be obtained by properly transforming c. As an example, for claim
2 one can “flip” outside a certain segment of a nonconvex c contained strictly in its
convex hull to obtain a loop with the same energy but a larger holonomy. We omit
the proof here.

Let c be a solution to problem (4.2) satisfying the conditions in Lemma 6. Because
of the symmetry, it suffices to study the first half of c only, which starts from the origin
at time 0, follows the graph of a convex function f below the x1-axis during [0, 1/2],
and reaches a point (a, 0) with a > 0 on the x1-axis at time 1/2. Such a c = (x1, x2)
must solve the following optimal control problem:

Minimize
1
2

∫ 1
2

0

(u2
1 + u2

2) dt(4.3)

subject to

⎧⎪⎨
⎪⎩
ẋ1 = u1, x1(0) = 0, x1(1

2 ) = a,

ẋ2 = u2, x2(0) = 0, x2(1
2 ) = 0,

ẋ3 = xr1u2, x3(0) = 0, x3(1
2 ) = 1

2 .

Note that a is a parameter to be determined later so that ẋ1(1
2 ) = 0; thus the two

halves of c can be pieced together smoothly. The boundary condition x3(1
2 ) = 1

2 is
imposed to ensure that

∫
c x

2
1dx2 = 1.

Define the Hamiltonian as follows:

H(λ1, λ2, λ3, x1, x2, x3) =
u2

1 + u2
2

2
+ λ1u1 + λ2u2 + λ3x

r
1u2.

By the maximum principle [19], u1, u2 for the optimal solution can be determined as

u1 = argminu1
H = −λ1,(4.4)

u2 = argminu2
H = −λ2 − λ3x

r
1,(4.5)

while λi, i = 1, 2, 3, satisfy

λ̇1 = − ∂H
∂x1

= −rλ3x
r−1
1 u2, λ̇2 = − ∂H

∂x2
= 0, λ̇3 = − ∂H

∂x3
= 0.

Thus λ2 and λ3 are constant. Their signs can be determined as λ2 ≥ 0 and λ3 < 0.
In fact, at time t = 0 in (4.5), we have x1 = 0; hence −λ2 = u2(0) = ẋ2(0) ≤ 0
by our assumption that the curve f is below the x1-axis during [0, 1/2], i.e., λ2 ≥ 0.
Denote by τ ∈ (0, 1

2 ) the time when x2 achieves its minimum during [0, 1
2 ]. Thus,

ẋ2(τ) = −λ2 − λ3x
2
1(τ) = 0, which is possible only if λ3 ≤ 0. Moreover, λ3 �= 0, for

otherwise ẋ2 = u2 = −λ2 is constant zero, an obvious contradiction.
Note that ẍ1 = u̇1 = −λ̇1 = rλ3x

r−1
1 u2 = −rλ3x

r−1
1 (λ2 + λ3x

r
1). Hence,

d(ẋ2
1) = 2ẍ1dx1 = −2rλ3x

r−1
1 (λ2 + λ3x

r
1)ẋ1 = −d(λ2 + λ3x

r
1)

2.

The integrability of the above equation is a key result that can greatly reduce the
complexity of solving the optimal control problem (4.3). After integration, we obtain

ẋ2
1 = λ2

3C
2 − (λ2 + λ3x

r
1)

2

for some constant C > 0. Therefore,

(4.6) ẋ1 = −λ3

√
C2 − (λ2/λ3 + xr1)2.
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Note that |C| ≥ λ2/λ3, for otherwise ẋ1 is not defined at time 0. Since x1 = a and
ẋ1 = 0 at time t = 1

2 , a can be determined as

(4.7) a = (C − λ2/λ3)1/r.

The graph of the function f that c follows during [0, 1
2 ] can be derived directly.

Dividing ẋ2 = u2 = −(λ2 + λ3x
r
1) by (4.6), we have

(4.8)
dx2

dx1
=

λ2/λ3 + xr1√
C2 − (λ2/λ3 + xr1)2

, 0 ≤ x1 ≤ a.

Integrating the above equation with respect to x1 will yield x2 as a function of x1 ∈
[0, 1

2 ], namely, the graph of the function f . It remains to determine the unknown
parameters λ2/λ3 and C in (4.7). The boundary conditions x2(1

2 ) = 0 and x3(1
2 ) = 1

2
imply, respectively, that ∫ a

0

λ2/λ3 + xr1√
C2 − (λ2/λ3 + xr1)2

dx1 = 0,(4.9)

∫ a

0

xr1(λ2/λ3 + xr1)√
C2 − (λ2/λ3 + xr1)2

dx1 =
1
2
.(4.10)

The procedures to determine λ2/λ3 and C satisfying the above conditions are as
follows:

1. Choose any fixed λ2/λ3, say, λ2/λ3 = κ0 < 0.
2. Find C so that (4.9) is satisfied, say, C = C0. Note that a in (4.9) is deter-

mined by (4.7).
3. Use κ0 and C0 in (4.7) to compute an a, say, a = a0.
4. Use κ0, C0, and a0 in (4.8) to integrate for a function x2 = g(x1) on [0, a0].

The function g obtained so far is in general not the desired function f , since
constraint (4.10) may not be satisfied. However, f can be obtained from g
by a proper scaling. In fact, define

μ =
[
2
∫ a0

0

xr1(κ0 + xr1)√
C2

0 − (κ0 + xr1)2
dx1

]1/(r+1)

.

5. Define a function f by f(x1) = g(μx1)/μ for x1 ∈ [0, a0/μ].
It can be verified that the obtained f satisfies (4.9) and (4.10) for λ2/λ3 = κ0μ

−r and
C = C0μ

−r and is indeed the desired function whose graph c follows during [0, 1
2 ]. If

one is interested only in the shape, not the scale, of the solution to problem (4.2),
then the last step can be skipped.

Remark 6. The time parameterization of c is recovered using the fact that c has
constant speed along the graph of f on [0, 1

2 ]. Alternatively, by (4.6),

t = Φ(x1) �
∫ x1

0

dx1

−λ3

√
C2 − (λ2/λ3 + xr1)2

, 0 ≤ x1 ≤ a.

Note that Φ(x1) is a strictly increasing function satisfying Φ(a) = 1
2 . Once the

function Φ(x1) is determined, x1 is determined as x1 = Φ−1(t).
Figure 4.1 plots the solution loops to problem (4.3) obtained from the above

procedure for the case r = 2, 4, 10. In particular, in the Martinet distribution case
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Fig. 4.1. Solution loops to problem (4.3) when r = 2 (left), r = 4 (middle), r = 10 (right).

(r = 2), the solution loop is part of the trajectory of a charged particle moving on
R

2 in a magnetic field B with linear components and direction perpendicular to the
plane (see the more complete plot of the motion in Figure 2.2 of Alfven’s book [2,
p. 15]). The trajectory is called the grad B drift since it exhibits an overall drift
orthogonal to the direction grad |B|. Indeed, much more has been known for the
Martinet distribution: for example, its unit subriemannian sphere around the origin
has been characterized and plotted using elliptic integrals in [1]. That the equation
governing the solution loops is integrable in the r = 2 case has also been pointed out
previously in [23].

5. A three-segment linked-mass system. We now return to the motivating
example in section 1 and consider the case with n = 2. So the linked-mass system
consists of four nodes, and three links whose orientations are given by the angles θi,
i = 1, 2, 3. The configuration space is T

3, with a riemannian metric given by (1.6),
where

Δ = (Δij)3i,j=1 =
1
4

⎡
⎣3 2 1
2 4 2
1 2 3

⎤
⎦ .

By (1.8), the codimension one distribution H is the kernel of the one-form

ω =
3∑

i,j=1

Δij cos(θi − θj)dθj .

Suppose now that the linked-mass system is at the initial configuration q corre-
sponding to θ1 = θ2 = θ3 = 0; i.e., the three segments of the system are all aligned in
the positive horizontal direction. To compute the rank at q, we perform the following
coordinate transformation in a neighborhood of q:

(5.1)

⎡
⎣φ1

φ2

φ3

⎤
⎦ =

⎡
⎢⎣−

√
5

3
2
√

5
3 −

√
5

3

−1 0 1
1 1 1

⎤
⎥⎦
⎡
⎣θ1θ2
θ3

⎤
⎦ ,

⎡
⎣θ1θ2
θ3

⎤
⎦ =

⎡
⎢⎢⎣
−

√
5

10 − 1
2

1
3√

5
5 0 1

3

−
√

5
10

1
2

1
3

⎤
⎥⎥⎦
⎡
⎣φ1

φ2

φ3

⎤
⎦ .

The choice of such a transformation serves several purposes. First, φ3 = θ1 + θ2 + θ3
is the direction along the fibers of T

3 under the action of T as described in section 1.
Second, the plane Π spanned by the φ1 and φ2 axes is transversal to the φ3 axis, and
hence can be regarded as the shape space, at least locally around the origin. Third,
the projection dπ : Hq → T(0,0)Π is an isometry if Π is equipped with the canonical
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Euclidean metric with respect to the coordinates (φ1, φ2). So no further change of
coordinates within Π is needed.

In the new coordinates, q corresponds to the origin φ1 = φ2 = φ3 = 0, and

4ω
= 3dθ1 + 2C12dθ2 + C13dθ3 + 2C12dθ1 + 4dθ2 + 2C23dθ3 + C13dθ1 + 2C23dθ2 + 3dθ3

=
√

5
5

(1 + C12 + C23 − C13)dφ1 + (C23 − C12)dφ2 +
2
3
(5 + 2C12 + 2C23 + C13)dφ3,

where C12, C23, C13 are defined by

C12 � cos(θ1 − θ2) = cos
(

3
√

5
10

φ1 +
1
2
φ2

)
,

C23 � cos(θ2 − θ3) = cos
(

3
√

5
10

φ1 −
1
2
φ2

)
,

C13 � cos(θ1 − θ3) = cosφ2.

From the above equations, the kernel of ω is the same as the kernel of

Θ = − 3(C12 − C23)
2(5 + 2C12 + 2C23 + C13)

dφ1 +
3(1 + C12 + C23 − C13)

2
√

5(5 + 2C12 + 2C23 + C13)
dφ2 + dφ3,

which is of the standard form (2.1). Note that C12, C23, C13 are independent of φ3,
as the distribution H is invariant to the bundle structure π : (φ1, φ2, φ3) �→ (φ1, φ2).

The form α defined in (2.4) is given by

α = − 3(C12 − C23)
2(5 + 2C12 + 2C23 + C13)

dφ1 +
3(1 + C12 + C23 − C13)

2
√

5(5 + 2C12 + 2C23 + C13)
dφ2

=
3 sin(3

√
5

10 φ1) sin(1
2φ2)

5 + 4 cos(3
√

5
10 φ1) cos(1

2φ2) + cosφ2

dφ1

+
3(1 + 2 cos(3

√
5

10 φ1) cos(1
2φ2)− cosφ2)

2
√

5(5 + 4 cos(3
√

5
10 φ1) cos(1

2φ2) + cosφ2)
dφ2,

and β = dα = f(φ1, φ2)dφ1 ∧ dφ2, where f(φ1, φ2) is given by

f(φ1, φ2)

=
−3 sin(3

√
5

10 φ1)

5(5 + 4 cos(3
√

5
10 φ1) cos(1

2φ2) + cosφ2)

×
{

4 cos
(

1
2
φ2

)
+

cos(3
√

5
10 φ1)[10 sin2(1

2φ2)− 6 cos2(1
2φ2)] + 4 sin2(1

2φ2) cos(1
2φ2)

5 + 4 cos(3
√

5
10 φ1) cos(1

2φ2) + cosφ2

}
.

(5.2)

One can verify that

f(0, 0) = 0,
∂f

∂φ1
(0, 0) = − 51

250
�= 0,

∂f

∂φ2
(0, 0) = 0.

As a result of Lemma 2, the rank at q is three.
Suppose that the test function F : R → R is the identity map. To find the

asymptotically optimal loop c based at q in the plane Π solving Problem 1, we can
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replace β by its first order approximate − 51
250φ1dφ1 ∧ dφ2, which is exactly of the

form (4.1) with r = 2. Thus the results in section 4 can be applied directly here.
In particular, the optimal loop c is computed in section 4 and plotted in Fig-

ure 4.1 with coordinates x1 = φ1 and x2 = φ2. Horizontally lifting c in Π to a curve
γ based at q in the (φ1, φ2, φ3) coordinates, transforming γ back to the (θ1, θ2, θ3)
coordinates using transformation (5.1), and finally, using (1.4) and (1.5), we obtain
an asymptotically most efficient motion for the linked-mass system starting from the
initially aligned position. Figure 5.1 shows the snapshots of the motions obtained
numerically at equally spaced time instances. Note that a relatively large scale of c
is chosen in the plots to make this asymptotic motion more obvious.

Remark 7. By (5.2), in a neighborhood of the origin in the (φ1, φ2) coordinates,
β = 0 if and only if φ1 = 0, i.e., if and only if θ1 + θ3 − 2θ2 = 0. The rank is three
at points satisfying this condition and is two otherwise. As a result, when the system
starts from a shape close to the aligned one, in the asymptotic sense it is more difficult
to turn if its initial position is such that θ1 + θ3 − 2θ2 = 0.
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Fig. 5.1. Snapshots of the linked-mass system turning.
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6. Extension to principal bundles. Due to their asymptotic nature, our re-
sults can be easily generalized to more complicated spaces such as principal bundles,
as is described briefly in the following. For a Lie group G with Lie algebra g, a
principal G-bundle π : Q → M is a fiber bundle whose structural group G acts
freely and transitively on each fiber from the right. So each fiber is a copy of G,
and the vertical space Vq =im(σq) at each q ∈ Q can be identified with g via the
map σq : ξ ∈ g �→ q · ξ ∈ TqQ. A connection form Θ on Q is a g-valued one-form
with kerΘq ⊕ Vq = TqQ and Θq ◦ σq =idg for all q ∈ Q. Thus H � kerΘ defines a
horizontal distribution on Q invariant under the action of G. The holonomy h(c) of
a loop c in M based at m can be identified as an element of G and is determined up
to a conjugacy class in G when varying the base point q of the horizontal lift [18].

Suppose that 〈·, ·〉H is a subriemannian metric on H invariant under the action
of G. Such 〈·, ·〉H is obtained by lifting a riemannian metric 〈·, ·〉M on M . For a
loop c in M based at m, we can define the rank rq(m) ∈ N and the asymptotic
holonomy ηq(c) ∈ g such that h(cε) ∼ ηq(c)[L(cε)]rq(m) as ε → 0. Here the scaled
loop cε is defined by identifying M locally around m with an open subset of R

n via a
coordinate map, for example, the inverse of the exponential map exp : TmM →M . It
is easy to see that both rq(m) and ηq(c) are independent of the choice of the coordinate
maps; thus they are well defined. A test function is a map F : g → R. For example,
F can be the inertial tensor F(ξ) = 〈σq(ξ), σq(ξ)〉Q for all ξ ∈ g for some metric 〈·, ·〉Q
on Q that restricts to 〈·, ·〉H on H.

With the above notions, we can define the asymptotic holonomic efficiency prob-
lem on principal bundles. In a neighborhood of q, Q and R

n⊕g are the same in terms
of computing asymptotic holonomy. For example, when the distribution is of rank two
at a point m ∈M , it can be proved similarly as in Theorem 1 that the optimal loop
c is a circle in a plane spanned by two tangent vectors um, vm in TmM . Finding the
optimal circle then becomes the problem of finding these two tangent vectors um and
vm that maximizes a sectional curvature-like term F [β(um, vm)] as in (3.4). In the
higher rank case, however, finding the optimal solutions is a much more challenging
problem.

Finally, in terms of infinitesimal deformations, the general case when G is non-
abelian looks exactly the same locally as the abelian case. Therefore, our results can
be extended to the general nonabelian case without added difficulty [21].

Appendix. Computation of the metric on T
n+1. Plugging (1.4) into (1.5),

we have

qi =
1

n+ 2

i−1∑
j=1

j(cos θj , sin θj)T − 1
n+ 2

n+1∑
j=i

(n+ 2− j)(cos θj , sin θj)T .(A.1)

As a result, the tangent vector ∂
∂θl

at each point of T
n+1 is pushed forward by the

embedding defined by (1.4) and (1.5) to a tangent vector in R
2n+4:

∂q

∂θl
=

⎡
⎣−n+ 2− l

n+ 2
(− sin θl, cos θl)︸ ︷︷ ︸

repeated l times

l

n+ 2
(− sin θl, cos θl)︸ ︷︷ ︸

repeated n+ 2 − l times

⎤
⎦

T

∈ R
2n+4.(A.2)

The metric on T
n+1 can be derived from the standard metric on R

2n+4 as 〈 ∂∂θi
, ∂
∂θj
〉 =(

∂q
∂θi

)T ·( ∂q∂θj

)
. Using (A.2), we can easily verify that 〈 ∂∂θi

, ∂
∂θj
〉 = i(n+2−j)

n+2 cos(θi−θj)
if i < j and 〈 ∂∂θi

, ∂
∂θj
〉 = (n+2−i)j

n+2 cos(θi − θj) if i ≥ j.
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FINITE HORIZON OPTIMAL INVESTMENT AND CONSUMPTION
WITH TRANSACTION COSTS∗
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Abstract. This paper concerns continuous-time optimal investment and the consumption de-
cision of a constant relative risk aversion (CRRA) investor who faces proportional transaction costs
and a finite time horizon. In the no-consumption case, it has been studied by Liu and Loewenstein
[Review of Financial Studies, 15 (2002), pp. 805–835] and Dai and Yi [J. Differential Equations,
246 (2009), pp. 1445–1469]. Mathematically, it is a singular stochastic control problem whose value
function satisfies a parabolic variational inequality with gradient constraints. The problem gives
rise to two free boundaries which stand for the optimal buying and selling strategies, respectively.
We present an analytical approach to analyze the behaviors of free boundaries. The regularity of
the value function is studied as well. Our approach is essentially based on the connection between
singular control and optimal stopping, which is first revealed in the present problem.

Key words. optimal investment and consumption, transaction costs, finite horizon, free bound-
aries, variational inequality, gradient constraints, singular stochastic control
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1. Introduction. This paper concerns continuous-time optimal investment and
the consumption decision of a constant relative risk aversion (CRRA) investor who
faces a finite horizon and proportional transaction costs. In the absence of transaction
costs, Merton (1971) has shown that the optimal strategy is to keep a constant fraction
of total wealth in each asset and to consume at a rate proportional to wealth. Such
a strategy leads to incessant trading, which is impracticable in a real market with
transaction costs.

Magill and Constantinides (1976) introduced proportional transaction costs to
Merton’s model. They provided a fundamental insight that there exists a no-trading
region and that trading only takes place along the boundary of the no-trading region.
Davis and Norman (1990) first formulated the problem as a free boundary problem,
where the boundary of the no-trading region is the so-called free boundary. They
then studied the properties of the free boundary that reflect the optimal strategy. In
terms of a viscosity solution approach, Shreve and Soner (1994) entirely characterized
the behaviors of the free boundary. Akian, Menaldi, and Sulem (1996) considered an
extension to the case of multiple risky assets. Janeček and Shreve (2004) presented an
asymptotic expansion of the associated value function and obtained some asymptotic
results on the free boundary. All of these works were confined to infinite horizon
problems.
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It is challenging to take the finite horizon case into consideration since the corre-
sponding free boundary (optimal strategy) varies with time. Theoretical analysis on
the finite horizon problem became possible only very recently. For example, Liu and
Loewenstein (2002) examined the optimal strategy by virtue of a sequence of analyt-
ical solutions that converge to the solution of the finite horizon optimal investment
problem with transaction costs. Dai and Yi (2009) considered the same problem and
derived an equivalent variational inequality by which they completely figured out the
optimal strategy. Dai, Xu, and Zhou (2007) extended the idea of Dai and Yi (2009)
to the continuous-time mean-variance analysis with transaction costs.

So far, the study of the finite horizon problems has been limited to the no-
consumption case. In this paper, we will take into account investment and con-
sumption together with finite horizon and transaction costs, and aim to characterize
the optimal strategy. Let us first look at the problem formulation.

1.1. Problem formulation. We consider a continuous-time market in which
there are only two investment instruments: a bank account and a stock with price
dynamics given, respectively, by

dP0t = rP0tdt,

dP1t = P1t [αdt+ σdBt] .

Here r > 0, α > r, and σ > 0 are constants, and the process {Bt; t ∈ [0, T ]} is
a standard one-dimensional Brownian motion on a filtered probability space

(
S,F ,

{Ft}t∈[0,T ], P
)

with B0 = 0 almost surely. We assume that the filtration {Ft}t∈[0,T ] is
generated by the Brownian motion and is right-continuous, and that each Ft contains
all P -null sets of F .

Assume that a CRRA investor holds Xt and Yt in bank and stock, respectively,
expressed in monetary terms. In the presence of transaction costs, the equations
describing their evolution are

dXt = (rXt − Ct) dt− (1 + λ)dLt + (1 − μ)dMt,(1.1)
dYt = αYtdt+ σYtdBt + dLt − dMt,(1.2)

where Ct ≥ 0 is the consumption rate, Lt and Mt are right-continuous (with left-hand
limits), nonnegative, and nondecreasing {Ft}t∈[0,T ]-adapted processes with L0 =
M0 = 0, representing cumulative dollar values for the purpose of buying and sell-
ing stock, respectively. The constants λ ∈ [0,∞) and μ ∈ [0, 1) appearing in these
equations account for proportional transaction costs incurred on purchase and sale of
stock, respectively, and λ+ μ > 0.

Without loss of generality,1 we always assume Yt > 0. Due to transaction costs,
the investor’s net wealth in monetary terms at time t is

Wt = Xt + (1− μ)Yt for Yt > 0.

Since it is required that the investor’s net wealth be positive, the solvency region is
defined as

S =
{
(x, y) ∈ R2 : x+ (1 − μ)y > 0, y > 0

}
.

1Given α > r, it can be shown that a short position in stock is never optimal. A brief discussion
is located in Appendix B. So, we need only consider Yt ≥ 0. Thanks to continuity, we can confine
ourselves to Yt > 0.
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Assume that the investor is given an initial position (x, y) ∈ S at time 0. An
investment and consumption strategy (L,M,C) is admissible for (x, y) starting from
time s ∈ [0, T ) if (Xt, Yt) given by (1.1)–(1.2) with Xs = x and Ys = y is in S for all
t ∈ [s, T ]. We let As(x, y) be the set of admissible investment strategies starting from
time s.

The investor’s problem is to choose an admissible strategy so as to maximize the
expected utility of accumulative consumptions and terminal wealth,

(1.3) sup
(L,M,C)∈A0(x,y)

Ex,y0

[∫ T

0

e−βsU (Cs) ds+ e−βTU(WT )

]

subject to (1.1)–(1.2). Here β > 0 is the discounting factor, Ex,yt denotes the condi-
tional expectation at time t given that initial endowment Xt = x, Yt = y, and the
utility function is taken as2

U(W ) =
W γ

γ
for 0 < γ < 1.

Problem (1.3) is a singular stochastic control problem for state processes Xt and
Yt due to controls that are allowed to be discontinuous. Let us define the value
function by

ϕ(x, y, t) = sup
(L,M,C)∈At(x,y)

Ex,yt

[∫ T

t

e−β(s−t)U (Cs) ds+ e−β(T−t)U(WT )

]
,

(x, y) ∈ S , t ∈ [0, T ).

It turns out that ϕ(x, y, t) satisfies the following Hamilton–Jacobi–Bellman equation
(cf. Shreve and Soner (1994), Lai and Lim (2003), and Fleming and Soner (2006)):

min {−∂tϕ−Lϕ,−(1 − μ)∂xϕ+ ∂yϕ, (1 + λ)∂xϕ− ∂yϕ} = 0,
(x, y) ∈ S , t ∈ [0, T ),

(1.4)

with the terminal condition

(1.5) ϕ(x, y, T ) = U (x+ (1− μ)y) ,

where

Lϕ =
1
2
σ2y2∂yyϕ+ αy∂yϕ+ rx∂xϕ− βϕ+

1− γ
γ

(∂xϕ)−
γ

1−γ .

Making use of the homotheticity of the utility function, it follows that for any
positive constant ρ,

ϕ(ρx, ρy, t) = ργϕ (x, y, t) .

This inspires us to make a transformation

(1.6) V

(
x

y
, τ

)
≡ ϕ

(
x

y
, 1, t

)
=

1
yγ
ϕ(x, y, t) and τ = T − t.

2Problem formulation with log utility (γ = 0) is presented in Appendix A. The corresponding
PDE problem is relatively easy to handle. Note that a CRRA utility also allows γ < 0, in which case
we meet a technical difficulty. See Remark 2.2.
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The governing equation for V (·, ·) is given by

(1.7)

⎧⎪⎪⎨
⎪⎪⎩

min
{
∂τV − L1V − 1−γ

γ (∂xV )−
γ

1−γ ,

−(x+ 1− μ)∂xV + γV, (x+ 1 + λ)∂xV − γV
}

= 0,
V (x, 0) = 1

γ (x+ 1− μ)γ , − (1− μ) < x < +∞, 0 < τ ≤ T,

where

L1V ≡
1
2
σ2x2∂xxV + β2x∂xV + γβ1V − βV

with β2 = −
(
α− r − (1− γ)σ2

)
, β1 = α− 1

2 (1− γ)σ2.
Except for the temporal term and terminal condition, problem (1.7) is analogous

to that in Davis and Norman (1990) or Shreve and Soner (1994). It can be shown
that the problem has a unique viscosity solution (cf. Davis, Panas, and Zariphopoulou
(1993), Shreve and Soner (1994), and Fleming and Soner (2006)).

1.2. Gradient constraints. Similar to Dai and Yi (2009), we make use of the
transformation w(x, τ) = 1

γ ln(γV ) to reduce problem (1.7) to a parabolic variational
inequality with gradient constraints:

Problem A.{
min

{
∂τw − L2w − 1−γ

γ (ew∂xw)−
γ

1−γ , 1
x+1−μ − ∂xw, ∂xw −

1
x+1+λ

}
= 0,

w(x, 0) = ln (x+ 1− μ) , − (1− μ) < x < +∞, 0 < τ ≤ T.

Here

L2w =
1
2
σ2x2

(
∂xxw + γ (∂xw)2

)
+ β2x∂xw + β1 −

1
γ
β.

Problem A gives rise to two free boundaries that correspond to the optimal buying
and selling strategies. So, our main purpose is to investigate the behaviors of the
free boundaries.3 In addition, we are interested in the regularity of the solution to
Problem A.

PDE problems related to Problem A (variational inequalities with gradient con-
straints) have been studied by many researchers, including Evans (1979), Wiegner
(1981), Ishii and Koike (1983), Hu (1986), Soner and Shreve (1991), and Zhu (1992).
It can be shown that the solution to this type of problem belongs to W 1

p ∩ W 2
p,loc,

1 ≤ p <∞ (in the spatial direction). This regularity turns out to be sharp in the ab-
sence of convexity. But the present problem does have the convexity. Indeed, Shreve
and Soner (1994) and Dai and Yi (2009) have obtained C2 smoothness (in the spatial
direction) for the infinite horizon case and the no-consumption case, respectively. We
will show that it is still true for the present problem. However, the viscosity solution
approach adopted by Shreve and Soner (1994) seems unable to deal with the present
time-dependent problem. On the other hand, it is intractable to study the properties
of free boundaries directly from Problem A. Hence, we will follow Dai and Yi (2009)
to adopt an indirect approach.

3It can be shown that the optimal consumption rate C = (∂xϕ)1/(1−γ) in the no-trading region.
So, we need only concentrate on the optimal buying and selling strategies.
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1.3. Our approach and novelty. We attempt to reduce Problem A to a stan-
dard variational inequality. In what follows let us briefly introduce the idea.

As in Dai and Yi (2009), we set

v ≡ ∂xw =
1
γ

∂xV

V
.

Formally we have

∂

∂x
L2w =

1
2
σ2x2∂xxv −

(
α− r − (2− γ)σ2

)
x∂xv −

(
α− r − (1− γ)σ2

)
v

+ γσ2
(
x2v∂xv + xv2

)
≡ Lv(1.8)

and

∂

∂x

(
−1− γ

γ
(ew∂xw)−

γ
1−γ

)
= (eγwv)−

1
1−γ

(
v2 + ∂xv

)
≡ Lwv.(1.9)

Then we postulate that v is the solution to the following standard variational inequal-
ity, also called the double obstacle problem:{

min
{
max

{
∂τv − Lv + Lwv, v − 1

x+1−μ
}
, v − 1

x+1+λ

}
= 0,

v(x, 0) = 1
x+1−μ ,

or, equivalently,

(1.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τv − Lv + Lwv = 0 if 1
x+1+λ < v < 1

x+1−μ ,
∂τv − Lv + Lwv ≤ 0 if v = 1

x+1−μ ,
∂τv − Lv + Lwv ≥ 0 if v = 1

x+1+λ ,

v(x, 0) = 1
x+1−μ

in − (1 − μ) < x < +∞, 0 < τ ≤ T . Here 1
x+1+λ and 1

x+1−μ stand for lower and
upper obstacles, respectively. It is worth pointing out that Lv is degenerate on x = 0.
Compared with Dai and Yi (2009), (1.10) has an additional term Lwv which will
cause much technical difficulty.

It is well known that the solution to a double obstacle problem is of C1 in the
spatial direction. We immediately obtain w ∈ C2 in the spatial direction (except on
x = 0) provided that v = ∂xw satisfies (1.10). More importantly, we will see later
that it is rather straightforward to analyze the behaviors of free boundaries in terms
of problem (1.10).

Hence, the main task is to prove the equivalence between Problem A and problem
(1.10), which essentially indicates the connection between a singular control problem
and an optimal stopping problem (cf. Karatzas and Shreve (1984) and Soner and
Shreve (1991)). In the no-consumption case in which the counterpart of (1.10) does
not contain the nonlinear term Lwv, Dai and Yi (2009) first established such an
equivalence in terms of which they completely characterized the optimal buying and
selling strategies. Nevertheless, the equivalence has never been revealed for the present
problem with consumption. We would like to emphasize that it is not an easy task
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to establish the equivalence. One of the main barriers is that Lwv depends on w,
which leads problem (1.10) to not be a self-contained system. We will exploit an
auxiliary condition with which the problem (1.10) can be shown to have a solution
by the Schauder fixed point theorem and to be equivalent to Problem A. In addition,
it can be proved in the no-consumption case that Lv is hypoelliptic, which enables
us to take into account (1.10) independently in x > 0 and x < 0. However, it is no
longer true when a consumption is taken into consideration. Hence, we will have to
introduce a regularized problem in order to deal with the degeneracy of Lv on x = 0.

The rest of the paper is arranged as follows. In the next section, we take into
account the regularity of the solution to problem (1.10) with a known w(x, t). In
section 3, we derive the auxiliary condition with which problem (1.10) becomes self-
contained and has a solution by use of the regularity result obtained in section 2
and the Schauder fixed point theorem. In section 4, we make use of problem (1.10) to
investigate the behaviors of the free boundaries. Section 5 is devoted to the equivalence
between Problem A and problem (1.10) with the auxiliary condition. We conclude in
section 6.

2. The problem (1.10) with a known w(x, τ). In this section, we study
problem (1.10) with known w(x, τ) which is assumed to possess the following proper-
ties:

|w(x, τ) − ln(x + 1− μ)| ≤MT ,(2.1)
1

x+ 1 + λ
≤ ∂xw(x, τ) ≤ 1

x+ 1− μ,(2.2)

|∂τw(x, τ)| ≤M,(2.3)
w(x, 0) = ln(x+ 1− μ).(2.4)

Here M and MT are positive constants.
Notice that the initial value and the upper obstacle in (1.10) are unbounded

near x = −(1 − μ). As a result, we confine problem (1.10) to the domain ΩT =
(x∗,+∞)× (0, T ) with a boundary condition

(2.5) ∂xv(x∗, τ) = − 1
(x∗ + 1− μ)2

, τ ∈ (0, T ),

where x∗ ∈ (−(1−μ), 0). We always assume x∗ to be close enough to − (1−μ). Later
we will see that it is without loss of generality.

In addition, owing to the unboundedness of ΩT , we further confine problem (1.10)
to a bounded domain ΩRT = (x∗, R) × (0, T ) with R > 0. On x = R we impose a
boundary condition

(2.6) ∂xv(R, τ) + v2(R, τ) = 0, τ ∈ (0, T ).

Since the operator L is degenerate on x = 0, we instead consider the following
regularized problem: for δ > 0,

(2.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂τvδ − Lδvδ + Lwvδ = 0 if 1
x+1+λ < vδ <

1
x+1−μ ,

∂τvδ − Lδvδ + Lwvδ ≥ 0 if vδ = 1
x+1+λ ,

∂τvδ − Lδvδ + Lwvδ ≤ 0 if vδ = 1
x+1−μ ,

∂xvδ(x∗, τ) = − 1
(x∗+1−μ)2 ,

∂xvδ(R, τ) + v2
δ (R, τ) = 0, (x, τ) ∈ ΩRT ,

vδ(x, 0) = 1
x+1−μ ,
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where

Lδvδ = Lvδ + δ∂xxvδ.

Lemma 2.1. For a given w(x, t) satisfying (2.1)–(2.4), problem (2.7) has a solu-
tion vδ ∈W 2,1

p (ΩRT ), 1 < p < +∞, and

1
x+ 1 + λ

≤ vδ ≤
1

x+ 1− μ,(2.8)

− K

(x+ 1− μ)2
≤ ∂xvδ ≤ −v2

δ ,(2.9)

where K is a positive constant independent of δ and R.
Proof. By making use of the standard penalty method and the fixed point theorem

(cf. Friedman (1982), section 1.8), we can show that problem (2.7) has a solution in
W 2,1
p (ΩRT ), 1 < p < +∞. Inequality (2.8) is apparent. We now prove (2.9). Let us

first consider the right-hand side inequality. Clearly

∂xvδ + v2
δ = 0 if vδ =

1
x+ 1 + λ

or vδ =
1

x+ 1 + μ
.

So, we need only show ∂xvδ + v2
δ ≤ 0 inM, where

M =
{

(x, τ) ∈ ΩRT :
1

x+ 1 + λ
< vδ <

1
x+ 1− μ

}
.

Denote p(x, τ) = ∂xvδ(x, τ) and q(x, τ) = v2
δ (x, τ), then

∂τp −
(

1
2
σ2x2 + δ

)
∂xxp+

(
α− r − (3− γ)σ2

)
x∂xp+

(
2α− 2r − (3− 2γ)σ2

)
p

(2.10)

+ (eγwvδ)−
1

1−γ (∂xq + ∂xp) + ∂x[(eγwvδ)−
1

1−γ ](q + p)

= γσ2
(
4xv∂xvδ + x2 (∂xvδ)

2 + x2v∂xxvδ + v2
δ

)
in M

and

∂τq −
(

1
2
σ2x2 + δ

)
∂xxq +

(
α− r − (2− γ)σ2

)
x∂xq +

(
2α− 2r − (2− 2γ)σ2

)
q

+ 2vδ(eγwvδ)−
1

1−γ (q + p)

= −σ2x2 (∂xvδ)
2 + γσ2

(
2x2v2

δ∂xvδ + 2xv3
δ

)
− δσ2 (∂xvδ)

2 in M.

Let H(x, τ) = p(x, τ) + q(x, τ). It is not hard to verify

∂τH −
(

1
2
σ2x2 + δ

)
∂xxH +

(
α− r − (3− γ)σ2 − γσ2xvδ

)
x∂xH

+
(
2α− 2r − (3− 2γ)σ2 − 2γσ2xvδ

)
H

+ (eγwvδ)−
1

1−γ ∂xH + {∂x[(eγwvδ)−
1

1−γ ] + 2vδ(eγwvδ)−
1

1−γ }H
= − (1− γ)σ2 (x∂xvδ + vδ)

2 − δσ2 (∂xvδ)
2 ≤ 0 in M.
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Apparently H ≤ 0 on ∂M∩({x = x∗}∪{x = R}∪{τ = 0}). In terms of the maximum
principle (cf. Friedman (1982), p. 74), we then deduce H ≤ 0 in M.

Now we turn to the proof of the left-hand side inequality of (2.9). Note that
(2.10) can be rewritten as

∂τp− T p = 0 in M,

where

T p =
(

1
2
σ2x2 + δ

)
∂xxp− (α− r − (3 − γ)σ2)x∂xp− (2α− 2r − (3− 2γ)σ2)p

+ γσ2(x2vδ∂xp+ x2p2 + 4xvδp+ v2
δ )

+
1

1− γ (eγwvδ)−
1

1−γ −1eγw(γ∂xwvδ + p)(v2
δ + p)

− (eγwvδ)−
1

1−γ (2vδp+ ∂xp).

It can be verified that for constant K big enough,

(∂τ − T )

(
− K

(x+ 1− μ)2

)

= − 1

(x+ 1− μ)4

[
γσ2x2 +

1
1− γ (eγwvδ)−

1
1−γ −1eγw

]
K2

+
1

(x+ 1− μ)2

{
3σ2x2 + 6δ
(x+ 1− μ)2

+ 2
(α− r − (3− γ)σ2)x− γσ2x2vδ

x+ 1− μ

−
(
2α− 2r − (3− 2γ)σ2

)
+ 4γσ2xvδ

+ (eγwvδ)−
1

1−γ

[
1

1− γ (γ∂xw + vδ) + 2
(

1
(x+ 1− μ)

− vδ
)]}

K

− γ

1− γ (eγwvδ)−
1

1−γ ∂xwv
2
δ − γσ2v2

δ

≤ 0,

because the coefficient of the leading term K2 is negative. Here K is independent of
δ and R. It is clear that p ≥ − K

(x+1−μ)2 on ∂M∩ ({x = x∗} ∪ {x = R} ∪ {τ = 0}).
Again, applying the maximum principle yields the desired result. Therefore, the proof
is complete.

Remark 2.2. We point out that the above proof for the left-hand side inequality
of (2.9) requires γ > 0. All results in this paper could be extended to the case of
γ < 0 if the condition is removed.

Lemma 2.3. For a given w(x, t) satisfying (2.1)–(2.4), problem (1.10) confined to
Ω
R

T with boundary conditions (2.5)–(2.6) has a solution v ∈W 2,1
p (ΩRT \{−η < x < η})∩

C(Ω
R

T ) for any small η > 0, 1 < p < +∞, and

1
x+ 1 + λ

≤ v ≤ 1
x+ 1− μ,(2.11)

− K

(x+ 1− μ)2
≤ ∂xv ≤ −v2,(2.12)

|v(x, ·)|Cθ/2 [0,T ] ≤ C,(2.13)
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where K, θ, and C are positive constants independent of R, 0 < θ < 1, and Cθ/2[0, T ]
is a Hölder space.

Proof. Let v be the limit of a weakly convergent subsequence of {vδ} as δ → 0.
We immediately get (2.11)–(2.12). Now we prove (2.13). When x > 0, letting δ → 0
in (2.7), we infer that (1.10) holds in (0, R)× (0, T ) and can be rewritten as

(2.14)

⎧⎪⎨
⎪⎩

∂τv − Lv = f(x, τ), (x, τ) ∈ (0, R)× (0, T ),
∂xv(R, τ) + v2(R, τ) = 0,
v(x, 0) = 1

x+1−μ ,

where

f(x, τ) = −(eγwv)−
1

1−γ (v2 + ∂xv)

+ χ{v= 1
x+1−μ}

1
(x+ 1− μ)3

[(α− r)x + (1− μ)(α − r − (1− γ)σ2)]

+ χ{v= 1
x+1+λ}

1
(x + 1 + λ)3

[(α − r)x + (1 + λ)(α − r − (1− γ)σ2)]

and χA is the indicator function on set A. Notice that f(x, τ) has a bound independent
of R.

By transformation

x = ey, v(x, τ) = u(y, τ),

problem (2.14) becomes

(2.15)

⎧⎪⎨
⎪⎩

∂τu− Lyu = g(y, τ), (y, τ) ∈ (−∞, lnR)× (0, T ),
∂yu(lnR, τ) = −Ru2(lnR, τ),
u(y, 0) = 1

ey+1−μ ,

where

Lyu =
1
2
σ2∂yyu−

(
α−r−

(
3
2
−γ
)
σ2

)
∂yu−(α−r−(1−γ)σ2)u+γσ2 (eyu) (∂yu+u)

and g(y, τ) = f(ey, τ) is still a bounded function.
Owing to (2.11), we infer that both the boundary condition and the coefficients

of Lyu are bounded. By applying the Cθ,θ/2 (0 < θ < 1) estimate of the parabolic
equation, we obtain

|u|Cθ,θ/2((−∞,lnR]×[0,T ]) ≤ C,

where C is independent of R. Especially |u(y, ·)|Cθ/2[0,T ] ≤ C or

|v(x, ·)|Cθ/2[0,T ] ≤ C, 0 ≤ x ≤ R.

In the same way,

|v(x, ·)|Cθ/2[0,T ] ≤ C, x∗ ≤ x ≤ 0.

Thanks to (2.12), v is continuous with respect to x. We then obtain (2.13) and
v ∈ C(Ω

R

T ).
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It remains to show that v is the solution to (1.10) in ΩRT with boundary condi-
tions (2.5)–(2.6). In fact, we need only prove that (1.10) holds near x = 0 in the
distributional sense. For any (0, τ0), let us first consider the case

1
1 + λ

< v (0, τ0) <
1

1− μ.

Due to the continuity of v, there exist ε > 0 and x1 < 0 < x2 such that

1
x2 + 1 + λ

< v (x2, τ) < v (x1, τ) <
1

x1 + 1− μ for |τ − τ0| < ε.

For fixed x1, vδ (x1, τ) uniformly converges to v (x1, τ) for |τ − τ0| < ε. So, there is
δ0 > 0 such that

(2.16) vδ (x1, τ1) <
1

x1 + 1− μ for |τ − τ0| < ε, δ < δ0.

In the same way, for fixed x2 > 0,

(2.17) vδ (x2, τ2) >
1

x2 + 1 + λ
for |τ − τ0| < ε, δ < δ0.

Note that (2.16) can be rewritten as

(x1 + 1− μ)2 vδ(x1, τ) < x1 + 1− μ for |τ − τ0| < ε, δ < δ0,

and

∂x

(
(x+ 1− μ)2 vδ − (x+ 1− μ)

)
= − [(x+ 1− μ) vδ − 1]2 + (x+ 1− μ)2

(
∂xvδ + v2

δ

)
≤ 0,(2.18)

where we have used the right-hand side inequality in (2.9). We then deduce

(x+ 1− μ)2 vδ(x, τ) < x+ 1− μ for |τ − τ0| < ε, x1 < x < x2, δ < δ0,

namely,

(2.19) vδ(x, τ) <
1

x+ 1− μ for |τ − τ0| < ε, x1 < x < x2, δ < δ0.

On the other hand, due to

(2.20) ∂x

(
vδ −

1
x+ 1 + λ

)
= ∂xvδ +

1
(x+ 1 + λ)2

≤ ∂xvδ + v2
δ ≤ 0,

it follows from (2.17) that

(2.21) vδ (x, τ) >
1

x+ 1 + λ
for |τ − τ0| < ε, x1 < x < x2, δ < δ0.

From (2.19) and (2.21), we infer that the first equation of (2.7) holds in E ≡
{x1 < x < x2, |τ − τ0| < ε}. We then deduce by letting δ → 0 that the first equation
of (1.10) holds in E in the distributional sense. Now let us move on to the case
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v (0, τ0) = 1
1+λ . Note that v (0, τ0) < 1

1−μ . Using a similar argument, we deduce that
there is a neighborhood E of (0, τ0) such that

vδ (x, τ) <
1

x+ 1− μ, (x, τ) ∈ E

when δ is sufficiently small. Then,

∂τvδ − Lδvδ + Lwvδ ≥ 0 in E.

Again, we let δ → 0 to get the desired result. The case of v (0, τ0) = 1
1−μ is similar.

This completes the proof.
Thanks to the right-hand side inequality in (2.12), we infer that (2.18) and (2.20)

are valid for v. This indicates that there are two functions xs,w(τ) and xb,w(τ),
τ ∈ (0, T ], such that{

(x, τ) ∈ ΩRT : v =
1

x+ 1− μ

}
=
{
(x, t) ∈ ΩRT : x ≤ xs,w(τ)

}
,(2.22) {

(x, τ) ∈ ΩRT : v =
1

x+ 1 + λ

}
=
{
(x, t) ∈ ΩRT : x ≥ xb,w(τ)

}
.(2.23)

For later use, we introduce a lemma.
Lemma 2.4. Denote xM = −α−r−(1−γ)σ2

α−r and assume that x∗ ∈ (−(1 − μ),
(1− μ)xM ). Then

(2.24) xs,w(τ) ≤ xs,w(0) ≡ lim
τ→0+

xs,w (τ) = (1 − μ)xM .

Moreover, xs,w(τ) ∈ C∞ when xs,w(τ) > x∗.
Proof. Let us prove (2.24) first. Note that for any x < xs,w(τ),

0 ≥
(
∂

∂τ
− L+ Lw

)(
1

x+ 1− μ

)

=
1− μ

(x+ 1− μ)3
[
(α− r) x+ (1− μ)

(
α− r − (1− γ)σ2

)]
,

from which we infer xs,w (τ) ≤ (1− μ)xM . To show xs,w(0) = (1− μ)xM , we use the
method of contradiction. Suppose not; we would have xs,w (0) < (1 − μ)xM . Then
for any x0 ∈ (xs,w(0), (1−μ)xM ), applying the equation ∂τv−Lv+Lwv = 0 at τ = 0
gives ∂τv|τ=0, x=x0 = Lv −Lwv|τ=0, x=x0 = L

(
1

x+1−μ
)∣∣
x=x0

> 0, which conflicts with
the apparent fact ∂τv|τ=0 ≤ 0.

Using (2.12) and analogous arguments as in Dai, Xu, and Zhou (2007), we can
show xs,w(τ) ∈ C∞ when xs,w(τ) > x∗.

3. The problem (1.10) with an auxiliary condition. As mentioned before,
we need an auxiliary condition to make problem (1.10) self-contained. Now let us
exploit the condition. Assume that v = ∂xw is a solution to problem (1.10) in ΩT . Due
to Lemma 2.4, we expect that there would be a function xs (τ) : (0, T )→ (x∗,+∞),
such that {

(x, τ) ∈ ΩT : v =
1

x+ 1− μ

}
= {(x, τ) ∈ ΩT : x ≤ xs (τ)} .
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So, we have w(x, τ) = A(τ) + ln (x + 1 − μ), x ≤ xs(τ), where A (0) = 0 and A(τ),
τ > 0, is to be determined. Then we conjecture

w (x, τ) = w(xs(τ), τ) +
∫ x

xs(τ)

v(ξ, τ)dξ

= A (τ) + ln (xs (τ) + 1− μ) +
∫ x

xs(τ)

v (ξ, τ) dξ for any (x, τ) ∈ ΩT .

It is expected that v(·, τ) ∈ C1 and w (·, τ) ∈ C2. Thus, we should have

∂xw|x=xs(τ) =
1

xs(τ) + 1− μ, ∂xxw|x=xs(τ) = − 1
(xs(τ) + 1− μ)2

,

which yields

A′ (τ) = ∂τw(xs(τ), τ) = L2w +
1− γ
γ

(ew∂xw)−
γ

1−γ

∣∣∣∣
x=xs(τ)

=
1− γ
γ

e−
γ

1−γA(τ) + f(xs(τ)).(3.1)

Here

f(x) =
1

(x+ 1− μ)2

[
rx2 + (α+ r)(1 − μ)x+

(
α− 1

2
(1− γ)σ2

)
(1− μ)2

]
− 1
γ
β.

Notice that (3.1) can be rewritten as

(
e

γ
1−γA(τ)

)′
=

γ

1− γ f(xs(τ))e
γ

1−γA(τ) + 1.

Combining with A(0) = 0, we obtain

A(τ) =
1− γ
γ

log
[
e

γ
1−γ

∫
τ
0 f(xs(ζ))dζ +

∫ τ

0

e
γ

1−γ

∫
τ
τ
f(xs(ζ))dζdτ

]
≡ H (xs(τ)) .

This is the auxiliary condition with which we want to combine the problem (1.10). In
other words, we plan to study the following problem.

Problem B. Find w(x, τ), v(x, τ), and xs(τ) : (0, T )→ (x∗,+∞) such that
(i)
{
(x, τ) ∈ ΩT : v(x, τ) = 1

x+1−μ
}

= {(x, τ) ∈ ΩT : x ≤ xs (τ)};
(ii) v (x, τ), (x, τ) ∈ ΩT satisfies (1.10) in which

(3.2) w(x, τ) = A (τ) + ln (xs (τ) + 1− μ) +
∫ x

xs(τ)

v (ξ, τ) dξ,

where A(τ) = H (xs(τ)).
Proposition 3.1. Problem B allows a unique solution (w(x, τ), v(x, τ), xs(τ))

satisfying (2.1)–(2.4), (2.11)–(2.13), and (2.24), respectively.
Proof. The uniqueness of the solution is apparent. In the following we will prove

the existence of the solution by virtue of the Schauder fixed point theorem. To begin,
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let us still confine ourselves to a bounded domain Ω
R

T . Consider a Banach space
B = C(Ω

R

T ) and define

D =
{
w(x, τ) ∈ B

∣∣∣ |w(x, τ) − ln(x + 1− μ)| ≤MT ,

1
x+ 1 + λ

≤ ∂xw(x, τ) ≤ 1
x+ 1− μ,

|∂τw(x, τ)| ≤M, w(x, 0) = ln(x+ 1− μ)
}
,

where M and MT are positive constants to be prescribed, and ∂xw and ∂τw are weak
derivatives. Clearly D is a compact convex set in B.

For any w(x, τ) ∈ D given, let v(x, τ) be the solution of problem (1.10) confined
to Ω

R

T with boundary conditions (2.5)–(2.6), and let xs,w(τ) be the corresponding free
boundary as given in (2.22). Define a mapping F : D → B as follows:

(3.3) Fw = w(x, τ) ≡ A(τ) + ln(xs,w(τ) + 1− μ) +
∫ x

xs,w(τ)

v(ξ, τ)dξ,

where A(τ) = H (xs,w(τ)).
In the following we shall prove w(x, τ) ∈ D. By definition, it is obvious that

w(x, 0) = ln(x + 1 − μ), ∂xw(x, τ) = v(x, τ), and thus 1
x+1+λ ≤ ∂xw(x, τ) ≤ 1

x+1−μ .
Using (3.3) and 1

x+1+λ ≤ ∂xv ≤
1

x+1−μ , it is easily seen that

(3.4) A(τ) + ln
x+ 1 + λ

x+ 1− μ + ln
xs,w(τ) + 1− μ
xs,w(τ) + 1 + λ

≤ w(x, τ) − ln (x+ 1− μ) ≤ A(τ).

According to the definition of A(τ) and (2.24), A(τ) is bounded. Then we deduce
that there is a positive constant, denoted by MT independent of R, such that

|w(x, τ) − ln (x+ 1− μ)| < MT .

It remains to show that

(3.5) |∂τw(x, τ)| ≤M.

By (3.3),

∂τw(x, τ)

= A′(τ) +
∫ x

xs,w(τ)

∂τv(ξ, τ)dξ = A′(τ) +
∫ x

xs,w(τ)

Lv(ξ, τ)dξ −
∫ x

xs,w(τ)

Lwv(ξ, τ)dξ

= A′(τ) +
∫ x

xs,w(τ)

∂

∂ξ
L2w(ξ, τ)dξ −

∫ x

xs,w(τ)

Lwv(ξ, τ)dξ

=
1− γ
γ

e−
γ

1−γA(τ) +
1
2
σ2x2(∂xv + γv2) + β2xv + β1 −

1
γ
β −

∫ x

xs,w(τ)

Lwv(ξ, τ)dξ.

(3.6)

Combining with (2.11)–(2.12) and the boundedness of A(τ), we deduce that there is
a constant M1 > 0 independent of R such that∣∣∣∣1− γγ e−

γ
1−γA(τ) +

1
2
σ2x2(∂xv + γv2) + β2xv + β1 −

1
γ
β

∣∣∣∣ ≤M1.
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Regarding the boundedness of the last term in (3.6), observe that w(x, t) has a bound
depending only on R. Hence, it is easy to see that there is a constant M2 depending
only on R such that

0 ≤ −
∫ x

xs,w(τ)

Lwv(ξ, τ)dξ ≤M2.

We then choose M = M1 +M2 to obtain (3.5).
So far we have obtained F(D) ⊂ D. Owing to the uniqueness of solution, F must

be a one-one mapping. Thanks to the compactness of D, we then infer that F must
be continuous. Applying the Schauder fixed point theorem we see that Problem B
confined to Ω

R

T allows a solution (wR, vR, xs).
To extend the result to domain ΩT , we need only show that ∂τwR has a uniform

bound (i.e., independent of R). Thanks to (1.9) and ∂xwR = vR,

−
∫ x

xs(τ)

LwRvR(ξ, τ)dξ =
∫ x

xs(τ)

∂

∂ξ

(
1− γ
γ

(ewRvR)−
γ

1−γ

)
dξ.

Combining with (3.6), we obtain

∂τwR(x, τ) =
1
2
σ2x2(∂xv + γv2) + β2xv + β1 −

1
γ
β +

1− γ
γ

(ewRvR)−
γ

1−γ .

As a result, it suffices to show that ewRvR has a uniform bound. Similar to (3.4), we
have

A (τ) + log (x+ 1 + λ) + log
xs(τ) + 1− μ
xs(τ) + 1 + λ

≤ wR(x, τ) ≤ A(τ) + log(x+ 1− μ).

Owing to 1
x+1+λ ≤ vR(x, τ) ≤ 1

x+1−μ , we then infer

xs(τ) + 1− μ
xs(τ) + 1 + λ

eA(τ) ≤ ewRvR ≤ eA(τ),

which is desired. The proof is complete.
In contrast to xb,w(τ) in (2.23), we can similarly define the boundary xb(τ) related

to Problem B as follows:

{(x, t) ∈ ΩT : x ≥ xb(τ)} =
{

(x, τ) ∈ ΩT : v =
1

x+ 1 + λ

}
.

4. Behaviors of free boundaries. The equivalence proof between Problems A
and B is deferred to section 5. In this section we study the behaviors of free boundaries
xs (τ) and xb (τ) which reflect the optimal selling and buying boundaries, respectively.
For comparison, let us first recall the results when there is no consumption.

4.1. Without consumption. In the absence of consumption, the counterpart
of (1.10) becomes (see Dai and Yi (2009))

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τv − Lv = 0 if 1
x+1+λ < v < 1

x+1−μ ,
∂τv − Lv ≤ 0 if v = 1

x+1−μ ,
∂τv − Lv ≥ 0 if v = 1

x+1+λ ,

v(x, 0) = 1
x+1−μ , (x, τ) ∈ ΩT .
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In contrast to (1.10), the nonlinear operator Lw disappears. Problem (4.1) also allows
two free boundaries, denoted by xs(τ) and xb(τ), such that{

(x, τ) ∈ ΩT : v(x, τ) =
1

x+ 1− μ

}
= {(x, τ) ∈ ΩT : x ≤ xs(τ)}

and {
(x, τ) ∈ ΩT : v(x, τ) =

1
x+ 1 + λ

}
= {(x, τ) ∈ ΩT : x ≥ xb(τ)} .

Dai and Yi (2009) completely characterized the behaviors of xs(τ) and xb(τ),
which are summarized as follows.

Proposition 4.1. Let xs(τ) and xb(τ) be two free boundaries as given above in
the no-consumption case. Define

(4.2) τ0 =
1

α− r log
1 + λ

1− μ and τ1 =
1

α− r − (1− γ)σ2
log

1 + λ

1− μ.

Then xs(τ) < xb(τ), and
(i) both xs(τ) and xb(τ) are monotonically decreasing;
(ii) for any τ > 0,

(4.3) − (1− μ) < lim
τ→+∞xs(τ) ≤ xs(τ) ≤ xs(0+) = (1− μ)xM ;

moreover,

xs (τ) ≡ 0 if α− r − (1− γ)σ2 = 0,(4.4)

xs (τ) < 0 if α− r − (1− γ)σ2 > 0,(4.5)

xs (τ) > 0 if α− r − (1− γ)σ2 < 0;(4.6)

(iii) for any τ > 0,

(4.7) xb(τ) ≥ (1 + λ)xM ,

and

(4.8) xb (τ) = +∞ if and only if τ ∈ (0, τ0];

moreover, when α− r − (1 − γ)σ2 > 0,

(4.9) xb(τ) > 0 for τ < τ1, xb (τ1) = 0, xb(τ) < 0 for τ > τ1.

Remark 4.2. Liu and Loewenstein (2002) obtained partial results of the above
proposition, including (4.3), (4.4), (4.7), and (4.8).

4.2. With consumption. It is worthwhile pointing out that ∂τv ≤ 0 in the no-
consumption case, which plays an important role in the analysis of the no-consumption
case. But it is not true in the consumption case. Fortunately, we have the following
theorem which enables us to extend most results in Proposition 4.1 to the consumption
case.
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Theorem 4.3. Let xs(τ) and xb(τ) be two free boundaries from problem (1.10)
(i.e., the consumption case), and let xs(τ) and xb(τ) be two free boundaries from
problem (4.1) (i.e., the no-consumption case). Then

xs(τ) ≥ xs(τ),(4.10)
xb(τ) ≥ xb(τ).(4.11)

Proof. Let v(x, τ) and v(x, τ) be the solution to problems (1.10) and (4.1), re-
spectively. By (5.3), we have Lwv ≤ 0. It follows from the maximum principle
(cf. Friedman (1982), p. 74) that

v(x, τ) ≥ v(x, τ).

It follows that

v(x, τ) >
1

x+ 1 + λ
if v(x, τ) >

1
x+ 1 + λ

,

v(x, τ) <
1

x+ 1− μ if v(x, τ) <
1

x+ 1− μ,

which yields the desired result.
Remark 4.4. The intuition behind the above theorem is that to maintain con-

sumption, the investor prefers to keep a larger fraction of wealth in the bank account.
Remark 4.5. By (4.3) and (4.10), we infer xs(τ) ≥ xs(τ) > limτ→+∞ xs(τ) >

− (1 − μ). Then we can choose x∗ = limτ→+∞ xs(τ) such that xs(τ) never hits the
line x = x∗.

Theorem 4.6. Let xs(τ) and xb(τ) be the two free boundaries from problem
(1.10) (i.e., the consumption case), and let τ0 be as defined in (4.2). Then xs(τ) <
xb(τ), and

(i) for any τ > 0,

(4.12) xs(τ) ≤ xs(0+) ≡ lim
τ→0+

xs (τ) = (1 − μ)xM ;

moreover,

xs (τ) ≡ 0 if α− r − (1− γ)σ2 = 0,(4.13)

xs (τ) < 0 if α− r − (1− γ)σ2 > 0,(4.14)

xs (τ) > 0 if α− r − (1− γ)σ2 < 0;(4.15)

(ii) for any τ > 0,

(4.16) xb(τ) ≥ (1 + λ)xM

and

(4.17) xb(τ) = +∞ if and only if τ ∈ (0, τ0].

Proof. xs(τ) < xb(τ) is clear. Equation (4.12) has been proved in Lemma 2.4. If
α − r − (1 − γ)σ2 > 0, then xM < 0, and (4.14) is a consequence of (4.12). When
α−r−(1−γ)σ2 < 0, (4.15) follows from (4.5) and (4.10). When α−r−(1−γ)σ2 = 0,
we again use (4.5) and (4.10) to get xs(τ) ≥ 0, while we have by (4.12) xs(τ) ≤ 0.
This yields (4.13).
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The proof of (4.16) is similar to that of (4.12). It can also be obtained from
(4.5) and (4.11). As for (4.17), from (4.8) and (4.10) we immediately achieve the
sufficiency, namely, xb(τ) = +∞ if τ ∈ (0, τ0]. To show the necessity, we need only
prove xb(τ) < +∞ if τ > τ0. By the transformation

(4.18) z =
x

x+ 1 + λ
, ṽ(z, τ) =

(
v(x, τ) − 1

x+ 1 + λ

)
(x + 1 + λ)2

1 + λ
,

problem (1.10) becomes

(4.19)

⎧⎨
⎩ max

{
min

{
∂τ ṽ − L̃ṽ + L̃wṽ, ṽ

}
, ṽ − λ+μ

(1−μ)+(λ+μ)z

}
= 0,

ṽ(z, 0) = λ+μ
(1−μ)+(λ+μ)z

in 1−μ
λ+μ < z < 1, τ > 0. Here

L̃ṽ =
1
2
σ2z2(1− z)2∂zz ṽ −

(
(α− r − (2− γ)σ2) + 3σ2z

)
z(1− z)∂z ṽ

−
(
α− r − (1− γ)σ2 − 2(α− r − (2− γ)σ2)z − 3σ2z2

)
ṽ

−
(
σ2z + α− r − (1− γ)σ2

)
+ γσ2z[1 + (1− z)ṽ] [z(1− z)∂zṽ + (1− 2z)ṽ + 1]

and

L̃wṽ =
(
eγw [1 + (1− z) ṽ] 1− z

1 + λ

)− 1
1−γ (1− z)2

1 + λ

(
ṽ2 + ∂z ṽ

)
.

Define

zb(τ) = sup
z

{
z ∈

(
1− μ
λ+ μ

, 1
)

: ṽ(z, τ) > 0
}
.

Clearly zb(τ) = xb(τ)
xb(τ)+1+λ . It suffices to show zb(τ) < 1 if τ > τ0. Noticing eγw = γV ,

it is not hard to verify that L̃wṽ|z=1 = 0. Therefore, at z = 1, problem (4.19) is
reduced to{

max
{

min {∂τ ṽ(1, τ)− (α− r) ṽ(1, τ) + α− r, ṽ} , ṽ − λ+μ
1+λ

}
= 0, τ > 0,

ṽ(1, 0) = λ+μ
1+λ ,

whose solution is

ṽ(1, τ) = max
(

1− e(α−r)τ 1− μ
1 + λ

, 0
)

=
{

1− e(α−r)τ 1−μ
1+λ when τ ∈ (0, τ0],

0 when τ > τ0,

which yields the desired result. The proof is complete.
Remark 4.7. Compared with the no-consumption case, the monotonicity of free

boundaries is not available for we no longer have ∂τv ≤ 0. A numerical example
about the nonmonotonicity is presented in Dai and Zhong (2008). In addition, (4.9)
means that in the no-consumption case, xb(τ) intersects with x = 0 at τ1, which does
not hold in the consumption case because of the additional term Lwv caused by the
consumption. All theoretical results in this section are numerically demonstrated by
Dai and Zhong (2008).

Remark 4.8. In the absence of transaction costs, Merton (1971) shows that an
investor should never leverage if risk premium α− r − (1− γ)σ2 is nonpositive. This
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result remains true in the presence of transaction costs. Indeed, from (4.13)–(4.15),
we infer that xb ≥ xs ≥ 0 if and only if α − r − (1 − γ)σ2 ≤ 0, which implies the
conclusion.

Remark 4.9. Equation (4.17) indicates that there is a critical time after which
it is never optimal to purchase stocks. This is one interesting and important feature
of the finite horizon problem. Its counterpart (4.8) in the no-consumption case was
first found by Liu and Loewenstein (2002). The intuition behind this is the following.
If the investor does not have a long enough expected horizon to recover at least the
transaction costs, then s/he should not purchase any additional stock.

5. Equivalence of Problems A and B. This section is devoted to the equiv-
alence between Problems A and B. Let (v, w, xs(τ)) be the solution to Problem B.
Since Problem A has a unique viscosity solution, we need only show that w in Propo-
sition 3.1 is the solution to Problem A.

Define

SR =
{

(x, τ) ∈ ΩT : v(x, τ) =
1

x+ 1− μ

}
,

BR =
{

(x, τ) ∈ ΩT : v(x, τ) =
1

x+ 1 + λ

}
,

NT =
{

(x, τ) ∈ ΩT :
1

x+ 1 + λ
< v(x, τ) <

1
x+ 1− μ

}
.

In finance, the three regions defined above stand for the selling region, buying region,
and no-transaction region, respectively. Due to Proposition 3.1, we already have

(5.1) SR = {(x, τ) ∈ ΩT : x ≤ xs(τ)} .
Similar to (2.22)–(2.23), we infer that there is a function xb(τ) : (0, T )→ [x∗,+∞) ∪
+∞ such that

(5.2) BR = {(x, t) ∈ ΩT : x ≥ xb(τ)}.
Note that v = wx satisfies (1.10). Owing to (1.8), we have

∂

∂x

(
∂τw − L2w −

1− γ
γ

e−
γ

1−γw (∂xw)−
γ

1−γ

)
≤ 0, wx =

1
x+ 1− μ in x ≤ xs(τ),

∂

∂x

(
∂τw − L2w −

1− γ
γ

e−
γ

1−γw (∂xw)−
γ

1−γ

)
= 0 in xs(τ) < x < xb(τ),

∂

∂x

(
∂τw − L2w −

1− γ
γ

e−
γ

1−γw (∂xw)−
γ

1−γ

)
≥ 0, wx =

1
x+ 1 + λ

in x ≥ xb(τ).

Noticing ∂τw − L2w − 1−γ
γ e−

γ
1−γw (∂xw)−

γ
1−γ

∣∣
x=xs(τ)

= 0, we deduce that w is the
solution to Problem A. In terms of Lemma 2.3 and Proposition 3.1, we achieve the
following theorem.

Theorem 5.1. Problem A has a solution w (x, τ) ∈ W 2,1∞ (ΩRT ) for any R > 0
with ∂xw ∈ C(ΩT ) and ∂xxw, ∂τw ∈ L∞(ΩT ) ∩ C

(
ΩT \{x = 0}

)
. Moreover, v = ∂xw

satisfies problem (1.10),

− K

(x+ 1− μ)2
≤ ∂xv ≤ −v2,(5.3)

|∂τw| ≤M,

where K and M are positive constants.
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6. Conclusion. In this paper, we study the optimal investment and consump-
tion decision of a CRRA investor who faces proportional transaction costs and a finite
time horizon. Most of the previous work takes only either an infinite time horizon or
pure investment without consumption into consideration.

Mathematically the problem can be formulated as a singular stochastic control
problem. It turns out that the value function is governed by a degenerate parabolic
variational inequality with gradient constraints, which gives rise to two free bound-
aries. We aim to investigate the behaviors of the free boundaries which, respectively,
stand for the optimal buying and selling strategies.

Since it is intractable to study the free boundaries directly from the original vari-
ational inequality with gradient constraints, following Dai and Yi (2009) which dealt
with the no-consumption case, we manage to derive a standard variational inequality
(i.e., an obstacle problem) that some partial derivative of the value function satisfies.
In terms of the later variational inequality, it is rather straightforward to characterize
the behaviors of the free boundaries and to study the regularity of the value function.
In essence, our approach relies on the connection between singular control and opti-
mal stopping, which is, though well known in the field of singular stochastic control,
never revealed for the present problem. Our approach can also be utilized to handle
the infinite horizon problems.

Compared with the no-consumption case, the free boundaries are no longer mono-
tone, but most of the other results remain valid. For instance, there is a critical time
after which it is never optimal to purchase stocks. The no-trading region is always in
the first quadrant if and only if α − r − (1 − γ)σ2 ≤ 0, which means that leverage is
always suboptimal if risk premium is nonpositive.

It is worthwhile pointing out that a technical condition γ > 0 is required (see
Remark 2.2). We believe it could be removed and would like to leave this for future
research.

Appendix A. The case of logarithm utility function (γ = 0). In this case
U(W ) = ln(W ). Then the differential operator L is replaced by

Lϕ =
1
2
σ2y2∂yyϕ+ αy∂yϕ+ rx∂xϕ− βϕ− (1 + ln (∂xϕ)) .

The homotheticity property of the utility function leads to

ϕ(ρx, ρy, t) = g(t) ln ρ+ ϕ (x, y, t) ,

where g(t) = 1−e−β(T−t)

β + e−β(T−t). This motivates us to make the transformation

V

(
x

y
, τ

)
= g(t) ln

1
y

+ ϕ (x, y, t) .

It follows that{
min {∂τV − L0V,−(x+ 1− μ)∂xV + ḡ(τ), (x + 1 + λ)∂xV − ḡ(τ)} = 0,
V (x, 0) = ln(x+ 1− μ), − (1− μ) < x < +∞, 0 < τ ≤ T,

where ḡ(τ) = 1−e−βτ

β + e−βτ .

L0V =
1
2
σ2x2∂xxV −

(
α− r − σ2

)
x∂xV − βV +

(
α− 1

2
σ2

)
ḡ(τ) − (1 + ln(∂xV )) .
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Let w(x, τ) = V (x,τ)
ḡ(τ) . It then follows that

{
min {∂τw − L3w,−(x+ 1− μ)∂xw + 1, (x+ 1 + λ)∂xw − 1} = 0,
w(x, 0) = ln(x+ 1− μ), − (1− μ) < x < +∞, 0 < τ ≤ T,

where

L3w =
1
2
σ2x2∂xxw−

(
α−r−σ2

)
x∂xw+

(
α− 1

2
σ2

)
− 1
ḡ(τ)

(1+ln ḡ(τ)+w+ln ∂xw) .

Set

v = ∂xw.

We postulate that v is the solution to the following double obstacle problem:

(A.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τv − L4v = 0 if 1
x+1+λ < v < 1

x+1−μ ,
∂τv − L4v ≤ 0 if v = 1

x+1−μ ,
∂τv − L4v ≥ 0 if v = 1

x+1+λ ,

v(x, 0) = 1
x+1−μ , − (1− μ) < x < +∞, 0 < τ ≤ T,

where

L4v =
1
2
σ2x2∂xxv −

(
α− r − 2σ2

)
x∂xv −

(
α− r − σ2

)
v − 1

ḡ(τ)

(
v +

∂xv

v

)
.

Note that L4v is independent of w. To study the problem, we can adopt a similar
argument as in Dai and Yi (2009) and the same treatment on degeneracy used in the
present paper. The details are omitted.

Appendix B. On the case of y < 0. The reduction of dimension in (1.6) is
confined to the case of y > 0. To extend to the case of y < 0, we can make another
transformation. Indeed, due to x+ (1 + λ) y > 0, we get by the homotheticity

1
(x+ (1 + λ) y)γ

ϕ(x, y, t) = ϕ

(
x

x+ (1 + λ) y
,

y

x+ (1 + λ) y
, t

)

= ϕ

(
z,

1− z
1 + λ

, t

)
≡ Ṽ (z, τ),

where z = x
x+(1+λ)y . This reduction applies to the case of y < 0. Similar to the

previous arguments, we define ṽ(z, τ) = ∂z Ṽ

γṼ
. In contrast to V (x, τ) and v(x, τ), it is

not hard to verify that z = x
x+1+λ ,

1
(x+ 1 + λ)γ

V (x, τ) = Ṽ (z, τ) , and ṽ(z, τ) =
(
v(x, τ) − 1

x+ 1 + λ

)
(x+ 1 + λ)2

1 + λ

for z < 1. This is nothing but the transformation (4.18) which yields problem (4.19).
We emphasize that problem (4.19) in z > 1 corresponds to the case of y < 0 subject
to the initial condition ṽ(z, 0) = 0 (keep in mind that ϕ(x, y, T ) = 1

γ (x+ (1 + λ) y)γ

for y < 0). Then, it is easy to see that ṽ(z, τ) ≡ 0 is the unique solution to problem
(4.19) in z > 1, τ ∈ (0, T ] because

∂τ0− L̃0 + L̃w0 = α− r > 0.
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This implies that the whole region {z > 1} (i.e., {y < 0}) is in the buy region, that is,
leverage is never optimal for α > r. It is worthwhile pointing out that ṽ(z, τ) is likely
to be discontinuous across z = 1, but the value function ϕ(x, y, t) must be continuous
across y = 0.
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Abstract. The concept of strong detectability and its relation with the concept of invariant
zeros is reviewed. For strongly detectable systems (which includes the strongly observable systems),
it is proposed a hierarchical design of a robust observer whose trajectories converge to those of the
original state vector. Furthermore, it is shown that neither left invertibility is a sufficient condition
nor strong detectability is a necessary condition to estimate the unknown inputs. It is shown that the
necessary and sufficient condition for estimating the unknown inputs is that the set of the invariant
zeros that do not belong to the set of unobservable modes be within the interior of the left half plane
of the complex space. This shows that the unknown inputs could be estimated even if it is impossible
to estimate the entire state vector of the system. Two numerical examples illustrate the effectiveness
of the proposed estimation schemes.
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1. Introduction.

1.1. Antecedents. The problem of state observation for systems with unknown
inputs has been extensively studied in the last two decades. Usually, the design of
observers requires the system to have relative degree one with respect to the unknown
inputs (see, e.g., [16] and [10]). Within variable structure theory, the problems of state
observation and unknown input estimation have been actively developed using the
sliding mode approach (see, for example, the corresponding chapters in the textbooks
[11], [27] and the recent tutorials [3], [10], [22]). But generally they were developed
for systems which satisfy the necessary and sufficient conditions to estimate the entire
state vector without differentiation of the output (i.e., for the systems with relative
degree one w.r.t. the unknown inputs) [16]. It turns out that the previously mentioned
conditions are not satisfied for the state observation of a mechanical system with
sensors measuring only the position of the elements of the system [9].

To overcome the restriction of relative degree one w.r.t. the unknown inputs,
an idea was suggested: to transform the system into a triangular form and use a
step-by-step sliding mode observer based on the successive reconstruction of each
element of the transformed state vector (see, e.g., [15], [27], [1], and [14]). However,
the design of those observers is restricted to the fulfilment of a specific relative degree
condition ([12]). The essence of the observers that use the triangular form is to recover
information from the derivatives of the output of the system which are not affected
by the unknown inputs. Such derivatives can be estimated via a second-order sliding
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mode technique, specifically by the super-twisting algorithm. In the last two decades
some second-order sliding-mode algorithms have been designed (see, e.g., [2], [4], [24],
[5], and [21]). The super-twisting technique is a second-order sliding mode that keeps
the advantages of classic sliding mode, and further the super-twisting algorithm can
be used as a robust exact differentiator [18, 19]. It is used here for the state and
unknown estimation.

1.2. Motivation. It was shown in [7, 8] that strong observability condition (ab-
sence of invariant zeros) is necessary and sufficient for the reconstruction in finite
time of the state vector. Regarding the observation problem, in this paper we suggest
a scheme of design which relaxes the strong observability condition, even when the
convergence of the observation error to the zero point becomes asymptotic.

On the other hand, usually the estimation of the unknown inputs requires first
to estimate the entire state vector (see, e.g., [25], [23], [13]); however, estimating the
entire state vector, as we shall see below, requires the system to be at least strongly
detectable (equivalently, that the set of the invariant zeros belongs to the interior of
the left half plane of the complex space). Here, we show that in the general case, for
the unknown input estimation, the strong detectability condition can be relaxed.

1.3. Main contributions. Regarding the unknown input reconstruction, the
main contributions of this paper are:

• Necessary and sufficient structural conditions for the unknown input estima-
tion have been found. Namely, the estimation of the unknown inputs can
be carried out if the set of the invariant zeros of the system (for the known
control input equal to zero) that do not belong to the set of unobservable
eigenvalues is within the interior of the left half plane of the complex space.
• The structural conditions under which the unknown inputs can be recon-

structed exactly in a finite time are given.
• A scheme for the estimation (reconstruction) of the unknown inputs is sug-

gested, which is based on the decomposition of the system into three subsys-
tems. This allows one to estimate the states of the first two subsystem, which
is enough for the unknown input estimation (reconstruction).
• Combining the structural conditions obtained in this paper and the conditions

given in [16] for state estimation, it is shown that, under more restrictive
conditions, the unknown inputs could be estimated without estimating the
entire state vector and without using any derivative of the system output.

If the system is not strongly observable, it is impossible to design a standard
differential observer providing state estimation. Because of that, we proposed another
approach related to the designing of an algebraic-type observer which can successfully
work for both strongly observable and nonstrongly observable, but strongly detectable
systems. Therefore, concerning the state estimate, the main contributions are:

• Decomposition of the system into two subsystems. The first one is strongly
observable for the null known control input and the second one is expected
to be detectable.
• Design of an observer for the state vector of the first subsystem by applying

the second-order hierarchical observation scheme [7].

1.4. Structure of the paper. The manuscript is structured in the following
manner. In section 2 we outline the problem statement. Section 3 is devoted to some
preliminaries dealing mainly with the concepts of strong observability and strong
detectability. In the same section, we present the main idea for estimating the state



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNKNOWN INPUT AND STATE ESTIMATION 1157

vector. Necessary and sufficient conditions under which the unknown inputs can be
estimated are given in section 4. Section 5 deals with the design of the observer of
the state vector. In section 6, an algorithm for the estimation of the unknown inputs
is suggested. Some simulations are depicted in section 7, which illustrate the scheme
of design proposed in the paper. The proofs of propositions, lemmas, and theorems
are given in the appendix.

1.5. Notation. We use the following notation. Let G ∈ R
n×m be a matrix.

We define G+ as the pseudoinverse of G. Thus, if rankG = n, GG+ = I, and if
rankG = m, G+G = I. For J ∈ R

n×m with rankJ = r, we define J⊥ ∈ R
n−r×n with

rankJ⊥ = n− r as a matrix achieving J⊥J = 0; and J⊥⊥ ∈ R
r×n with rankJ⊥⊥ = r

as a matrix such that J⊥(J⊥⊥)T = 0. Notice that det
[
J⊥

J⊥⊥

]
�= 0, and also that

J⊥⊥J ∈ R
r×m and rank(J⊥⊥J) = r. C

− := {s ∈ C : Re s < 0}.

2. Problem formulation. Let us consider the following system affected by un-
known inputs:1

(2.1)
ẋ (t) = Ax (t) +Bu (t) +Dw (t) , x (0) = x0

y (t) = Cx (t) + Fw (t) , t ≥ 0

The vector x (t) ∈ R
n is the state vector, u (t) ∈ R

m is the control, y (t) ∈ R
p is

the output of the system, w (t) ∈ R
q represents the unknown input vector, which is

bounded, i.e., ‖w (t)‖ ≤ w+ < ∞. The matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n,

D ∈ R
n×q, and F ∈ R

p×q are known constants. The pair {u (t) , y (t)} is assumed to
be measurable (available) at any time t ≥ 0. The current states x (t) as well as the
initial state x0 are not available. Without the loss of generality we assume that

rank
[
D
F

]
= q.

Problems statement :
In this paper we would like to discuss the following problems for the system (2.1):
(a) the estimation of x (t) based on the available information {u (τ ) , y (τ)}τ∈[0,t],
(b) the estimation of w (t) based on the available information {u (τ ) , y (τ )}τ∈[0,t] .

3. Preliminaries. Defining ẋc = Axc (t) +Bu we have that the dynamic equa-
tion for xe := x − xc is given by ẋe (t) = Axe (t) + Dw (t) with the output ye :=
y−Cxc = Cxe (t) +Fw (t). Thus, the estimation of x is equivalent to the estimation
of xe since x = xe + xc. It means that for the observation problem the control u
does not play any role. Therefore, without the loss of generality it will be assumed
throughout this section and the next one that u ≡ 0.

Let Σ := (A,C,D, F ) be the fourfold of matrices associated to the dynamic system
that is governed by the equations

(3.1)
ẋ (t) = Ax (t) +Dw (t) , x (0) = x0

y (t) = Cx (t) + Fw (t) , t ≥ 0

3.1. Strong observability. We recall some definitions corresponding to prop-
erties of Σ and its associated dynamic system (3.1) (see, e.g., [16], [26]).

1It can be done an extension to the case of nonlinear systems considered in [14].
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Definition 3.1. The system (3.1) is called strongly observable if, for all initial
condition x0 and for all unknown input w (t), the identity y (t) = 0 for all t ≥ 0 implies
that x (t) = 0 for all t ≥ 0.

Definition 3.2. VΣ is a null-output (A,D) invariant subspace if for every
x0 ∈ V there exists a w such that (Ax0 +Dw) ∈ VΣ and (Cx0 + Fw) = 0. V∗

Σ is the
maximal null-output (A,D) invariant subspace; i.e., for every VΣ we have VΣ ⊂ V∗

Σ.
The subspace V∗

Σ is called the weakly unobservable subspace of Σ.
Definition 3.3. s0 ∈ C is an invariant zero of Σ if

(3.2) rank P̄ (s0) < n+ rank
[
D
F

]
; P̄ (s0) :=

[
s0I −A −D

C F

]
.

Fact 1. The following statements are equivalent (see, e.g., [16], [26]):
(i) The dynamic system (3.1), associated to Σ, is strongly observable;
(ii) V∗

Σ = 0;
(iii) Σ has no invariant zeros.

3.2. Decomposition into the strongly and nonstrongly observable sub-
systems. Now, we will decompose the system into the strongly observable part and
the nonstrongly observable part. With this aim, we will need a basis of V∗

Σ. Next,
we give a form to construct a basis for the subspace V∗

Σ. Let the matrices Mk,Σ be
defined recursively by

(3.3)
Mk+1,Σ = M̄⊥⊥

k+1,ΣM̄k+1,Σ , M1,Σ =
(
F⊥C

)⊥⊥
F⊥C

M̄k+1,Σ = Tk,Σ

(
Mk,ΣA
C

)
, Tk,Σ =

(
Mk,ΣD
F

)⊥
.

Thus, Mk+1,Σ has full row rank.2 In [20] it was proven that

(3.4) V∗
Σ = kerMn,Σ.

Defining3 n1 := rankMn,Σ, we have that Mn,Σ ∈ R
n1×n. Now, with V ∈ R

n×n−n1

being a matrix whose columns form a basis of V∗
Σ, define the following nonsingular

matrix

(3.5) P :=
[
Mn,Σ

V +

]
,

where V + ∈ R
n−n1×n. Hence,4 P−1 =

[
M+
n,Σ V

]
, M+

n,Σ ∈ R
n×n1 . On the other

hand, Definition 3.2 is equivalent to the fulfilment of the following pair of algebraic
equations

(3.6) AV +DK∗ = V Q, CV + FK∗ = 0

2According to the notation given in 1.5, the matrix M̄⊥⊥
k+1,Σ has full row rank and

rank(Mk+1,Σ) = rank(M̄⊥⊥
k+1,Σ) = rank(M̄k+1,Σ). At difference with the definition of Mk+1 given

in [7], here Mk+1,Σ always has full row rank.
3It is easy to verify that rank Mj+1 = rank Mj implies rank Mj+2 = rank Mj . Therefore, to

reduce the number of computations of the matrices Mk, if rank Mj+1 = rank Mj , we can define
Mn = Mn−1 = · · · = Mj .

4Notice that M+
n,Σ = MT

n,Σ(Mn,ΣMT
n,Σ)−1 and V + = (V T V )−1V T . Therefore, Mn,ΣM+

n,Σ = I,

V +V = I, Mn,ΣV = 0, V +M+
n,Σ = 0.
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for some matrices {K∗, Q}. It is clear that there exists a matrix K̄∗ ∈ R
m×n such

that

(3.7)
{
AV +DK∗ = V Q
CV + FK∗ = 0

}
equivalent⇐⇒

{(
A+DK̄∗)V = V Q(
C + FK̄∗)V = 0

}
.

Taking into account that V +V = I, it is easy to see that K̄∗ = K∗V + satisfies (3.7).
It also should be noticed that in general K∗ is not unique. Let x̄ be defined by x̄ = Px
with the partition x̄T =

[
x̄T1 x̄T2

]
, where x̄1 ∈ R

n1 and x̄2 ∈ R
n−n1 . Thus, because

of the manner in which P was defined, and from (3.7) and (3.4), the dynamics of x̄ is
governed by the equations

(3.8)

[
˙̄x1 (t)
˙̄x2 (t)

]
=

[
A1 0
A2 A4

] [
x̄1 (t)
x̄2 (t)

]
+

[
D1

D2

]
w̄ (t)

y (t) = C1x̄1 (t) + Fw̄ (t)
w̄ (t) = w (t)− K̄∗P−1x̄ = w (t)−K∗x̄2 (t) ,

where

(3.9)
[
A1 0
A2 A4

]
:= P

(
A+DK̄∗)P−1,

[
D1

D2

]
:= PD, C1 :=

(
C + FK̄∗)M+

n,Σ.

Now, define

ΣK̄∗,P :=
(
P

(
A+DK̄∗)P−1,

(
C + FK̄∗)P−1, PD, F

)
.

From (3.4) and (3.7), it follows that

(3.10) kerMn,ΣK̄∗,P
= V∗

ΣK̄∗,P
= PV∗

Σ = P kerMn,Σ.

Lemma 3.4. Defining Σ̄ := (A1, C1, D1, F ), we have that the dynamic system
associated to Σ̄ is strongly observable; i.e., kerMn1,Σ̄ = 0 and Σ̄ has no invariant
zeros.

3.3. Strong detectability. The next definition can be found in [16] and [26].
Definition 3.5. The system (3.1) is called strongly detectable if, for all initial

condition x0 and for all unknown inputs w (t) providing the existence of solution in
(3.1), the identity y (t) = 0 for all t ≥ 0 implies x (t)→ 0 as t→∞.

Remark 1. It is clear that the strong detectability property is a necessary require-
ment for the asymptotic estimation of the state vector. As we will see later, strong
detectability is also a sufficient condition for such a purpose.

Remark 2. Evidently, the strong detectability condition is less restrictive than
the strong observability condition. The following system is an example of a system
that is not strongly observable, but it is strongly detectable.

ẋ1 (t) = x1 (t) + w (t)
ẋ2 (t) = x1 (t)− x2 (t)
y (t) = x1 (t)

The following theorem relates the strong detectability with the invariant zeros.
Theorem 3.6 (see [16]). The system (3.1) is strongly detectable if, and only if,

the set of the invariant zeros of Σ belongs to C
−.
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Now, using the notation (3.9), we are ready to give a characterization of the
invariant zeros of Σ.

Lemma 3.7. The invariant zeros of Σ := (A,C,D, F ) are characterized by the
following properties:

(a) If rank
[
D1
F

]
= q, the set of the invariant zeros of Σ and the set of eigenvalues

of the matrix A4 are identical.
(b) If rank

[
D1
F

]
< q, every s ∈ C is an invariant zero, where q is the number of

unknown inputs, that is, w (t) ∈ R
q.

The following proposition can be found as an exercise on p. 170 of [26].
Proposition 3.8. The system Σ = (A,C,D, F ) is strongly detectable if, and

only if, the pair (A+DK,C + FK) is detectable for any K ∈ R
q×n.

3.4. Basic idea for the state estimation. In this part of the paper, we will
give the basic procedure for the reconstruction of the state in the new coordinates.

3.4.1. Recursive method for the reconstruction of x̄1. The next is a re-
cursive method for expressing x̄1 as a function of y and its derivatives. It consists in
the successive construction of the vectors Mk,Σ̄x̄1 (t), which leads to the construction
of the vector Mn1,Σ̄x̄1 (t).

Construction of the vector Mn1,Σ̄x̄1 (t)
(
Σ̄ := A1, C1, D1, F

)
:

1. Defining ξ1 (y) := (F⊥C1)⊥⊥F⊥y, the following equality is obtained

ξ1 (y) =
(
F⊥C1

)⊥⊥
F⊥C1x̄1 = M1,Σ̄x̄1;

2. defining ξ2(y, ẏ) := M̄⊥⊥
2,Σ̄

T1,Σ̄

[
d
dtF

⊥C1x̄1
y

]
, it is obtained

ξ2 (y, ẏ) = M̄⊥⊥
2,Σ̄ T1,Σ̄

[
F⊥C1A1

C1

]
x̄1 = M2,Σ̄x̄1;

k + 1. defining ξk+1(y, ẏ, . . . , y
(k)) := M̄⊥⊥

k+1,Σ̄
Tk,Σ̄

[
d
dtMk,Σ̄x̄1

y

]
, it is obtained

ξk+1

(
y, ẏ, . . . , y(k)

)
= M̄⊥⊥

k+1,Σ̄Tk,Σ̄

[
Mk,Σ̄A1

C1

]
x̄1 = Mk+1,Σ̄x̄1;

n1. finally, defining ξn1
(y, ẏ, . . . , y(n1−1)) := M̄⊥⊥

n1,Σ̄
Tn1−1,Σ̄

[
d
dtMn1−1,Σ̄x̄1

y

]
, one gets

ξn1

(
y, ẏ, . . . , y(n1−1)

)
= M̄⊥⊥

n1,Σ̄
Tn1−1,Σ̄

[
Mn1−1,Σ̄A1

C1

]
x̄1 = Mn1,Σ̄x̄1.

From Lemma 3.4, the equivalence between (ii) and (iii) in Fact 1, and (3.4), we
have that detMn1,Σ̄ �= 0. Thus, after premultiplying by M−1

n1,Σ̄
in the n1th stage, the

vector x̄1 (t) can be expressed by means of the following formula:

(3.11) x̄1 (t) = M−1
n1,Σ̄

ξn1

(
y, ẏ, . . . , y(n1−1)

)

Equation (3.11) means that x̄1 always can be reconstructed by means of linear
combinations of the terms of the vector y and their derivatives.
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3.4.2. Procedure for the estimation of x̄2. As we have seen below, the
strong detectability property is a necessary condition for the asymptotic estimation of
the entire state vector. Therefore, it is assumed that the dynamic system associated
to Σ is strongly detectable. It implies, from Theorem 3.6 and Lemma 3.7.b, that
rank

[
DT

1 FT
]T = q. Hence, from (3.8), w̄ can be rewritten as w̄ =

[
D1
F

]+[
˙̄x1 − A1x̄1
y − C1x̄1

]
,

and its substitution into ˙̄x2 gives

˙̄x2 = A4x̄2 +A2x̄1 +D2

[
D1

F

]+ [
˙̄x1 −A1x̄1

y − C1x̄1

]
.

Now, let ẑ2 be the state observer for x̄2 defined by

ẑ2 = z̃2 +D2

[
D1

F

]+ [
x̄1

0

]

˙̃z2 = A4ẑ2 +A2x̄1 −D2

[
D1

F

]+ [
A1x̄1

C1x̄1 − y

]
,

where x̄1 is supposed to be reconstructed from (3.11) using the recursive method given
in 3.4.1. Thus, the error x̄2 − ẑ2 is governed by the equation ˙̄x2 − ˙̂z2 = A4 (x̄2 − ẑ2).
By the assumption that (3.1) is strongly detectable, from Theorem 3.6 and Lemma
3.7, we have

ẑ2 (t) →
t→∞ x̄2 (t) .

The previous scheme together with the definition of strong detectability gives rise to
the following result.

Remark 3. Using the output of the system and a linear combinations of its
derivatives, the strong detectability turns out to be a necessary and sufficient condition
for the asymptotic estimation of x.

4. Necessary and sufficient conditions for the estimation of w (t). In
this section, we will show that for the estimation of w the system may be nonstrongly
detectable, even further the pair (A,C) may be nondetectable. We will show that the
necessary and sufficient condition to estimate w has to do with the set of invariant
zeros of Σ = (A,C,D, F ) and the set of eigenvalues related to the unobservability of
the pair (A,C). For that purpose we decompose the dynamics of the vector x̄2 in
(3.8), where the second part of this decomposition corresponds to the unobservable
part of (A,C). Since the proof of sufficiency of theorem establishing the conditions
under which the estimation of w can be carried out is constructive, we give at the
same time the main procedure for the estimation of w.

Let xw,x0 be the solution of the differential equation ẋ (t) = Ax (t)+Dw, x (0) :=
x0. Let yw,x0 (t) = Cxw,x0 + Fw. Thus, x̄w,x0 = Pxw,x0 is governed by the set
of equations (3.8). Now, let us recall the definition of left invertibility. The left
invertibility concept in the time domain framework can be found in [6] for the case F =
0, and in [26] for the general class of inputs that are impulsive-smooth distributions.
The definition given below is quite similar to the second one.

Definition 4.1. The system Σ is called left invertible if for any w1 (t), w2 (t) ∈
R
q the following statement holds: yw1,x0 (t) = yw2,x0 (t) for all t ≥ 0 implies w1 (t) =

w2 (t) for all t ≥ 0.
It is clear that left invertibility is a necessary condition for the estimation of w (t).

However, we will see afterwards that it is not a sufficient one. That is quite obvious
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because the fulfilment of the left invertibility property depends on the knowledge of
x0, which is not the case considered here.

Lemma 4.2. Σ is left invertible if, and only if, rank
[
D1
F

]
= q.

The next corollary follows directly from Lemmas 3.7 and 4.2.
Corollary 4.3. Σ is left invertible if, and only if, the set of invariant zeros of

Σ is finite.
Let N ∗ be the unobservable subspace corresponding to the pair (A,C), that is,

the greatest subspace satisfying

(4.1) AN ∗ ⊂ N ∗ and CN ∗ = 0.

It is clear by the definition of V∗
Σ that N ∗ ⊂ V∗

Σ. Let O be the observability matrix
of the pair (A,C); it is well known that N ∗ = kerO.

Let N be a full column rank matrix whose columns form a basis of N ∗. Thus, we
can chose a full column rank matrix V forming a basis of V∗ adapted to N ∗, that is,
V must have the following form

(4.2) V =
[
V̄ N

]
.

Defining n2 := dimN ∗, we have that V̄ ∈ R
n×n−(n1+n2), N ∈ R

n×n2 .
Proposition 4.4. If rank

[
D1
F

]
= q and V has the form (4.2), the matrices K∗

and Q satisfying (3.6) take the form

(4.3) K∗ =
[
K∗

1 0
]
, Q =

[
Q1 0
Q2 Q4

]

for some matrices K∗
1 ∈ R

q×(n−n1−n2), Q1 ∈ R
(n−n1−n2)×(n−n1−n2),

Q2 ∈ R
n2×(n−n1−n2), and Q4 ∈ R

n2×n2 .
Thus, under the assumption that rank

[
D1
F

]
= q, and taking into account (3.7),

(4.2), and (4.3), we have that the matrix A4 in (3.8) takes the following partitioned
form

(4.4) A4 := V +
(
A+DK̄∗)V =

[
Q1 0
Q2 Q4

]
=:

[
A41 0
A42 A44

]
,

where A41 := Q1, A42 := Q2, and A44 := Q4. Therefore, partitioning the vector
x̄2 =:

[
x̄21(t)
x̄22(t)

]
and from (4.3) and (4.4), the system (3.8) can be rewritten as

(4.5)

⎡
⎣ ˙̄x1 (t)

˙̄x21 (t)
˙̄x22 (t)

⎤
⎦ =

⎡
⎣A1 0 0
A21 A41 0
A22 A42 A44

⎤
⎦
⎡
⎣ x̄1 (t)
x̄21 (t)
x̄22 (t)

⎤
⎦ +

⎡
⎣D1

D21

D22

⎤
⎦ w̄ (t)

y (t) = C1x̄1 (t) + Fw̄ (t)
w̄ (t) = w (t)−K∗

1 x̄21 (t) ,

where x̄21 ∈ R
n−(n1+n2) and x̄22 ∈ R

n2 . The matrices A2 and D2 given in (3.8) were
partitioned as follows: [

A21

A22

]
:= A2,

[
D21

D22

]
:= D2.

First, we will show some facts that will be important in the procedure for finding
the conditions under which we can estimate w.
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Definition 4.5 (see [26]). The constant λ ∈ C is said to be an (A,C)-unobservable
eigenvalue if rank

[
λI−A
C

]
< n.

Lemma 4.6. If rank
[
D1
F

]
= q, then:

(a) the set of (A,C)-unobservable eigenvalues is identical to the set of eigenvalues
of A44, and

(b) the set of invariant zeros of Σ that do not belong to the set of (A,C)-unobservable
eigenvalues is identical to the set of eigenvalues of A41.

Theorem 4.7. The following claims are equivalent.
(i) For any initial condition x (0),

(4.6) y (t) = 0 for all t ≥ 0 implies w (t) = 0 for all t ≥ 0.

(ii) The set of invariant zeros of Σ is identical to the set of (A,C)-unobservable
eigenvalues.

(iii) Σ is left invertible and V∗ ≡ N ∗.
(iv) 5 rank

[
D1
F

]
= q and rankMn,Σ = rankO.

Theorem 4.8. The following sentences are equivalent.
(i) For any initial condition x (0),

(4.7) y (t) = 0 for all t ≥ 0 implies w (t) →
t→∞ 0.

(ii) The set of invariant zeros of Σ that do not belong to the set of (A,C)-
unobservable eigenvalues is in C

−.
(iii) rank

[
D1
F

]
= q and the set of eigenvalues of A41 is in C

−.
The following theorems establish the conditions, in terms of the invariant ze-

ros of Σ := (A,C,D, F ) and the (A,C)-unobservable eigenvalues, under which the
estimation of w (t) can be carried out.

Theorem 4.9. Based on the measurement of y (t), the vector w can be estimated
if, and only if, the set of invariant zeros of Σ that do not belong to the set of (A,C)-
unobservable eigenvalues is in C

−.
Theorem 4.10. Based on the measurement of y (t), the vector w can be recon-

structed in finite time if, and only if, the set of invariant zeros of Σ is identical to the
set of (A,C)-unobservable eigenvalues.

We should notice that if, in addition to the condition of Theorem 4.9, the system Σ
satisfies the condition rank

[
CD F
F 0

]
= rankF+q, then one can avoid using derivatives

for the estimation of w. Because of, in such a case, x̄1 can be estimated asymptotically
by using a linear observer (see, e.g., [16]). This can be summarized in the following
theorem.

Theorem 4.11. The vector w can be estimated from the system output y, without
using any derivatives, if, and only if, the following two conditions are fulfilled:

(1) the set of invariant zeros of Σ that do not belong to the set of (A,C)-unobservable
eigenvalues is in C

−, and
(2) rank

[
CD F
F 0

]
= rank (F ) + q.

5. Design of a robust observer. The following restriction will be assumed to
be satisfied throughout this section.
A1 The dynamic system associated to Σ = (A,C,D, F ) is strongly detectable.

Now, we will apply the scheme of design proposed in section 3 to the system (2.1)
for the state vector estimate.

5Mn is given by (3.3) and O is the observability matrix of (A, C).
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Thus, with P selected according to (3.5), after defining x̄ := Px, and with the
partition x̄ =:

[
x̄1
x̄2

]
, we have

(5.1)

[
˙̄x1 (t)
˙̄x2 (t)

]
=

[
A1 0
A2 A4

] [
x̄1 (t)
x̄2 (t)

]
+

[
B1

B2

]
u+

[
D1

D2

]
w̄ (t)

y (t) = C1x̄1 (t) + Fw̄ (t)
w̄ (t) = w (t)−K∗x̄2 (t) ,

where the system and distribution matrices are defined according to (3.9), and B1 =
Mn,ΣB and B2 = V +B.

5.1. Bounding term. In the recursive method given in 3.4.1, some derivatives
on time are needed; here, we suggest to use the super-twisting algorithm for the
obtaining of the required derivatives. However, the super-twisting algorithm requires
some bound of the state vector that is to be reconstructed; therefore, for ensuring the
bound required we will use the following Luenberger observer.

(5.2) ż = PAP−1z + PBu+ L
(
y − CP−1z

)
The matrix PAP−1 − LCP−1 must be Hurwitz. Such a requirement can always be
satisfied, and A1 and the Proposition 3.8 guarantee its fulfilling. Defining ē = x̄− z,
we get the inequality ‖ē‖ ≤ γ exp (−λt) ‖ē (0)‖ + μw+ for some positive constants
γ, λ, and μ. Now, let us make a partition of ē into two vectors, i.e., ē1 = x̄1 − z1
and ē2 = x̄2 − z2, where zT =:

[
zT1 zT2

]
and z1 ∈ R

n1 , z2 ∈ R
n−n1 . Let ζ be a

constant satisfying ζ > μw+, then, after a finite time T , ē1 and ē2 stay bounded, i.e.,
‖ē1 (t)‖ < ζ and ‖ē2 (t)‖ < ζ, for all t ≥ T .

5.2. Reconstruction of Mn1,Σ̄ē1 (t). Now, the state estimation procedure of
3.4.1 will be applied to ē1. Thus, once ē1 is reconstructed, x̄1 can be recovered by the
formula x̄1 = ē1 + z1. Firstly, recall that Σ̄ := (A1, C1, D1, F ). Now, let us design the
auxiliary vector σ defined by the equation

(5.3) σ̇ (t) = A1z1 (t) +B1u.

Define the first sliding variable s1 as follows:

s1 (t) = M̄⊥⊥
2,Σ̄ T1,Σ̄

[(
F⊥C1

)⊥⊥
F⊥ (y (t)− C1σ (t))∫ t

0
(y (τ )− C1z (τ )) dτ

]
−

∫ t

0

v1 (τ) dτ.

Thus, taking the derivative of s on time, and because of (3.3), we have

(5.4) ṡ1 (t) = M2,Σ̄ē1 (t)− v1 (t) .

We design the output injection vector v1 using the super-twisting technique ([17],
[18]), involving not only a sign function but also its integral, that is,

(5.5)
v1
i = v̄1

i + λ1

∣∣s1i ∣∣1/2 sign s1i
˙̄v1
i = α1 sign s1i ,

where v1
i is the ith term of the vector v1, and the same applies for v̄1

i and s1i . The
constants α1 and λ1 are selected to satisfy the inequalities:

κ1 ≥
∥∥M2,Σ̄

∥∥ (∥∥PAP−1 − LCP−1
∥∥ ζ + ‖PD − LF‖w+

)
α1 > κ1, λ1 >

(1 + θ) (κ1 + α1)
1− θ

√
2

κ1 − α1
, 1 > θ > 0,
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where ζ was defined in subsection 5.1. Thus, according to [18], we have a second-order
sliding mode, that is, s1 (t) = ṡ1 (t) = 0 for all t ≥ t1 where t1 is the reaching time to
the sliding mode. Therefore, from (5.4) and (5.5), we have that

(5.6) v̄1 (t) = M2,Σ̄ē1 (t) , for all t ≥ t1.

We can follow a quite similar scheme for the reconstruction of M3,Σ̄ē1 (t). Namely,
design the variable s2 (t) as

s2 (t) = M̄⊥⊥
3,Σ̄ T2,Σ̄

[
v̄1 (t)−M2,Σ̄ (σ (t)− z1 (t))∫ t

0 (y (τ )− C1z (τ )) dτ

]
−

∫ t

0

v2 (τ ) dτ .

Hence, taking into account (3.3) and (5.6), for t ≥ t1, the derivative of s2 (t) is

(5.7) ṡ2 (t) = M3,Σ̄ē1 (t)− v2 (t) .

Again, the output injection vector v2 is designed using the super-twisting algorithm,

(5.8)
v2
i = v̄2

i + λ2

∣∣s2i ∣∣1/2 sign s2i
˙̄v2
i = α2 sign s2i .

The positive constants α2 and λ2 should satisfy the following upper bounds:

κ2 ≥
∥∥M3,Σ̄

∥∥ (∥∥PAP−1 − LCP−1
∥∥ ζ + ‖PD − LF‖w+

)
α2 > κ2, λ2 >

(1+θ)(κ2+α2)
1−θ

√
2

κ2−α2
, 1 > θ > 0.

Then, according to [18], we have that s2 (t) = ṡ2 (t) = 0 for all t after t2, which is
the reaching time to the second sliding mode. Hence, in view of (5.7) and (5.8), we
achieve the equality v̄2 (t) = M3,Σ̄ē1 (t) for all t ≥ t2.

We can generalize the previous procedure for the reconstruction ofMk,Σ̄ē1 (t) (k =
2, . . . , n1 − 1). Since, in this procedure, the main goal is the reconstruction of ē1 (t),
in the last step we will reconstruct directly ē1 (t) instead of recovering Mn1,Σ̄ē1 (t).
The procedure is detailed below.

(a) Sliding variable s1:

(5.9) s1 (t) = M̄⊥⊥
2,Σ̄ T1,Σ̄

[(
F⊥C1

)⊥⊥
F⊥ (y (t)− C1σ (t))∫ t

0 (y (τ )− C1z1 (τ )) dτ

]
−

∫ t

0

v1 (τ ) dτ ;

sliding variable sk, k = 2, . . . , n1 − 2:

(5.10) sk (t) = M̄⊥⊥
k+1,Σ̄Tk,Σ̄

[
v̄k−1 (t)−Mk,Σ̄ (σ (t)− z1 (t))∫ t

0
(y (τ )− C1z1 (τ )) dτ

]
−

∫ t

0

vk (τ ) dτ ;

sliding variable sn1−1:

(5.11)
sn1−1 (t) =

[
Mn1,Σ̄

]−1
M̄⊥⊥
n1,Σ̄

Tn1−1,Σ̄

[
v̄n1−2 (t)−Mn1−1,Σ̄ (σ (t)− z1 (t))∫ t

0
(y (τ )− C1z1 (τ )) dτ

]

−
∫ t

0

vn1−1 (τ ) dτ ,

where σ (t) is defined from (5.3).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1166 F.J. BEJARANO, L. FRIDMAN, AND A. POZNYAK

(b) Output injection vector vk (k = 1, . . . , n1 − 1),

(5.12)
vki = v̄ki + λk

∣∣ski ∣∣1/2 sign ski
˙̄vki = αk sign ski

being vki the ith term of the vector vk and v̄ki the ith term of the vector v̄k. The
constants αk and λk are designed according with [17] and [18]:

κk ≥
∥∥Mk+1,Σ̄

∥∥ (∥∥PAP−1 − LCP−1
∥∥ ζ + ‖PD − LF‖w+

)
, k = 1, . . . , n1 − 2

κk ≥
∥∥PAP−1 − LCP−1

∥∥ ζ + ‖PD − LF‖w+, k = n1 − 1

αk > κk, λk >
(1 + θ) (κk + αk)

1− θ

√
2

κk − αk
, 1 > θ > 0, k = 1, . . . , n1 − 1,

where ζ was defined in 5.1 and w+ is the bound of w. The procedure for the recon-
struction of ē1 (t) is given in the following theorem.

Theorem 5.1 ([7]). Following the design of sk and vk as in (5.9)–(5.12), we
obtain the equalities

v̄k (t) = Mk+1,Σ̄ē1 (t) for all t ≥ tk, k = 1, . . . , n1 − 2(5.13)

v̄n1−1 (t) = ē1 (t) for all t ≥ tn1−1,(5.14)

where tk is the reaching time to the kth sliding mode.

5.3. Observation of x̄1. Now, based on the recursive method given in 3.4.1, we
have found the difference between the state vector and the Luenberger observer. It
means that, following the method of design given previously in this section, we have
that

(5.15) x̄1 (t) = z1 (t) + v̄n1−1 (t) for all t ≥ tn1−1.

The equality (5.15) motivates us to propose the reconstruction of the state x̄1 (t) by
means of

(5.16) ẑ1 (t) := z1 (t) + v̄n1−1 (t) .

Theorem 5.2. Designing ẑ1 (t) according to (5.16), we achieve the identity

(5.17) ẑ1 (t) = x̄1 (t) for all t ≥ tn1−1.

Proof. It follows immediately by comparing (5.15) and (5.16).

5.4. Observation of x̄2. Now, let us design an observer for the vector x̄2 given
by (5.1). This is made by means of ẑ2 which is designed as

ẑ2 = z̃2 +D2

[
D1

F

]+ [
ẑ1
0

]
,(5.18a)

˙̃z2 = A4ẑ2 +A2ẑ1 +B2u−D2

[
D1

F

]+ [
A1ẑ1 + B1u
C1ẑ1 − y

]
.(5.18b)

Thus, taking into account (5.17) we can obtain the dynamic equation for the error
between x̄2 − ẑ2, i.e.,

˙̄x2 (t)− ˙̂z2 (t) = A4 (x̄2 (t)− ẑ2 (t)) for all t ≥ tn1−1.
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Due to the Assumption A1, Theorem 3.6, and Lemma 3.7, the matrix A4 is Hurwitz;
therefore, the asymptotic stability of x̄2 − ẑ2 is ensured, which implies

(5.19) ẑ2 (t) →
t→∞ x̄2 (t) .

5.5. Observer for the original system. Thus, defining ẑT =
[
ẑT1 ẑT2

]
, and

from (5.16) and (5.19), we conclude that

(5.20) ẑ (t) →
t→∞ x̄ (t) .

Due to the coordinates change x̄ = Px that we have used previously (P was defined in
(3.5)), we have that the observer x̂ for the original state vector has to be designed as

(5.21) x̂ (t) = P−1ẑ (t) = P−1

[
ẑ1 (t)
ẑ2 (t)

]

with ẑ1 and ẑ2 defined from (5.16) and (5.18), respectively.
Theorem 5.3. The observer x̂ given by (5.21) converges to the original state

vector x. That is,

x̂ →
t→∞ x (t) .

Proof. It is clear from (5.20) and (5.21).

6. Identification of unknown inputs w(t) (General case). Consider again
the system (2.1). Here, we apply the results obtained in section 4 for the estimation
of the unknown inputs in the general case. That is, the proposed algorithm is not
required to estimate the entire state vector since it is based on the necessary and
sufficient conditions obtained at the end of section 4.

Using the transformation P defined according to (3.5), but with V selected ac-
cording to (4.2), we have that the dynamic equations for the transformed system
x̄ = Px takes the form
(6.1) ⎡

⎣ ˙̄x1 (t)
˙̄x21 (t)
˙̄x22 (t)

⎤
⎦ =

⎡
⎣ A1 0 0
A21 A41 0
A22 A42 A44

⎤
⎦
⎡
⎣ x̄1 (t)
x̄21 (t)
x̄22 (t)

⎤
⎦ +

⎡
⎣ B1

B21

B22

⎤
⎦u+

⎡
⎣ D1

D21

D22

⎤
⎦ w̄ (t)

y (t) = C1x̄1 (t) + Fw̄ (t)
w̄ (t) = w (t)−K∗

1 x̄21 (t) ,

where x̄1 ∈ R
n1 , x̄21 ∈ R

n−n1−n2 , and x̄22? ∈ R
n2 . The partitions of the system and

distribution matrices comes from (3.9) and (4.4). The matrices not defined yet are
B1 := Mn,ΣB,

[
B21
B22

]
:= V +B,

[
D21
D22

]
:= V +D. Since in the section 4 we have found the

conditions under which we can estimate w (·), throughout this section we will assume
that:6

B1 The set of the invariant zeros of Σ = (A,C,D, F ) that do not belong to the set
of the (A,C)-unobservable eigenvalues is in C

−.
Moreover, the use of the super-twisting algorithm as a differentiator imposes other

restrictions related to the smoothness and boundedness of w (t), i.e.,
B2 There is a known constant αw such that ‖ẇ (t)‖ ≤ αw.

6It should be noticed that the assumption B1 is a structural assumption; meanwhile B2 is an
assumption required by the algorithm used (super-twisting) to estimate the needed derivatives.
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Step 1.a Estimation of x̄1.
As was established in section 4, for the estimation of w (t) it is enough to estimate

the states x̄1 and x̄21 (even in the case when x̄22 cannot be estimated). Therefore,
we can estimate the reduced vector

[
x̄T1 x̄T21

]T following the same procedure given
in the previous section for estimating x̄. In other words, to estimate x̄1 and x̄21,
we should follow the procedure of the previous section, but using the reduced vector[
x̄T1 x̄T21

]T instead of all the vector x̄ =
[
x̄T1 x̄T2

]T . Thus, z in subsection 5.1
becomes z :=

[
z1
z21

]
(z1 ∈ R

n1 , z21 ∈ R
n−n1−n2), and its dynamics is governed by the

equations

(6.2) ż = Āz − B̄u+ L
(
y − C̄z

)
,

where

Ā =
[
A1 −D1K

∗
1

A21 A41 −D21K
∗
1

]
, B̄ =

[
B1

B21

]
, D̄ =

[
D1

D21

]
, C̄ =

[
C1 −FK∗

1

]
.

Notice that

H (s) =

⎡
⎣sI −A1 −D1K

∗
1

A21 sI − (A41 −D21K
∗
1 )

C1 −FK∗
1

⎤
⎦=

⎡
⎣sI −A1 0 D1

A21 sI −A41 D21

C1 0 F

⎤
⎦
⎡
⎣I 0 0

0 I 0
0 −K∗

1 I

⎤
⎦

Since Σ̄ has no invariant zeros (Lemma 3.4) and rank
[
DT

1 FT
]T = q (B1 and

Theorem 4.8), the matrix H (s) loses rank only for s being an eigenvalue of A41.
Thus, by the assumption B1 and Theorem 4.8, A41 is Hurwitz and, consequently,
the pair (Ā, C̄) is detectable. Then, selecting the matrix L ∈ R

(n−n2)×p in such a
way that (Ā − LC̄) is Hurwitz, we have, for ē1 := x̄1 − z1, the inequality ‖ē1‖ ≤
γ exp (−λt) ‖ē1 (0)‖ + μw+ for some constants γ, λ, μ. Therefore, for ζ satisfying
ζ > μw+, we obtain the inequality ‖ē1 (t)‖ < ζ. Thus, we estimate x̄1 by means of ẑ1
given from (5.16) that is designed following the same procedure used in (5.9)–(5.12),
but with z1 from (6.2).

Step 1.b
Estimation of x̄21.
The vector x̄21 must be estimated by means of ẑ21 that has to be designed in the

following form:

ẑ21 = z̃21 +D21

[
D1

F

]+ [
ẑ1
0

]

˙̃z21 = A41ẑ21 +A21ẑ1 +B21u−D21

[
D1

F

]+ [
A1ẑ1 +B1u
C1ẑ1 − y

]

Thus, from (6.1), we have that the dynamic equation for the difference (x̄21 − ẑ21) is
d
dt (x̄21 (t)− ẑ21 (t)) = A41 (x̄21 (t)− ẑ21 (t)), but the Assumption B1 and Theorem 4.8
implies that A41 is Hurwitz. Therefore,

(6.3) ẑ21 (t) →
t→∞ x̄21 (t) .
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Step 2 Estimation of w (t)
Let us define r := rankF . If r < q, define G ∈ R

q×q as a nonsingular matrix so
that

(6.4)
[
D1

F

]
G =

[
D11 D12

0 F2

]
, F2 ∈ R

p×r, rankF2 = r.

If r = q, G := Iq×q . Now, let us make a partition of G−1 as

(6.5) G−1 =:
[
Ḡ1

Ḡ2

]
, Ḡ1 ∈ R

(q−r)×q, Ḡ2 ∈ R
r×q.

Thus, from (6.4) and (6.5), we have

y (t) = C1x̄1 (t) + FGG−1w̄ (t)
= C1x̄1 (t) + F2Ḡ2w̄ (t) .

Hence, premultiplying the last equation by F+
2 , we obtain a linear combination of the

rows of w̄, i.e.,

(6.6) Ḡ2w̄ (t) = F+
2 y (t)− F+

2 C1x̄1 (t) .

Therefore, Ḡ2w (t) can be written as

(6.7) Ḡ2w (t) = F+
2 y (t)− F+

2 C1x̄1 (t) + Ḡ2K
∗
1 x̄21 (t) .

Now, let zw be the state vector of the auxiliary system characterized by the equation

(6.8)
żw (t) = A1ẑ1 (t) +B1u+D11

(
uw (t)− Ḡ1K

∗
1 ẑ21 (t)

)
+ D12

(
F+

2 y (t)− F+
2 C1ẑ1 (t)

)
.

Let us estimate Ḡ1w̄ (t) using a sliding mode technique, specifically, the super-twisting.
We design the sliding variable ξ in the following way:

(6.9) ξ (t) = D+
11 [ẑ1 (t)− zw (t)] .

Thus, in view of the identity D1w̄ = D1GG
−1w̄ = D11Ḡ1w̄ + D12Ḡ2w̄, from (6.1),

(6.6), and (6.8), we achieve the equality

ξ̇ (t) = Ḡ1w (t)− uw (t)− Ḡ1K
∗
1 (x̄21 (t)− ẑ21 (t))

for all t ≥ tn1−1. Then, using

uw (t) = ūw (t) + λ |ξ|1/2 sign ξ
˙̄uw (t) = α sign ξ (t)

α ≥ αw, λ > 1−θ(κ+α)
1+θ

√
2

κ−α , κ − α > 0, 0 < θ < 1,

there is a reaching time tw to the second-order sliding mode (ξ (t) = ξ̇ (t) = 0, for all
t ≥ tw > tn1−1). Hence, we get

(6.10) ūw (t) = Ḡ1w (t)− Ḡ1K
∗
1 (x̄21 (t)− ẑ21 (t)) .
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Thus, from (6.3),

ūw (t) →
t→∞ Ḡ1w (t) .

Thus, the estimate of w (t) is done by means of

(6.11) ŵ (t) = G

[
ūw (t)

F+
2 y (t)− F+

2 C1ẑ1 (t) + Ḡ2K
∗
1 ẑ21 (t)

]
.

In view of (6.7), (6.10), and (6.5), we achieve the equality

ŵ (t) = w (t)−K∗
1 (x̄21 (t)− ẑ21 (t)) +G

[
0

F+
2 C1 (x̄1 (t)− ẑ1 (t))

]
.

However, from (5.17) and (6.3), we conclude that ŵ (t) converges asymptotically to
w (t), i.e.,

(6.12) ŵ (t) →
t→∞ w (t) .

Remark 4. It should be noticed that, for the case when B1 is fulfilled with
rankMn = rankO (Theorem 4.7), x̄T =

[
x̄1 x̄22

]
. Therefore, the limit in (6.12)

becomes in the equality ŵ (t) = w (t), for all t ≥ tw > tn1−1.

7. Numerical examples. Here we give two numerical examples. The first one
is to show the scheme of design for the estimation of the state of a strongly detectable
system. The second example shows the scheme of design for the estimation of the
unknown inputs of a system which is not strongly detectable.

7.1. Example 1. Consider the following academic example. Let a linear system
be governed by the following equations:⎡

⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
−2.51 0.33 0.68 1.12 −0.25

0.14 −0.23 −0.31 0.91 0.36
0.51 −1.18 0.41 0.63 −0.77
0.22 0.33 0.46 0.65 −0.77
0.23 0.33 3.97 0.06 0.69

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0.43
0
0.92
1.20
−1.27

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

(u+ w1)

y =
[
1 0 0 0 0
0 1 0 0 0

]
︸ ︷︷ ︸

C

x+
[
1
0

]
︸︷︷︸
F̃

w2

Defining w =
[
w1 w2

]T , D =
[
B 05×1

]
, and F =

[
02×1 F̃

]
, this linear system

takes the form of (2.1). In the simulations was used a control given by u = −Kx̂+
1.5 sin (2t), K =

[
0.57 5.66 1.25 6.94 1.68

]
. The unknown inputs are w1 =

2 sin (2t) + 0.47 and w2 = − sin (2t) + 0.53.
It can be verified that the set of the invariant zeros of Σ is {−1.84+0.48i,−1.84−

0.48i,−3.27}. Therefore, the system Σ is not strongly observable, but, from Theo-
rem 3.6, it is strongly detectable.

Construction of the hierarchical observer for x̄1. The matrices M1,Σ̄ and M2,Σ̄,
computed following (3.3) for Σ = Σ̄, take the form M1,Σ̄ =

[
0 1

]
and M2,Σ̄ =[−1 0

0 1

]
. As we can anticipate from Lemma 3.4 the matrix M2,Σ̄ is invertible. We
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Fig. 7.1. Error of observation ē1 = x̄1 − ẑ1 and ē2 = x̄2 − ẑ2, for Example 1.

construct the Luenberger observer as in (5.2). Next, we construct σ as in (5.3). In
this case n1 := dimM2,Σ̄ = 2; therefore, it is needed to design only one sliding surface
s1 ∈ R

2, which is designed as

s1 (t) =
[
−1 0
0 1

]
︸ ︷︷ ︸
M−1

2,Σ̄

[
1 0 0
0 0 1

]
︸ ︷︷ ︸
M̄⊥⊥

2,Σ̄ T1,Σ̄

⎡
⎢⎣

(F⊥C1)⊥⊥
F⊥︷ ︸︸ ︷[

0 1
]

(y (t)− C1σ (t))∫ t
0

(y (τ)− C1z1 (τ)) dτ

⎤
⎥⎦− ∫ t

0

v1 (τ) dτ

The matrices M̄⊥⊥
2,Σ̄

and T1,Σ̄ are designed following (3.3). The output injection v1

takes the form

v1
i = v̄1

i + 20
∣∣s1i ∣∣1/2 sign s1i

˙̄v1
i = 15 sign s1i , i = 1, 2

Thus, we have that the reconstruction of x̄1 is done by ẑ1 (t) = z1 (t) + v
(n1−1)
1 (t).

The observer ẑ2 (t) for x̄2 is designed according to (5.18), for this observer any gain
is not needed to be calculated. In the Figure 7.1 the observation errors ē1 = x̄1 − ẑ1
and ē2 = x̄2 − ẑ2 are drawn. For the simulations we use a sampling step of 10−4.

Then the hierarchical observer for the original state x is designed as x̂ := P−1ẑ.
The trajectories of x (t) together with the trajectories of its observer x̂ (t) are depicted
in Figure 7.2.

7.2. Example 2. Consider the following nonstrongly detectable system.⎡
⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

+

⎡
⎢⎢⎢⎢⎣
0 0 0
1 0 0
0 1 0
0 0 0
1 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎣w1

w2

w3

⎤
⎦

︸ ︷︷ ︸
w

y =

⎡
⎣1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

⎤
⎦

︸ ︷︷ ︸
C

x+

⎡
⎣0 0 0
0 0 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
F

w
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Fig. 7.2. Trajectories of x (t) (solid) and x̂ (t) (dashed), for Example 1.

Next we present the matrix V that forms a basis of V∗
Σ (see (3.4) and(4.2)) and the

matrix N that forms a basis of N ∗ (see (4.1)). Also the matrix P that changes the
coordinates of the system is written below (see (3.5)).

V = N =

⎡
⎢⎢⎢⎢⎣
0
0
0
1
0

⎤
⎥⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0
0 0.7071 −0.7071 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

Thus, by the change of coordinates x̄ = Px, we get the decomposition obtained in
(4.5).⎡
⎢⎢⎢⎢⎣

˙̄x1,1

˙̄x1,2

˙̄x1,3

˙̄x1,4

˙̄x22

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 −1.41 0 0 0
0.707 −1 −707 0 0

1 0 0 0 0
1 0 0 0 0
0 0 0 1 0

A44

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
x̄1,1

x̄1,2

x̄1,3

x̄1,4

x̄22

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x̄

+

⎡
⎢⎢⎢⎢⎣

1 0 0
0.707 −707 0

0 0 0
1 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦
⎡
⎣w1

w2

w3

⎤
⎦

y =

⎡
⎣0 0 1 0 0
0 0 0 1 0
1 −1.41 0 0 0

⎤
⎦ x̄+

⎡
⎣0 0 0
0 0 0
0 0 1

⎤
⎦
⎡
⎣w1

w2

w3

⎤
⎦

It can be verified that rank
[
DT

1 FT
]T = 3, rankM4,Σ = rankO = 4. Thus,

the condition of theorem 4.9 is accomplished, which implies that w can be recon-
structed in a finite time. In this case the weakly unobservable subspace correspond-
ing to Σ = (A,C,D, F ) and the unobservable subspace corresponding to (A,C) are
identical. It means that A4 = A44 and, consequently, x̄21 does not exist. Therefore,
for the reconstruction of the w only x̄1 has to be reconstructed.

Nevertheless, since A44 = 0, according to Lemma 3.7, the system Σ has only
one invariant zero, which is equal to zero. Hence, Σ is nonstrongly detectable, but
also notice that (A,C) is nondetectable. Hence, the state vector cannot be estimated
neither in finite time nor asymptotically.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNKNOWN INPUT AND STATE ESTIMATION 1173

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

0 1 2 3 4 5 6 7 8 9 10

−2

0

2

4

Time [s]

w
1

w
2

w
3

Fig. 7.3. Comparison between wi (solid) and their estimate ŵi (dashed), i = 1, 2, 3, for Exam-
ple 2.

Using the method proposed in section 6 we can estimate the unknown inputs
vector w. Firstly, for the estimation of x̄1 the use of two sliding surfaces was needed,
s1 and s2, designed according to 5.9 and 5.11. The next step was the estimation of w.
The estimate of wi is given by ŵi (i = 1, 2, 3), respectively, and it is shown in Figure
7.3.

Conclusions. We have shown that, for a system with unknown inputs appearing
explicitly in both the state equations and the system output, the strong detectability
is a necessary and sufficient condition for the estimation of the original state vector.
Since if the system is not strongly observable, it is impossible to design a standard
differential observer providing state estimate. Hence, we have proposed another ap-
proach related to the design of an algebraic-type observer. We have shown that the
suggested approach can successfully work for both strongly observable and strongly
detectable systems. Thus, we have proposed to decompose the system into two sub-
systems. The first one is strongly observable for the zero control input. The second
one is not strongly observable but can be detected. Thus, in the new coordinates, one
uses the output of the system and its derivatives unaffected by the unknown input
to reconstruct the state vector of the first subsystem. For the second subsystem one
needs to design an observer that converges asymptotically to the state vector of the
second subsystem. This scheme of design brings as a result an observer whose tra-
jectories converge to those of the original state vector and whose rate of convergence
does not depend on the unknown inputs.

Furthermore, we have shown that left invertibility is not a sufficient condition
under which the estimation can be carried out. But also we have shown that a system
can be nonstrongly detectable, even nondetectable as we saw in the Example 2, and
the estimation of the unknown inputs can still be carried out.

Perhaps as the most important result of this paper, we have proven that the
necessary and sufficient condition under which the estimation of the unknown inputs
can be carried out is that the set of the invariant zeros of the system (with respect
to the unknown inputs) that do not belong to the set of unobservable eigenvalues is
in the interior of the set of complex numbers with negative real part. Based on these
results we have proposed a scheme of design for the estimation of the unknown inputs.
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Appendix. Proofs of propositions, lemmas, and theorems.
Proof of Lemma 3.4. From (3.10), dim kerMn,ΣK̄∗,P

= dim kerMn,Σ. Then,
applying (3.3) for calculatingMn,ΣK̄∗,P

, we get thatMn,ΣK̄∗,P
=

[
Mn1,Σ̄ 0

]
, where

Mn,ΣK̄∗,P
∈ R

n1×n, Mn1,Σ̄ ∈ R
n1×n1 . Taking into account that rankMn,ΣK̄∗,P

= n1,
one can conclude that kerMn1,Σ̄ = V ∗̄

Σ
= 0.

Proof of Lemma 3.7. From (3.8) and by a rearranging of matrices we get

rankP (s) = rank
[
P 0
0 I

] [
sI −A −D
C F

] [
P−1 0

K̄∗P−1 I

]

= rank
[
sI − P

(
A+DK̄∗)P−1 −PD(

C + FK̄∗)P−1 F

]
= rank

⎡
⎣sI −A1 −D1 0

C1 F 0
−A2 −D2 sI −A4

⎤
⎦ .

From Lemma 3.4 and Fact 1, Σ̄ := (A1, C1, D1, F ) has no invariant zeros. This means
that for the case rank

[
DT

1 FT
]T = q the only way that the previous arrangement

of matrices can lose rank is when s is an eigenvalue of A4. This proves the clause a).
On the other hand, if rank

[
DT

1 FT
]T

< q, there exists a nonsingular matrix7

G ∈ R
q×q so that

[−D1
F

]
G =

[
H1 0
H2 0

]
. Hence,

rank P̄ (s) = rank

⎡
⎣sI −A1 H1 0 0

C1 H2 0 0
−A2 D21 D22 sI −A4

⎤
⎦

with P̄ (s) defined in (3.2) and
[
D21 D22

]
:= −D2G. Thus, P̄ (s) loses rank for

every s ∈ C, so the clause b) is proven.
Proof of Lemma 4.2. Necessity: suppose rank

[
DT

1 FT
]T

< q. Then there

is a constant vector v ∈ R
q, v �= 0, so that

[
DT

1 FT
]T
v = 0. Let us choose

w1 (t) = K∗x̄2 (t) + v and w2 (t) = K∗x̄2 (t). Thus, for x0 = 0, from (3.8), we have
that yw1,x0 (t) = yw2,x0 (t) = 0; meanwhile, w1 (t)−w2 (t) = v �= 0. Thus, the necessity
is proven.

Sufficiency: suppose rank
[
DT

1 FT
]T = q. Let w1 (t) and w2 (t) be two in-

puts so that yw1,x0 (t) = yw2,x0 (t) for all t ≥ 0. Now, notice that the equality
xw1,x0 (t)− xw2,x0 (t) = x0,w1−w2 (t) is valid for any initial condition x0 (by notation,
x0,w1−w2 (0) = 0). Thus, the initial condition for the transformed system x̄0,w1−w2 (t)
with unknown input w1 (t) − w2 (t) is x̄0,w1−w2 (0) = Px0,w1−w2 = 0. Furthermore,
we have that y0,w1−w2 (t) = yw1,x0 (t) − yw2,x0 (t) = 0 for all t ≥ 0. This, due to the
fact that Σ̄ = (A1, C1, D1, F ) is strongly observable, implies that x̄10,w1−w2

(t) = 0 for
all t ≥ 0, which, from (3.8), leads to the equality

(A.1) w1 (t)− w2 (t)−K∗x̄2,w1−w2 (t) = 0, for all t ≥ 0

Therefore, we have that ˙̄x2,w1−w2 (t) = A4x̄2,w1−w2 (t), and since x̄w1−w2 (0) = 0, we
get x̄2,w1−w2 (t) ≡ 0. The last equality and (A.1) imply that w1 (t) = w2 (t), which
proves the sufficiency.

7Actually, G is used to divide the matrix J :=
[−D1
F

]
. Indeed, let G2 be a matrix whose

columns span the kernel of J , and let G1 be a matrix so that G =
[
G1 G2

]
is not singular. Thus,

JG =
[
H 0

]
.
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Proof of Proposition 4.4. Partitioning K∗ and Q as K∗ =:
[
K∗

1 K∗
2

]
and

Q =:
[
Q1 Q3
Q2 Q4

]
, the equations in (3.6) can be rewritten in the form

A
[
V̄ N

]
+D

[
K∗

1 K∗
2

]
=

[
V̄ Q1 +NQ2 V̄ Q3 +NQ4

]
C

[
V̄ N

]
+ F

[
K∗

1 K∗
2

]
= 0

From there we can obtain the equations

AN +DK∗
2 = V̄ Q3 +NQ4(A.2)

CN + FK∗
2 = 0(A.3)

Taking into account that Mn,ΣV = 0 and CN = 0, we achieve the identities

Mn,ΣAN +D1K
∗
2 = 0

FK∗
2 = 0

Furthermore, sinceN spansN ∗, AN ∗ ⊂ N ∗ ⊂ V∗
Σ, andMn,ΣV∗

Σ = 0, then,Mn,ΣAN =
0. Therefore,

[
D1
F

]
K∗

2 = 0, which, from the first assumption of the proposition, implies
K∗

2 = 0. Moreover, since the span of AN belongs to the span of N and because of V̄
and N are linearly independent, from (A.2) we conclude that Q3 = 0.

Proof of Lemma 4.6. For V given by (4.2) and from the Proposition 4.4, we have
K̄∗N = K∗V +N = 0. Furthermore,

(
A+DK̄∗)V = V Q; thus, from (4.3) and (4.4),

we get AN = NA44. Hence, with P−1 =
[
M+
n,Σ V̄ N

]
, we can decompose the

pair (A,C) in its observable and unobservable part. Indeed, first let us make the
following matrix transformation,

PAP−1 =
[
Ā1 0
Ā2 A44

]
, CP−1 =

[
C̄ 0

]
,

where Ā1 = Mn,ΣA
[
M+
n,Σ V̄

]
, Ā2 = V +A

[
M+
n,Σ V̄

]
, and C̄ = C

[
M+
n,Σ V̄

]
. It is

known that, for this kind of transformation, the pair (A1,C̄) is observable (see, e.g.,
[26]), and the (A,C)-unobservable eigenvalues are the eigenvalues of the matrix A44,
which proves the clause a). Besides, as it was established in Lemma 3.7, the invariant
zeros of (A,C,D, F ) are the eigenvalues of A4. Therefore, taking into account the
specific form of A4 obtained in (4.4), the set of invariant zeros of Σ that do not belong
to the set of (A,C)-unobservable eigenvalues is identical to the set of eigenvalues of
A41, which proves Lemma b).

Proposition A.1. Under the condition N ∗ �= V∗
Σ, for any matrices V and K∗

1

satisfying (4.2) and (4.3), respectively, the pair (A41,K
∗
1 ) is observable.

Proof of Proposition A.1. Suppose that (A41,K∗
1 ) is unobservable, then there is a

vector p �= 0 so that A41p = λp and K∗
1p = 0 for some scalar constant λ. Then, since

A41 = Q1, from (3.6), (4.2), and (4.3), we have

A
[
V̄ p N

]
=

[
V̄ p N

] [ λ 0
Q2p Q4

]
C

[
V̄ p N

]
= 0.

That is, the span of
[
V̄ p N

]
is an A-invariant subspace with dimension bigger than

N ∗, which is a contradiction since N ∗ is the greatest A-invariant subspace belonging
to kerC.
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Proof of Theorem 4.7. Firstly, let us prove the equivalence (iii)⇔(iv). If (iii) is
true, from Lemma 4.2 rank

[
DT

1 FT
]T = q. Furthermore, since kerMn,Σ = V∗ =

N ∗ = kerO, we have rankMn,Σ = rankO. On the other hand, if (iv) is true, then

dimV∗ = dim kerMn,Σ = n− rankMn,Σ = n− rankO = dim kerO = dimN ∗

Therefore, V∗ = N ∗. The previous identity and Lemma 4.2 prove the implication⇐).
The proof of (ii)⇔(iv) is as follows. Supposing that (iv) is true, since V = N ,

P−1 =
[
M+
n,Σ N

]
and A4 = A44. Therefore, the set of eigenvalues of A4 is at

the same time the set of the invariant zeros of Σ and the set of (A,C)-unobservable
eigenvalues. Thus, ⇐) is proven. Now, suppose that (ii) is satisfied. Then, by
Lemma 3.7.b), rank

[
DT

1 FT
]T = q. Moreover, by Lemma 3.7.a) and Lemma 4.6.a),

A4 = A44, i.e., dimV∗ = n− n1 − n2 = dimN ∗, which implies rankMn,Σ = rankO.
Thus, the implication ⇒) is proven.

Now, let us prove the equivalence (i)⇔(iv). Suppose V∗ �= N ∗, then by choosing
x1 (0) = 0 and w (t) = k∗1 x̄21 (t), we obtain the identities x1 (t) ≡ 0, y (t) ≡ 0, and
˙̄x21 (t) = A41x̄21 (t). Thus, for the proposition (A.1), if x̄21 (0) �= 0, w �= 0. This
means that for V∗ �= N ∗ there exist the conditions such that w (t) �= 0 in spite of
y (t) ≡ 0. Therefore, the claim (i) is achieved only if the identity V∗ = N ∗ is true,
that is, if rankMn,Σ = rankO. Furthermore, it is clear that the left invertibility
property is necessary for fulfilling (4.6). Therefore, by Lemma 4.2 we have that
rank

[
DT

1 FT
]T = q, and (i)⇒(iv) is proven. Now, suppose that (iv) is true and

y (t) ≡ 0. Then, we have, from Lemma 3.4, x̄1 (t) ≡ 0 and w̄ (t) ≡ 0. But, because of
in this case V = N , then w (t) = w̄ (t) ≡ 0. Therefore, (iv)⇒(i) is proven.

Part of the proof of Theorem 4.8 is based on the following proposition.
Proposition A.2. The set of the invariant zeros of Σ that do not belong to the

set of (A,C)-unobservable eigenvalues is in C
− if, and only if,

(A.4) rank
[
D1

F

]
= q and A41 is Hurwitz.

Proof of Proposition A.2. Suppose rank
[
D1
F

]
< q, then any s ∈ C is an invariant

zero of Σ (Lemma 3.7). Hence, since the set of (A,C)-unobservable eigenvalues is
finite, in this case, there is a set (infinite) of invariant zeros of Σ that do not belong
to the set of (A,C)-unobservable eigenvalues having positive real part. Thus, we have
proven that rank

[
D1
F

]
= q, which implies, due to Lemma 4.6, that A41 is a Hurwitz

matrix.
The sufficiency comes from (A.4) and Proposition 4.6.b).
Proof of Theorem 4.8. The equivalence (ii)⇔(iii) follows directly from Proposition

A.2.
Now, suppose that the clause (i) is true. From the proof of necessity of Lemma 4.2,

we have that the condition rank
[
D1
F

]
= q is essential for fulfilling the clause (i).

Now, selecting x̄1 (0) = 0 and w (t) = K∗
21x̄21, we obtain the identities x̄1 (t) ≡ 0,

˙̄x21 (t) = A41x̄21 (t), and y (t) ≡ 0; therefore, w (t) → 0. Now, if V∗ = N ∗, the set of
eigenvalues of A41 is empty. If V∗ �= N ∗, by Proposition A.1, w (t) tends to zero if,
and only if, x̄21 (t) tends to zero. Hence, we conclude that A41 is Hurwitz. Thus, we
have the implication (i)⇒(iii).

Now, suppose that (iii) is true. If y (t) ≡ 0, we have x̄1 (t) ≡ 0, ˙̄x21 (t) =
A41x̄21 (t), and w (t) = K∗

1 x̄21 (t). Since A41 is Hurwitz, it means x̄21 (t)→ 0 and so
w (t)→ 0. Thus, the implication (i)⇐(iii) is proven.
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Proof of Theorem 4.9. Evidently, the implication (4.7) is a necessary condition for
the estimate of w. Hence, the necessity follows from Theorem 4.8. Now, suppose that
the invariant zeros of Σ not belonging to the set of (A,C)-unobservable eigenvalues
have negative real part. Then, from the proposition A.2, rank

[
D1
F

]
= q and all the

eigenvalues of A41 have negative real part. Thus, from (4.5), w̄ (t) can be expressed
by the following equation:

(A.5) w̄ (t) =
[
D1

F

]+ [
˙̄x1 (t)−A1x̄1 (t)
y − C1x̄1 (t)

]

Since x̄1 always can be reconstructed using (3.11), also w̄ (t) can be reconstructed.
Thus, estimating w = w̄ (t) +K∗

1 x̄21 is equivalent to estimating K∗
1 x̄21. Hence, sub-

stituting w̄, given by (A.5), into the dynamic equation of x̄21, and defining

(A.6)

˙̃z21 = A41ẑ21 +A21x̄1 −D21

[
D1

F

]+ [
A1x̄1

C1x̄1 − y

]

ẑ21 = z̃21 +D21

[
D1

F

]+ [
x̄1

0

]
,

we obtain that dynamic equation for the error e21 := x̄21 − ẑ21 is ė21 (t) = A41ė21 (t).
Thus, since the eigenvalues of A41 have negative real part, then ẑ21 (t) → x̄21 (t)
as t → ∞. Obviously K∗

1 ẑ21 (t) → K∗
1 x̄21 (t) (as t → ∞). This completes the

proof.
Proof of Theorem 4.10. The necessity comes from (4.6) and Theorem 4.7. On

the other hand, if the set of the invariant zeros of Σ is identical to the set of (A,C)-
unobservable eigenvalues, then V = N and the identity w (t) = w̄ (t) holds. Therefore,
w can be reconstructed directly from (A.5) with x̄1 obtained from (3.11).
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PRACTICAL STABILIZATION OF A QUANTUM PARTICLE IN A
ONE-DIMENSIONAL INFINITE SQUARE POTENTIAL WELL∗

KARINE BEAUCHARD† AND MAZYAR MIRRAHIMI‡

Abstract. We consider a nonrelativistic charged particle in a one-dimensional infinite square
potential well. This quantum system is subjected to a control, which is a uniform (in space) time-
depending electric field. It is represented by a complex probability amplitude solution of a Schrödinger
equation on a one-dimensional bounded domain, with Dirichlet boundary conditions. We prove the
almost global practical stabilization of the eigenstates by explicit feedback laws.

Key words. control of partial differential equations, bilinear Schrödinger equation, quantum
systems, Lyapunov stabilization
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1. Introduction.

1.1. Main result. As in [23, 5, 6], we consider a nonrelativist charged particle
in a one-dimensional space, with a potential V (x), in a uniform electric field t �→
u(t) ∈ R. Under the dipole moment approximation assumption, and after appropriate
changes of scales, the evolution of the particle’s wave function is given by the following
Schrödinger equation:

i
∂Ψ
∂t

(t, x) = −1
2
∂2Ψ
∂x2

(t, x) + (V (x) − u(t)x)Ψ(t, x).

We study the case of an infinite square potential well: V (x) = 0 for x ∈ I :=
(−1/2, 1/2) and V (x) = +∞ for x outside I. Therefore our system is

i
∂Ψ
∂t

(t, x) = −1
2
∂2Ψ
∂x2

(t, x)− u(t)xΨ(t, x), x ∈ I,(1.1)

Ψ(0, x) = Ψ0(x),(1.2)

Ψ(t,±1/2) = 0.(1.3)

It is a nonlinear control system, denoted by (Σ), in which
• the control is the electric field u : R+ → R;
• the state is the wave function Ψ : R+ × I → C with Ψ(t) ∈ S for every t � 0,

where S := {ϕ ∈ L2(I; C); ‖ϕ‖L2 = 1}.
Let us introduce the operator A defined by

D(A) := (H2 ∩H1
0 )(I,C), Aϕ := −1

2
d2ϕ

dx2
,
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and for s ∈ R the spaces

Hs
(0)(I,C) := D(As/2).

The following proposition recalls classical existence and uniqueness results for the
solutions of (1.1)–(1.3). For sake of completeness, a proof of this proposition is given
in the appendix.

Proposition 1.1. Let Ψ0 ∈ S, T > 0, and u ∈ C0([0, T ],R). There exists
a unique weak solution of (1.1)–(1.3), i.e., a function Ψ ∈ C0([0, T ], S) ∩ C1([0, T ],
H−2

(0) (I,C)) such that

(1.4) Ψ(t) = e−iAtΨ0 + i

∫ t

0

e−iA(t−s)u(s)xΨ(s)ds in L2(I,C) for every t ∈ [0, T ].

Then (1.1) holds in H−2
(0) (I,C) for every t ∈ [0, T ].

If, moreover, Ψ0 ∈ (H2 ∩ H1
0 )(I,C), then Ψ is a strong solution, i.e., Ψ ∈

C0([0, T ], (H2 ∩ H1
0 )(I,C)) ∩ C1([0, T ], L2(I,C)), (1.1) holds in L2(I,C) for every

t ∈ [0, T ], (1.2) holds in H2 ∩H1
0 (I,C), and (1.3) holds for every t ∈ [0, T ].

The weak (resp., strong) solutions are continuous with respect to initial conditions
for the C0([0, T ], L2)-topology (resp., for the C0([0, T ], H2 ∩H1

0 )-topology.)
The symbol 〈., .〉 denotes the usual Hermitian product of L2(I,C), i.e.,

〈ϕ, ξ〉 :=
∫
I

ϕ(x)ξ(x)dx.

For σ ∈ R, we introduce the operator Aσ defined by

D(Aσ) := (H2 ∩H1
0 )(I; C), Aσϕ := −1

2
∂2ϕ

dx2
− σxϕ.

It is well known that there exists an orthonormal basis (φk,σ)k∈N∗ of L2(I,C) of
eigenvectors of Aσ:

φk,σ ∈ H2 ∩H1
0 (I,C), Aσφk,σ = λk,σφk,σ ,

where (λk,σ)k∈N∗ is a nondecreasing sequence of real numbers. For s > 0 and σ ∈ R,
we define

Hs
(σ)(I,C) := D(As/2σ ),

equipped with the norm

‖ϕ‖Hs
(σ)

:=

( ∞∑
k=1

λsk,σ|〈ϕ, φk,σ〉|2
)1/2

.

For k ∈ N
∗ and σ ∈ R, we define

Ck,σ := {φk,σeiθ; θ ∈ [0, 2π)}.

In order to simplify the notation, we will write φk, λk, Ck instead of φk,0, λk,0, Ck,0.
We have

(1.5) λk =
k2π2

2
, φk =

{ √
2 cos(kπx) when k is odd,√
2 sin(kπx) when k is even.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZATION OF A 1D INFINITE POTENTIAL WELL 1181

The goal of this paper is the study of the stabilization of the system (Σ) around the
eigenstates φk,σ . More precisely, for k ∈ N

∗ and σ ∈ R small, we state feedback laws
u = uk,σ(Ψ) for which the solution of (1.1)–(1.3) with u(t) = uk,σ(Ψ(t)) is such that

lim sup
t→+∞

distL2(I,C)(Ψ(t), Ck,σ)

is arbitrarily small. We consider convergence toward the circle Ck,σ because the wave
function Ψ is defined up to a phase factor. For simplicity’s sake, we will only work
with the ground state φ1,σ. However, the whole argument remain valid for the general
case.

Note that even though the feedback stabilization of a quantum system necessitates
more complicated models taking into account the measurement back action on the
system (see, e.g., [14, 29, 19]), the kind of strategy considered in this paper can be
helpful for the open-loop control of closed quantum systems. Indeed, one can apply
the stabilization techniques for the Schrödinger equation in simulation and retrieve
the control signal that will then be applied in open-loop on the real physical system.
As will be shown in detail below, in the bibliographic overview, this kind of strategy
has been widely used in the context of finite-dimensional quantum systems.

The main result of this article is the following.
Theorem 1.2. Let Γ > 0, s > 0, ε > 0, γ ∈ (0, 1). There exists σ∗∗ = σ∗∗(Γ, s) >

0 such that, for every σ ∈ (−σ∗∗, σ∗∗), there exists a feedback law vσ,Γ,s,ε,γ(Ψ) such
that, for every Ψ0 ∈ S ∩ (H2 ∩H1

0 ∩Hs
(σ))(I,C) with

‖Ψ0‖Hs
(σ)
� Γ and |〈Ψ0, φ1,σ〉| > γ,

the Cauchy problem (1.1)–(1.3) with u(t) = σ + vσ,Γ,s,ε,γ(Ψ) has a unique strong
solution; moreover, this solution satisfies

lim sup
t→+∞

distL2(Ψ(t), C1,σ) � ε.

Remark 1. Theorem 1.2 provides almost global practical stabilization. In fact, as
will be seen, the above feedback law may be found through a Lyapunov analysis which
ensures the stability of the target; i.e., for any small ε1 > 0, there exists a 0 < ε2 < ε1
such that, if we initialize the system in an ε2-neighborhood, the solution does not get
outside the ε1-neighborhood.

Moreover, applying the theorem, any initial condition Ψ0 ∈ S such that Ψ0 ∈
Hs(I,C) for some s > 0 and 〈Ψ0, φ1,σ〉 �= 0 can be moved approximately to the circle
C1,σ, thanks to an appropriate feedback law.

The stability and the approximate convergence lead to the practical stabilization.
For σ �= 0, the feedback law will be given explicitly. For σ = 0, the feedback law

will be given by an implicit formula. We will see that the assumption “Ψ0 ∈ Hs(I,C)
for some s > 0” is not necessary for the result of the theorem. In fact, even for a Ψ0

only belonging to S, we can find the appropriate feedback law as a function of the
initial state Ψ0.

Notice that, physically, the assumption 〈Ψ0, φ1,σ〉 �= 0 is not really restrictive.
Indeed, if 〈Ψ0, φ1,σ〉 = 0, a control field in resonance with the natural frequencies of the
system (the difference between the eigenvalues corresponding to an eigenstate whose
population in the initial state is nonzero and the ground state) will, instantaneously,
ensure a nonzero population of the ground state in the wavefunction. Then one can
just apply the feedback law of Theorem 1.2.
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1.2. A brief bibliography. The controllability of a finite-dimensional quantum
system, ι ddtΨ = (H0 + u(t) H1)Ψ, where Ψ ∈ C

N and H0 and H1 are N × N Her-
mitian matrices with coefficients in C, has been very well explored [26, 22, 1, 2, 28].
However, this does not guarantee the simplicity of the trajectory generation. Very
often the chemists formulate the task of the open-loop control as a cost functional
to be minimized. Optimal control techniques (see, e.g., [24]) and iterative stochastic
techniques (e.g., genetic algorithms [17]) are then two classes of approaches which are
most commonly used for this task.

When some nondegeneracy assumptions concerning the linearized system are sat-
isfied, [20] provides another method based on Lyapunov techniques for generating
trajectories. The relevance of such a method for the control of chemical models has
been studied in [21]. As mentioned above, the closed-loop system is simulated and
the retrieved control signal is applied in open-loop. Such a strategy has already been
applied widely in this framework [8, 25].

The situation is much more difficult when we consider an infinite-dimensional con-
figuration, and fewer results are available. However, the controllability of the system
(1.1)–(1.3) is now well understood. In [27], the author states some noncontrollability
results for general Schrödinger systems. These results apply in particular to the sys-
tem (1.1)–(1.3). However, this negative result is due to the choice of the functional
space that does not allow controllability. Indeed, if we consider different functional
spaces, one can get positive controllability results. In [5], the local controllability
of the system (1.1)–(1.3) around the ground state φ1,σ for σ small is proved. The
case σ �= 0 is easier because the linearized system around φ1,σ for σ �= 0 small is
controllable; this case is treated with the moment theory and a Nash–Moser implicit
functions theorem. As has been discussed in [23], the case of σ = 0 is degenerate:
the linearized system around φ1 is not controllable. Therefore, in this case, one needs
to apply other tools, namely, the return method (introduced in [9]) and the quantum
adiabatic theory [12]. In [6], the steady-state controllability of this nonlinear system
is proved (i.e., the particle can be moved in finite time from an eigenstate φk to an-
other one, φj). The proof relies on many local controllability results (proved with the
previous strategies) together with a compactness argument.

Concerning the trajectory generation problem for infinite-dimensional systems,
still much fewer results are available. What literature exists is mostly based on the
use of the optimal control techniques [4, 3]. The simplicity of the feedback law found
by the Lyapunov techniques in [20, 7] suggests the use of the same approach for
infinite-dimensional configurations. However, an extension of the convergence analysis
to the PDE configuration is not at all a trivial problem. Indeed, it requires the pre-
compactness of the closed-loop trajectories, a property that is difficult to prove in
infinite dimension. This strategy is used, for example, in [11].

In [18], one of the authors proposes a Lyapunov-based method for practical stabi-
lization of a particle in anN -dimensional decaying potential under some restrictive as-
sumptions. The author assumes that the system is initialized in the finite-dimensional
discrete part of the spectrum. Then the idea consists in proposing a Lyapunov func-
tion which encodes both the distance with respect to the target state and the necessity
of remaining in the discrete part of the spectrum. In this way, he prevents the possi-
bility of the “mass lost phenomenon” through dispersion at infinity. Applying some
dispersive estimates of Strichartz type, he ensures the practical stabilization of an
arbitrary eigenstate in the discrete part of the spectrum.

Finally, let us mention that there exists a huge literature on the other strategies
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for proving the stabilization of infinite-dimensional control systems. We refer to [10]
for a rather complete list of references on these techniques.

In this paper, we study the stabilization of the ground state φ1,σ for σ in a
neighborhood of 0. Adapting the techniques proposed in [18], we ensure the practical
stabilization of the system around φ1,σ. Note that the whole argument holds if we
replace the target state by any eigenstate φk,σ of the system.

1.3. Heuristic of the proof. To stabilize the ground state φ1,σ, a first approach
would be to consider the simple Lyapunov function

Ṽ(Ψ) = 1− | 〈Ψ , φ1,σ〉 |2.

Just as in the finite-dimensional case [7], the feedback law

ũ(Ψ) = �(〈xΨ , φ1,σ〉 〈φ1,σ , Ψ〉),

where � denotes the imaginary part of a complex, ensures the decrease of the Lya-
punov function. However, trying to adapt the convergence analysis, based on the use
of the LaSalle invariance principle, the precompactness of the trajectories in L2 con-
stitutes a major obstacle. Note that in order to be able to apply the LaSalle principle
to an infinite-dimensional system, one certainly needs to prove such a precompactness
result. For the particular case of the infinite potential well considered here, the efforts
of the authors, applying the classical functional analysis techniques, have failed to
prove the precompactness of the closed-loop system applying the above feedback. In
fact, as the system evolves on the unit sphere of L2, the compactness of the trajecto-
ries in weaker spaces is ensured. However, we have not been able to strengthen this
weak compactness to a strong one. Indeed, it even seems that phenomena such as the
loss of L2-mass in the high energy levels do not allow this property to hold true.

Similarly to [18], the approach of this paper is to prevent the population from
going through the very high energy levels, while trying to stabilize the system around
φ1,σ.

As in Theorem 1.2, let us consider Γ > 0, s > 0, ε > 0, γ > 0, σ ∈ R. First, we
consider the case σ �= 0. Let Ψ0 ∈ Hs

(0)(I,C) with

‖Ψ0‖Hs
(0)
� Γ and |〈Ψ0, φ1,σ〉| � γ.

We claim that there exists N = N(Γ, s, ε, γ) ∈ N
∗ large enough so that

(1.6)
∞∑

k=N+1

|〈Ψ0, φk,σ〉|2 <
εγ2

1− ε .

Then we consider the Lyapunov function

(1.7) V(Ψ) = 1− | 〈Ψ , φ1,σ〉 |2 − (1 − ε)
N∑
k=2

| 〈Ψ , φk,σ〉 |2.

Note that this Lyapunov function depends on the constants Γ, s, ε, γ through the
choice of the cut-off dimension, N . Just like [18], it encodes two tasks: (1) it prevents
the loss of L2-mass through the high-energy eigenstates; and (2) it privileges the
increase of the population in the first eigenstate.
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When Ψ solves (Σ) with some control u = σ + v, we have

dV
dt

= −2v(t)�
( N∑
k=1

ak 〈xΨ , φk,σ〉 〈φk,σ , Ψ〉
)
,

where

(1.8) a1 := 1 and ak := 1− ε for k = 2, . . . , N.

Thus, the feedback law

(1.9) v(Ψ) := ς�
( N∑
k=1

ak 〈xΨ , φk,σ〉 〈φk,σ , Ψ〉
)
,

where ς > 0 is a positive constant, trivially ensures the decrease of the Lyapunov
function (1.7). We claim that the solution of (1.1)–(1.3) with initial condition Ψ0 and
control u = σ + v(Ψ) satisfies

(1.10) lim sup
t→+∞

distL2(Ψ(t), C1,σ)2 � ε.

Note that the claimed result here is much stronger than the one provided in [18] for
the finite potential well problem. In fact, here we claim the almost global practical
stabilization of the system round the eigenstate φ1,σ.

The limit (1.10) will be proved by studying the L2(I,C)-weak limits of Ψ(t) when
t → +∞. Namely, let (tn)n∈N be an increasing sequence of positive real numbers
such that tn → +∞. Since ‖Ψ(tn)‖L2(I,C) ≡ 1, there exists Ψ∞ ∈ L2(I,C) such that,
up to a subsequence, Ψ(tn) → Ψ∞ weakly in L2(I,C). Using the controllability of
the linearized system around φ1,σ (which is equivalent to 〈φ1,σ, xφk,σ〉 �= 0 for every
k ∈ N

∗), we will be able to prove that Ψ∞ = βφ1,σ , where β ∈ C and |β|2 � 1 − ε.
This will imply (1.10).

Therefore, by weakening the stabilization property (i.e., looking for practical sta-
bilization instead of stabilization) we avoid the compactness problem evoked at the
beginning of this section.

Note that the controllability of the linearized system around the trajectory φ1,σ

plays a crucial role here. This is why the developed techniques for σ �= 0 cannot be
applied, directly, to the case of σ = 0.

Now, let us study the case σ = 0. As emphasized above, the previous strategy
does not work for the practical stabilization of φ1 because the linearized system around
φ1 is not controllable. The idea is thus to use the above feedback design (1.9) with a
dynamic σ = σ(t) that converges to zero as t→ +∞. Formally, the convergence of Ψ
toward C1,σ(t) must happen at a faster rate than that of σ toward zero (see Figure 1.1).

In this aim, we consider the Lyapunov function

(1.11) V(Ψ) = 1− (1− ε)
N∑
k=1

|
〈
Ψ , φk,σ(Ψ)

〉
|2 − ε|

〈
Ψ , φ1,σ(Ψ)

〉
|2,

where the function Ψ �→ σ(Ψ) is implicitly defined as

(1.12) σ(Ψ) = θ (V(Ψ))
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Ψ

Ψ

φ1

φ1,σ

Fig. 1.1.

for a slowly varying real function θ. We claim that such a function σ(Ψ) exists. When
Ψ solves (Σ), we have

dV
dt

= −2v(Ψ)�
( N∑
k=1

ak
〈
xΨ , φk,σ(Ψ)

〉 〈
φk,σ(Ψ) , Ψ

〉 )

−dσ(Ψ)
dt

2�
( N∑
k=1

ak〈Ψ, φk,σ(Ψ)〉
〈dφk,σ(Ψ)

dσ
,Ψ

〉)
,

where � denotes the real part of a complex number, (ak)1�k�N is defined by (1.8),
and the notation dφk,σ(Ψ)

dσ means the derivative of the map σ �→ φk,σ taken at the
point σ = σ(Ψ). By definition of σ(Ψ), we have

dσ(Ψ)
dt

= θ′(V(Ψ))
dV
dt
.

Thus, the feedback law u(Ψ) := σ(Ψ) + v(Ψ), where

v(Ψ) := ς�
( N∑
k=1

ak
〈
xΨ , φk,σ(Ψ)

〉 〈
φk,σ(Ψ) , Ψ

〉 )

with ς > 0, ensures

dV
dt

= −2ςμv(Ψ)2,

where

1
μ

= 1 + 2θ′(V(Ψ))�
( N∑
k=1

ak〈Ψ, φk,σ(Ψ)〉
〈dφk,σ(Ψ)

dσ
,Ψ

〉)

is a positive constant, when ‖θ′‖L∞ is small enough. Thus t �→ V(Ψ(t)) is not increas-
ing.

We claim that the solution of (1.1)–(1.3) with initial condition Ψ0 and control
u = σ(Ψ) + v(Ψ) satisfies

(1.13) lim sup
t→+∞

distL2(Ψ(t), C1)2 � ε.

Again, this will be proved by studying the L2(I,C)-weak limits of Ψ(t) when t→ +∞.
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1.4. Structure of the article. The rest of the paper is organized as follows.
Section 2 is dedicated to the proof of Theorem 1.2 when σ �= 0. We derive this

theorem as a consequence of a stronger result stated in Theorem 2.1.
This theorem and a straightforward corollary (Corollary 2.2), leading to Theo-

rem 1.2 in the case σ �= 0, will be stated in subsection 2.1. Subsection 2.2 is dedicated
to some preliminary study needed for the proofs of Theorem 2.1 and Corollary 2.2.
The proofs will be detailed in subsection 2.3.

Section 3 is devoted to the proof of Theorem 1.2 in the case σ = 0. Again, this
theorem will be derived as a consequence of a stronger result stated in Theorem 3.2.

In subsection 3.1, we state a proposition (Proposition 3.1) ensuring the existence
of the implicit function σ = σ(Ψ). Then we state Theorem 3.2 and a straightforward
corollary (Corollary 3.3), leading to Theorem 1.2 in the case σ = 0. A preliminary
study, in preparation of the proofs of Theorem 3.2 and Corollary 3.3, will be performed
in subsection 3.2. The proofs will be detailed in subsection 3.3.

Finally, in section 4, we provide some numerical simulations to check out the
performance of the control design on a rather hard test case.

2. Stabilization of C1,σ with σ �= 0.

2.1. Main result. The main result of section 2 is the following theorem.
Theorem 2.1. Let N ∈ N

∗. There exists σ� = σ�(N) > 0 such that, for every
σ ∈ (−σ�, σ�)− {0}, γ ∈ (0, 1), ε > 0, and Ψ0 ∈ S verifying

(2.1)
∞∑

k=N+1

|〈Ψ0, φk,σ〉|2 <
εγ2

1− ε and |〈Ψ0, φ1,σ〉| � γ,

the Cauchy problem (1.1)–(1.3) with u(t) = σ + vσ,N,ε(Ψ(t)),

(2.2) vσ,N,ε(Ψ) := −�
(

(1 − ε)
N∑
k=1

〈xΨ, φk,σ〉〈Ψ, φk,σ〉+ ε〈xΨ, φ1,σ〉〈Ψ, φ1,σ〉
)
,

has a unique weak solution Ψ. Moreover, this solution satisfies

(2.3) lim inf
t→+∞ |〈Ψ(t), φ1,σ〉|2 � 1− ε.

Theorem 2.1 provides an almost global practical stabilization. Indeed, any initial
condition Ψ0 ∈ S such that 〈Ψ0, φ1,σ〉 �= 0 can be approximately moved to C1,σ. Notice
that the regularity assumption Ψ0 ∈ Hs

(σ)(I,C) stated in Theorem 1.2 is not necessary
for this purpose. Indeed, the feedback law depends on the initial state through the
choice of the cut-off dimension N .

The following corollary states that the quantity N appearing in the feedback law
may be uniform when Ψ0 is in a given bounded subset of Hs

(σ)(I,C).
Corollary 2.2. Let s > 0, ε > 0, Γ > 0, and γ ∈ (0, 1). There exist σ∗∗ =

σ∗∗(Γ, s, ε, γ) > 0 and N = N(Γ, s, ε, γ) ∈ N
∗ such that, for every σ ∈ (−σ∗∗, σ∗∗) −

{0}, and Ψ0 ∈ Hs
(σ)(I,C) ∩ S verifying

(2.4) ‖Ψ0‖Hs
(σ)
� Γ and |〈Ψ0, φ1,σ〉| � γ,

the Cauchy problem (1.1)–(1.3) with u = σ+ vσ,N,ε(Ψ) has a unique weak solution Ψ.
Moreover, this solution satisfies (2.3).
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Remark 2. Theorem 1.2 in the case σ �= 0 is a direct consequence of the pre-
vious corollary. The feedback law mentioned in Theorem 1.2 is explicitly given via
Corollary 2.2 and Theorem 2.1.

Notice that, in the particular case σ �= 0, Corollary 2.2 is slightly more general
than Theorem 1.2. In fact, the assumption “Ψ0 ∈ H2 ∩ H1

0 (I,C)” is not needed as
we deal with weak solutions instead of strong ones. Trivially, this solution will be a
strong solution for Ψ0 ∈ H2 ∩H1

0 (I,C).
For σ = 0, this will no longer be the case: we will need solutions in C1(R, L2)

(for which the assumption Ψ0 ∈ H2 ∩H1
0 (I,C) is needed; see Proposition 1.1).

2.2. Preliminaries. This section is devoted to the preliminary results that will
be applied in the proof of Theorem 2.1.

2.2.1. Eigenvalues and eigenvectors of Aσ.
Proposition 2.3. For every k ∈ N

∗, the eigenvalue σ �→ λk,σ ∈ R and the
eigenstate σ �→ φk,σ ∈ (H2 ∩H1

0 )(I,C) are analytic functions of σ ∈ R around σ = 0,
and the expansion λk,σ = λk + σ2λ

(2)
k + o(σ2) holds with

(2.5) λ
(2)
k =

1
24π2k2

− 5
8π4k4

.

There exist σ∗ > 0, C∗ > 0 such that, for every σ0, σ1 ∈ (−σ∗, σ∗) − {0}, for every
k ∈ N

∗,

〈xφ1,σ0 , φk,σ0〉 �= 0,(2.6)

|λk,σ0 − λk| �
C∗σ2

k
,(2.7)

∥∥∥dφk,σ0

dσ

∥∥∥
L2
� C∗

k
,(2.8)

∥∥∥dφk,σ0

dσ

∥∥∥
H1

0

� C∗,(2.9)

‖φk,σ0 − φk,σ1‖L2 � C∗|σ0 − σ1|
k

.(2.10)

In the previous proposition, the notation dφk,σ0
dσ means the derivative of the map

σ �→ φkσ taken at the point σ = σ0. In the same way, we will use the notation dλk,σ0
dσ

for the derivative of the map σ �→ λk,σ at σ = σ0.
Proof of Proposition 2.3. We consider the family of self-adjoint operators Aσ =

A − σx in the space (H2 ∩ H1
0 )(I,C). In this Banach space, the operator x (as a

multiplication operator) is relatively bounded with respect to A with relative bound 0
(in the sense of [15, p. 190]). Therefore Aσ is a self-adjoint holomorphic family
of type (A) (see [15, p. 375]). Thus the eigenvalues and the eigenstates of Aσ are
holomorphic functions of σ.

Thanks to the Rayleigh–Schrödinger perturbation theory, we compute the first
terms of the expansions

λk,σ = λk + σλ
(1)
k + σ2λ

(2)
k + · · · , φk,σ = φk + σφ

(1)
k + σ2φ

(2)
k + · · · .
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Considering the first and second order terms of the equalities Aσφk,σ = λk,σφk,σ ,
‖φk,σ‖2L2 = 1, we get

−1
2
d2

dx2
φ

(1)
k − xφk = λkφ

(1)
k + λ

(1)
k φk, 〈φ(1)

k , φk〉 = 0,(2.11)

−1
2
d2

dx2
φ

(2)
k − xφ

(1)
k = λkφ

(2)
k + λ

(1)
k φ

(1)
k + λ

(2)
k φk, 2�〈φ(2)

k , φk〉+ ‖φ(1)
k ‖

2
L2 = 0.

(2.12)

Taking the Hermitian product of the first equality of (2.11) with φk and applying the
parity properties of φk, we get λ(1)

k = 0. Considering the Hermitian product of the
first equality of (2.11) with φj , we get

(2.13) φ
(1)
k =

∑
j∈N∗,P (j) �=P (k)

〈xφj , φk〉
λj − λk

φj ,

where the sum is taken over j ∈ N
∗ such that the parity of j is different from the

parity of k. Taking the Hermitian product of the first equality of (2.12) with φk, we get
λ

(2)
k = −〈xφ(1)

k , φk〉. Using (2.13) and the explicit expression of 〈xφk, φj〉 computed
thanks to (1.5), we get

(2.14) λ
(2)
k =

27

π6

∑
j∈N∗,P (j) �=P (k)

k2j2

(k2 − j2)5 .

In order to simplify the above sum, we decompose the fraction

F (X) :=
X2

(X − q)5(X + q)5

in the form

F (X) =
1

25q3

(
1

(X − q)5 −
1

(X + q)5

)
− 1

26q4

(
1

(X − q)4 +
1

(X + q)4

)

− 1
27q5

(
1

(X − q)3 −
1

(X + q)3

)
+

5
28q6

(
1

(X − q)2 +
1

(X + q)2

)

− 5
28q7

(
1

(X − q) −
1

(X + q)

)
.

Inserting this relation in the sum (2.14) and simplifying, we find

(2.15) λ
(2)
k =

1
π6

(
5

2k5
S1
k −

5
2k4

S2
k +

1
k3
S3
k +

2
k2
S4
k −

4
k
S5
k

)
,

where

Sak :=
∑

j∈N∗,P (j) �=P (k)

(
1

(j − k)a +
(−1)a

(j + k)a

)
for a = 1, . . . , 5.

We apply now the following well-known relations for the Riemann ζ-function:

ζ(2) =
∞∑
j=1

1
j2

=
π2

6
and ζ(4) =

∞∑
j=1

1
j4

=
π4

90
.
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These relations imply

∞∑
k=−∞

1
(2j + 1)2

=
π2

4
and

∞∑
k=−∞

1
(2j + 1)4

=
π4

48
;

thus

Sak =
{ 1

ka when k is odd
0 when k is even

for a = 1, 3, 5,

S2
k =

{
π2

4 −
1
k2 when k is odd,

π2

4 when k is even,

S4
k =

{
π4

48 −
1
k4 when k is odd,

π4

48 when k is even.

Inserting this in (2.15), we get (2.5).
The relation (2.6) is proved in [5, Proposition 1]. The bound (2.7) is given in [15,

Chapter 17, Example 2.14, Chapter 2, Problem 3.7]. Inequality (2.8) is proved in [5,
Proposition 42]. The bound (2.9) is a consequence of (2.8). Indeed, considering the
Hermitian product in L2(I,C) of dφk,σ0

dσ with the equation

Aσ0

dφk,σ0

dσ
− xφk,σ0 = λk,σ0

dφk,σ0

dσ
+
dλk,σ0

dσ
φk,σ0 ,

and using (2.8) together with the orthogonality between φk,σ0 and dφk,σ0
dσ (which is a

consequence of ‖φk,σ‖2L2 ≡ 1), we get

∥∥∥dφk,σ0

dσ

∥∥∥2

H1
0

� |σ0|
(
C∗

k

)2

+
C∗

k
+

(
π2k2

2
+ C∗σ2

0

)(
C∗

k

)2

,

which gives (2.9). Finally, (2.10) is a consequence of (2.8).
Proposition 2.4. Let N ∈ N

∗. There exists σ� = σ�(N) > 0 such that, for
every σ ∈ (−σ�, σ�)− {0}, j2, k2 ∈ N

∗, and j1, k1 ∈ {1, . . . , N}, verifying j1 �= j2 and
k1 �= k2,

(2.16) λk1,σ − λk2,σ = λj1,σ − λj2,σ

implies (j1, j2) = (k1, k2).
Proof of Proposition 2.4. Let C∗ be as in Proposition 2.3 and σ ∈ (−σ�0, σ

�
0) where

(2.17) σ�0 :=
π

4
√
C∗ .

First, we prove (2.16) to be impossible when j2 �= k2 and

(2.18) max{j2, k2} >
N2 + 1

2
.

We argue by contradiction. Let us assume the existence of j2, k2 ∈ N
∗, j1, k1 ∈

{1, . . . , N}, with j1 �= j2, k1 �= k2, j2 �= k2, such that (2.18) and (2.16) hold. Without
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loss of generality, we may assume that max{j2, k2} = j2 >
N2+1

2 . Using (2.7), we get

λj2,σ − λk2,σ �
π2

2
(j22 − k2

2)− 2C∗σ2

� π2

2
(j22 − (j2 − 1)2)− 2C∗σ2

� π2

2
(2j2 − 1)− 2C∗σ2,

λj1,σ − λk1,σ �
π2

2
(N2 − 1) + 2C∗σ2.

Using the equality of the left-hand sides of these inequalities, together with (2.17), we
get

j2 �
N2

2
+

8C∗σ�20
π2

� N2 + 1
2

,

which is a contradiction.
Therefore, it is sufficient to prove Proposition 2.4 for j2, k2 ∈ {1, . . . , [(N2 +

1)/2]}. Moreover, it is sufficient to prove that, for every j1, k1 ∈ {1, . . . , N} and
j2, k2 ∈ {1, . . . , [(N2 + 1)/2]}, with j1 �= j2, k1 �= k2, (j1, j2) �= (k1, k2), there ex-
ists σ�j1,k1,j2,k2 ∈ (0, σ�0) such that, for every σ ∈ (−σ�j1,k1,j2,k2 , σ

�
j1,k1,j2,k2

), (2.16)
does not hold. Indeed, then, the following choice of σ�(N) concludes the proof of
Proposition 2.4:

σ�(N) := min{σ�j1,k1,j2,k2 ; j1, k1 ∈ {1, . . . , N}, j2, k2 ∈ {1, . . . , (N2 + 1)/2},
(j1, j2) �= (k1, k2), j1 �= j2, k1 �= k2}.

Let j1, k1 ∈ {1, . . . , N}, j2, k2 ∈ {1, . . . , (N2 + 1)/2} be such that j1 �= j2, k1 �= k2,
(j1, j2) �= (k1, k2). We argue by contradiction. Let us assume that, for every σ�1 > 0,
there exists σ ∈ (−σ�1, σ

�
1) such that (2.16) holds. Using the analyticity of both sides

in (2.16) with respect to σ, at σ = 0, this assumption implies that

λ
(2)
k1
− λ(2)

k2
= λ

(2)
j1
− λ(2)

j2
.

Using (2.5) together with a rationality argument, we get

1
k2
1

− 1
k2
2

=
1
j21
− 1
j22
,

1
k4
1

− 1
k4
2

=
1
j41
− 1
j42
.

Since k1 �= k2 and j1 �= j2, we deduce from the previous equalities that

1
k2
1

− 1
k2
2

=
1
j21
− 1
j22
,

1
k2
1

+
1
k2
2

=
1
j21

+
1
j22
.

Therefore k1 = j1 and k2 = j2, which is a contradiction.

2.2.2. Solutions of the Cauchy problem.
Proposition 2.5. Let σ ∈ R, N ∈ N

∗, ε > 0. For every Ψ0 ∈ S, there
exists a unique weak solution Ψ of (1.1)–(1.3) with u(t) = σ + vσ,N,ε(Ψ(t)), i.e.,
Ψ ∈ C0(R, S)∩C1(R, H−2

(0) (I,C)), (1.1) holds in H−2
(0) (I,C) for every t ∈ R, and (1.2)

holds in S.
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Proof of Proposition 2.5. Let σ ∈ R, N ∈ N, ε > 0, Ψ0 ∈ S, and T > 0 be such
that

(2.19) TNeNT < 1.

In order to build solutions on [0, T ], we apply the Banach fixed point theorem to the
map

Θ : C0([0, T ], S) → C0([0, T ], S)
ξ �→ Ψ,

where Ψ is the solution of (1.1)–(1.3) with u(t) = σ + vσ,N,ε(ξ(t)).
The map Θ is well defined and maps C0([0, T ], S) into itself. Indeed, when ξ ∈

C0([0, T ], S), u : t �→ σ + vσ,N,ε(ξ(t)) is continuous and thus Proposition 1.1 ensures
the existence of a unique weak solution Ψ. Notice that the map Θ takes values in
C0([0, T ], S) ∩ C1([0, T ], H−2

(0) ).
Let us prove that Θ is a contraction of C0([0, T ], S). Let ξj ∈ C0([0, T ], S),

vj := vσ,N,ε(ξj), Ψj := Θ(ξj) for j = 1, 2 and Δ := Ψ1 −Ψ2. We have

Δ(t) = i

∫ t

0

e−iAσ(t−s)[v1xΔ(s) + (v1 − v2)xΨ2(s)]ds.

Thanks to (2.2), we have ‖vj‖L∞(0,T ) � N for j = 1, 2 and ‖v1 − v2‖L∞(0,T ) �
2N‖ξ1 − ξ2‖C0([0,T ],L2). Thus

(2.20) ‖Δ(t)‖L2 �
∫ t

0

N‖Δ(s)‖L2 +N‖ξ1 − ξ2‖C0([0,T ],L2)ds.

Therefore, the Gronwall lemma implies

‖Δ(t)‖C0([0,T ],L2) � ‖ξ1 − ξ2‖C0([0,T ],L2)NTe
NT ,

and so (2.19) ensures that Θ is a contraction of the Banach space C0([0, T ], S). There-
fore, there exists a fixed point Ψ ∈ C0([0, T ], S) such that Θ(Ψ) = Ψ. Since Θ takes
values in C0([0, T ], S)∩C1([0, T ], H−2

(0)), necessarily Ψ belongs to this space, and thus
it is a weak solution of (1.1)–(1.3) on [0, T ].

Finally, we have introduced a time T > 0 and, for every Ψ0 ∈ S, we have built
a weak solution Ψ ∈ C0([0, T ], S) of (1.1)–(1.3) on [0, T ]. Thus, for a given initial
condition Ψ0 ∈ S, we can apply this result on [0, T ], [T, 2T ], [2T, 3T ], etc. This proves
the existence and uniqueness of a global solution for the closed-loop system.

Proposition 2.6. Let σ > 0, N ∈ N, ε > 0, (Ψn
0 )n∈N be a sequence of S, and let

Ψ∞
0 ∈ L2 with ‖Ψ∞

0 ‖L2 � 1 be such that

lim
n→+∞ Ψn

0 = Ψ∞
0 strongly in H−1(I,C).

Let Ψn (resp., Ψ∞) be the weak solution of (1.1)–(1.3) with u(t) = σ + vσ,N,ε(Ψn)
(resp., with u(t) = σ + vσ,N,ε(Ψ∞(t))). Then, for every τ > 0,

lim
n→+∞Ψn(τ) = Ψ∞(τ) strongly in H−1(I,C).

Proof of Proposition 2.6. Let us recall that the space H−1(I,C) (dual space
of H1

0 (I,C) for the L2(I,C)-Hermitian product) coincides with H−1
(0) (I,C) and that√

2‖.‖H−1 = ‖.‖H−1
(0)

(because ‖.‖H1
0

=
√

2‖.‖H1
(0)

). We introduce C > 0 such that

(2.21) ‖xϕ‖H−1 � C‖ϕ‖H−1 ∀ϕ ∈ H−1(I,C).
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Such a constant does exist. Indeed, for every ξ ∈ H1
0 (I,C), xξ ∈ H1

0 (I,C), and

‖xξ‖H1
0

=
(∫

I

|xξ′ + ξ|2dx
)1/2

� ‖ξ′‖L2(1 + CP ),

where CP is the Poincaré constant on I. Thus, for ϕ ∈ H−1(I,C), we have

‖xϕ‖H−1(I,C) = sup
{
〈xϕ, ξ〉; ξ ∈ H1

0 (I,C), ‖ξ‖H1
0

= 1
}

� sup
{
‖ϕ‖H−1‖xξ‖H1

0
; ξ ∈ H1

0 (I,C), ‖ξ‖H1
0

= 1
}

� (1 + CP )‖ξ‖H−1 .

In order to simplify the notation, in this proof we write v(Ψ) instead of vσ,N,ε(Ψ).
We have

(Ψn −Ψ∞)(t) = e−iAt(Ψn
0 −Ψ∞

0 ) + i

∫ t

0

e−iA(t−s)σx(Ψn −Ψ∞)(s)ds

+ i

∫ t

0

e−iA(t−s)[v(Ψn(s)) − v(Ψ∞(s))]xΨn(s)ds

+ i

∫ t

0

e−iA(t−s)v(Ψ∞(s))x[Ψn(s)−Ψ∞(s)]ds.

Using (2.2), ‖Ψn(s)‖L2 = 1, ‖Ψ∞(s)‖L2 � 1 and the fact that φk,σ , xφk,σ ∈ H1
0 (I,C)

for k = 1, . . . , N , we get

(2.22) |v(Ψn(s))− v(Ψ∞(s))| � 2NCCσ(N)‖(Ψn −Ψ∞)(s)‖H−1 ,

where Cσ(N) := sup{‖φk,σ‖H1
0 (I,C); k ∈ {1, . . . , N}}. The semigroup e−iAt preserves

the H−1-norm, and thus, using |v(Ψ∞(s))| � N and (2.22), we get

‖(Ψn −Ψ∞)(t)‖H−1 � ‖Ψn
0 −Ψ∞

0 ‖H−1

+ C
∫ t
0
(|σ| + 2NCσ(N) +N)‖Ψn(s)−Ψ∞(s)‖H−1ds.

We conclude thanks to the Gronwall lemma.

2.3. Proofs of Theorem 2.1 and Corollary 2.2.
Proof of Theorem 2.1. Let N ∈ N

∗. Let σ∗ > 0 be as in Proposition 2.3 and
σ� = σ�(N) be as in Proposition 2.4. Let σ∗∗ := min{σ∗, σ�}.

Let σ ∈ (−σ∗∗, σ∗∗) − {0}, γ ∈ (0, 1), ε > 0, Ψ0 ∈ S with (2.1) and let Ψ be the
weak solution of (1.1)–(1.3) with u(t) = σ + vσ,N,ε(Ψ(t)) given by Proposition 2.5.
For ϕ ∈ L2(I,C), we define

(2.23) Vσ,N,ε(ϕ) := 1− |〈ϕ, φ1,σ〉|2 − (1− ε)
N∑
k=2

|〈ϕ, φk,σ〉|2.

Since Ψ ∈ C1(R, H−2
(0) (I,C)) and φk,σ ∈ H2

(0)(I,C), t �→ VN,σ,ε(Ψ(t)) is C1. Using
(1.1), integration by parts, and a1 := 1, ak := 1− ε when k � 2, we get

(2.24)
d

dt
Vσ,N,ε(Ψ) = −2�

(
N∑
k=1

ak〈−iAσΨ + ivσ,N,ε(Ψ)xΨ, φk,σ〉〈Ψ, φk,σ〉
)
,

= −2vσ,N,ε(Ψ(t))2.
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Thus, t �→ Vσ,N,ε(Ψ(t)) is a nonincreasing function. There exists α ∈ [0,Vσ,N,ε(Ψ0)]
such that Vσ,N,ε(Ψ(t))→ α when t→ +∞. Since Ψ0 ∈ S and (2.1) holds we have

Vσ,N,ε(Ψ0) = 1− (1 − ε)
N∑
k=1

|〈Ψ, φk,σ〉|2 − ε|〈Ψ, φ1,σ〉|2

= 1− (1 − ε)
(

1−
∞∑

k=N+1

|〈Ψ, φk,σ〉|2
)
− ε|〈Ψ, φ1,σ〉|2

< 1− (1 − ε)
(

1− εγ2

1− ε

)
− εγ2

< ε,

and thus α ∈ [0, ε).
Let (tn)n∈N be an increasing sequence of positive real numbers such that tn → +∞

when n → +∞. Since ‖Ψ(tn)‖L2 = 1 for every n ∈ N, there exists Ψ∞ ∈ L2(I,C)
such that, up to an extraction,

Ψ(tn)→ Ψ∞ weakly in L2(I,C) and strongly in H−1(I,C).

Let ξ be the solution of⎧⎪⎪⎨
⎪⎪⎩

i∂ξ∂t = Aσξ − vσ,N,ε(ξ(t))xξ, x ∈ I, t ∈ (0,+∞),

ξ(t,±1/2) = 0,

ξ(0) = Ψ∞.

Thanks to Proposition 2.6, for every τ > 0, Ψ(tn + τ) → ξ(τ) strongly in H−1(I,C)
when n → +∞. Thus Vσ,N,ε(Ψ(tn + τ)) → Vσ,N,ε(ξ(τ)) when n → +∞, because
Vσ,N,ε(.) is continuous for the L2-weak topology. Therefore Vσ,N,ε(ξ(τ)) ≡ α. Fur-
thermore, relation (2.24) holds when Ψ is replaced by ξ, and thus vσ,N,ε(ξ(τ)) ≡ 0
and ξ solves ⎧⎪⎪⎨

⎪⎪⎩
i∂ξ∂t = Aσξ, x ∈ I, t ∈ (0,+∞),

ξ(t,±1/2) = 0,

ξ(0) = Ψ∞.

Therefore, we have

ξ(τ) =
∞∑
k=1

〈Ψ∞, φk,σ〉φk,σe−iλk,στ .

The equality vσ,N,ε(ξ) ≡ 0, then, gives

(2.25)

�

⎛
⎝ N∑
k=1

∑
j∈N∗,j �=k

ak〈Ψ∞, φj,σ〉〈xφj,σ , φk,σ〉〈Ψ∞, φk,σ〉ei(λk,σ−λj,σ)τ

⎞
⎠ ≡ 0.

Let ω(k1,k2) := λk1,σ − λk2,σ for every k1, k2 ∈ N
∗ and S := {(k1, k2); k1 ∈ {1, . . . , N},

k2 ∈ N
∗, k1 �= k2}. Thanks to Proposition 2.4, all the frequencies ωK for K ∈ S are
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different. Moreover, there exists a uniform gap δ > 0 such that, for every ω, ω̃ ∈
{±ωK ;K ∈ S} with ω �= ω̃, then |ω − ω̃| � δ. Thus, for T > 0 large enough, there
exists C = C(T ) > 0 such that the Ingham inequality

∑
K∈S
|aK |2 � C

∫ T

0

∣∣∣ ∑
K∈S

aKe
iωKt

∣∣∣2dt
holds for every (aK)K∈S ∈ l2(S,C) (see [16, Theorem 1.2.9]). Equality (2.25) implies,
in particular,

〈Ψ∞, φj,σ〉〈xφj,σ , φ1,σ〉〈Ψ∞, φ1,σ〉 = 0 ∀j � 2.

Thanks to (2.6), we get

(2.26) 〈Ψ∞, φj,σ〉〈Ψ∞, φ1,σ〉 = 0 ∀j � 2.

Let us prove that

(2.27) 〈Ψ∞, φ1,σ〉 �= 0.

Since ‖Ψ∞‖L2 � 1, we have

Vσ,N,ε(Ψ∞) � 1− |〈Ψ∞, φ1,σ〉|2 − (1− ε)
∞∑
k=2

|〈Ψ∞, φk,σ〉|2

= 1− |〈Ψ∞, φ1,σ〉|2 − (1− ε)[‖Ψ∞‖2L2 − |〈Ψ∞, φ1,σ〉|2]

� ε− ε|〈Ψ∞, φ1,σ〉|2.

Moreover, Vσ,N,ε(Ψ∞) = α < ε, and thus

ε > ε− ε|〈Ψ∞, φ1,σ|2,

which gives (2.27). Therefore (2.26) justifies the existence of β ∈ C with |β| � 1 such
that Ψ∞ = βφ1,σ. Then ε > α = VN,σ,ε(Ψ∞) = 1 − |β|2, and thus |β|2 > 1 − ε.
Finally, we have

lim
n→+∞ |〈Ψ(tn), φ1,σ〉|2 = |〈Ψ∞, φ1,σ〉|2 = |β|2 > 1− ε.

This holds for every sequence (tn)n∈N, and thus (2.3) is proved.
Proof of Corollary 2.2. Let C∗, σ∗ > 0 be as in Proposition 2.3. There exists

N = N(Γ, s, ε, γ) ∈ N
∗ large enough so that

(2.28)
Γ2(

λN+1 − C∗σ∗2

N+1

)s � εγ2

1− ε .

Let σ∗∗ = σ∗∗(N) be as in Theorem 2.1 (notice that σ∗∗ � σ∗) and σ ∈ (−σ∗∗, σ∗∗)−
{0}. Let Ψ0 ∈ Hs

(σ)(I,C) ∩ S, verifying (2.4). In order to get the conclusion of
Corollary 2.2, we prove that (2.1) holds, and we apply Theorem 2.1. Using (2.7),
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we get

∞∑
k=N+1

|〈Ψ0, φk,σ〉|2 �
1

λsN+1,σ

∞∑
k=N+1

λsk,σ |〈Ψ0, φk,σ〉|2

� 1
λsN+1,σ

∞∑
k=1

λsk,σ |〈Ψ0, φk,σ〉|2

� Γ2(
λN+1 − C∗σ2

N+1

)s .
Thus (2.28) implies (2.1).

3. Stabilization of C1. Throughout this section, the constants C∗, σ∗ are as in
Proposition 2.3.

3.1. Main result. First, let us state the existence of an implicit function σ(Ψ)
that will be used in the feedback law. When X is a normed space, a ∈ X and r > 0,
we use the notation BX(a, r) := {y ∈ X ; ‖y − a‖X < r}.

Proposition 3.1. Let N ∈ N
∗, ε > 0, and θ ∈ C∞(R+, [0, σ∗]) be such that

(3.1) θ(0) = 0, θ(s) > 0 ∀s > 0, ‖θ′‖L∞ � 1
36NC∗ .

There exists a unique σ ∈ C∞(BL2(0, 2), [0, ‖θ‖L∞]) such that

σ(ψ) = θ(Vσ(ψ),N,ε(ψ)) ∀ψ ∈ BL2(0, 2),

where Vσ,N,ε is defined by (2.23).
The proof of this proposition is done in [7]. For the sake of completeness, we

repeat it in the appendix. The main result of this section is the following.
Theorem 3.2. Let N ∈ N

∗, γ ∈ (0, 1), ε > 0, θ ∈ C∞(R+, [0, σ∗]) verifying (3.1),
(3.2)

‖θ‖L∞ � min

{
1
C∗

(
εγ2N

32(1− ε/2)

)1/2

,
γ

2C∗ , σ
�(N),

1
C∗ (

√
1− ε/2−

√
1− ε)

}
,

and

(3.3) ‖θ′‖L∞ <
1

3(1 +NC∗)
.

Let σ ∈ C∞(BL2(0, 2), [0, ‖θ‖L∞]) be as in Proposition 3.1. For every Ψ0 ∈ S∩ (H2 ∩
H1

0 )(I,C) with

(3.4)
∞∑

k=N+1

|〈Ψ0, φk〉|2 <
εγ2

32(1− ε/2)
and |〈Ψ0, φ1〉| � γ,

the Cauchy problem (1.1)–(1.3) with u(t) = σ(Ψ(t)) + vσ(ψ(t)),N,ε(Ψ(t)) has a unique
strong solution ψ. Moreover this solution satisfies

(3.5) lim inf
t→+∞ |〈Ψ(t), φ1〉|2 � 1− ε.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1196 KARINE BEAUCHARD AND MAZYAR MIRRAHIMI

The following corollary states that the quantity N appearing in the feedback law
may be uniform in a fixed bounded subset of Hs for s > 0.

Corollary 3.3. Let s > 0, ε > 0, Γ > 0, and γ ∈ (0, 1). There exists N =
N(Γ, s, ε, γ) ∈ N

∗ such that, for every Ψ0 ∈ S∩ (H2 ∩H1
0 )(I,C) with Ψ0 ∈ Hs

(0)(I,C),

(3.6) ‖Ψ0‖Hs
(0)
� Γ and |〈Ψ0, φ1〉| � γ,

the Cauchy problem (1.1)–(1.3) with u(t) = σ(Ψ(t)) + vσ(ψ(t)),N,ε(Ψ(t)) has a unique
strong solution Ψ. Moreover this solution satisfies (3.5).

Remark 3. Theorem 1.2 with σ = 0 is a direct consequence of Corollary 3.3. The
feedback law, evoked in Theorem 1.2, is implicitly given by Corollary 3.3.

3.2. Preliminaries.
Lemma 3.4. Let N ∈ N

∗, ε > 0, and θ satisfy (3.1). There exist C(N) > 0 and
C̃(N) > 0 such that, for all ξ1, ξ2 ∈ BL2(0, 1),

|σ(ξ1)− σ(ξ2)| � 3N‖θ′‖L∞‖ξ1 − ξ2‖L2,(3.7)

|σ(ξ1)− σ(ξ2)| � C(N)‖θ′‖L∞‖ξ1 − ξ2‖H−1 ,(3.8)

|vσ(ξ1),N,ε(ξ1)− vσ(ξ2),N,ε(ξ2)| � N(1 + 3NC∗‖θ′‖L∞)‖ξ1 − ξ2‖L2 ,(3.9)

|vσ(ξ1),N,ε(ξ1)− vσ(ξ2),N,ε(ξ2)| � C̃(N)‖ξ1 − ξ2‖H−1 .(3.10)

Proof of Lemma 3.4. Since N and ε are fixed, in order to simplify the notation,
we remove them from the subscripts of this proof. We have

(3.11) |σ(ξ1)− σ(ξ2)| � ‖θ′‖L∞ |Vσ(ξ1)(ξ1)− Vσ(ξ2)(ξ2)|.

Using

(3.12)

|〈ξ1, φk,σ1〉|2 − |〈ξ2, φk,σ2 〉|2 = 〈ξ1 − ξ2, φk,σ1 〉〈ξ1, φk,σ1 〉
+〈ξ2, φk,σ1 〉〈ξ1 − ξ2, φk,σ1 〉
+〈ξ2, φk,σ1 − φk,σ2 〉〈ξ2, φk,σ1〉
+〈ξ2, φk,σ2 〉〈ξ2, φk,σ1 − φk,σ2〉

and (2.10), we get

|Vσ(ξ1)(ξ1)− Vσ(ξ2)(ξ2)| � 2N‖ξ1 − ξ2‖L2 + 2NC∗|σ(ξ1)− σ(ξ2)|,

|Vσ(ξ1)(ξ1)− Vσ(ξ2)(ξ2)| � 2NC1(N)‖ξ1 − ξ2‖H−1 + 2NC∗|σ(ξ1)− σ(ξ2)|,

where C1(N) := max{‖ϕk,σ‖H1
0
; k ∈ {1, . . . , N}, σ ∈ [0, σ∗]}. Using the previous

inequalities and (3.1), we get

17
18
|σ(ξ1)− σ(ξ2)| � 2N‖θ′‖∞‖ξ1 − ξ2‖L2 ,

17
18
|σ1 − σ2| � 2NC1(N)C‖θ′‖∞‖ξ1 − ξ2‖H−1 ,

which implies (3.7) and (3.8) with C(N) = 3NCC1(N).
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Let us write vj instead of vσ(ξj)(ξj). Using, for the term

〈xξ1, φj,σ(ξ1)〉〈ξ1, φj,σ(ξ1)〉 − 〈xξ2, φj,σ(ξ2)〉〈ξ2, φj,σ(ξ2)〉,

the same kind of decomposition as in (3.12), together with (2.10), we get

|v1 − v2| � N‖ξ1 − ξ2‖L2 +NC∗|σ(ξ1)− σ(ξ2)|,

|v1 − v2| � 2NCC1(N)‖ξ1 − ξ2‖H−1 + 2NC∗|σ(ξ1)− σ(ξ2)|,

where C is defined by (2.21). Thus, using (3.7) and (3.8), we get (3.9) and (3.10) with
C̃(N) := 2N [CC1(N) + C∗C(N)‖θ′‖∞].

Proposition 3.5. Let N ∈ N
∗, ε > 0, and θ verify (3.1) and (3.3). For every

Ψ0 ∈ S the Cauchy problem (1.1)–(1.3) with u(t) = σ(Ψ(t)) + vσ(ψ(t)),N,ε(Ψ(t)) has a
unique weak solution, i.e., Ψ ∈ C0(R, S)∩C1((0,+∞), H−2

(0) ). If, moreover, Ψ ∈ (H2∩
H1

0 )(I,C), then Ψ is a strong solution, i.e., Ψ ∈ C0(R, H2 ∩H1
0 )∩C1((0,+∞), L2).

Proof of Proposition 3.5. The strategy is the same as in the proof of Proposi-
tion 2.5. Let T > 0 be such that

NTe(N+‖θ‖L∞)T <
1
2
.

Let Ψ0 ∈ S. In order to build solutions on [0, T ], we apply the Banach fixed-point
theorem to the map

Θ : C0([0, T ], S) → C0([0, T ], S)
ξ �→ Ψ,

where Ψ is the weak solution of (1.1)–(1.3) with u(t) = σ(ξ(t)) + vσ(ξ(t)),N,ε(ξ(t)).
The map Θ is well defined and maps C0([0, T ], S) into itself; moreover, it takes

values in C0([0, T ], S)∩C1((0, T ), H−2
(0) ) (see Proposition 1.1). Let us prove that Θ is

a contraction of C0([0, T ], S). Let ξj ∈ C0([0, T ], S), vj := vσ(ξj),N,ε(ξj), Ψj := Θ(ξj)
for j = 1, 2 and Δ := Ψ1 −Ψ2. We have

Δ(t) = i

∫ t

0

e−iA(t−s)[(σ(ξ1) + v1)xΔ(s) + (σ(ξ1)− σ(ξ2) + v1 − v2)xΨ2(s)]ds.

Using (3.7) and (3.9), we get

‖Δ(t)‖L2 �
∫ t

0

(
‖θ′‖L∞ +N

)
‖Δ(s)‖L2ds

+
∫ t

0

(
3N‖θ′‖L∞ +N [1 + 3NC∗‖θ′‖L∞ ]

)
‖ξ1 − ξ2‖L2ds.

Thus, the Gronwall lemma implies

‖Δ‖C0([0,T ],L2) � ‖ξ1 − ξ2‖C0([0,T ],L2)[1 + 3(1 +NC∗)‖θ′‖L∞ ]NTeT [N+‖θ‖L∞].

The choice of T and (3.3) ensures that Θ is a contraction of C0([0, T ], S). Therefore,
there exists a fixed point Ψ ∈ C0([0, T ], S) such that Θ(Ψ) = Ψ. Since Θ takes values
in C0([0, T ], S)∩C1([0, T ], H−2

(0) ), necessarily Ψ belongs to this space; thus, it is a weak
solution of (1.1)–(1.3) on [0, T ].
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If, moreover, Ψ0 ∈ (H2∩H1
0 )(I, C), then the map Θ takes values in C0([0, T ], H2∩

H1
0 ) ∩ C1([0, T ], L2), and thus Ψ belongs to this space and it is a strong solution.

Since the time T does not depend on Ψ0, the solution can be continued glob-
ally in time. We, therefore, have the existence of global solutions to the closed-loop
system.

Proposition 3.6. Let σ > 0, N ∈ N, ε > 0, θ as in (3.1), (Ψn
0 )n∈N a sequence

of S, and Ψ∞
0 ∈ L2 with ‖Ψ∞

0 ‖L2 � 1 such that

lim
n→+∞ Ψn

0 = Ψ∞
0 strongly in H−1(I,C).

Let Ψn (resp., Ψ∞) be the weak solution of (1.1)–(1.3) with u(t) = σ(Ψn(t)) +
vσ(Ψn(t)),N,ε(Ψn(t)) (resp., with u(t) = σ(Ψ∞)+ vσ(Ψ∞),N,ε(Ψ∞(t))). Then, for every
τ > 0,

lim
n→+∞Ψn(τ) = Ψ∞(τ) strongly in H−1(I,C).

Proof of Proposition 3.6. The proof exactly follows that of Proposition 2.6. In
order to simplify the notation, we write v(Ψ) instead of vσ(Ψ),N,ε(Ψ). We have

(Ψn −Ψ∞)(t) = e−iAt(Ψn
0 −Ψ∞

0 ) + i

∫ t

0

e−iA(t−s)[σ(Ψn)− σ(Ψ∞)]xΨnds

+ i

∫ t

0

e−iA(t−s)[v(Ψn)− v(Ψ∞)]xΨnds

+ i

∫ t

0

e−iA(t−s)[σ(Ψ∞) + v(Ψ∞)]x(Ψn −Ψ∞)ds.

Using (3.8), (3.10), and ‖xΨ‖H−1 � ‖xΨ‖L2 � 1, we get

‖(Ψn −Ψ∞)(t)‖H−1 � ‖Ψn
0 −Ψ∞

0 ‖H−1

+
∫ t

0

(
C(N)‖θ′‖L∞ + C̃(N) + C(‖θ‖L∞ +N)

)
‖Ψn −Ψ∞‖H−1ds,

where C is given by (2.21). The Gronwall lemma concludes the proof.

3.3. Proofs of Theorem 3.2 and Corollary 3.3.
Proof of Theorem 3.2. For ϕ ∈ BL2(0, 2), we define

VN,ε(ϕ) := Vσ(ϕ),N,ε(ϕ),

where Vσ,N,ε is defined by (2.23). Since N and ε are fixed, in order to simplify the
notation, we omit them in the subscripts of this proof and write v(Ψ) instead of
vσ(Ψ),N,ε(Ψ).

Let Ψ0 ∈ S∩ (H2 ∩H1
0 )(I,C) and let Ψ be the strong solution of (1.1)–(1.3) with

u(t) = σ(Ψ(t))+ vσ(ψ(t)),N,ε(Ψ(t)) given by Proposition 3.5. Since Ψ ∈ C1(R, L2) and
σ ∈ C∞(BL2(0, 2)), the map t �→ V(ψ(t)) is C1. We have

d

dt
V(Ψ) = −2v(Ψ)2 − d

dt

[
σ(Ψ)

]
�
(

N∑
k=1

ak

〈
Ψ,

dφk,σ
dσ

∣∣∣
σ(Ψ)

〉
〈Ψ, φk,σ(Ψ)〉

)
,

where a1 := 1 and ak := 1− ε for k = 2, . . . , N . Moreover,

d

dt

[
σ(Ψ)

]
= θ′(V(ψ))

d

dt
V(Ψ),
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and thus
(3.13)[

1 + 2θ′(V(ψ))�
(

N∑
k=1

ak

〈
Ψ,

dφk,σ
dσ

∣∣∣
σ(Ψ)

〉
〈Ψ, φk,σ(Ψ)〉

)]
d

dt
V(Ψ) = −2v(Ψ)2.

Using (2.8) and (3.1), we get

1 + 2θ′(V(ψ))�
(

N∑
k=1

ak

〈
Ψ,

dφk,σ
dσ

∣∣∣
σ(Ψ)

〉
〈Ψ, φk,σ(Ψ)〉

)
� 1− 2‖θ′‖L∞NC∗ > 0;

thus, t �→ V(Ψ(t)) is a nonincreasing function. There exists α ∈ [0,V(Ψ0)] such that

lim
t→+∞V(Ψ(t)) = α.

Using (2.10), (3.2), and (3.4), we get

|〈Ψ0, φ1,σ(Ψ0)〉| � |〈Ψ0, φ1〉| − |〈Ψ0, φ1 − φ1,σ(Ψ0)〉|
� γ − C∗‖θ‖∞
� γ̃ :=

γ

2
,

∞∑
k=N+1

|〈Ψ0, φk,σ(Ψ0)〉|2 � 2
∞∑

k=N+1

(
|〈Ψ0, φk〉|2 + |〈Ψ0, φk,σ(Ψ0) − φk〉|2

)

� εγ2

16(1− ε/2)
+ 2(C∗‖θ‖L∞)2

∞∑
k=N+1

1
k2

� εγ2

16(1− ε/2)
+

2(C∗‖θ‖L∞)2

N

� ε̃γ̃2

(1 − ε̃) ,

where ε̃ := ε/2. Thus, as in the proof of Theorem 2.1, V(Ψ0) < ε̃, so α ∈ (0, ε̃).
Let (tn)n∈N be an increasing sequence of positive real numbers such that tn → +∞

when n → +∞. Since ‖Ψ(tn)‖L2 = 1 for every n ∈ N, there exists Ψ∞ ∈ L2(I,C)
such that, up to an extraction,

Ψ(tn)→ Ψ∞ weakly in L2(I,C) and strongly in H−1(I,C).

Let ξ be the weak solution of⎧⎪⎨
⎪⎩

i∂ξ∂t = Aσξ − vσ(ξ),N,ε(ξ(t))xξ,
ξ(t,±1/2) = 0,
ξ(0) = Ψ∞.

Thanks to Proposition 3.6, for every τ > 0, Ψ(tn + τ) → ξ(τ) strongly in H−1(I,C)
when n → +∞, and thus σ(Ψ(tn + τ)) → σ(ξ(τ)) when n → +∞ (see Lemma 3.4).
Therefore, V(Ψ(tn + τ)) → V(ξ(τ)) when n → +∞, so V(ξ) ≡ α. Thus, σ(ξ) ≡ σ :=
θ(α) and we have, for every t ∈ R+,

V(ξ(t)) = 1− |〈ξ(t), φ1,σ〉|2 − (1 − ε)
N∑
k=2

|〈ξ(t), φk,σ〉|2.
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Since ξ ∈ C1(R+, H
−2
(0) ), the previous equality implies

dV(ξ)
dt

= −2v(ξ)2.

Since V(ξ) ≡ α, then v(ξ) ≡ 0.
First case: α = 0. Then V(Ψ(t)) → 0 when t → +∞ and σ = 0. Moreover, for

every t ∈ (0,∞),

V(Ψ(t)) � 1− |〈Ψ, φ1,σ(Ψ)〉|2 − (1− ε)
∞∑
k=2

|〈Ψ, φk,σ(Ψ)〉|2

� ε(1− |〈Ψ, φ1,σ(Ψ)〉|2).

Thus,

|〈Ψ(tn), φ1,σ(Ψ(tn))〉| → 1,

which leads to

|〈Ψ(tn), φ1〉| → 1

because σ(Ψ(tn))→ 0.
Second case: α �= 0. Then σ = θ(α) > 0. Exactly as in the first analysis, done in

the proof of Theorem 2.1, we get

Ψ∞ = βφ1,σ,

where β ∈ C and |β|2 > 1− ε̃. Thus

lim
n→+∞ |〈Ψ(tn), φ1〉| = |〈Ψ∞, φ1〉| � |β| − |〈Ψ∞, φ1,σ − φ1〉| �

√
1− ε/2− C∗σ,

where we used (2.7) in the last inequality. Finally, thanks to 0 < σ � ‖θ‖∞ and (3.2),
we get (3.5).

Proof of Corollary 3.3. It can be done in a very similar way to the proof of
Corollary 2.2.

4. Numerical simulations. In this section, we check out the performance of
the techniques on some numerical simulations. We consider, as a test case, the sta-
bilization of the initial state Ψ0 = 1√

2
(φ1,σ + φ3,σ) around the ground state φ1,σ.

Therefore, the cut-off dimension N is 3. Note that such a test case is a particularly
hard one in a near-degenerate situation. Indeed, considering the feedback law (1.9)
for σ = 0, one can easily see that for parity reasons v(Ψ(t)) ≡ 0.

In a first simulation, we consider the nondegenerate case of σ �= 0. As mentioned
above, the constant σ needs to be small. In fact, one should choose σ, such that
the perturbation σx is small compared to the operator − 1

2
∂2

∂x2 . We choose it here
to be σ = 2e + 01. Figure 4.1 illustrates the simulation of the closed-loop system
when u = σ + vε with ς = 1e + 03 and ε = 5e − 02. The simulations have been
done applying a third order split-operator method (see, e.g., [13]), where instead of
computing exp(−i dt (Aσ − vεx)) at each time step, we compute

exp(−i dt Aσ/2) exp(i dt vεx) exp(−i dt Aσ/2).
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Fig. 4.1. The practical stabilization of C1,σ , where Ψ0 = 1√
2
(φ1,σ + φ3,σ) and therefore the

cut-off dimension is 3; as can be seen, the closed-loop system reaches the .05-neighborhood of φ1,σ

in a time T = 150π corresponding to about 200 periods of the longest natural period corresponding
to the ground to the first excited state.
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Fig. 4.2. The practical stabilization of C1, where Ψ0 = 1√
2
(φ1 + φ3) and therefore the cut-off

dimension is 3; as can be seen, the closed-loop system reaches the .05-neighborhood of φ1 in a time
T = 1000π corresponding to about 1300 periods of the longest natural period corresponding to the
ground to the first excited state.

Moreover, we consider a Galerkin discretization over the first 20 modes of the sys-
tem (it turns out, by considering higher modal approximations, that 20 modes are
completely sufficient to get a reliable result).

Now, let us consider the degenerate case of σ = 0. As mentioned above, such a case
is not treatable with the explicit feedback design of (1.9). However, the simulations of
Figure 4.2 show that the implicit Lyapunov design provided in subsection 1.3 removes
the degeneracy problem and ensures the practical stabilization of the initial state
1√
2
(φ1 + φ3) around the ground state φ1.
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We consider the function θ(r) = ηr with η = 7e+02. Furthermore, in the feedback
design vε, we consider ς = 1e+03 and ε = 5e−02. The numerical scheme is similar to
the simulations of Figure 4.1. In order to calculate the implicit part of the feedback
design σ(Ψ), we apply a fixed-point algorithm.

5. Appendix. This appendix is devoted to the proofs of Propositions 1.1 and
3.1.

5.1. Proof of Proposition 1.1. Let Ψ0 ∈ S, T1 > 0 and u ∈ C0([0, T1],R). Let
T ∈ (0, T1) be such that

(5.1) ‖u‖L1(0,T ) < 1.

We prove the existence of Ψ ∈ C0([0, T ], L2(I,C)) such that (1.4) holds by applying
the Banach fixed-point theorem to the map

Θ : C0([0, T ], L2) → C0([0, T ], L2)
ξ �→ Ψ,

where Ψ is the weak solution of⎧⎪⎪⎨
⎪⎪⎩

i∂Ψ
∂t = AΨ− u(t)xξ,

Ψ(0, x) = Ψ0(x),

Ψ(t,±1/2) = 0,

i.e., Ψ ∈ C0([0, T ], L2) and satisfies, for every t ∈ [0, T ],

Ψ(t) = e−iAtΨ0 + i

∫ t

0

e−iA(t−s)u(s)xξ(s)ds in L2(I,C).

Notice that Θ takes values in C1([0, T ], H−2
(0) (I,C)).

For ξ1, ξ2 ∈ C0([0, T ], L2(I,C)), Ψ1 := Θ(ξ1), Ψ2 := Θ(ξ2) we have

(Ψ1 −Ψ2)(t) = i

∫ t

0

e−iA(t−s)u(s)x(ξ1 − ξ2)(s)ds,

and thus

‖(Ψ1 −Ψ2)(t)‖L2 �
∫ t

0

|u(s)|ds‖ξ1 − ξ2‖C0([0,T ],L2).

The assumption (5.1) guarantees that Θ is a contraction of C0([0, T ], L2), and thus
Θ has a fixed point Ψ ∈ C0([0, T ], L2). Since Θ takes values in C1([0, T ], H−2

(0) ), then
Ψ belongs to this space. Moreover, this function satisfies (1.4).

Finally, we have built weak solutions on [0, T ] for every Ψ0, and the time T does
not depend on Ψ0. Thus, this gives solutions on [0, T1].

Let us prove that this solution is continuous with respect to the the initial con-
dition Ψ0 for the L2(I,C)-topology. Let Ψ0,Φ0 ∈ S and let Ψ, Φ be the associated
weak solutions. We have

‖(Ψ− Φ)(t)‖L2 � ‖Ψ0 − Φ0‖L2 +
∫ t

0

|u(s)|‖(Ψ− Φ)(s)‖L2ds,
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and thus the Gronwall lemma gives

‖(Ψ− Φ)(t)‖L2 � ‖Ψ0 − Φ0‖L2e‖u‖L1(0,T1) .

This gives the continuity of the weak solutions with respect to the initial conditions.
Now, let us assume that Ψ0 ∈ H2 ∩H1

0 (I,C). Take C to be a positive constant
such that for every ϕ ∈ H2∩H1

0 (I,C), ‖xϕ‖H2∩H1
0
� C‖ϕ‖H2∩H1

0
. We consider, then,

T > 0 such that C‖u‖L1(0,T ) < 1. By applying the fixed-point theorem on

Θ2 : C0([0, T ], H2 ∩H1
0 )→ C0([0, T ], H2 ∩H1

0 )

defined by the same expression as Θ, and using the uniqueness of the fixed point of
Θ, we get that the weak solution is a strong solution. The continuity with respect to
the initial condition of the strong solution can also be proved by applying the same
arguments as in above.

Finally, let us justify that the weak solutions take values in S. For Ψ0 ∈ H2∩H1
0 ,

the solution belongs to C1([0, T ], L2) ∩ C0([0, T ], H2 ∩ H1
0 ) and thus the following

computations are justified:

d

dt
‖Ψ(t)‖2L2 = 2�

〈
∂Ψ
∂t
,Ψ

〉
= 0.

Thus Ψ(t) ∈ S for every t ∈ [0, T ].
For Ψ0 ∈ S, we get the same conclusion thanks to a density argument and the

continuity for the C0([0, T ], L2)-topology of the weak solutions with respect to the
initial condition.

5.2. Proof of Proposition 3.1. Let Ψ ∈ BL2(0, 2). We prove the existence of
σ(Ψ) by applying the Banach fixed-point theorem to the map

Π : [0, ‖θ‖L∞] → [0, ‖θ‖L∞]
σ �→ θ(Vσ,N,ε(Ψ)).

For σ1, σ2 ∈ [0, ‖θ‖L∞], we have

|Π(σ1)−Π(σ2)| � ‖θ′‖L∞|Vσ1,N,ε(Ψ)− Vσ2,N,ε(Ψ)|.

Using the inequality∣∣∣|〈Ψ, φj,σ1〉|2 − |〈Ψ, φj,σ2 〉|2
∣∣∣ � ∣∣∣〈Ψ, φj,σ1 − φj,σ2 〉〈Ψ, φj,σ1〉

∣∣∣
+

∣∣∣〈Ψ, φj,σ2〉〈Ψ, φj,σ1 − φj,σ2 〉
∣∣∣

� 8‖φj,σ1 − φj,σ2‖L2 ,

together with (2.10), we get

|Π(σ1)−Π(σ2)| � 8NC∗‖θ′‖L∞|σ1 − σ2|.

Thus, the assumption (3.1) ensures that Π is a contraction of [0, ‖θ‖L∞]. Therefore,
Π has a unique fixed point σ(Ψ).

Now, let us prove that σ is C∞. The map

F : [0, ‖θ‖L∞]×BL2(0, 2) → R

(σ,Ψ) �→ σ − θ(Vσ,N,ε(Ψ))
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is regular with respect to σ and Ψ, F (σ(Ψ),Ψ) = 0 for every Ψ ∈ BL2(0, 2), and

(5.2)
∂F

∂σ
(σ(Ψ),Ψ) = 1− 2θ′(Vσ(Ψ),N,ε(Ψ))

∂

∂σ

[
Vσ,N,ε(Ψ)

]
σ(ψ)
� 1

2
.

Indeed, for σ0 ∈ [0, ‖θ‖L∞] and Ψ ∈ BL2(0, 2), we have

∂

∂σ

[
Vσ,N,ε(Ψ)

]
σ0

= −2
N∑
k=1

ak�
(〈

Ψ,
dφk,σ
dσ

∣∣∣
σ0

〉
〈Ψ, φk,σ0〉

)
,

where a1 := 1 and ak := 1− ε for k = 2, . . . , N . Thus, using (2.8), we get

∣∣∣ ∂
∂σ

[
Vσ,N,ε(Ψ)

]
σ0

∣∣∣ � 8NC∗.

We get the inequality in (5.2) thanks to the previous inequality and (3.1).
For every Ψ ∈ BL2(0, 2), the implicit function theorem provides the existence of a

local C∞ parameterization σ̃(ξ) for the solutions of F (σ(ξ), ξ) = 0 in a neighborhood
of Ψ. The uniqueness of the fixed point σ(ξ) justifies that σ and σ̃ coincide, and thus
σ is C∞.
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ANALYSIS AND DESIGN OF UNCONSTRAINED NONLINEAR MPC
SCHEMES FOR FINITE AND INFINITE DIMENSIONAL SYSTEMS∗

LARS GRÜNE†

Abstract. We present a technique for computing stability and performance bounds for uncon-
strained nonlinear model predictive control (MPC) schemes. The technique relies on controllability
properties of the system under consideration, and the computation can be formulated as an optimiza-
tion problem whose complexity is independent of the state space dimension. Based on the insight
obtained from the numerical solution of this problem, we derive design guidelines for nonlinear MPC
schemes which guarantee stability of the closed loop for small optimization horizons. These guidelines
are illustrated by a finite and an infinite dimensional example.

Key words. model predictive control, suboptimality, stability, controllability, linear program-
ming, controller design, infinite dimensional system
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1. Introduction. Model predictive control (MPC, often also termed receding
horizon control) is a well-established method for the optimal control of linear and
nonlinear systems [1, 2, 19]. The stability and suboptimality analysis of MPC schemes
has been a topic of active research during the last decades. In the MPC literature,
in order to prove stability and suboptimality of the resulting closed loop, often stabi-
lizing terminal constraints or terminal costs are used (see, e.g., [14], [3], [11], [17], or
the survey paper [19]). In these schemes, the terminal costs need to satisfy Lyapunov
function-type conditions, as, e.g., condition [3, Equation (9)] in the case of terminal
constraints and [17, Equations (12) and (13)] in the case without terminal constraints.
In contrast to these approaches, here we consider the simplest class of MPC schemes
for nonlinear systems, namely, those without terminal constraints and cost, which we
call “unconstrained” MPC schemes. These schemes are attractive for their numerical
simplicity, do not require the computation of Lyapunov function like terminal costs
or the introduction of stabilizing state space constraints—which are particularly in-
convenient when treating infinite dimensional systems—and are easily generalized to
time-varying, tracking-type problems and to the case where more complicated sets
than equilibria are to be stabilized. Furthermore, they appear to be the class of
schemes most commonly used in industrial practice, cf. [22, section 7]. Essentially,
these unconstrained MPC schemes can be interpreted as a simple truncation of the
infinite optimization horizon to a finite horizon N .

For such unconstrained schemes without terminal cost, Jadbabaie and Hauser [13]
and Grimm et al. [4] show under different types of controllability and detectability
conditions for nonlinear systems that stability of the closed loop can be expected if
the optimization horizon N is sufficiently large; however, no explicit bounds for N
are given. The paper [8] (see also [7] and [6] for variants of this approach) uses con-
trollability conditions and techniques from relaxed dynamic programming [16, 23] in
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order to compute explicit estimates for the degree of suboptimality, which, in partic-
ular, lead to bounds on the stabilizing optimization horizon N which are, however, in
general not optimal. Such optimal estimates for the stabilizing horizon N have been
obtained in [24, 21] using the explicit knowledge of the finite horizon optimal value
functions, which could be computed numerically in the (linear) examples considered
in these papers.

Unfortunately, for large scale or infinite dimensional and also for moderately sized
nonlinear systems in general neither an analytical expression nor a sufficiently accu-
rate numerical approximation of optimal value functions is available. Furthermore, an
analysis based on such numerical approximations typically does not provide analytic
insight into the dependence between the stability properties and the system structure.
For these reasons, in this paper we base our analysis on (open loop) controllability
properties, which can often be estimated or characterized in sufficient detail by an-
alyzing the system structure. More precisely, for our analysis we use KL bounds of
the chosen running cost along (not necessarily optimal) trajectories. Such bounds in-
duce upper bounds on the optimal value functions and the main feature we exploit is
the fact that the controllability properties do not only impose bounds on the optimal
value function at the initial value but—via Bellman’s optimality principle—also along
“tails” of optimal trajectories. Extending preliminary results in this direction from
[5], we show that the resulting stability and suboptimality condition can be expressed
as an optimization problem whose complexity is independent of the dimension of the
state space of the system and which is actually an easily solvable linear program if the
KL function involved in the controllability assumption is linear in its first argument.
As in [8], this procedure gives a bound on the degree of suboptimality of the MPC
feedback which, in particular, allows one to determine a bound on the minimal stabi-
lizing horizon N , but in contrast to [8] the bound derived here turns out to be optimal
with respect to the class of systems satisfying the assumed controllability property.

Since the resulting optimization problem is small and, thus, easy to solve, we can
perform a comprehensive numerical analysis of many different controllability situa-
tions, which we use in order to derive design guidelines for the formulation of stable
MPC schemes with small optimization horizon N . A distinctive feature of our ap-
proach is that our analysis applies to finite and infinite dimensional systems alike and
we demonstrate the effectiveness of our approach in an infinite dimensional setting by
an example of a sampled data system governed by a parabolic PDE.

The paper is organized as follows: in section 2 we describe the setup and the
relaxed dynamic programming inequality our approach is based upon. In section 3 we
describe the controllability condition we are going to use and its consequences to the
optimal value functions and trajectories. In section 4 we use these results in order to
obtain a condition for suboptimality and show how this condition can be formulated
as an optimization problem. Section 5 shows how our condition can be used for the
closed loop stability analysis. In section 6 we perform a case study in which we analyze
the impact of different controllability bounds and MPC parameters on the minimal
stabilizing horizon N . Based on the numerical findings from this analysis, in section
7 we formulate our design guidelines for MPC schemes and illustrate them by two
examples. We finish the paper by giving conclusions and outlook in section 8 and the
formulation and proof of a technical lemma in the Appendix.

2. Setup and preliminary results. We consider a nonlinear discrete time
system given by

(2.1) x(n+ 1) = f(x(n), u(n)), x(0) = x0
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with x(n) ∈ X and u(n) ∈ U for n ∈ N0. Here we denote the space of control
sequences u : N0 → U by U and the solution trajectory for some u ∈ U by xu(n). The
state space X is an arbitrary metric space; i.e., it can range from a finite set to an
infinite dimensional space.

A typical class of systems we consider are sampled-data systems governed by a
controlled—finite or infinite dimensional—differential equation ẋ(t) = g(x(t), ũ(t))
with solution ϕ(t, x0, ũ) for initial value x0. These are obtained by fixing a sampling
period T > 0 and setting

(2.2) f(x, u) := ϕ(T, x, ũ) with ũ(t) ≡ u.

Then, for any discrete time control function u ∈ U the solutions xu of (2.1), (2.2) sat-
isfy xu(n) = ϕ(nT, x0, ũ) for the piecewise constant continuous time control function
ũ : R → U with ũ|[nT,(n+1)T ) ≡ u(n). Note that with this construction the discrete
time n corresponds to the continuous time t = nT .

Our goal is to find a feedback control law minimizing the infinite horizon cost

(2.3) J∞(x0, u) =
∞∑
n=0

l(xu(n), u(n)),

with running cost l : X × U → R
+
0 . We denote the optimal value function for this

problem by

V∞(x0) = inf
u∈U

J∞(x0, u).

Here we use the term feedback control in the following general sense.
Definition 2.1. For m ≥ 1, an m-step feedback law is a map μ : X×{0, . . . ,m−

1} → U which is applied according to the rule

(2.4) xμ(n+ 1) = f(xμ(n), μ(xμ([n]m), n− [n]m)), xμ(0) = x0,

where [n]m denotes the largest product km, k ∈ Z, with km ≤ n.
In other words, the feedback is evaluated at the times 0,m, 2m. . . and generates a

sequence of m control values which is applied in the m steps until the next evaluation.
Note that for m = 1 we obtain the usual static state feedback concept in discrete time.

If the optimal value function V∞ is known, it is easy to prove using Bellman’s
optimality principle that the optimal feedback law μ is given by

(2.5) μ(x0, ·) := argmin
u∈Um

{
V∞(xu(m)) +

m−1∑
n=0

l(xu(n), u(n))

}
.

Remark 2.2. We assume throughout this paper that in all relevant expressions
the minimum with respect to u ∈ Um is attained. Although it is possible to give mod-
ified statements using approximate minimizers, we decided to make this assumption
in order to simplify and streamline the presentation.

Since infinite horizon optimal control problems are in general computationally
infeasible, we use a receding horizon approach in order to compute an approximately
optimal controller. To this end we consider the finite horizon functional

(2.6) JN (x0, u) =
N−1∑
n=0

l(xu(n), u(n))



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS AND DESIGN FOR UNCONSTRAINED MPC SCHEMES 1209

for N ∈ N0 (using
∑−1
n=0 = 0) and the optimal value function

(2.7) VN (x0) = inf
u∈U

JN (x0, u).

Note that this is the conceptually simplest receding horizon approach in which neither
terminal costs nor terminal constraints are imposed.

Based on this finite horizon optimal value function, for m ≤ N we define an m-
step feedback law μN,m by picking the firstm elements of the optimal control sequence
for this problem according to the following definition.

Definition 2.3. Let u∗ be a minimizing control for (2.6) and initial value x0.
Then we define the m-step MPC feedback law by

μN,m(x0, n) = u∗(n), n = 0, . . . ,m− 1.

Here the value N is called the optimization horizon while we refer to m as the control
horizon.

Note that we do not need uniqueness of u∗ for this definition; however, for
μN,m(x0, ·) being well defined we suppose that for each x0 we select one specific
u∗ from the set of optimal controls.

The first goal of the present paper is to give estimates about the suboptimality
of the feedback μN,n for the infinite horizon problem. More precisely, for an m-step
feedback law μ with corresponding solution trajectory xμ(n) from (2.4) we define

V μ∞(x0) :=
∞∑
n=0

l(xμ(n), μ(xμ([n]m), n− [n]m))

and are interested in upper bounds for the infinite horizon value V μN,m∞ , i.e., in an
estimate about the “degree of suboptimality” of the controller μN,m. Based on this
estimate, the second purpose of this paper is to derive results on the asymptotic
stability of the resulting closed loop system using VN as a Lyapunov function.

The approach we take in this paper relies on results on relaxed dynamic program-
ming [16, 23] which were already used in an MPC context in [7, 8]. Next we state the
basic relaxed dynamic programming inequality adapted to our setting.

Proposition 2.4. Consider an m-step feedback law μ̃ : X×{0, . . . ,m−1} → U ,
the corresponding solution xμ̃(k) with xμ̃(0) = x0, and a function Ṽ : X → R

+
0

satisfying the inequality

(2.8) Ṽ (x0) ≥ Ṽ (xμ̃(m)) + α

m−1∑
k=0

l(xμ̃(k), μ̃(x0, k))

for some α ∈ (0, 1] and all x0 ∈ X. Then for all x ∈ X the estimate

αV∞(x) ≤ αV μ̃∞(x) ≤ Ṽ (x)

holds.
Proof. The proof is similar to that of [23, Proposition 3] and [8, Proposition 2.2]:

Consider x0 ∈ X and the trajectory xμ̃(n) generated by the closed loop system using
μ̃. Then from (2.8) for all n ∈ N0 we obtain

α
m−1∑
k=0

l(xμ̃(nm+ k), μ̃(xμ̃(nm), k)) ≤ Ṽ (xμ̃(mn))− Ṽ (xμ̃(m(n+ 1))).
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Summing over n yields

α

Km∑
n=0

l(xμ̃(n), μ̃(xμ̃(n), μ̃(xμ̃([n]m), n− [n]m)) = α

K∑
n=0

m−1∑
k=0

l(xμ̃(nm+ k), μ̃(xμ̃(nm), k))

≤ Ṽ (x(0)) − Ṽ (x(mK)) ≤ Ṽ (x(0)).

For K →∞ this yields that Ṽ is an upper bound for αV μ̃∞ and, hence,

αV∞(x) ≤ αV μ̃∞(x) ≤ Ṽ (x).

Remark 2.5. The term “unconstrained” refers only to constraints which are
introduced in order to ensure stability of the closed loop. Other constraints can be
easily included in our setup; e.g., the set U of admissible control values could be
subject to—possibly state dependent—constraints or X could be the feasible set of a
state constrained problem on a larger state space.

3. Asymptotic controllability and optimal values. In this section we intro-
duce an asymptotic controllability assumption and deduce several consequences for
our optimal control problem. In order to facilitate this relation, we will formulate our
basic controllability assumption, below, not in terms of the trajectory but in terms of
the running cost l along a trajectory.

To this end we say that a continuous function ρ : R≥0 → R≥0 is of class K∞
if it satisfies ρ(0) = 0, and is strictly increasing and unbounded. We say that a
continuous function β : R≥0 × R≥0 → R≥0 is of class KL0 if for each r > 0 we have
limt→∞ β(r, t) = 0 and for each t ≥ 0 we either have β(·, t) ∈ K∞ or β(·, t) ≡ 0.
Note that in order to allow for tighter bounds for the actual controllability behavior
of the system we use a larger class than the usual class KL. It is, however, easy to
see that each β ∈ KL0 can be overbounded by a β̃ ∈ KL, e.g., by setting β̃(r, t) =
maxτ≥t β(r, τ) + e−tr. Furthermore, we define l∗(x) := minu∈U l(x, u).

Assumption 3.1. Given a function β ∈ KL0, for each x0 ∈ X there exists a
control function ux0 ∈ U satisfying

l(x(n, ux0), ux0(n)) ≤ β(l∗(x0), n)

for all n ∈ N0. Special cases for β ∈ KL0 are

(3.1) β(r, n) = Cσnr

for real constants C ≥ 1 and σ ∈ (0, 1), i.e., exponential controllability, and

(3.2) β(r, n) = cnr

for some real sequence (cn)n∈N0 with cn ≥ 0 and cn = 0 for all n ≥ n0, i.e., finite time
controllability (with linear overshoot).

For certain results, it will be useful to have the property

(3.3) β(r, n+m) ≤ β(β(r, n),m) for all r ≥ 0, n,m ∈ N0.

Property (3.3) ensures that any sequence of the form λn = β(r, n), r > 0, also fulfills
λn+m ≤ β(λn,m). It is, for instance, always satisfied in case (3.1) and satisfied in
case (3.2) if cn+m ≤ cncm. If needed, this property can be assumed without loss of
generality, because by Sontag’s KL-Lemma [25] β in Assumption 3.1 can be replaced
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by a β of the form β(r, t) = α1(α2(r)e−t) for α1, α2 ∈ K∞. Then, (3.3) is easily
verified if α2 ◦ α1(r) ≥ r which is equivalent to α1 ◦ α2(r) ≥ r, which in turn is a
necessary condition for Assumption 3.1 to hold for n = 0 and β(r, t) = α1(α2(r)e−t).

Remark 3.2. Computing β satisfying Assumption 3.1 is in general a hard task
for nonlinear systems. One way to obtain such a β is via a suitable control Lyapunov
function, similar to the procedure described in [15, section 4.4] or used in [20, Proof
of Proposition 1]. However, as we will see later, the precise knowledge of β is not
necessarily needed in order to apply our results, because we will be able to identify
structural properties of β which guarantee good performence of the MPC closed loop;
cf. the design guidelines and the PDE example (7.2) in section 7.

Under Assumption 3.1, for any r ≥ 0 and any N ≥ 1 we define the value

(3.4) BN (r) :=
N−1∑
n=0

β(r, n).

An immediate consequence of Assumption 3.1 is the following lemma.
Lemma 3.3. For each N ≥ 1 the inequality

(3.5) VN (x0) ≤ BN (l∗(x0))

holds.
Proof. Using ux0 from Assumption 3.1, the inequality follows immediately from

VN (x0) ≤ JN (x0, ux0) =
N−1∑
n=0

l(x(n, ux0), ux0(n))

≤
N−1∑
n=0

β(l∗(x0), n) = BN (l∗(x0)).

In the special case (3.1) BN , N ≥ 1, evaluates to

BN (r) = C
1− λN
1− λ r,

while for (3.2) we obtain

BN (r) = CNr, where CN =
min{n0,N−1}∑

j=0

cn.

The following lemma gives bounds on the finite horizon functional along optimal
trajectories. It uses the fact that final pieces of obtimal trajectories are again optimal
trajectories to which we can apply Lemma 3.3.

Lemma 3.4. Assume Assumption 3.1 and consider x0 ∈ X and an optimal control
u∗ for the finite horizon optimal control problem (2.7) with optimization horizon N ≥
1. Then for each k = 0, . . . , N − 1 the inequality

JN−k(xu∗(k), u∗(k + ·)) ≤ BN−k(l∗(xu∗(k))

holds for BN from (3.4).
Proof. Pick any k ∈ {0, . . . , N − 1}. Using ux0 from Assumption 3.1 with x0 =

xu∗(k), from (3.5) we obtain

(3.6) JN−k(xu∗(k), ux0(·)) ≤ BN−k(l∗(xu∗(k))).
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Hence, for the control function defined by

ũ(n) =
{
u∗(n), n ≤ k − 1
ux0(n), n ≥ k

we obtain

VN (x0) ≤ JN (x0, ũ) = Jk(x0, u
∗) + JN−k(xu∗(k), ux0(·)).

On the other hand, we have

VN (x0) = JN (x0, u
∗) = Jk(x0, u

∗) + JN−k(xu∗(k), u∗(k + ·)).

Subtracting the latter from the former yields

0 ≤ JN−k(xu∗(k), ux0(·))− JN−k(xu∗(k), u∗(k + ·)),

which using (3.6) implies

JN−k(xu∗(k), u∗(k + ·)) ≤ JN−k(xu∗(k), ux0(·)) ≤ BN−k(l∗(xu∗(k)),

i.e., the assertion.
A similar inequality can be obtained for VN . Here we split up a trajectory into

two pieces and apply Lemma 3.3 to the second piece.
Lemma 3.5. Assume Assumption 3.1 and consider x0 ∈ X and an optimal control

u∗ for the finite horizon optimal control problem (2.7) with optimization horizon N .
Then for each m = 1, . . . , N − 1 and each j = 0, . . . , N −m− 1 the inequality

VN (xu∗(m)) ≤ Jj(xu∗(m), u∗(m+ ·)) +BN−j(l∗(xu∗(m+ j))

holds for BN from (3.4).
Proof. We define the control function

ũ(n) =
{
u∗(m+ n), n ≤ j − 1
ux0(n), n ≥ j

for ux0 from Assumption 3.1 with x0 = xu∗(m+ j). Then we obtain

VN (xu∗(m)) ≤ J(xu∗(m), ũ)
= Jj(xu∗(m), u∗(m+ ·)) + JN−j(xu∗(m+ j), ux0)
≤ Jj(xu∗(m), u∗(m+ ·)) + BN−j(l∗(xu∗(m+ j)))

where we used (3.5) in the last step. This is the desired inequality.

4. Computation of performance bounds. In this section we provide a con-
structive approach in order to compute α in (2.8) for systems satisfying Assump-
tion 3.1. For this purpose we consider arbitrary values λ0, . . . , λN−1 > 0 and ν > 0
and start by deriving necessary conditions under which these values coincide with an
optimal sequence l(xu∗(n), u∗(n)) and an optimal value VN (xu∗(m)), respectively.

Proposition 4.1. Assume Assumption 3.1 and consider N ≥ 1, m ∈ {1, . . . , N−
1}, a sequence λn > 0, n = 0, . . . , N − 1 a value ν > 0. Consider x0 ∈ X and assume
that there exists an optimal control function u∗ ∈ U for the finite horizon problem
(2.7) with horizon length N , such that

λn = l(xu∗(n), u∗(n)), n = 0, . . . , N − 1
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holds. Then

(4.1)
N−1∑
n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2

holds. If, furthermore,

ν = VN (xu∗(m)),

holds, then

(4.2) ν ≤
j−1∑
n=0

λn+m +BN−j(λj+m), j = 0, . . . , N −m− 1

holds.
Proof. If the stated conditions hold, then λn and ν must meet the inequalities

given in Lemmas 3.4 and 3.5, which is exactly (4.1) and (4.2).
Using this proposition we can give a sufficient condition for suboptimality of the

MPC feedback law μN,m. The idea behind the following theorem is to express the
terms in inequality (2.8) using the values λ0, . . . , λN−1 and ν introduced above.

Theorem 4.2. Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, and assume that
all sequences λn > 0, n = 0, . . . , N − 1 and values ν > 0 fulfilling (4.1), (4.2) satisfy
the inequality

(4.3)
N−1∑
n=0

λn − ν ≥ α
m−1∑
n=0

λn

for some α ∈ (0, 1].
Then for each optimal control problem (2.1), (2.7) satisfying Assumption 3.1, the

assumptions of Proposition 2.4 are satisfied for the m-step MPC feedback law μN,m
and, in particular, the inequality

αV∞(x) ≤ αV μN,m∞ (x) ≤ VN (x)

holds for all x ∈ X.
Proof. Consider an initial value x0 ∈ X and the m-step MPC-feedback law μN,m.

Then there exists an optimal control u∗ for x0 such that

u∗(k) = μN,m(x0, k), k = 0, . . . ,m− 1 and xμN,m(k) = xu∗(k), k = 0, . . . ,m

and, consequently, also

l(xμN,m(k), μN,m(x0, k)) = l(xu∗(k), u∗(k)), k = 0, . . . ,m− 1

holds. These equalities imply
(4.4)

VN (xμN,m(m))+α
m−1∑
n=0

l(xμN,m(n), μN,m(x0, n)) = VN (xu∗(m))+α
m−1∑
n=0

l(xu∗(n), u∗(n))

for any α ∈ R.
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Now by Proposition 4.1 the values λn = l(xu∗(k), u∗(k)) and ν = VN (xu∗(m))
satisfy (4.1) and (4.2), and hence, by assumption also (4.3). Thus, we obtain

VN (xu∗(m)) + α

m−1∑
n=0

l(xu∗(n), u∗(n)) = ν + α

m−1∑
n=0

λn ≤
N−1∑
n=0

λn

=
N−1∑
n=0

l(xu∗(n), u∗(n)) = VN (x0).

Together with (4.4) this yields (2.8) and, thus, the assertion.
Remark 4.3. Our analysis is easily extended to more general settings. As an

example, we show how an additional weight on the final term in the finite horizon
optimal control problem can be included. In this case, the functional JN is generalized
to

(4.5) JωN (x0, u) =
N−2∑
n=0

l(xu(n), u(n)) + ωl(xu(N − 1), u(N − 1))

for some ω ≥ 1. Note that the original form of the functional JN from (2.6) is obtained
by setting ω = 1, i.e., JN = J1

N . A straightforward extension of the proofs in the
previous section reveals that the inequalities in Lemma 3.4 and Lemma 3.5 become

JωN−k(xu∗(k), u∗(k + ·)) ≤ BωN−k(l
∗(xu∗(k))

and

VN (xu∗(m)) ≤ J1
j (xu∗ , u∗(m+ ·)) +BωN−j(l

∗(xu∗(m+ j))),

respectively, with

BωN (r) :=
N−2∑
n=0

β(r, n) + ωβ(r,N − 1).

Consequently, the inequalities (4.1), (4.2), and (4.3) change to

N−2∑
n=k

λn + ωλN−1 ≤ BωN−k(λk), ν ≤
j−1∑
n=0

λn+m +BωN−j(λj+m)

and
N−2∑
n=0

λn + ωλN−1 − ν ≥ α
m−1∑
n=0

λn,

respectively.
In view of Theorem 4.2, the value α can be interpreted as a performance bound

which indicates how good the receding horizon MPC strategy approximates the in-
finite horizon problem. In the remainder of this section we present an optimization
approach for computing α. To this end consider the following optimization problem.

Problem 4.4. Given β ∈ KL0, N ≥ 1 and m ∈ {1, . . . , N − 1}, compute

α := inf
λ0,...,λN−1,ν

∑N−1
n=0 λn − ν∑m−1
n=0 λn
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subject to the constraints (4.1) and (4.2) and

(4.6) λ0, . . . , λN−1, ν > 0.

The following is a straightforward corollary from Theorem 4.2.
Corollary 4.5. Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, and assume

that the optimization Problem 4.4 has an optimal value α ∈ (0, 1].
Then for each optimal control problem (2.1), (2.7) satisfying Assumption 3.1, the

assumptions of Proposition 2.4 are satisfied for the m-step MPC feedback law μN,m
and, in particular, the inequality

αV∞(x) ≤ αV μN,m∞ (x) ≤ VN (x)

holds for all x ∈ X.
Proof. The proof follows immediately from Theorem 4.2 and the definition of

Problem 4.4.
Problem 4.4 is an optimization problem of a much lower complexity than the

original MPC optimization problem. Still, it is in general nonlinear. However, it
becomes a linear program if we assume that β(r, n) and, thus, Bk(r) are linear in r.

Lemma 4.6. If β(r, t) is linear in r, then Problem 4.4 yields the same optimal
value α as

(4.7) α := min
λ0,λ1,...,λN−1,ν

N−1∑
n=0

λn − ν

subject to the (now linear) constraints (4.1) and (4.2) and

(4.8) λ0, . . . , λN−1, ν ≥ 0,
m−1∑
n=0

λn = 1.

Proof. Due to the linearity, all sequences λ̄0, . . . , λ̄N−1, ν̄ satisfying (4.1), (4.2),
and (4.6) can be written as γλ0, . . . , γλN−1, γν for some λ0, . . . , λN−1, ν satisfying
(4.1), (4.2), (4.6), and (4.8), where γ = (

∑m−1
n=0 λ̄n)−1. Since

∑N−1
n=0 λ̄n − ν̄∑m−1
n=0 λ̄n

=
∑N−1

n=0 γλn − γν∑m−1
n=0 γλn

=
∑N−1

n=0 λn − ν∑m−1
n=0 λn

=
N−1∑
n=0

λn − ν,

under the constraints (4.6) and (4.8) the values α in Problem 4.4 and (4.7) coincide.
Now by continuity we can weaken (4.6) to λ1, . . . , λN−1, ν ≥ 0 without changing α
in (4.7); i.e., we can omit the constraints (4.6) in the linear problem. This shows the
claim.

MATLAB implementations for the linear program described in Lemma 4.6 for
(3.1) and (3.2), including also the weights ω from Remark 4.3, are available from the
web site: www.math.uni-bayreuth.de/∼lgruene/publ/mpcbound.html.

Remark 4.7. Although restrictive, the linearity condition in Lemma 4.6 appears
to be a natural condition for proving asymptotic stability of the MPC closed loop. In
fact, in many papers in the MPC literature for nonlinear finite dimensional systems
(e.g., in [3], [17], [13]) stabilizability or even controllability of the linearization at
the equilibrium is assumed. In our framework this implies exponential controllability
on any compact subset of the state space for any quadratic cost function and, thus,
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linearity of β(r, t) in r. In the more general approach in [4], asymptotic stability (in
contrast to mere practical asymptotic stability) was proved under a condition which
implies

l(x(n, ux0)) ≤ Ce−σnl(x0)

for some suitable function l, cf. [4, Corollary 2], which yields our exponential control-
lability assumption for this l and, thus, again linearity of β(r, t) in r.

5. Asymptotic stability. In this section we show how the performance bound
α can be used in order to conclude asymptotic stability of the MPC closed loop. More
precisely, we investigate the asymptotic stability of the zero set of l∗. To this end we
make the following assumption.

Assumption 5.1. There exists a closed set A ⊂ X satisfying:
(i) For each x ∈ A there exists u ∈ U with f(x, u) ∈ A and l(x, u) = 0; i.e., we

can stay inside A forever at zero cost.
(ii) There exist K∞–functions α1, α2 such that the inequality

(5.1) α1(‖x‖A) ≤ l∗(x) ≤ α2(‖x‖A)

holds for each x ∈ X where ‖x‖A := miny∈A ‖x− y‖.
This assumption assures global asymptotic stability of A under the optimal feed-

back (2.5) for the infinite horizon problem, provided β(r, n) is summable. We remark
that condition (ii) can be relaxed in various ways, e.g., it could be replaced by a
detectability condition similar to the one used in [4]. However, in order to keep the
presentation in this paper technically simple we will work with Assumption 5.1(ii)
here. Our main stability result is formulated in the following theorem. As usual, we
say that a feedback law μ asymptotically stabilizes a set A if there exists β̃ ∈ KL0

such that the closed loop system satisfies ‖xμ(n)‖A ≤ β̃(‖x0‖A, n).
Theorem 5.2. Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, and assume that

the optimization Problem 4.4 has an optimal value α ∈ (0, 1].
Then for each optimal control problem (2.1), (2.7) satisfying the Assumptions

3.1 and 5.1, the m-step MPC feedback law μN,m asymptotically stabilizes the set A.
Furthermore, VN is a corresponding m-step Lyapunov function in the sense that

(5.2) VN (xμN,m(m)) ≤ VN (x)− αVm(x).

Proof. In order to prove the theorem, we first show that VN (xμN,m(km)) is de-
creasing to 0 as k → ∞. In the second step we show that VN (xμN,m(n)) is suitably
bounded also for those times n which are not integer multiples of m.

From (5.1) and Lemma 3.3 we immediately obtain the inequality

(5.3) α1(‖x‖A) ≤ VN (x) ≤ BN (α2(‖x‖A)).

Note that BN ◦ α2 is again a K∞-function. The stated Lyapunov inequality (5.2)
follows immediately from (2.8) which holds according to Corollary 4.5. Again using
(5.1) we obtain Vm(x) ≥ α1(‖x‖A) and, thus, a standard construction (see, e.g., [20,
Proof of Proposition 1] or [15, section 4.4]) yields a KL–function ρ for which the
inequality

VN (xμN,m(km)) ≤ ρ(VN (x), k)
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holds. In addition, using the definition of μN,m, for n = 1, . . . ,m− 1 we obtain

VN (xμN,m(n)) =
m−1∑
k=n

l(xμN,m(k), μN,m(xμN,m(0), k)) + VN−m+n(xμN,m(m))

≤
m−1∑
k=0

l(xμN,m(k), μN,m(xμN,m(0), k)) + VN−m+n(xμN,m(m))

≤ VN (x) + VN (xμN,m(m)) ≤ 2VN (x),

where we have used (5.2) in the last inequality. Thus, for all n ∈ N0 we obtain the
estimate

VN (xμN,m(n)) ≤ 2ρ(VN (x), [n]m/m),

which eventually implies

‖xμN,m(n)‖A ≤ α−1
1 (VN (xμN,m(n))) ≤ α−1

1 (2ρ(VN (x), [n]m/m))

≤ α−1
1 (2ρ(BN (α2(‖x‖A)), [n]m/m))

and, thus, the desired asymptotic stability with KL-function given by, e.g.,

β̃(r, n) = α−1
1 (2ρ(BN (α2(r)), [n]m/m)) + re−n.

Of course, Theorem 5.2 gives a conservative criterion in the sense that for a given
system satisfying the Assumptions 3.1 and 5.1 asymptotic stability of the closed loop
may well hold for smaller optimization horizons N . A trivial example for this is an
asymptotically stable system (2.1) which does not depend on u at all, which will of
course be “stabilized” regardless of N .

Hence, the best we can expect is that our condition is tight under the information
we use; i.e., that given β,N,m such that the assumption of Theorem 5.2 is violated we
can always find a system satisfying Assumptions 3.1 and 5.1 which is not stabilized
by the MPC feedback law. The following Theorem 5.3 shows that this is, indeed,
the case if β satisfies (3.3). Its proof relies on the explicit construction of a control
system and a running cost for which the MPC closed loop is not asymptotically stable.
Although this is in principle possible for all m ∈ {1, . . . , N − 1}, we restrict ourselves
to the classical feedback case, i.e., m = 1, in order to keep the construction technically
simple.

Theorem 5.3. Consider β ∈ KL0 satisfying (3.3), N ≥ 1, m = 1 and assume
that the optimization Problem 4.4 has an optimal value α < 0.

Then there exists an optimal control problem (2.1), (2.7) satisfying the Assump-
tions 3.1 and 5.1 which is not asymptotically stabilized by the MPC feedback law μN,1.

Proof. If α < 0, then there exists λn, ν > 0 meeting the constraints of Problem
4.4 satisfying

∑N−1
n=0 λn− ν/(

∑m−1
n=0 λn) =: α̃ < 0. By Lemma 9.1 we can without loss

of generality assume that the inequalities (4.1) are strict for λn.
Now we construct an optimal control problem on the set X = {0} ∪ {2−k|k ∈

N0} × {−N + 1, . . . , N} with control values U = {−1, 0, 1} and dynamics given by

f((1, p),−1) = (1,max{−N + 1, p− 1})
f((1, p), 0) = (1/2, p)
f((1, p), 1) = (1,min{N, p+ 1})
f((q, p), u) = (q/2, p), q ≤ 1/2, u ∈ U.
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The running cost is given by

l((1, p), 1) = λp, p ∈ {0, N − 1}
l((1, p), 1) = ν, p /∈ {0, N − 1}

l((1, p),−1) = l((1,−p+ 1), 1)
l((1, p), 0) = β(min{l((1, n), 1), l((1, n),−1)}, 0)

l((2−k, p), u) = β(min{l((1, p), 1), l((1, p),−1)}, k), k ≥ 1, u ∈ U

We intend to show that the set A = {x ∈ X | l∗(x) = 0} is not asymptotically
stabilized. This set A satisfies Assumption 5.1(i) for u = 0 and (ii) for α̃1(r) =
infx∈X,‖x‖A≥r l∗(x) and α̃2(r) = supx∈X,‖x‖A≤r l∗(x). Due to the discrete nature
of the state space α̃1 and α̃2 are discontinuous but they are easily under- and over-
bounded by continuous K∞ functions α1 and α2, respectively. Furthermore, by virtue
of (3.3) the optimal control problem satisfies Assumption 3.1 for ux ≡ 0.

Now we prove the existence of a trajectory which does not converge to A, which
shows that asymptotic stability does not hold. To this end we abbreviate Λ =∑N−1

n=0 λn (note that (9.1) implies ν > λ) and investigate the values JN ((1, 0), u)
for different choices of u:

Case 1: u(0) = 0. In this case, regardless of the values u(n), n ≥ 1, we obtain
x(n, u) = (2−n, 0) and, thus,

JN ((1, 0), u) =
N−1∑
n=0

β(min{l((1, 0), 1), l((1, 0),−1)}, n)

= BN (min{l((1, 0), 1), l((1, 0),−1)}) = BN (min{λ0, λ1}).

In case that the minimum is attained in λ0 by the (strict) inequality (4.1) for k = 0
we obtain JN ((1, 0), u) > Λ. If the minimum is attained in λ1, then by (4.2) for
j = 0 and (9.1) we obtain JN ((1, 0), u) ≥ ν > Λ. Thus, in both cases the inequality
JN ((1, 0), u) > Λ holds.

Case 2: u(n) = −1, n = 0, . . . , N − 2. This choice yields x(n, u) = (1,−n) for
n = 0, . . . , N − 2 and, thus,

JN ((1, 0), u) =
N−2∑
n=0

λn+1+l((1,−N+1), u(N−1)) ≥ l((1,−N+1), u(N−1)) ≥ ν > Λ.

Case 3: u(n) = −1, n = 0, . . . , k − 1, and u(k) = 1 for a k ∈ {1, . . . , N − 2}. In
this case we obtain x(n, u) = (1,−n) for n = 0, . . . , k implying

JN ((1, 0), u) =
k−1∑
n=0

λn+1 + l((1,−k), 1) ≥ l((1,−k), 1) = ν > Λ.

Case 4: u(n) = −1, n = 0, . . . , k− 1, and u(k) = 0 for a k ∈ {1, . . . , N − 2}. This
control sequence yields x(n, u) = (1,−n) for n = 0, . . . , k and x(n, u) = (2−(n−k),−k)
for n = k + 1, . . . , N − 1 and, thus,

JN ((1, 0), u) =
k−1∑
n=0

λn+1 +
N−1∑
n=k

β(min{l((1,−k), 1), l((1,−k),−1)}, n− k)

=
k−1∑
n=0

λn+1 +BN−k(λk+1) ≥ ν > Λ,

where we have used (4.2) for j = k in the second last inequality.
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Case 5: u(n) = 1, n = 0, . . . , N − 1. This yields x(n, u) = (1, n) and, thus,

JN ((1, 0), u) =
N−1∑
n=0

λn = Λ.

Summarizing, we obtain that any optimal control u∗x for x = (1, 0) must satisfy
u∗x(0) = 1 because for u(0) = 1 we can realize a value ≤ Λ, while for u(0) = 1 we
inevitably obtain a value > Λ. Consequently, the MPC feedback law will steer the
system from x = (1, 0) to x+ := (1, 1).

Now we use that by construction f and l have the symmetry properties

f((q, p), u)−(0, p) = −f((q,−p+1),−u)+(0,−p+1), l((q, p), u) = l((q,−p+1),−u)

for all (q, p) ∈ X which implies J((q, p), u) = J(q,−p + 1),−u). Observe that x+ =
(1, 1) is exactly the symmetric counterpart of x = (1, 0). Thus, any optimal control
u∗x+ from x+ must satisfy u∗x+(n) = −u∗x(n) for some optimal control u∗x for initial
value x. Hence, we obtain u∗x+(0) = −1 which means that the MPC feedback steers
x+ back to x. Thus, under the MPC-feedback law we obtain the closed loop trajectory
(x, x+, x, x+, . . . ) which clearly does not converge to A. This shows that the closed
loop system is not asymptotically stable.

6. Analysis of MPC schemes. Using the optimization Problem 4.4 we are
now able to analyze the optimization horizon N needed in order to ensure stabil-
ity and desired performance of the MPC closed loop. More precisely, given β from
Assumption 3.1 and a desired α0 ≥ 0, by solving Problem 4.4 we can compute the
minimal horizon

(6.1) N̂ := min{N ∈ N |α > α0}

which yields asymptotic stability and—in case α0 > 0—ensures the performance

V
μ

N̂,m∞ (x) ≤ VN̂ (x)/α0.

Note that even without sophisticated algorithms for finding the minimum in (6.1) the
determination of N̂ needs at most a couple of seconds using our MATLAB code.

We first observe that α from Problem 4.4 is monotone decreasing in β, i.e., for
β1 and β2 ∈ KL0 satisfying β1(r, n) ≥ β2(r, n) for all r ∈ R≥0, n ∈ N0, we obtain
α1 ≤ α2 for the corresponding solutions of Problem 4.4. This property immediately
follows from the fact that a smaller β induces stronger constraints in the optimization
problem. Consequently, the horizon N̂ in (6.1) is monotone increasing in β. We
emphasize that this is an important feature because in practice it will rarely be possible
to compute a tight bound β in Assumption 3.1 and typically only a—more or less—
conservative upper bound will be available. Then the monotonocity property ensures
that any N̂ computed using such an upper bound β will also give an upper bound on
the real minimal horizon N̂ for the system.

In the sequel, we will on the one hand investigate how different choices of the
control horizon m and the terminal weight ω (cf. Remark 4.3) affect the horizon N .
On the other hand, we will highlight how different characteristic features of β in
Assumption 3.1, e.g., overshoot and decay rate, influence the horizon N̂ . Since the
controllability Assumption 3.1 involves the running cost l, the results of this latter
analysis will, in particular, yield guidelines for the choice of l allowing to design stable
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Fig. 6.1. Minimal stabilizing horizon N̂ for m = 1.

MPC schemes with small optimization horizons, which we formulate and illustrate in
the ensuing section 7 for finite and infinite dimensional examples. In our analysis we
will concentrate on mere asymptotic stability; i.e., we will consider α0 = 0, however,
all computations yield qualitatively similar results for α0 > 0. In what follows, for the
sake of brevity we concentrate on a couple of particularly illuminating controllability
functions β, noting that much more details could be investigated, if desired.

We start by investigating how our estimated minimal stabilizing horizon N de-
pends on the accumulated overshoot represented by β, i.e., on the value γ > 0 satis-
fying

(6.2)
∞∑
n=0

β(r, n) ≤ γr.

To this end, we use the observation that if N is large enough in order to stabilize each
system satisfying Assumption 3.1 with

(6.3) β(r, 0) = γr, β(r, n) = 0, n ≥ 1,

then N is also large enough to stabilize each system satisfying Assumption 3.1 with
β from (6.2). In particular, this applies to β(r, n) = Cσnr with C/(1− σ) ≤ γ. The
reason for this is that the inequalities (4.1), (4.2) for (6.3) form weaker constraints
than the respective inequalities for (6.2); hence, the minimal value α for (6.3) must
be less or equal than α for (6.2).

Thus, we investigate the “worst case” (6.3) numerically and compute how the
minimal stabilizing N depends on γ. To this end we computed N̂ from (6.1) for β
from (6.3) with γ = 1, 2, . . . , 50 and m = 1. The resulting values N̂ are shown in
Figure 6.1.

It is interesting to observe that the resulting values almost exactly satisfy N̂ ≈
γ log γ, which leads to the conjecture that this expression describes the analytical
“stability margin”.

In order to see the influence of the control horizon m, we have repeated this
computation for m = [N/2] + 1, which numerically appears to be the optimal choice
of m. The results are shown in Figure 6.2.
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Fig. 6.2. Minimal stabilizing horizon N̂ for m = [N/2] + 1.

Here, one numerically observes N̂ ≈ 1.4γ; i.e., we obtain a linear dependence
between γ and N̂ and, in particular, we obtain stability for much smaller N than in
the case m = 1. However, when using such control horizons m > 1, one should keep
in mind that the control loop is closed only every m steps, i.e., the re-computation
of the control value based on the current measurement is performed at the times
0, m, 2m, . . . . This implies that the larger m is chosen, the more limited the ability
of the feedback controller to react to perturbations (caused, e.g., by external distur-
bances or modelling errors) becomes. On the other hand, if a large overshoot γ cannot
be avoided and hardware constraints restrict the computational resources, then mod-
erately increasing m may provide a good compromise in order to reduce N and, thus,
the complexity of the optimization problem to be solved online.

Figures 6.1 and 6.2 show how fast the necessary control horizon grows depending
on γ, and obviously the smaller γ is, the smaller N̂ becomes. Note that γ+1 coincides
with the parameter γ used in [8]. However, while the analysis in [8] is restricted to
investigating the effect of this parameter γ, our optimization-based approach now
allows for a detailed analysis on how N̂ varies for different functions β leading to the
same value γ. For instance, in an exponentially decaying running cost with β(r, n) =
Cσnr, it will be interesting to know whether small overshoot (i.e., small C) or fast
decay (i.e., small σ) are more important in order to ensure stability for small N̂ . In
order to analyze this dependence, we consider the classical feedback case m = 1 and
compare the four different functions of the form β(r, n) = Cσnr with

(6.4)
(a) C = 3, σ = 1/2 (b) C = 12/5, σ = 3/5

(c) C = 3/2, σ = 3/4 (d) C = 6/5, σ = 4/5.

These four functions have in common that γ = C/(1 − σ) = 6, but—as illustrated
in Figure 6.3 for r = 1—they differ in both the size of the overshoot C, which is
decreasing from (a) to (d) and the speed of decay σ which becomes slower from (a)
to (d).

It is surprising to see how much the minimal stabilizing horizons N̂ differ from (a)
to (d): solving (6.1) using Problem 4.4 we obtain (a) N̂ = 11, (b) N̂ = 10, (c) N̂ = 7,
and (d) N̂ = 4. Thus, in order to ensure stability with small optimization horizon N
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Fig. 6.3. Exponentially decaying functions β with C, σ from (6.4) (a)–(d) (left to right).
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Fig. 6.4. Finite time decaying functions β from (6.5) (a)–(d) (left to right).

for exponentially decaying β in Assumption 3.1, small overshoot is considerably more
important than fast decay.

A similar analysis can be carried out for different types of finite time control-
lability. Here we can investigate the case of nonstrict decay, a feature which is not
present when considering exponentially decaying functions β. To this end, consider
the function β(r, n) = cnr with

(6.5)

(a) c0 = 6, cn = 0, n ≥ 1

(b) c0 = c1 = c2 = 2, cn = 0, n ≥ 3

(c) c0 = c1 = c2 = c3 = 3/2, cn = 0, n ≥ 4

(d) c0 = c1 = c2 = c3 = c4 = c5 = c6 = 1, cn = 0, n ≥ 7,

which again satisfy
∑∞

n=0 cn = 6 and which are depicted in Figure 6.4 for r = 1.
Here the respective minimal stabilizing horizons computed from Problem 4.4 eval-

uate to (a) N̂ = 11, (b) N̂ = 11, (c) N̂ = 10, and (d) N̂ = 7. These results confirm
the conclusion drawn for the exponentially decaying functions (6.4) (a)–(d), i.e., that
fast controllability with large overshoot requires a longer optimization horizonN than
slower controllability with smaller overshoot. However, here the differences are less
pronounced than in the exponentially decaying case. In fact, the results show that be-
sides the overshoot a decisive feature determining the length of the stabilizing horizon
N is the minimal time nc for which β(r, nc) < r, i.e., contraction, can be observed.
The longer horizon observed in (6.5)(c) compared to (6.4)(d) is mainly due to the fact
that in the former we have nc = 1 while in the latter we have nc = 6.

Finally, we investigate the effect of the weight ω introduced in Remark 4.3. To
this end for all the functions from (6.4) and (6.5) we have determined a weight ω
such that the corresponding stabilizing optimization horizon N̂ becomes as small as
possible. Table 6.1 summarizes our numerical findings.

These results show that suitable tuning of ω reduces the optimization horizon in
all cases except for (6.5)(d) (in (6.5)(d), a further reduction to N̂ < 7 is not possible
because N = 7 is the smallest horizon for which controllability to 0 is “visible” in
the finite horizon functional JN ). It should, however, be noted that terminal weights
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Table 6.1

Minimal stabilizing optimization horizons N̂ for ω = 1 and ω > 1.

Function N̂ with ω = 1 N̂ with ω > 1 corresponding ω

(6.4)(a) 11 9 9
(6.4)(b) 10 9 5
(6.4)(c) 7 6 3
(6.4)(d) 4 2 6
(6.5)(a) 11 2 6
(6.5)(b) 11 10 4
(6.5)(c) 10 8 25
(6.5)(d) 7 7 arbitrary ≥ 1

ω > 1 have to be used with care, since a wrong choice of ω may also have a destabilizing
effect: for instance, using ω = 25 in Case (6.4)(c) leads to N̂ = 9 instead of N̂ = 7
for ω = 1.

The results also show that (6.3) is no longer the worst case for ω > 1. On the
contrary, in the case (6.5)(a) (which is exactly (6.3) for γ = 6) we obtain the largest
reduction of N̂ from 11 to 2.

A reduction to N̂ = 2, i.e., to the shortest possible horizon given that N = 1
results in a trivial optimal control problem, is possible in cases (6.4)(d) and (6.5)(a).
The reason for this is that these two cases exhibit β(r, 1) < r; i.e., we observe contrac-
tion already after one time step. Numerical evidence indicates that stabilization with
N = 2 and m = 1 is always possible in this case. This result actually carries over to
the general case β(r, n) < r for all n ≥ nc and some nc ≥ 1, but only if we increase
the control horizon m appropriately: our numerical investigations suggest that in this
case we always obtain a stabilizing MPC controller when we chose N = nc+1, m = nc
and ω sufficiently large, e.g., in example (6.4)(b), where we have nc = 2 we obtain
N̂ = 3 for m = 2 and ω = 15.

In the case just discussed we have N = m+1, i.e., summation up to N−1 = m in
JN from (2.6), and, thus, the effective optimization horizon coincides with the control
horizon. In the PDE optimal control literature, this particular choice of N and m
in an MPC scheme is often termed “instantaneous control” (cf., e.g., [9, 10, 12, 18]
and the references therein) and, thus, an interesting spin off from our analysis is an
additional systems theoretic insight into why and when instantaneous control renders
a stable closed loop system.

7. Design of MPC schemes. Our numerical findings from the previous section
immediately lead to design guidelines1 for the choice of l, ω, and m for obtaining
stable MPC schemes with small optimization horizons N . These can be summarized
as follows:

• design l in such a way that the overshoot γ =
∑∞

n=0 β(r, n)/r becomes as
small as possible
• in case of exponential controllability β(r, n) = Cσnr, reducing the overshoot

by reducing C is more efficient than by reducing σ
• in case of finite time controllability β(r, n) = cnr, reducing the overshoot by

reducing the cn is more efficient than by reducing the time to reach l∗(x) = 0
• terminal weights ω > 1 often lead to smaller N , but too large ω may have

the opposite effect, so ω should be tuned with care

1These guidelines are derived from numerical evidence by solving Problem 4.4 for a couple of test
examples; however, it seems likely that rigorously provable versions could be formulated for most of
these statements.
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• enlarging m typically leads to smaller N but may decrease the robustness of
the closed loop since the feedback is evaluated less frequently
• systems which are contracting after some time nc, i.e., β(r, n) < r for all n ≥
nc are always stabilized by chosing the “instantaneous control” parameters
N = nc + 1, m = nc, and ω suffiently large

We illustrate the effectiveness of these guidelines by two examples. We start with
a two-dimensional example from [24] given by

x(n+ 1) =
(

1 1.1
−1.1 1

)
x(n) +

(
0
1

)
u(n)

with running cost

l(x, u) = max{‖x‖∞, |u|} = max{|x1|, |x2|, |u|}.

Since this example is low dimensional and linear, VN can be computed numerically.
This fact was used in [24] in order to compute the minimal optimization horizon for
a stabilizing MPC feedback law with m = 1, which turns out to be N = 5 (note that
the numbering in [24] differs from ours).

In order to apply our approach, we construct β and ux meeting Assumption 3.1.
Because the system is finite time controllable to 0 this is quite easy to accomplish:
using the control

ux(0) =
21
110

x1 − 2x2, ux(1) =
221
110

x1 +
221
100

x2, ux(n) = 0, n ≥ 2

for x(0) = (x1, x2)T one obtains the trajectory

xux(1) =
(

x1 + 1.1x2

− 10
11x1 − x2

)
, xux(n) =

(
0
0

)
, n ≥ 2.

Since l∗(x) = ‖x‖∞ we can estimate
(7.1)
‖xux(0)‖∞ = l∗(x), ‖xux(1)‖∞ ≤ 2.1l∗(x), |ux(0)| ≤ 2.2l∗(x), |ux(1)| ≤ 4.22l∗(x),

implying l(xux(0), ux(0)) ≤ 2.2l∗(x), l(xux(1), ux(1)) ≤ 4.22l∗(x), and l(xux(n), ux(n))
= 0 for n ≥ 2 and, thus, Assumption 3.1 with

β(r, 0) = 2.2 r, β(r, 1) = 4.22 r, β(r, n) = 0, n ≥ 2.

Solving Problem 4.4 for this β we obtain a minimal stabilizing horizon N = 12, which
is clearly conservative compared to the value N = 5 computed in [24]. Note, however,
that instead of using the full information about the functions VN , which are in general
difficult to compute, we only use controllability information on the system.

Now we demonstrate that despite this conservatism our design guidelines can be
used to derive a modified design of the MPC scheme which yields stability for horizons
N < 5. Recall that the estimate for N becomes better, the smaller the overshoot γ
is. A look at (7.1) reveals that in this example a reduction of the overshoot can be
achieved by reducing the weight of u in l. For instance, if we modify l to

l(x, u) = max{‖x‖∞, |u|/2},

then (7.1) leads to

β(r, 0) = 1.1 r, β(r, 1) = 2.11 r, β(r, n) = 0, n ≥ 2.
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Fig. 7.1. Equilibria for u ≡ 0; solid = asymptotically stable, dashed = unstable.

Solving Problem 4.4 for this β leads to a minimal stabilizing horizon N = 5. Using
the terminal weight ω = 4 yields a further reduction to N = 4 and if, in addition, we
are willing to implement a two-step feedback, i.e., use m = 2, then we can reduce the
stabilizing optimization horizon even further to N = 3. This illustrates how, just by
using the controllability information of the system, our analysis can be used to design
an MPC scheme reducing the optimization horizon N by 40%.

Our second example demonstrates that our design guidelines are also applicable
to infinite dimensional systems. Even though in this case an explicit construction
of the controllability function β and the control ux in Assumption 3.1 is in general
rather difficult, we can still apply our results by using the structure of the system
equation in order to extract the necessary information about β. To this end, consider
the infinite dimensional control system governed by the parabolic reaction-advection-
diffusion PDE with distributed control

(7.2) yt = yx + νyxx + μy(y + 1)(1− y) + u

with solutions y = y(t, x)2 for x ∈ Ω = (0, 1), boundary conditions y(t, 0) = y(t, 1) =
0, initial condition y(0, x) = y0(x), and distributed control u(t, ·) ∈ L2(Ω). The corre-
sponding discrete time system (2.1), whose solutions and control functions we denote
by y(n, x) and u(n, x), respectively, is the sampled-data system obtained according to
(2.2) with sampling period T = 0.025.

For the subsequent numerical computations we discretized the equation in space
by finite differences on a grid with nodes xi = i/M , i = 0, . . . ,M , using backward
(i.e., upwind) differences for the advection part yx. Figure 7.1 shows the equilibria of
the discretized system for u ≡ 0, ν = 0.1, μ = 10, and M = 25.

Our goal is to stabilize the unstable equilibrium y∗ ≡ 0, which is possible because
with the additive distributed control we can compensate the whole dynamics of the
system. In order to achieve this task, a natural choice for a running cost l is the
tracking type functional

(7.3) l(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω),

which we implemented with λ = 10−1 for the discretized model in matlab using the
lsqnonlin solver for the resulting optimization problem.

2Note the change in the notation: x is the independent state variable while y(t, ·) is the new
state, i.e., X is now an infinite dimensional space.
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Fig. 7.2. Receding horizon with l from (7.3), N = 3 (left) and N = 11 (right).

0 0.2 0.4 0.6 0.8 10

0.5
−0.5

0

0.5

x
t

y

0 0.2 0.4 0.6 0.8 10

0.5
−0.5

0

0.5

x
t

y

Fig. 7.3. Receding horizon with l from (7.4), N = 2 (left) and N = 3 (right).

The simulations shown in Figure 7.2 reveal that the performance of this controller
is not completely satisfactory: for N = 11 the solution remains close to y∗ = 0 but
does not converge while for N = 3 the solution even grows.

The reason for this behavior lies in the fact that in order to control the system
to y∗ = 0, in (7.2) the control needs to compensate for yx, i.e., any stabilizing con-
trol must satisfy ‖u(n, ·)‖2L2(Ω) � ‖yx(n, ·)‖2L2(Ω). Thus, for any stabilizing control
sequence u we obtain J∞(y0, u) � λ‖yx(n, ·)‖2L2(Ω) which—even for small values of
λ—may be considerably larger than l∗(y) = ‖y‖2L2(Ω), resulting in a large β and, thus,
the need for a large optimization horizon N in order to achieve stability.

This effect can be avoided by changing l in such a way that l∗(y) includes
‖yx‖2L2(Ω), e.g., by setting

(7.4) l(y(n, ·), u(n, ·)) = ‖y(n, ·)‖2L2(Ω) + ‖yx(n, ·)‖2L2(Ω) + λ‖u(n, ·)‖2L2(Ω).

For this l the control effort needed in order to control (7.2) to y∗ = 0 is proportional to
l∗(y). Thus, the overshoot reflected in the controllability function β is now essentially
proportional to 1 + λ and, thus, in particular, small for our choice of λ = 10−1

which implies stability even for small optimization horizon N . The simulations for
the corresponding discretized running cost are illustrated in Figure 7.3 and show
that this is, indeed, the case: we obtain asymptotic stability even for the very small
optimization horizons N = 2 (i.e., for instantaneous control) and N = 3, with slightly
better performance for the latter case.
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8. Conclusions and outlook. We have presented a stability and performance
analysis technique for unconstrained nonlinear MPC schemes which relies on a suit-
able controllability condition for the running cost. The proposed technique leads to
a small optimization problem whose size depends only on the optimization horizon
to be investigated but not on the dimension of the state space. The stability con-
dition obtained this way turns out to be tight with respect to the class of systems
satisfying the assumed controllability condition. The numerical analysis based on this
optimization problem was used to derive guidelines for the design of MPC schemes
guaranteeing stability for small optimization horizons N . The effectiveness of these
guidelines has been illustrated by a finite and an infinite dimensional example.

Future research will include the generalization of the approach to situations where
VN cannot be expected to be a Lyapunov function, the inclusion of deterministic and
stochastic uncertainties in the analysis and the relaxation of the Assumptions 3.1 and
5.1(ii) to more general controllability and detectability assumptions.

9. Appendix: A technical lemma.
Lemma 9.1. Consider β ∈ KL0, N ≥ 1, m ∈ {1, . . . , N − 1}, a sequence λn > 0,

n = 0, . . . , N − 1 and ν > 0 fulfilling (4.1), (4.2) and

(9.1)
N−1∑
n=0

λn − ν ≤ α
m−1∑
n=0

λn

for some α < 0. Then there exist λ̄n > 0, ν̄ > 0, and ᾱ < 0 satisfying (4.1), (4.2),
and (9.1) for which the inequalities (4.1) are strict.

Proof. We label the inequalities for λ̄n, ν̄, and ᾱ by (4.1), (4.2), and (9.1),
respectively, and set λ̄n = λn, n = 0, . . . , N − 2 and λ̄N−1 = λN−1 − ε where ε ∈
(0, λN−1) is specified below. Since this implies λ̄N−1 < λN−1 the inequalities (4.1) are
strict. Furthermore, (9.1) holds for all ᾱ ≥ α and (4.2) holds for j = 1, . . . , N−m−2.

It, thus, remains to choose ε, ν̄, and ᾱ such that (4.2) holds for j = N −m − 1
while (9.1) and (4.2) for j = 1, . . . , N −m − 2 remain valid. In case the inequality
(4.2) for j = N −m− 1 is strict, we choose ν̄ = ν, ᾱ = α, and ε > 0 sufficiently small
such that (4.2) holds for j = N −m− 1, which is possible since Bk is continuous.

In case that (4.2) for j = N−m−1 is an equality, we set ν̄ (depending on ε) such
that equality in (4.2) for j = N −m− 1 holds, as well. This implies ν̄ ≤ ν and, thus,
all other inequalities in (4.2) remain valid for all ε ∈ (0, λN−1). Now by continuity
of Bk the value ν̄ depends continuously on ε; hence, for ε > 0 sufficiently small we
obtain (9.1) for ᾱ = α/2 < 0.
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